summaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2009-09-21 18:05:47 +0200
committerLinus Torvalds <torvalds@linux-foundation.org>2009-09-21 18:05:47 +0200
commitbd4c3a3441144cd46d1f544046523724c5bc6e94 (patch)
tree8b5c67249a7a163caf3f88cbcb9df5236fcc3b93 /Documentation
parentMerge branch 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kern... (diff)
parentkernel/profile.c: Switch /proc/irq/prof_cpu_mask to seq_file (diff)
downloadlinux-bd4c3a3441144cd46d1f544046523724c5bc6e94.tar.xz
linux-bd4c3a3441144cd46d1f544046523724c5bc6e94.zip
Merge branch 'tracing-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'tracing-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: kernel/profile.c: Switch /proc/irq/prof_cpu_mask to seq_file tracing: Export trace_profile_buf symbols tracing/events: use list_for_entry_continue tracing: remove max_tracer_type_len function-graph: use ftrace_graph_funcs directly tracing: Remove markers tracing: Allocate the ftrace event profile buffer dynamically tracing: Factorize the events profile accounting
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/markers.txt104
1 files changed, 0 insertions, 104 deletions
diff --git a/Documentation/markers.txt b/Documentation/markers.txt
deleted file mode 100644
index d2b3d0e91b26..000000000000
--- a/Documentation/markers.txt
+++ /dev/null
@@ -1,104 +0,0 @@
- Using the Linux Kernel Markers
-
- Mathieu Desnoyers
-
-
-This document introduces Linux Kernel Markers and their use. It provides
-examples of how to insert markers in the kernel and connect probe functions to
-them and provides some examples of probe functions.
-
-
-* Purpose of markers
-
-A marker placed in code provides a hook to call a function (probe) that you can
-provide at runtime. A marker can be "on" (a probe is connected to it) or "off"
-(no probe is attached). When a marker is "off" it has no effect, except for
-adding a tiny time penalty (checking a condition for a branch) and space
-penalty (adding a few bytes for the function call at the end of the
-instrumented function and adds a data structure in a separate section). When a
-marker is "on", the function you provide is called each time the marker is
-executed, in the execution context of the caller. When the function provided
-ends its execution, it returns to the caller (continuing from the marker site).
-
-You can put markers at important locations in the code. Markers are
-lightweight hooks that can pass an arbitrary number of parameters,
-described in a printk-like format string, to the attached probe function.
-
-They can be used for tracing and performance accounting.
-
-
-* Usage
-
-In order to use the macro trace_mark, you should include linux/marker.h.
-
-#include <linux/marker.h>
-
-And,
-
-trace_mark(subsystem_event, "myint %d mystring %s", someint, somestring);
-Where :
-- subsystem_event is an identifier unique to your event
- - subsystem is the name of your subsystem.
- - event is the name of the event to mark.
-- "myint %d mystring %s" is the formatted string for the serializer. "myint" and
- "mystring" are repectively the field names associated with the first and
- second parameter.
-- someint is an integer.
-- somestring is a char pointer.
-
-Connecting a function (probe) to a marker is done by providing a probe (function
-to call) for the specific marker through marker_probe_register() and can be
-activated by calling marker_arm(). Marker deactivation can be done by calling
-marker_disarm() as many times as marker_arm() has been called. Removing a probe
-is done through marker_probe_unregister(); it will disarm the probe.
-
-marker_synchronize_unregister() must be called between probe unregistration and
-the first occurrence of
-- the end of module exit function,
- to make sure there is no caller left using the probe;
-- the free of any resource used by the probes,
- to make sure the probes wont be accessing invalid data.
-This, and the fact that preemption is disabled around the probe call, make sure
-that probe removal and module unload are safe. See the "Probe example" section
-below for a sample probe module.
-
-The marker mechanism supports inserting multiple instances of the same marker.
-Markers can be put in inline functions, inlined static functions, and
-unrolled loops as well as regular functions.
-
-The naming scheme "subsystem_event" is suggested here as a convention intended
-to limit collisions. Marker names are global to the kernel: they are considered
-as being the same whether they are in the core kernel image or in modules.
-Conflicting format strings for markers with the same name will cause the markers
-to be detected to have a different format string not to be armed and will output
-a printk warning which identifies the inconsistency:
-
-"Format mismatch for probe probe_name (format), marker (format)"
-
-Another way to use markers is to simply define the marker without generating any
-function call to actually call into the marker. This is useful in combination
-with tracepoint probes in a scheme like this :
-
-void probe_tracepoint_name(unsigned int arg1, struct task_struct *tsk);
-
-DEFINE_MARKER_TP(marker_eventname, tracepoint_name, probe_tracepoint_name,
- "arg1 %u pid %d");
-
-notrace void probe_tracepoint_name(unsigned int arg1, struct task_struct *tsk)
-{
- struct marker *marker = &GET_MARKER(kernel_irq_entry);
- /* write data to trace buffers ... */
-}
-
-* Probe / marker example
-
-See the example provided in samples/markers/src
-
-Compile them with your kernel.
-
-Run, as root :
-modprobe marker-example (insmod order is not important)
-modprobe probe-example
-cat /proc/marker-example (returns an expected error)
-rmmod marker-example probe-example
-dmesg