diff options
author | Christoph Hellwig <hch@lst.de> | 2019-02-15 09:01:53 +0100 |
---|---|---|
committer | Christoph Hellwig <hch@lst.de> | 2019-02-20 15:29:47 +0100 |
commit | 9eb9e96e97b3381e94cba81d93f4a390c26ca6cb (patch) | |
tree | 5b4dd2fc6d7e974b754a7b1e6e82c86910c9b0d5 /Documentation | |
parent | sparc64/pci_sun4v: allow large DMA masks (diff) | |
download | linux-9eb9e96e97b3381e94cba81d93f4a390c26ca6cb.tar.xz linux-9eb9e96e97b3381e94cba81d93f4a390c26ca6cb.zip |
Documentation/DMA-API-HOWTO: update dma_mask sections
We don't require drivers to guess a DMA mask that might actually
match the system capabilities any more, so fix up the documentation
to clear this up.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/DMA-API-HOWTO.txt | 121 |
1 files changed, 41 insertions, 80 deletions
diff --git a/Documentation/DMA-API-HOWTO.txt b/Documentation/DMA-API-HOWTO.txt index f0cc3f772265..1a721d0f35c8 100644 --- a/Documentation/DMA-API-HOWTO.txt +++ b/Documentation/DMA-API-HOWTO.txt @@ -146,114 +146,75 @@ What about block I/O and networking buffers? The block I/O and networking subsystems make sure that the buffers they use are valid for you to DMA from/to. -DMA addressing limitations +DMA addressing capabilities ========================== -Does your device have any DMA addressing limitations? For example, is -your device only capable of driving the low order 24-bits of address? -If so, you need to inform the kernel of this fact. +By default, the kernel assumes that your device can address 32-bits of DMA +addressing. For a 64-bit capable device, this needs to be increased, and for +a device with limitations, it needs to be decreased. -By default, the kernel assumes that your device can address the full -32-bits. For a 64-bit capable device, this needs to be increased. -And for a device with limitations, as discussed in the previous -paragraph, it needs to be decreased. +Special note about PCI: PCI-X specification requires PCI-X devices to support +64-bit addressing (DAC) for all transactions. And at least one platform (SGI +SN2) requires 64-bit consistent allocations to operate correctly when the IO +bus is in PCI-X mode. -Special note about PCI: PCI-X specification requires PCI-X devices to -support 64-bit addressing (DAC) for all transactions. And at least -one platform (SGI SN2) requires 64-bit consistent allocations to -operate correctly when the IO bus is in PCI-X mode. +For correct operation, you must set the DMA mask to inform the kernel about +your devices DMA addressing capabilities. -For correct operation, you must interrogate the kernel in your device -probe routine to see if the DMA controller on the machine can properly -support the DMA addressing limitation your device has. It is good -style to do this even if your device holds the default setting, -because this shows that you did think about these issues wrt. your -device. - -The query is performed via a call to dma_set_mask_and_coherent():: +This is performed via a call to dma_set_mask_and_coherent():: int dma_set_mask_and_coherent(struct device *dev, u64 mask); -which will query the mask for both streaming and coherent APIs together. -If you have some special requirements, then the following two separate -queries can be used instead: +which will set the mask for both streaming and coherent APIs together. If you +have some special requirements, then the following two separate calls can be +used instead: - The query for streaming mappings is performed via a call to + The setup for streaming mappings is performed via a call to dma_set_mask():: int dma_set_mask(struct device *dev, u64 mask); - The query for consistent allocations is performed via a call + The setup for consistent allocations is performed via a call to dma_set_coherent_mask():: int dma_set_coherent_mask(struct device *dev, u64 mask); -Here, dev is a pointer to the device struct of your device, and mask -is a bit mask describing which bits of an address your device -supports. It returns zero if your card can perform DMA properly on -the machine given the address mask you provided. In general, the -device struct of your device is embedded in the bus-specific device -struct of your device. For example, &pdev->dev is a pointer to the -device struct of a PCI device (pdev is a pointer to the PCI device -struct of your device). +Here, dev is a pointer to the device struct of your device, and mask is a bit +mask describing which bits of an address your device supports. Often the +device struct of your device is embedded in the bus-specific device struct of +your device. For example, &pdev->dev is a pointer to the device struct of a +PCI device (pdev is a pointer to the PCI device struct of your device). -If it returns non-zero, your device cannot perform DMA properly on -this platform, and attempting to do so will result in undefined -behavior. You must either use a different mask, or not use DMA. +These calls usually return zero to indicated your device can perform DMA +properly on the machine given the address mask you provided, but they might +return an error if the mask is too small to be supportable on the given +system. If it returns non-zero, your device cannot perform DMA properly on +this platform, and attempting to do so will result in undefined behavior. +You must not use DMA on this device unless the dma_set_mask family of +functions has returned success. -This means that in the failure case, you have three options: +This means that in the failure case, you have two options: -1) Use another DMA mask, if possible (see below). -2) Use some non-DMA mode for data transfer, if possible. -3) Ignore this device and do not initialize it. +1) Use some non-DMA mode for data transfer, if possible. +2) Ignore this device and do not initialize it. -It is recommended that your driver print a kernel KERN_WARNING message -when you end up performing either #2 or #3. In this manner, if a user -of your driver reports that performance is bad or that the device is not -even detected, you can ask them for the kernel messages to find out -exactly why. +It is recommended that your driver print a kernel KERN_WARNING message when +setting the DMA mask fails. In this manner, if a user of your driver reports +that performance is bad or that the device is not even detected, you can ask +them for the kernel messages to find out exactly why. -The standard 32-bit addressing device would do something like this:: +The standard 64-bit addressing device would do something like this:: - if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32))) { + if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64))) { dev_warn(dev, "mydev: No suitable DMA available\n"); goto ignore_this_device; } -Another common scenario is a 64-bit capable device. The approach here -is to try for 64-bit addressing, but back down to a 32-bit mask that -should not fail. The kernel may fail the 64-bit mask not because the -platform is not capable of 64-bit addressing. Rather, it may fail in -this case simply because 32-bit addressing is done more efficiently -than 64-bit addressing. For example, Sparc64 PCI SAC addressing is -more efficient than DAC addressing. - -Here is how you would handle a 64-bit capable device which can drive -all 64-bits when accessing streaming DMA:: - - int using_dac; +If the device only supports 32-bit addressing for descriptors in the +coherent allocations, but supports full 64-bits for streaming mappings +it would look like this: - if (!dma_set_mask(dev, DMA_BIT_MASK(64))) { - using_dac = 1; - } else if (!dma_set_mask(dev, DMA_BIT_MASK(32))) { - using_dac = 0; - } else { - dev_warn(dev, "mydev: No suitable DMA available\n"); - goto ignore_this_device; - } - -If a card is capable of using 64-bit consistent allocations as well, -the case would look like this:: - - int using_dac, consistent_using_dac; - - if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64))) { - using_dac = 1; - consistent_using_dac = 1; - } else if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32))) { - using_dac = 0; - consistent_using_dac = 0; - } else { + if (dma_set_mask(dev, DMA_BIT_MASK(64))) { dev_warn(dev, "mydev: No suitable DMA available\n"); goto ignore_this_device; } |