summaryrefslogtreecommitdiffstats
path: root/Documentation/virt
diff options
context:
space:
mode:
authorSean Christopherson <seanjc@google.com>2022-12-01 00:08:59 +0100
committerPaolo Bonzini <pbonzini@redhat.com>2022-12-29 21:41:03 +0100
commit3af4a9e61e71117d5df2df3e1605fa062e04b869 (patch)
tree5c2693552742bac402ed39f9ed3641da4c858e80 /Documentation/virt
parentKVM: VMX: Do _all_ initialization before exposing /dev/kvm to userspace (diff)
downloadlinux-3af4a9e61e71117d5df2df3e1605fa062e04b869.tar.xz
linux-3af4a9e61e71117d5df2df3e1605fa062e04b869.zip
KVM: x86: Serialize vendor module initialization (hardware setup)
Acquire a new mutex, vendor_module_lock, in kvm_x86_vendor_init() while doing hardware setup to ensure that concurrent calls are fully serialized. KVM rejects attempts to load vendor modules if a different module has already been loaded, but doesn't handle the case where multiple vendor modules are loaded at the same time, and module_init() doesn't run under the global module_mutex. Note, in practice, this is likely a benign bug as no platform exists that supports both SVM and VMX, i.e. barring a weird VM setup, one of the vendor modules is guaranteed to fail a support check before modifying common KVM state. Alternatively, KVM could perform an atomic CMPXCHG on .hardware_enable, but that comes with its own ugliness as it would require setting .hardware_enable before success is guaranteed, e.g. attempting to load the "wrong" could result in spurious failure to load the "right" module. Introduce a new mutex as using kvm_lock is extremely deadlock prone due to kvm_lock being taken under cpus_write_lock(), and in the future, under under cpus_read_lock(). Any operation that takes cpus_read_lock() while holding kvm_lock would potentially deadlock, e.g. kvm_timer_init() takes cpus_read_lock() to register a callback. In theory, KVM could avoid such problematic paths, i.e. do less setup under kvm_lock, but avoiding all calls to cpus_read_lock() is subtly difficult and thus fragile. E.g. updating static calls also acquires cpus_read_lock(). Inverting the lock ordering, i.e. always taking kvm_lock outside cpus_read_lock(), is not a viable option as kvm_lock is taken in various callbacks that may be invoked under cpus_read_lock(), e.g. x86's kvmclock_cpufreq_notifier(). The lockdep splat below is dependent on future patches to take cpus_read_lock() in hardware_enable_all(), but as above, deadlock is already is already possible. ====================================================== WARNING: possible circular locking dependency detected 6.0.0-smp--7ec93244f194-init2 #27 Tainted: G O ------------------------------------------------------ stable/251833 is trying to acquire lock: ffffffffc097ea28 (kvm_lock){+.+.}-{3:3}, at: hardware_enable_all+0x1f/0xc0 [kvm] but task is already holding lock: ffffffffa2456828 (cpu_hotplug_lock){++++}-{0:0}, at: hardware_enable_all+0xf/0xc0 [kvm] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (cpu_hotplug_lock){++++}-{0:0}: cpus_read_lock+0x2a/0xa0 __cpuhp_setup_state+0x2b/0x60 __kvm_x86_vendor_init+0x16a/0x1870 [kvm] kvm_x86_vendor_init+0x23/0x40 [kvm] 0xffffffffc0a4d02b do_one_initcall+0x110/0x200 do_init_module+0x4f/0x250 load_module+0x1730/0x18f0 __se_sys_finit_module+0xca/0x100 __x64_sys_finit_module+0x1d/0x20 do_syscall_64+0x3d/0x80 entry_SYSCALL_64_after_hwframe+0x63/0xcd -> #0 (kvm_lock){+.+.}-{3:3}: __lock_acquire+0x16f4/0x30d0 lock_acquire+0xb2/0x190 __mutex_lock+0x98/0x6f0 mutex_lock_nested+0x1b/0x20 hardware_enable_all+0x1f/0xc0 [kvm] kvm_dev_ioctl+0x45e/0x930 [kvm] __se_sys_ioctl+0x77/0xc0 __x64_sys_ioctl+0x1d/0x20 do_syscall_64+0x3d/0x80 entry_SYSCALL_64_after_hwframe+0x63/0xcd other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(cpu_hotplug_lock); lock(kvm_lock); lock(cpu_hotplug_lock); lock(kvm_lock); *** DEADLOCK *** 1 lock held by stable/251833: #0: ffffffffa2456828 (cpu_hotplug_lock){++++}-{0:0}, at: hardware_enable_all+0xf/0xc0 [kvm] Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20221130230934.1014142-16-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Diffstat (limited to 'Documentation/virt')
-rw-r--r--Documentation/virt/kvm/locking.rst6
1 files changed, 6 insertions, 0 deletions
diff --git a/Documentation/virt/kvm/locking.rst b/Documentation/virt/kvm/locking.rst
index a3ca76f9be75..0f6067d13622 100644
--- a/Documentation/virt/kvm/locking.rst
+++ b/Documentation/virt/kvm/locking.rst
@@ -291,3 +291,9 @@ time it will be set using the Dirty tracking mechanism described above.
wakeup notification event since external interrupts from the
assigned devices happens, we will find the vCPU on the list to
wakeup.
+
+``vendor_module_lock``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+:Type: mutex
+:Arch: x86
+:Protects: loading a vendor module (kvm_amd or kvm_intel)