diff options
author | Mauro Carvalho Chehab <mchehab+samsung@kernel.org> | 2019-06-12 19:53:00 +0200 |
---|---|---|
committer | Jonathan Corbet <corbet@lwn.net> | 2019-06-14 22:31:48 +0200 |
commit | 458f69ef36656dc74679667380422dd8063eabfb (patch) | |
tree | c44aafca54ae7d01160fe8ef09e7999594145a67 /Documentation/timers/highres.txt | |
parent | docs: target: convert docs to ReST and rename to *.rst (diff) | |
download | linux-458f69ef36656dc74679667380422dd8063eabfb.tar.xz linux-458f69ef36656dc74679667380422dd8063eabfb.zip |
docs: timers: convert docs to ReST and rename to *.rst
The conversion here is really trivial: just a bunch of title
markups and very few puntual changes is enough to make it to
be parsed by Sphinx and generate a nice html.
The conversion is actually:
- add blank lines and identation in order to identify paragraphs;
- fix tables markups;
- add some lists markups;
- mark literal blocks;
- adjust title markups.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Acked-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Diffstat (limited to 'Documentation/timers/highres.txt')
-rw-r--r-- | Documentation/timers/highres.txt | 249 |
1 files changed, 0 insertions, 249 deletions
diff --git a/Documentation/timers/highres.txt b/Documentation/timers/highres.txt deleted file mode 100644 index 8f9741592123..000000000000 --- a/Documentation/timers/highres.txt +++ /dev/null @@ -1,249 +0,0 @@ -High resolution timers and dynamic ticks design notes ------------------------------------------------------ - -Further information can be found in the paper of the OLS 2006 talk "hrtimers -and beyond". The paper is part of the OLS 2006 Proceedings Volume 1, which can -be found on the OLS website: -https://www.kernel.org/doc/ols/2006/ols2006v1-pages-333-346.pdf - -The slides to this talk are available from: -http://www.cs.columbia.edu/~nahum/w6998/papers/ols2006-hrtimers-slides.pdf - -The slides contain five figures (pages 2, 15, 18, 20, 22), which illustrate the -changes in the time(r) related Linux subsystems. Figure #1 (p. 2) shows the -design of the Linux time(r) system before hrtimers and other building blocks -got merged into mainline. - -Note: the paper and the slides are talking about "clock event source", while we -switched to the name "clock event devices" in meantime. - -The design contains the following basic building blocks: - -- hrtimer base infrastructure -- timeofday and clock source management -- clock event management -- high resolution timer functionality -- dynamic ticks - - -hrtimer base infrastructure ---------------------------- - -The hrtimer base infrastructure was merged into the 2.6.16 kernel. Details of -the base implementation are covered in Documentation/timers/hrtimers.txt. See -also figure #2 (OLS slides p. 15) - -The main differences to the timer wheel, which holds the armed timer_list type -timers are: - - time ordered enqueueing into a rb-tree - - independent of ticks (the processing is based on nanoseconds) - - -timeofday and clock source management -------------------------------------- - -John Stultz's Generic Time Of Day (GTOD) framework moves a large portion of -code out of the architecture-specific areas into a generic management -framework, as illustrated in figure #3 (OLS slides p. 18). The architecture -specific portion is reduced to the low level hardware details of the clock -sources, which are registered in the framework and selected on a quality based -decision. The low level code provides hardware setup and readout routines and -initializes data structures, which are used by the generic time keeping code to -convert the clock ticks to nanosecond based time values. All other time keeping -related functionality is moved into the generic code. The GTOD base patch got -merged into the 2.6.18 kernel. - -Further information about the Generic Time Of Day framework is available in the -OLS 2005 Proceedings Volume 1: -http://www.linuxsymposium.org/2005/linuxsymposium_procv1.pdf - -The paper "We Are Not Getting Any Younger: A New Approach to Time and -Timers" was written by J. Stultz, D.V. Hart, & N. Aravamudan. - -Figure #3 (OLS slides p.18) illustrates the transformation. - - -clock event management ----------------------- - -While clock sources provide read access to the monotonically increasing time -value, clock event devices are used to schedule the next event -interrupt(s). The next event is currently defined to be periodic, with its -period defined at compile time. The setup and selection of the event device -for various event driven functionalities is hardwired into the architecture -dependent code. This results in duplicated code across all architectures and -makes it extremely difficult to change the configuration of the system to