summaryrefslogtreecommitdiffstats
path: root/Documentation/userspace-api
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2023-11-01 17:28:35 +0100
committerLinus Torvalds <torvalds@linux-foundation.org>2023-11-01 17:28:35 +0100
commit7d461b291e65938f15f56fe58da2303b07578a76 (patch)
tree015dd7c2f1743dd70be52787dd9aff33822bc938 /Documentation/userspace-api
parentMerge tag 'devicetree-for-6.7' of git://git.kernel.org/pub/scm/linux/kernel/g... (diff)
parentMerge tag 'amd-drm-next-6.7-2023-10-27' of https://gitlab.freedesktop.org/agd... (diff)
downloadlinux-7d461b291e65938f15f56fe58da2303b07578a76.tar.xz
linux-7d461b291e65938f15f56fe58da2303b07578a76.zip
Merge tag 'drm-next-2023-10-31-1' of git://anongit.freedesktop.org/drm/drm
Pull drm updates from Dave Airlie: "Highlights: - AMD adds some more upcoming HW platforms - Intel made Meteorlake stable and started adding Lunarlake - nouveau has a bunch of display rework in prepartion for the NVIDIA GSP firmware support - msm adds a7xx support - habanalabs has finished migration to accel subsystem Detail summary: kernel: - add initial vmemdup-user-array core: - fix platform remove() to return void - drm_file owner updated to reflect owner - move size calcs to drm buddy allocator - let GPUVM build as a module - allow variable number of run-queues in scheduler edid: - handle bad h/v sync_end in EDIDs panfrost: - add Boris as maintainer fbdev: - use fb_ops helpers more - only allow logo use from fbcon - rename fb_pgproto to pgprot_framebuffer - add HPD state to drm_connector_oob_hotplug_event - convert to fbdev i/o mem helpers i915: - Enable meteorlake by default - Early Xe2 LPD/Lunarlake display enablement - Rework subplatforms into IP version checks - GuC based TLB invalidation for Meteorlake - Display rework for future Xe driver integration - LNL FBC features - LNL display feature capability reads - update recommended fw versions for DG2+ - drop fastboot module parameter - added deviceid for Arrowlake-S - drop preproduction workarounds - don't disable preemption for resets - cleanup inlines in headers - PXP firmware loading fix - Fix sg list lengths - DSC PPS state readout/verification - Add more RPL P/U PCI IDs - Add new DG2-G12 stepping - DP enhanced framing support to state checker - Improve shared link bandwidth management - stop using GEM macros in display code - refactor related code into display code - locally enable W=1 warnings - remove PSR watchdog timers on LNL amdgpu: - RAS/FRU EEPROM updatse - IP discovery updatses - GC 11.5 support - DCN 3.5 support - VPE 6.1 support - NBIO 7.11 support - DML2 support - lots of IP updates - use flexible arrays for bo list handling - W=1 fixes - Enable seamless boot in more cases - Enable context type property for HDMI - Rework GPUVM TLB flushing - VCN IB start/size alignment fixes amdkfd: - GC 10/11 fixes - GC 11.5 support - use partial migration in GPU faults radeon: - W=1 Fixes - fix some possible buffer overflow/NULL derefs nouveau: - update uapi for NO_PREFETCH - scheduler/fence fixes - rework suspend/resume for GSP-RM - rework display in preparation for GSP-RM habanalabs: - uapi: expose tsc clock - uapi: block access to eventfd through control device - uapi: force dma-buf export to PAGE_SIZE alignments - complete move to accel subsystem - move firmware interface include files - perform hard reset on PCIe AXI drain event - optimise user interrupt handling msm: - DP: use existing helpers for DPCD - DPU: interrupts reworked - gpu: a7xx (a730/a740) support - decouple msm_drv from kms for headless devices mediatek: - MT8188 dsi/dp/edp support - DDP GAMMA - 12 bit LUT support - connector dynamic selection capability rockchip: - rv1126 mipi-dsi/vop support - add planar formats ast: - rename constants panels: - Mitsubishi AA084XE01 - JDI LPM102A188A - LTK050H3148W-CTA6 ivpu: - power management fixes qaic: - add detach slice bo api komeda: - add NV12 writeback tegra: - support NVSYNC/NHSYNC - host1x suspend fixes ili9882t: - separate into own driver" * tag 'drm-next-2023-10-31-1' of git://anongit.freedesktop.org/drm/drm: (1803 commits) drm/amdgpu: Remove unused variables from amdgpu_show_fdinfo drm/amdgpu: Remove duplicate fdinfo fields drm/amd/amdgpu: avoid to disable gfxhub interrupt when driver is unloaded drm/amdgpu: Add EXT_COHERENT support for APU and NUMA systems drm/amdgpu: Retrieve CE count from ce_count_lo_chip in EccInfo table drm/amdgpu: Identify data parity error corrected in replay mode drm/amdgpu: Fix typo in IP discovery parsing drm/amd/display: fix S/G display enablement drm/amdxcp: fix amdxcp unloads incompletely drm/amd/amdgpu: fix the GPU power print error in pm info drm/amdgpu: Use pcie domain of xcc acpi objects drm/amd: check num of link levels when update pcie param drm/amdgpu: Add a read to GFX v9.4.3 ring test drm/amd/pm: call smu_cmn_get_smc_version in is_mode1_reset_supported. drm/amdgpu: get RAS poison status from DF v4_6_2 drm/amdgpu: Use discovery table's subrevision drm/amd/display: 3.2.256 drm/amd/display: add interface to query SubVP status drm/amd/display: Read before writing Backlight Mode Set Register drm/amd/display: Disable SYMCLK32_SE RCO on DCN314 ...
Diffstat (limited to 'Documentation/userspace-api')
-rw-r--r--Documentation/userspace-api/dma-buf-alloc-exchange.rst389
-rw-r--r--Documentation/userspace-api/index.rst1
2 files changed, 390 insertions, 0 deletions
diff --git a/Documentation/userspace-api/dma-buf-alloc-exchange.rst b/Documentation/userspace-api/dma-buf-alloc-exchange.rst
new file mode 100644
index 000000000000..fdff19fce13e
--- /dev/null
+++ b/Documentation/userspace-api/dma-buf-alloc-exchange.rst
@@ -0,0 +1,389 @@
+.. SPDX-License-Identifier: GPL-2.0
+.. Copyright 2021-2023 Collabora Ltd.
+
+========================
+Exchanging pixel buffers
+========================
+
+As originally designed, the Linux graphics subsystem had extremely limited
+support for sharing pixel-buffer allocations between processes, devices, and
+subsystems. Modern systems require extensive integration between all three
+classes; this document details how applications and kernel subsystems should
+approach this sharing for two-dimensional image data.
+
+It is written with reference to the DRM subsystem for GPU and display devices,
+V4L2 for media devices, and also to Vulkan, EGL and Wayland, for userspace
+support, however any other subsystems should also follow this design and advice.
+
+
+Glossary of terms
+=================
+
+.. glossary::
+
+ image:
+ Conceptually a two-dimensional array of pixels. The pixels may be stored
+ in one or more memory buffers. Has width and height in pixels, pixel
+ format and modifier (implicit or explicit).
+
+ row:
+ A span along a single y-axis value, e.g. from co-ordinates (0,100) to
+ (200,100).
+
+ scanline:
+ Synonym for row.
+
+ column:
+ A span along a single x-axis value, e.g. from co-ordinates (100,0) to
+ (100,100).
+
+ memory buffer:
+ A piece of memory for storing (parts of) pixel data. Has stride and size
+ in bytes and at least one handle in some API. May contain one or more
+ planes.
+
+ plane:
+ A two-dimensional array of some or all of an image's color and alpha
+ channel values.
+
+ pixel:
+ A picture element. Has a single color value which is defined by one or
+ more color channels values, e.g. R, G and B, or Y, Cb and Cr. May also
+ have an alpha value as an additional channel.
+
+ pixel data:
+ Bytes or bits that represent some or all of the color/alpha channel values
+ of a pixel or an image. The data for one pixel may be spread over several
+ planes or memory buffers depending on format and modifier.
+
+ color value:
+ A tuple of numbers, representing a color. Each element in the tuple is a
+ color channel value.
