diff options
author | SeongJae Park <sj38.park@gmail.com> | 2019-11-29 19:08:37 +0100 |
---|---|---|
committer | Will Deacon <will@kernel.org> | 2020-07-21 11:50:36 +0200 |
commit | 9ce1b14e74042a3477f880bee675945044880b01 (patch) | |
tree | f0de370924277baddd11fb0275d852ae2c42c6b0 /Documentation/translations | |
parent | Documentation/barriers: Remove references to [smp_]read_barrier_depends() (diff) | |
download | linux-9ce1b14e74042a3477f880bee675945044880b01.tar.xz linux-9ce1b14e74042a3477f880bee675945044880b01.zip |
Documentation/barriers/kokr: Remove references to [smp_]read_barrier_depends()
This commit translates commit ("Documentation/barriers: Remove references to
[smp_]read_barrier_depends()") into Korean.
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Yunjae Lee <lyj7694@gmail.com>
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Signed-off-by: Will Deacon <will@kernel.org>
Diffstat (limited to 'Documentation/translations')
-rw-r--r-- | Documentation/translations/ko_KR/memory-barriers.txt | 146 |
1 files changed, 3 insertions, 143 deletions
diff --git a/Documentation/translations/ko_KR/memory-barriers.txt b/Documentation/translations/ko_KR/memory-barriers.txt index 34d041d68f78..a1f772ef622c 100644 --- a/Documentation/translations/ko_KR/memory-barriers.txt +++ b/Documentation/translations/ko_KR/memory-barriers.txt @@ -577,7 +577,7 @@ ACQUIRE 는 해당 오퍼레이션의 로드 부분에만 적용되고 RELEASE 데이터 의존성 배리어 (역사적) ----------------------------- -리눅스 커널 v4.15 기준으로, smp_read_barrier_depends() 가 READ_ONCE() 에 +리눅스 커널 v4.15 기준으로, smp_mb() 가 DEC Alpha 용 READ_ONCE() 코드에 추가되었는데, 이는 이 섹션에 주의를 기울여야 하는 사람들은 DEC Alpha 아키텍쳐 전용 코드를 만드는 사람들과 READ_ONCE() 자체를 만드는 사람들 뿐임을 의미합니다. 그런 분들을 위해, 그리고 역사에 관심 있는 분들을 위해, 여기 데이터 의존성 @@ -2664,144 +2664,6 @@ CPU 코어는 프로그램의 인과성이 유지된다고만 여겨진다면 수도 있습니다. -캐시 일관성 ------------ - -하지만 삶은 앞에서 이야기한 것처럼 단순하지 않습니다: 캐시들은 일관적일 것으로 -기대되지만, 그 일관성이 순서에도 적용될 거라는 보장은 없습니다. 한 CPU 에서 -만들어진 변경 사항은 최종적으로는 시스템의 모든 CPU 에게 보여지게 되지만, 다른 -CPU 들에게도 같은 순서로 보이게 될 거라는 보장은 없다는 뜻입니다. - - -두개의 CPU (1 & 2) 가 달려 있고, 각 CPU 에 두개의 데이터 캐시(CPU 1 은 A/B 를, -CPU 2 는 C/D 를 갖습니다)가 병렬로 연결되어 있는 시스템을 다룬다고 생각해 -봅시다: - - : - : +--------+ - : +---------+ | | - +--------+ : +--->| Cache A |<------->| | - | | : | +---------+ | | - | CPU 1 |<---+ | | - | | : | +---------+ | | - +--------+ : +--->| Cache B |<------->| | - : +---------+ | | - : | Memory | - : +---------+ | System | - +--------+ : +--->| Cache C |<------->| | - | | : | +---------+ | | - | CPU 2 |<---+ | | - | | : | +---------+ | | - +--------+ : +--->| Cache D |<------->| | - : +---------+ | | - : +--------+ - : - -이 시스템이 다음과 같은 특성을 갖는다 생각해 봅시다: - - (*) 홀수번 캐시라인은 캐시 A, 캐시 C 또는 메모리에 위치할 수 있음; - - (*) 짝수번 캐시라인은 캐시 B, 캐시 D 또는 메모리에 위치할 수 있음; - - (*) CPU 코어가 한개의 캐시에 접근하는 동안, 다른 캐시는 - 더티 캐시라인을 - 메모리에 내리거나 추측성 로드를 하거나 하기 위해 - 시스템의 다른 부분에 - 액세스 하기 위해 버스를 사용할 수 있음; - - (*) 각 캐시는 시스템의 나머지 부분들과 일관성을 맞추기 위해 해당 캐시에 - 적용되어야 할 오퍼레이션들의 큐를 가짐; - - (*) 