use -event interrupt devices other than those already built into the -architecture. Another implication of the current design is that it is necessary -to touch all the architecture-specific implementations in order to provide new -functionality like high resolution timers or dynamic ticks. - -The clock events subsystem tries to address this problem by providing a generic -solution to manage clock event devices and their usage for the various clock -event driven kernel functionalities. The goal of the clock event subsystem is -to minimize the clock event related architecture dependent code to the pure -hardware related handling and to allow easy addition and utilization of new -clock event devices. It also minimizes the duplicated code across the -architectures as it provides generic functionality down to the interrupt -service handler, which is almost inherently hardware dependent. - -Clock event devices are registered either by the architecture dependent boot -code or at module insertion time. Each clock event device fills a data -structure with clock-specific property parameters and callback functions. The -clock event management decides, by using the specified property parameters, the -set of system functions a clock event device will be used to support. This -includes the distinction of per-CPU and per-system global event devices. - -System-level global event devices are used for the Linux periodic tick. Per-CPU -event devices are used to provide local CPU functionality such as process -accounting, profiling, and high resolution timers. - -The management layer assigns one or more of the following functions to a clock -event device: - - system global periodic tick (jiffies update) - - cpu local update_process_times - - cpu local profiling - - cpu local next event interrupt (non periodic mode) - -The clock event device delegates the selection of those timer interrupt related -functions completely to the management layer. The clock management layer stores -a function pointer in the device description structure, which has to be called -from the hardware level handler. This removes a lot of duplicated code from the -architecture specific timer interrupt handlers and hands the control over the -clock event devices and the assignment of timer interrupt related functionality -to the core code. - -The clock event layer API is rather small. Aside from the clock event device -registration interface it provides functions to schedule the next event -interrupt, clock event device notification service and support for suspend and -resume. - -The framework adds about 700 lines of code which results in a 2KB increase of -the kernel binary size. The conversion of i386 removes about 100 lines of -code. The binary size decrease is in the range of 400 byte. We believe that the -increase of flexibility and the avoidance of duplicated code across -architectures justifies the slight increase of the binary size. - -The conversion of an architecture has no functional impact, but allows to -utilize the high resolution and dynamic tick functionalities without any change -to the clock event device and timer interrupt code. After the conversion the -enabling of high resolution timers and dynamic ticks is simply provided by -adding the kernel/time/Kconfig file to the architecture specific Kconfig and -adding the dynamic tick specific calls to the idle routine (a total of 3 lines -added to the idle function and the Kconfig file) - -Figure #4 (OLS slides p.20) illustrates the transformation. - - -high resolution timer functionality ------------------------------------ - -During system boot it is not possible to use the high resolution timer -functionality, while making it possible would be difficult and would serve no -useful function. The initialization of the clock event device framework, the -clock source framework (GTOD) and hrtimers itself has to be done and -appropriate clock sources and clock event devices have to be registered before -the high resolution functionality can work. Up to the point where hrtimers are -initialized, the system works in the usual low resolution periodic mode. The -clock source and the clock event device layers provide notification functions -which inform hrtimers about availability of new hardware. hrtimers validates -the usability of the registered clock sources and clock event devices before -switching to high resolution mode. This ensures also that a kernel which is -configured for high resolution timers can run on a system which lacks the -necessary hardware support. - -The high resolution timer code does not support SMP machines which have only -global clock event devices. The support of such hardware would involve IPI -calls when an interrupt happens. The overhead