+
+ color channel:
+ One of the dimensions in a color model. For example, RGB model has
+ channels R, G, and B. Alpha channel is sometimes counted as a color
+ channel as well.
+
+ pixel format:
+ A description of how pixel data represents the pixel's color and alpha
+ values.
+
+ modifier:
+ A description of how pixel data is laid out in memory buffers.
+
+ alpha:
+ A value that denotes the color coverage in a pixel. Sometimes used for
+ translucency instead.
+
+ stride:
+ A value that denotes the relationship between pixel-location co-ordinates
+ and byte-offset values. Typically used as the byte offset between two
+ pixels at the start of vertically-consecutive tiling blocks. For linear
+ layouts, the byte offset between two vertically-adjacent pixels. For
+ non-linear formats the stride must be computed in a consistent way, which
+ usually is done as-if the layout was linear.
+
+ pitch:
+ Synonym for stride.
+
+
+Formats and modifiers
+=====================
+
+Each buffer must have an underlying format. This format describes the color
+values provided for each pixel. Although each subsystem has its own format
+descriptions (e.g. V4L2 and fbdev), the ``DRM_FORMAT_*`` tokens should be reused
+wherever possible, as they are the standard descriptions used for interchange.
+These tokens are described in the ``drm_fourcc.h`` file, which is a part of
+DRM's uAPI.
+
+Each ``DRM_FORMAT_*`` token describes the translation between a pixel
+co-ordinate in an image, and the color values for that pixel contained within
+its memory buffers. The number and type of color channels are described:
+whether they are RGB or YUV, integer or floating-point, the size of each channel
+and their locations within the pixel memory, and the relationship between color
+planes.
+
+For example, ``DRM_FORMAT_ARGB8888`` describes a format in which each pixel has
+a single 32-bit value in memory. Alpha, red, green, and blue, color channels are
+available at 8-bit precision per channel, ordered respectively from most to
+least significant bits in little-endian storage. ``DRM_FORMAT_*`` is not
+affected by either CPU or device endianness; the byte pattern in memory is
+always as described in the format definition, which is usually little-endian.
+
+As a more complex example, ``DRM_FORMAT_NV12`` describes a format in which luma
+and chroma YUV samples are stored in separate planes, where the chroma plane is
+stored at half the resolution in both dimensions (i.e. one U/V chroma
+sample is stored for each 2x2 pixel grouping).
+
+Format modifiers describe a translation mechanism between these per-pixel memory
+samples, and the actual memory storage for the buffer. The most straightforward
+modifier is ``DRM_FORMAT_MOD_LINEAR``, describing a scheme in which each plane
+is laid out row-sequentially, from the top-left to the bottom-right corner.
+This is considered the baseline interchange format, and most convenient for CPU
+access.
+
+Modern hardware employs much more sophisticated access mechanisms, typically
+making use of tiled access and possibly also compression. For example, the
+``DRM_FORMAT_MOD_VIVANTE_TILED`` modifier describes memory storage where pixels
+are stored in 4x4 blocks arranged in row-major ordering, i.e. the first tile in
+a plane stores pixels (0,0) to (3,3) inclusive, and the second tile in a plane
+stores pixels (4,0) to (7,3) inclusive.
+
+Some modifiers may modify the number of planes required for an image; for
+example, the ``I915_FORMAT_MOD_Y_TILED_CCS`` modifier adds a second plane to RGB
+formats in which it stores data about the status of every tile, notably
+including whether the tile is fully populated with pixel data, or can be
+expanded from a single solid color.
+
+These extended layouts are highly vendor-specific, and even specific to
+particular generations or configurations of devices per-vendor. For this reason,
+support of modifiers must be explicitly enumerated and negotiated by all users
+in order to ensure a compatible and optimal pipeline, as discussed below.
+
+
+Dimensions and size
+===================
+
+Each pixel buffer must be accompanied by logical pixel dimensions. This refers
+to the number of unique samples which can be extracted from, or stored to, the
+underlying memory storage. For example, even though a 1920x1080
+``DRM_FORMAT_NV12`` buffer has a luma plane containing 1920x1080 samples for the Y
+component, and 960x540 samples for the U and V components, the overall buffer is
+still described as having dimensions of 1920x1080.
