diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2017-12-23 20:53:04 +0100 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2017-12-23 20:53:04 +0100 |
commit | caf9a82657b313106aae8f4a35936c116a152299 (patch) | |
tree | 525b164e34122b052ad06f56e6f88ed846471a58 /Documentation/x86/x86_64/mm.txt | |
parent | Merge tag 'powerpc-4.15-5' of git://git.kernel.org/pub/scm/linux/kernel/git/p... (diff) | |
parent | x86/cpu_entry_area: Prevent wraparound in setup_cpu_entry_area_ptes() on 32bit (diff) | |
download | linux-caf9a82657b313106aae8f4a35936c116a152299.tar.xz linux-caf9a82657b313106aae8f4a35936c116a152299.zip |
Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 PTI preparatory patches from Thomas Gleixner:
"Todays Advent calendar window contains twentyfour easy to digest
patches. The original plan was to have twenty three matching the date,
but a late fixup made that moot.
- Move the cpu_entry_area mapping out of the fixmap into a separate
address space. That's necessary because the fixmap becomes too big
with NRCPUS=8192 and this caused already subtle and hard to
diagnose failures.
The top most patch is fresh from today and cures a brain slip of
that tall grumpy german greybeard, who ignored the intricacies of
32bit wraparounds.
- Limit the number of CPUs on 32bit to 64. That's insane big already,
but at least it's small enough to prevent address space issues with
the cpu_entry_area map, which have been observed and debugged with
the fixmap code
- A few TLB flush fixes in various places plus documentation which of
the TLB functions should be used for what.
- Rename the SYSENTER stack to CPU_ENTRY_AREA stack as it is used for
more than sysenter now and keeping the name makes backtraces
confusing.
- Prevent LDT inheritance on exec() by moving it to arch_dup_mmap(),
which is only invoked on fork().
- Make vysycall more robust.
- A few fixes and cleanups of the debug_pagetables code. Check
PAGE_PRESENT instead of checking the PTE for 0 and a cleanup of the
C89 initialization of the address hint array which already was out
of sync with the index enums.
- Move the ESPFIX init to a different place to prepare for PTI.
- Several code moves with no functional change to make PTI
integration simpler and header files less convoluted.
- Documentation fixes and clarifications"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
x86/cpu_entry_area: Prevent wraparound in setup_cpu_entry_area_ptes() on 32bit
init: Invoke init_espfix_bsp() from mm_init()
x86/cpu_entry_area: Move it out of the fixmap
x86/cpu_entry_area: Move it to a separate unit
x86/mm: Create asm/invpcid.h
x86/mm: Put MMU to hardware ASID translation in one place
x86/mm: Remove hard-coded ASID limit checks
x86/mm: Move the CR3 construction functions to tlbflush.h
x86/mm: Add comments to clarify which TLB-flush functions are supposed to flush what
x86/mm: Remove superfluous barriers
x86/mm: Use __flush_tlb_one() for kernel memory
x86/microcode: Dont abuse the TLB-flush interface
x86/uv: Use the right TLB-flush API
x86/entry: Rename SYSENTER_stack to CPU_ENTRY_AREA_entry_stack
x86/doc: Remove obvious weirdnesses from the x86 MM layout documentation
x86/mm/64: Improve the memory map documentation
x86/ldt: Prevent LDT inheritance on exec
x86/ldt: Rework locking
arch, mm: Allow arch_dup_mmap() to fail
x86/vsyscall/64: Warn and fail vsyscall emulation in NATIVE mode
...
