diff options
author | Stephan Mueller <smueller@chronox.de> | 2015-02-27 20:00:00 +0100 |
---|---|---|
committer | Herbert Xu <herbert@gondor.apana.org.au> | 2015-03-04 10:12:39 +0100 |
commit | 7b24d97f16f561cc90eab1658100598d54a414fd (patch) | |
tree | 2fa00f1b217a27099f6c00c62c4a0fc0fda9f245 /Documentation | |
parent | crypto: powerpc/sha1 - kernel config (diff) | |
download | linux-7b24d97f16f561cc90eab1658100598d54a414fd.tar.xz linux-7b24d97f16f561cc90eab1658100598d54a414fd.zip |
crypto: doc - describe internal structure
The kernel crypto API has many indirections which warrant a description
as otherwise one can get easily lost. The description explains the
layers of the kernel crypto API based on examples.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Diffstat (limited to '')
-rw-r--r-- | Documentation/DocBook/crypto-API.tmpl | 264 |
1 files changed, 264 insertions, 0 deletions
diff --git a/Documentation/DocBook/crypto-API.tmpl b/Documentation/DocBook/crypto-API.tmpl index 04a8c24ead47..33f63cfc00ca 100644 --- a/Documentation/DocBook/crypto-API.tmpl +++ b/Documentation/DocBook/crypto-API.tmpl @@ -509,6 +509,270 @@ select it due to the used type and mask field. </para> </sect1> + + <sect1><title>Internal Structure of Kernel Crypto API</title> + + <para> + The kernel crypto API has an internal structure where a cipher + implementation may use many layers and indirections. This section + shall help to clarify how the kernel crypto API uses + various components to implement the complete cipher. + </para> + + <para> + The following subsections explain the internal structure based + on existing cipher implementations. The first section addresses + the most complex scenario where all other scenarios form a logical + subset. + </para> + + <sect2><title>Generic AEAD Cipher Structure</title> + + <para> + The following ASCII art decomposes the kernel crypto API layers + when using the AEAD cipher with the automated IV generation. The + shown example is used by the IPSEC layer. + </para> + + <para> + For other use cases of AEAD ciphers, the ASCII art applies as + well, but the caller may not use the GIVCIPHER interface. In + this case, the caller must generate the IV. + </para> + + <para> + The depicted example decomposes the AEAD cipher of GCM(AES) based + on the generic C implementations (gcm.c, aes-generic.c, ctr.c, + ghash-generic.c, seqiv.c). The generic implementation serves as an + example showing the complete logic of the kernel crypto API. + </para> + + <para> + It is possible that some streamlined cipher implementations (like + AES-NI) provide implementations merging aspects which in the view + of the kernel crypto API cannot be decomposed into layers any more. + In case of the AES-NI implementation, the CTR mode, the GHASH + implementation and the AES cipher are all merged into one cipher + implementation registered with the kernel crypto API. In this case, + the concept described by the following ASCII art applies too. However, + the decomposition of GCM into the individual sub-components + by the kernel crypto API is not done any more. + </para> + + <para> + Each block in the following ASCII art is an independent cipher + instance obtained from the kernel crypto API. Each block + is accessed by the caller or by other blocks using the API functions + defined by the kernel crypto API for the cipher implementation type. + </para> + + <para> + The blocks below indicate the cipher type as well as the specific + logic implemented in the cipher. + </para> + + <para> + The ASCII art picture also indicates the call structure, i.e. who + calls which component. The arrows point to the invoked block + where the caller uses the API applicable to the cipher type + specified for the block. + </para> + + <programlisting> +<![CDATA[ +kernel crypto API | IPSEC Layer + | ++-----------+ | +| | (1) +| givcipher | <----------------------------------- esp_output +| (seqiv) | ---+ ++-----------+ | + | (2) ++-----------+ | +| | <--+ (2) +| aead | <----------------------------------- esp_input +| (gcm) | ------------+ ++-----------+ | + | (3) | (5) + v v ++-----------+ +-----------+ +| | | | +| ablkcipher| | ahash | +| (ctr) | ---+ | (ghash) | ++-----------+ | +-----------+ + | ++-----------+ | (4) +| | <--+ +| cipher | +| (aes) | ++-----------+ +]]> + </programlisting> + + <para> + The following