would be much larger than the -benefit. This is the reason why we currently disable high resolution and -dynamic ticks on i386 SMP systems which stop the local APIC in C3 power -state. A workaround is available as an idea, but the problem has not been -tackled yet. - -The time ordered insertion of timers provides all the infrastructure to decide -whether the event device has to be reprogrammed when a timer is added. The -decision is made per timer base and synchronized across per-cpu timer bases in -a support function. The design allows the system to utilize separate per-CPU -clock event devices for the per-CPU timer bases, but currently only one -reprogrammable clock event device per-CPU is utilized. - -When the timer interrupt happens, the next event interrupt handler is called -from the clock event distribution code and moves expired timers from the -red-black tree to a separate double linked list and invokes the softirq -handler. An additional mode field in the hrtimer structure allows the system to -execute callback functions directly from the next event interrupt handler. This -is restricted to code which can safely be executed in the hard interrupt -context. This applies, for example, to the common case of a wakeup function as -used by nanosleep. The advantage of executing the handler in the interrupt -context is the avoidance of up to two context switches - from the interrupted -context to the softirq and to the task which is woken up by the expired -timer. - -Once a system has switched to high resolution mode, the periodic tick is -switched off. This disables the per system global periodic clock event device - -e.g. the PIT on i386 SMP systems. - -The periodic tick functionality is provided by an per-cpu hrtimer. The callback -function is executed in the next event interrupt context and updates jiffies -and calls update_process_times and profiling. The implementation of the hrtimer -based periodic tick is designed to be extended with dynamic tick functionality. -This allows to use a single clock event device to schedule high resolution -timer and periodic events (jiffies tick, profiling, process accounting) on UP -systems. This has been proved to work with the PIT on i386 and the Incrementer -on PPC. - -The softirq for running the hrtimer queues and executing the callbacks has been -separated from the tick bound timer softirq to allow accurate delivery of high -resolution timer signals which are used by itimer and POSIX interval -timers. The execution of this softirq can still be delayed by other softirqs, -but the overall latencies have been significantly improved by this separation. - -Figure #5 (OLS slides p.22) illustrates the transformation. - - -dynamic ticks -------------- - -Dynamic ticks are the logical consequence of the hrtimer based periodic tick -replacement (sched_tick). The functionality of the sched_tick hrtimer is -extended by three functions: - -- hrtimer_stop_sched_tick -- hrtimer_restart_sched_tick -- hrtimer_update_jiffies - -hrtimer_stop_sched_tick() is called when a CPU goes into idle state. The code -evaluates the next scheduled timer event (from both hrtimers and the timer -wheel) and in case that the next event is further away than the next tick it -reprograms the sched_tick to this future event, to allow longer idle sleeps -without worthless interruption by the periodic tick. The function is also -called when an interrupt happens during the idle period, which does not cause a -reschedule. The call is necessary as the interrupt handler might have armed a -new timer whose expiry time is before the time which was identified as the -nearest event in the previous call to hrtimer_stop_sched_tick. - -hrtimer_restart_sched_tick() is called when the CPU leaves the idle state before -it calls schedule(). hrtimer_restart_sched_tick() resumes the periodic tick, -which is kept active until the next call to hrtimer_stop_sched_tick(). - -hrtimer_update_jiffies() is called from irq_enter() when an interrupt happens -in the idle period to make sure that jiffies are up to date and the interrupt -handler has not to deal with an eventually stale jiffy value. - -The dynamic tick feature provides statistical values which are exported to -userspace via /proc/stat and can be made available for enhanced power -management control. - -The implementation leaves room for further development like full tickless -systems, where the time slice is controlled by the scheduler, variable -frequency profiling, and a complete removal of jiffies in the future. - - -Aside the current initial submission of i386 support, the patchset has been -extended to x86_64 and ARM already. Initial (work in progress) support is also -available for MIPS and PowerPC. - - Thomas, Ingo - - - |