Diffstat (limited to 'Documentation/x86/x86_64/mm.txt')
-rw-r--r-- | Documentation/x86/x86_64/mm.txt | 24 |
1 files changed, 11 insertions, 13 deletions
diff --git a/Documentation/x86/x86_64/mm.txt b/Documentation/x86/x86_64/mm.txt index 3448e675b462..51101708a03a 100644 --- a/Documentation/x86/x86_64/mm.txt +++ b/Documentation/x86/x86_64/mm.txt @@ -1,6 +1,4 @@ -<previous description obsolete, deleted> - Virtual memory map with 4 level page tables: 0000000000000000 - 00007fffffffffff (=47 bits) user space, different per mm @@ -14,13 +12,15 @@ ffffea0000000000 - ffffeaffffffffff (=40 bits) virtual memory map (1TB) ... unused hole ... ffffec0000000000 - fffffbffffffffff (=44 bits) kasan shadow memory (16TB) ... unused hole ... +fffffe8000000000 - fffffeffffffffff (=39 bits) cpu_entry_area mapping ffffff0000000000 - ffffff7fffffffff (=39 bits) %esp fixup stacks ... unused hole ... ffffffef00000000 - fffffffeffffffff (=64 GB) EFI region mapping space ... unused hole ... ffffffff80000000 - ffffffff9fffffff (=512 MB) kernel text mapping, from phys 0 -ffffffffa0000000 - ffffffffff5fffff (=1526 MB) module mapping space (variable) -ffffffffff600000 - ffffffffffdfffff (=8 MB) vsyscalls +ffffffffa0000000 - [fixmap start] (~1526 MB) module mapping space (variable) +[fixmap start] - ffffffffff5fffff kernel-internal fixmap range +ffffffffff600000 - ffffffffff600fff (=4 kB) legacy vsyscall ABI ffffffffffe00000 - ffffffffffffffff (=2 MB) unused hole Virtual memory map with 5 level page tables: @@ -36,19 +36,22 @@ ffd4000000000000 - ffd5ffffffffffff (=49 bits) virtual memory map (512TB) ... unused hole ... ffdf000000000000 - fffffc0000000000 (=53 bits) kasan shadow memory (8PB) ... unused hole ... +fffffe8000000000 - fffffeffffffffff (=39 bits) cpu_entry_area mapping ffffff0000000000 - ffffff7fffffffff (=39 bits) %esp fixup stacks ... unused hole ... ffffffef00000000 - fffffffeffffffff (=64 GB) EFI region mapping space ... unused hole ... ffffffff80000000 - ffffffff9fffffff (=512 MB) kernel text mapping, from phys 0 -ffffffffa0000000 - ffffffffff5fffff (=1526 MB) module mapping space -ffffffffff600000 - ffffffffffdfffff (=8 MB) vsyscalls +ffffffffa0000000 - [fixmap start] (~1526 MB) module mapping space +[fixmap start] - ffffffffff5fffff kernel-internal fixmap range +ffffffffff600000 - ffffffffff600fff (=4 kB) legacy vsyscall ABI ffffffffffe00000 - ffffffffffffffff (=2 MB) unused hole Architecture defines a 64-bit virtual address. Implementations can support less. Currently supported are 48- and 57-bit virtual addresses. Bits 63 -through to the most-significant implemented bit are set to either all ones -or all zero. This causes hole between user space and kernel addresses. +through to the most-significant implemented bit are sign extended. +This causes hole between user space and kernel addresses if you interpret them +as unsigned. The direct mapping covers all memory in the system up to the highest memory address (this means in some cases it can also include PCI memory @@ -58,9 +61,6 @@ vmalloc space is lazily synchronized into the different PML4/PML5 pages of the processes using the page fault handler, with init_top_pgt as reference. -Current X86-64 implementations support up to 46 bits of address space (64 TB), -which is our current limit. This expands into MBZ space in the page tables. - We map EFI runtime services in the 'efi_pgd' PGD in a 64Gb large virtual memory window (this size is arbitrary, it can be raised later if needed). The mappings are not part of any other kernel PGD and are only available @@ -72,5 +72,3 @@ following fixmap section. Note that if CONFIG_RANDOMIZE_MEMORY is enabled, the direct mapping of all physical memory, vmalloc/ioremap space and virtual memory map are randomized. Their order is preserved but their base will be offset early at boot time. - --Andi Kleen, Jul 2004 |