이 일관성 큐는 캐시에 이미 존재하는 라인에 가해지는 평범한 로드에 의해서는 - 비워지지 않는데, 큐의 오퍼레이션들이 이 로드의 결과에 영향을 끼칠 수 있다 - 할지라도 그러함. - -이제, 첫번째 CPU 에서 두개의 쓰기 오퍼레이션을 만드는데, 해당 CPU 의 캐시에 -요청된 순서로 오퍼레이션이 도달됨을 보장하기 위해 두 오퍼레이션 사이에 쓰기 -배리어를 사용하는 상황을 상상해 봅시다: - - CPU 1 CPU 2 COMMENT - =============== =============== ======================================= - u == 0, v == 1 and p == &u, q == &u - v = 2; - smp_wmb(); v 의 변경이 p 의 변경 전에 보일 것을 - 분명히 함 - <A:modify v=2> v 는 이제 캐시 A 에 독점적으로 존재함 - p = &v; - <B:modify p=&v> p 는 이제 캐시 B 에 독점적으로 존재함 - -여기서의 쓰기 메모리 배리어는 CPU 1 의 캐시가 올바른 순서로 업데이트 된 것으로 -시스템의 다른 CPU 들이 인지하게 만듭니다. 하지만, 이제 두번째 CPU 가 그 값들을 -읽으려 하는 상황을 생각해 봅시다: - - CPU 1 CPU 2 COMMENT - =============== =============== ======================================= - ... - q = p; - x = *q; - -위의 두개의 읽기 오퍼레이션은 예상된 순서로 일어나지 못할 수 있는데, 두번째 CPU -의 한 캐시에 다른 캐시 이벤트가 발생해 v 를 담고 있는 캐시라인의 해당 캐시에의 -업데이트가 지연되는 사이, p 를 담고 있는 캐시라인은 두번째 CPU 의 다른 캐시에 -업데이트 되어버렸을 수 있기 때문입니다. - - CPU 1 CPU 2 COMMENT - =============== =============== ======================================= - u == 0, v == 1 and p == &u, q == &u - v = 2; - smp_wmb(); - <A:modify v=2> <C:busy> - <C:queue v=2> - p = &v; q = p; - <D:request p> - <B:modify p=&v> <D:commit p=&v> - <D:read p> - x = *q; - <C:read *q> 캐시에 업데이트 되기 전의 v 를 읽음 - <C:unbusy> - <C:commit v=2> - -기본적으로, 두개의 캐시라인 모두 CPU 2 에 최종적으로는 업데이트 될 것이지만, -별도의 개입 없이는, 업데이트의 순서가 CPU 1 에서 만들어진 순서와 동일할 -것이라는 보장이 없습니다. - - -여기에 개입하기 위해선, 데이터 의존성 배리어나 읽기 배리어를 로드 오퍼레이션들 -사이에 넣어야 합니다 (v4.15 부터는 READ_ONCE() 매크로에 의해 무조건적으로 -그렇게 됩니다). 이렇게 함으로써 캐시가 다음 요청을 처리하기 전에 일관성 큐를 -처리하도록 강제하게 됩니다. - - CPU 1 CPU 2 COMMENT - =============== =============== ======================================= - u == 0, v == 1 and p == &u, q == &u - v = 2; - smp_wmb(); - <A:modify v=2> <C:busy> - <C:queue v=2> - p = &v; q = p; - <D:request p> - <B:modify p=&v> <D:commit p=&v> - <D:read p> - smp_read_barrier_depends() - <C:unbusy> - <C:commit v=2> - x = *q; - <C:read *q> 캐시에 업데이트 된 v 를 읽음 - - -이런 부류의 문제는 DEC Alpha 계열 프로세서들에서 발견될 수 있는데, 이들은 -데이터 버스를 좀 더 잘 사용해 성능을 개선할 수 있는, 분할된 캐시를 가지고 있기 -때문입니다. 대부분의 CPU 는 하나의 읽기 오퍼레이션의 메모리 액세스가 다른 읽기 -오퍼레이션에 의존적이라면 데이터 의존성 배리어를 내포시킵니다만, 모두가 그런건 -아니기 때문에 이점에 의존해선 안됩니다. - -다른 CPU 들도 분할된 캐시를 가지고 있을 수 있지만, 그런 CPU 들은 평범한 메모리 -액세스를 위해서도 이 분할된 캐시들 사이의 조정을 해야만 합니다. Alpha 는 가장 -약한 메모리 순서 시맨틱 (semantic) 을 선택함으로써 메모리 배리어가 명시적으로 -사용되지 않았을 때에는 그런 조정이 필요하지 않게 했으며, 이는 Alpha 가 당시에 -더 높은 CPU 클락 속도를 가질 수 있게 했습니다. 하지만, (다시 말하건대, v4.15 -이후부터는) Alpha 아키텍쳐 전용 코드와 READ_ONCE() 매크로 내부에서를 제외하고는 -smp_read_barrier_depends() 가 사용되지 않아야 함을 알아두시기 바랍니다. - - 캐시 일관성 VS DMA ------------------ @@ -2962,10 +2824,8 @@ Alpha CPU 의 일부 버전은 분할된 데이터 캐시를 가지고 있어서 데이터의 발견을 올바른 순서로 일어나게 하기 때문입니다. 리눅스 커널의 메모리 배리어 모델은 Alpha 에 기초해서 정의되었습니다만, v4.15 -부터는 리눅스 커널이 READ_ONCE() 내에 smp_read_barrier_depends() 를 추가해서 -Alpha 의 메모리 모델로의 영향력이 크게 줄어들긴 했습니다. - -위의 "캐시 일관성" 서브섹션을 참고하세요. +부터는 Alpha 용 READ_ONCE() 코드 내에 smp_mb() 가 추가되어서 메모리 모델로의 +Alpha 의 영향력이 크게 줄어들었습니다. 가상 머신 게스트 |