call sequence is applicable when the IPSEC layer + triggers an encryption operation with the esp_output function. During + configuration, the administrator set up the use of rfc4106(gcm(aes)) as + the cipher for ESP. The following call sequence is now depicted in the + ASCII art above: + </para> + + <orderedlist> + <listitem> + <para> + esp_output() invokes crypto_aead_givencrypt() to trigger an encryption + operation of the GIVCIPHER implementation. + </para> + + <para> + In case of GCM, the SEQIV implementation is registered as GIVCIPHER + in crypto_rfc4106_alloc(). + </para> + + <para> + The SEQIV performs its operation to generate an IV where the core + function is seqiv_geniv(). + </para> + </listitem> + + <listitem> + <para> + Now, SEQIV uses the AEAD API function calls to invoke the associated + AEAD cipher. In our case, during the instantiation of SEQIV, the + cipher handle for GCM is provided to SEQIV. This means that SEQIV + invokes AEAD cipher operations with the GCM cipher handle. + </para> + + <para> + During instantiation of the GCM handle, the CTR(AES) and GHASH + ciphers are instantiated. The cipher handles for CTR(AES) and GHASH + are retained for later use. + </para> + + <para> + The GCM implementation is responsible to invoke the CTR mode AES and + the GHASH cipher in the right manner to implement the GCM + specification. + </para> + </listitem> + + <listitem> + <para> + The GCM AEAD cipher type implementation now invokes the ABLKCIPHER API + with the instantiated CTR(AES) cipher handle. + </para> + + <para> + During instantiation of the CTR(AES) cipher, the CIPHER type + implementation of AES is instantiated. The cipher handle for AES is + retained. + </para> + + <para> + That means that the ABLKCIPHER implementation of CTR(AES) only + implements the CTR block chaining mode. After performing the block + chaining operation, the CIPHER implementation of AES is invoked. + </para> + </listitem> + + <listitem> + <para> + The ABLKCIPHER of CTR(AES) now invokes the CIPHER API with the AES + cipher handle to encrypt one block. + </para> + </listitem> + + <listitem> + <para> + The GCM AEAD implementation also invokes the GHASH cipher + implementation via the AHASH API. + </para> + </listitem> + </orderedlist> + + <para> + When the IPSEC layer triggers the esp_input() function, the same call + sequence is followed with the only difference that the operation starts + with step (2). + </para> + </sect2> + + <sect2><title>Generic Block Cipher Structure</title> + <para> + Generic block ciphers follow the same concept as depicted with the ASCII + art picture above. + </para> + + <para> + For example, CBC(AES) is implemented with cbc.c, and aes-generic.c. The + ASCII art picture above applies as well with the difference that only + step (4) is used and the ABLKCIPHER block chaining mode is CBC. + </para> + </sect2> + + <sect2><title>Generic Keyed Message Digest Structure</title> + <para> + Keyed message digest implementations again follow the same concept as + depicted in the ASCII art picture above. + </para> + + <para> + For example, HMAC(SHA256) is implemented with hmac.c and + sha256_generic.c. The following ASCII art illustrates the + implementation: + </para> + + <programlisting> +<![CDATA[ +kernel crypto API | Caller + | ++-----------+ (1) | +| | <------------------ some_function +| ahash | +| (hmac) | ---+ ++-----------+ | + | (2) ++-----------+ | +| | <--+ +| shash | +| (sha256) | ++-----------+ +]]> + </programlisting> + + <para> + The following call sequence is applicable when a caller triggers + an HMAC operation: + </para> + + <orderedlist> + <listitem> + <para> + The AHASH API functions are invoked by the caller. The HMAC + implementation performs its operation as needed. + </para> + + <para> + During initialization of the HMAC cipher, the SHASH cipher type of + SHA256 is instantiated. The cipher handle for the SHA256 instance is + retained. + </para> + + <para> + At one time, the HMAC implementation requires a SHA256 operation + where the SHA256 cipher handle is used. + </para> + </listitem> + + <listitem> + <para> + The HMAC instance now invokes the SHASH API with the SHA256 + cipher handle to calculate the message digest. + </para> + </listitem> + </orderedlist> + </sect2> + </sect1> </chapter> <chapter id="Development"><title>Developing Cipher Algorithms</title> |