+
+The in-memory storage of a buffer is not guaranteed to begin immediately at the
+base address of the underlying memory, nor is it guaranteed that the memory
+storage is tightly clipped to either dimension.
+
+Each plane must therefore be described with an ``offset`` in bytes, which will be
+added to the base address of the memory storage before performing any per-pixel
+calculations. This may be used to combine multiple planes into a single memory
+buffer; for example, ``DRM_FORMAT_NV12`` may be stored in a single memory buffer
+where the luma plane's storage begins immediately at the start of the buffer
+with an offset of 0, and the chroma plane's storage follows within the same buffer
+beginning from the byte offset for that plane.
+
+Each plane must also have a ``stride`` in bytes, expressing the offset in memory
+between two contiguous row. For example, a ``DRM_FORMAT_MOD_LINEAR`` buffer
+with dimensions of 1000x1000 may have been allocated as if it were 1024x1000, in
+order to allow for aligned access patterns. In this case, the buffer will still
+be described with a width of 1000, however the stride will be ``1024 * bpp``,
+indicating that there are 24 pixels at the positive extreme of the x axis whose
+values are not significant.
+
+Buffers may also be padded further in the y dimension, simply by allocating a
+larger area than would ordinarily be required. For example, many media decoders
+are not able to natively output buffers of height 1080, but instead require an
+effective height of 1088 pixels. In this case, the buffer continues to be
+described as having a height of 1080, with the memory allocation for each buffer
+being increased to account for the extra padding.
+
+
+Enumeration
+===========
+
+Every user of pixel buffers must be able to enumerate a set of supported formats
+and modifiers, described together. Within KMS, this is achieved with the
+``IN_FORMATS`` property on each DRM plane, listing the supported DRM formats, and
+the modifiers supported for each format. In userspace, this is supported through
+the `EGL_EXT_image_dma_buf_import_modifiers`_ extension entrypoints for EGL, the
+`VK_EXT_image_drm_format_modifier`_ extension for Vulkan, and the
+`zwp_linux_dmabuf_v1`_ extension for Wayland.
+
+Each of these interfaces allows users to query a set of supported
+format+modifier combinations.
+
+
+Negotiation
+===========
+
+It is the responsibility of userspace to negotiate an acceptable format+modifier
+combination for its usage. This is performed through a simple intersection of
+lists. For example, if a user wants to use Vulkan to render an image to be
+displayed on a KMS plane, it must:
+
+ - query KMS for the ``IN_FORMATS`` property for the given plane
+ - query Vulkan for the supported formats for its physical device, making sure
+ to pass the ``VkImageUsageFlagBits`` and ``VkImageCreateFlagBits``
+ corresponding to the intended rendering use
+ - intersect these formats to determine the most appropriate one
+ - for this format, intersect the lists of supported modifiers for both KMS and
+ Vulkan, to obtain a final list of acceptable modifiers for that format
+
+This intersection must be performed for all usages. For example, if the user
+also wishes to encode the image to a video stream, it must query the media API
+it intends to use for encoding for the set of modifiers it supports, and
+additionally intersect against this list.
+
+If the intersection of all lists is an empty list, it is not possible to share
+buffers in this way, and an alternate strategy must be considered (e.g. using
+CPU access routines to copy data between the different uses, with the
+corresponding performance cost).
+
+The resulting modifier list is unsorted; the order is not significant.
+
+
+Allocation
+==========
+
+Once userspace has determined an appropriate format, and corresponding list of
+acceptable modifiers, it must allocate the buffer. As there is no universal
+buffer-allocation interface available at either kernel or userspace level, the
+client makes an arbitrary choice of allocation interface such as Vulkan, GBM, or
+a media API.
+
+Each allocation request must take, at a minimum: the pixel format, a list of
+acceptable modifiers, and the buffer's width and height. Each API may extend
+this set of properties in different ways, such as allowing allocation in more
+than two dimensions, intended usage patterns, etc.
+
+The component which allocates the buffer will make an arbitrary choice of what
+it considers the 'best' modifier within the acceptable list for the requested
+allocation, any padding required, and further properties of the underlying
+memory buffers such as whether they are stored in system or device-specific
+memory, whether or not they are physically contiguous, and their cache mode.
+These properties of the memory buffer are not visible to userspace, however the
+``dma-heaps`` API is an effort to address this.
+
+After allocation, the client must query the allocator to determine the actual
+modifier selected for the buffer, as well as the per-plane offset and stride.
+Allocators are not permitted to vary the format in use, to select a modifier not
+provided within the acceptable list, nor to vary the pixel dimensions other than
+the padding expressed through offset, stride, and size.
+
+Communicating additional constraints, such as alignment of stride or offset,
+placement within a particular memory area, etc, is out of scope of dma-buf,
+and is not solved by format and modifier tokens.
+
+
+Import
+======
+
+To use a buffer within a different context, device, or subsystem, the user
+passes these parameters (format, modifier, width, height, and per-plane offset
+and stride) to an importing API.
+
+Each memory buffer is referred to by a buffer handle, which may be unique or
+duplicated within an image. For example, a ``DRM_FORMAT_NV12`` buffer may have
+the luma and chroma buffers combined into a single memory buffer by use of the
+per-plane offset parameters, or they may be completely separate allocations in
+memory. For this reason, each import and allocation API must provide a separate
+handle for each plane.
+
+Each kernel subsystem has its own types and interfaces for buffer management.
+DRM uses GEM buffer objects (BOs), V4L2 has its own references, etc. These types
+are not portable between contexts, processes, devices, or subsystems.
+
+To address this, ``dma-buf`` handles are used as the universal interchange for
+buffers. Subsystem-specific operations are used to export native buffer handles
+to a ``dma-buf`` file descriptor, and to import those file descriptors into a
+native buffer handle. dma-buf file descriptors can be transferred between
+contexts, processes, devices, and subsystems.
+
+For example, a Wayland media player may use V4L2 to decode a video frame into a
+``DRM_FORMAT_NV12`` buffer. This will result in two memory planes (luma and
+chroma) being dequeued by the user from V4L2. These planes are then exported to
+one dma-buf file descriptor per plane, these descriptors are then sent along
+with the metadata (format, modifier, width, height, per-plane offset and stride)
+to the Wayland server. The Wayland server will then import these file
+descriptors as an EGLImage for use through EGL/OpenGL (ES), a VkImage for use
+through Vulkan, or a KMS framebuffer object; each of these import operations
+will take the same metadata and convert the dma-buf file descriptors into their
+native buffer handles.
+
+Having a non-empty intersection of supported modifiers does not guarantee that
+import will succeed into all consumers; they may have constraints beyond those
+implied by modifiers which must be satisfied.
+
+
+Implicit modifiers
+==================
+
+The concept of modifiers post-dates all of the subsystems mentioned above. As
+such, it has been retrofitted into all of these APIs, and in order to ensure
+backwards compatibility, support is needed for drivers and userspace which do
+not (yet) support modifiers.
+
+As an example, GBM is used to allocate buffers to be shared between EGL for
+rendering and KMS for display. It has two entrypoints for allocating buffers:
+``gbm_bo_create`` which only takes the format, width, height, and a usage token,
+and ``gbm_bo_create_with_modifiers`` which extends this with a list of modifiers.
+
+In the latter case, the allocation is as discussed above, being provided with a
+list of acceptable modifiers that the implementation can choose from (or fail if
+it is not possible to allocate within those constraints). In the former case
+where modifiers are not provided, the GBM implementation must make its own
+choice as to what is likely to be the 'best' layout. Such a choice is entirely
+implementation-specific: some will internally use tiled layouts which are not
+CPU-accessible if the implementation decides that is a good idea through
+whatever heuristic. It is the implementation's responsibility to ensure that
+this choice is appropriate.
+
+To support this case where the layout is not known because there is no awareness
+of modifiers, a special ``DRM_FORMAT_MOD_INVALID`` token has been defined. This
+pseudo-modifier declares that the layout is not known, and that the driver
+should use its own logic to determine what the underlying layout may be.
+
+.. note::
+
+ ``DRM_FORMAT_MOD_INVALID`` is a non-zero value. The modifier value zero is
+ ``DRM_FORMAT_MOD_LINEAR``, which is an explicit guarantee that the image
+ has the linear layout. Care and attention should be taken to ensure that
+ zero as a default value is not mixed up with either no modifier or the linear
+ modifier. Also note that in some APIs the invalid modifier value is specified
+ with an out-of-band flag, like in ``DRM_IOCTL_MODE_ADDFB2``.
+
+There are four cases where this token may be used:
+ - during enumeration, an interface may return ``DRM_FORMAT_MOD_INVALID``, either
+ as the sole member of a modifier list to declare that explicit modifiers are
+ not supported, or as part of a larger list to declare that implicit modifiers
+ may be used
+ - during allocation, a user may supply ``DRM_FORMAT_MOD_INVALID``, either as the
+ sole member of a modifier list (equivalent to not supplying a modifier list
+ at all) to declare that explicit modifiers are not supported and must not be
+ used, or as part of a larger list to declare that an allocation using implicit
+ modifiers is acceptable
+ - in a post-allocation query, an implementation may return
+ ``DRM_FORMAT_MOD_INVALID`` as the modifier of the allocated buffer to declare
+ that the underlying layout is implementation-defined and that an explicit
+ modifier description is not available; per the above rules, this may only be
+ returned when the user has included ``DRM_FORMAT_MOD_INVALID`` as part of the
+ list of acceptable modifiers, or not provided a list
+ - when importing a buffer, the user may supply ``DRM_FORMAT_MOD_INVALID`` as the
+ buffer modifier (or not supply a modifier) to indicate that the modifier is
+ unknown for whatever reason; this is only acceptable when the buffer has
+ not been allocated with an explicit modifier
+
+It follows from this that for any single buffer, the complete chain of operations
+formed by the producer and all the consumers must be either fully implicit or fully
+explicit. For example, if a user wishes to allocate a buffer for use between
+GPU, display, and media, but the media API does not support modifiers, then the
+user **must not** allocate the buffer with explicit modifiers and attempt to
+import the buffer into the media API with no modifier, but either perform the
+allocation using implicit modifiers, or allocate the buffer for media use
+separately and copy between the two buffers.
+
+As one exception to the above, allocations may be 'upgraded' from implicit
+to explicit modifiers. For example, if the buffer is allocated with
+``gbm_bo_create`` (taking no modifiers), the user may then query the modifier with
+``gbm_bo_get_modifier`` and then use this modifier as an explicit modifier token
+if a valid modifier is returned.
+
+When allocating buffers for exchange between different users and modifiers are
+not available, implementations are strongly encouraged to use
+``DRM_FORMAT_MOD_LINEAR`` for their allocation, as this is the universal baseline
+for exchange. However, it is not guaranteed that this will result in the correct
+interpretation of buffer content, as implicit modifier operation may still be
+subject to driver-specific heuristics.
+
+Any new users - userspace programs and protocols, kernel subsystems, etc -
+wishing to exchange buffers must offer interoperability through dma-buf file
+descriptors for memory planes, DRM format tokens to describe the format, DRM
+format modifiers to describe the layout in memory, at least width and height for
+dimensions, and at least offset and stride for each memory plane.
+
+.. _zwp_linux_dmabuf_v1: https://gitlab.freedesktop.org/wayland/wayland-protocols/-/blob/main/unstable/linux-dmabuf/linux-dmabuf-unstable-v1.xml
+.. _VK_EXT_image_drm_format_modifier: https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VK_EXT_image_drm_format_modifier.html
+.. _EGL_EXT_image_dma_buf_import_modifiers: https://registry.khronos.org/EGL/extensions/EXT/EGL_EXT_image_dma_buf_import_modifiers.txt
diff --git a/Documentation/userspace-api/index.rst b/Documentation/userspace-api/index.rst
index 72a65db0c498..031df47a7c19 100644
--- a/Documentation/userspace-api/index.rst
+++ b/Documentation/userspace-api/index.rst
@@ -22,6 +22,7 @@ place where this information is gathered.
unshare
spec_ctrl
accelerators/ocxl
+ dma-buf-alloc-exchange
ebpf/index
ELF
ioctl/index