summaryrefslogtreecommitdiffstats
path: root/arch/arm/mm
diff options
context:
space:
mode:
authorFlorian Fainelli <f.fainelli@gmail.com>2017-12-01 01:10:11 +0100
committerRussell King <rmk+kernel@armlinux.org.uk>2017-12-17 23:15:37 +0100
commit55de88778f4bfe6333db4e475afb15ef413b4874 (patch)
tree0356ce4d899ff7e982754e551e24177e92b1694d /arch/arm/mm
parentARM: 8729/1: Hook B15 readahead cache functions based on processor (diff)
downloadlinux-55de88778f4bfe6333db4e475afb15ef413b4874.tar.xz
linux-55de88778f4bfe6333db4e475afb15ef413b4874.zip
ARM: 8726/1: B15: Add CPU hotplug awareness
The Broadcom Brahma-B15 readahead cache needs to be disabled, respectively re-enable during a CPU hotplug. In case we were not to do, CPU hotplug would occasionally fail with random crashes when a given CPU exits the coherency domain while the RAC is still enabled, as it would get stale data from the RAC. In order to avoid adding any specific B15 readahead-cache awareness to arch/arm/mach-bcm/hotplug-brcmstb.c we use a CPU hotplug state machine which allows us to catch CPU hotplug events and disable/flush enable the RAC accordingly. Signed-off-by: Alamy Liu <alamyliu@broadcom.com> Signed-off-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Diffstat (limited to 'arch/arm/mm')
-rw-r--r--arch/arm/mm/cache-b15-rac.c91
1 files changed, 91 insertions, 0 deletions
diff --git a/arch/arm/mm/cache-b15-rac.c b/arch/arm/mm/cache-b15-rac.c
index 679d44f003fd..d85b63211759 100644
--- a/arch/arm/mm/cache-b15-rac.c
+++ b/arch/arm/mm/cache-b15-rac.c
@@ -13,6 +13,8 @@
#include <linux/io.h>
#include <linux/bitops.h>
#include <linux/of_address.h>
+#include <linux/notifier.h>
+#include <linux/cpu.h>
#include <asm/cacheflush.h>
#include <asm/hardware/cache-b15-rac.h>
@@ -42,6 +44,7 @@ extern void v7_flush_kern_cache_all(void);
static void __iomem *b15_rac_base;
static DEFINE_SPINLOCK(rac_lock);
+static u32 rac_config0_reg;
/* Initialization flag to avoid checking for b15_rac_base, and to prevent
* multi-platform kernels from crashing here as well.
@@ -137,6 +140,74 @@ static void b15_rac_enable(void)
__b15_rac_enable(enable);
}
+#ifdef CONFIG_HOTPLUG_CPU
+/* The CPU hotplug case is the most interesting one, we basically need to make
+ * sure that the RAC is disabled for the entire system prior to having a CPU
+ * die, in particular prior to this dying CPU having exited the coherency
+ * domain.
+ *
+ * Once this CPU is marked dead, we can safely re-enable the RAC for the
+ * remaining CPUs in the system which are still online.
+ *
+ * Offlining a CPU is the problematic case, onlining a CPU is not much of an
+ * issue since the CPU and its cache-level hierarchy will start filling with
+ * the RAC disabled, so L1 and L2 only.
+ *
+ * In this function, we should NOT have to verify any unsafe setting/condition
+ * b15_rac_base:
+ *
+ * It is protected by the RAC_ENABLED flag which is cleared by default, and
+ * being cleared when initial procedure is done. b15_rac_base had been set at
+ * that time.
+ *
+ * RAC_ENABLED:
+ * There is a small timing windows, in b15_rac_init(), between
+ * cpuhp_setup_state_*()
+ * ...
+ * set RAC_ENABLED
+ * However, there is no hotplug activity based on the Linux booting procedure.
+ *
+ * Since we have to disable RAC for all cores, we keep RAC on as long as as
+ * possible (disable it as late as possible) to gain the cache benefit.
+ *
+ * Thus, dying/dead states are chosen here
+ *
+ * We are choosing not do disable the RAC on a per-CPU basis, here, if we did
+ * we would want to consider disabling it as early as possible to benefit the
+ * other active CPUs.
+ */
+
+/* Running on the dying CPU */
+static int b15_rac_dying_cpu(unsigned int cpu)
+{
+ spin_lock(&rac_lock);
+
+ /* Indicate that we are starting a hotplug procedure */
+ __clear_bit(RAC_ENABLED, &b15_rac_flags);
+
+ /* Disable the readahead cache and save its value to a global */
+ rac_config0_reg = b15_rac_disable_and_flush();
+
+ spin_unlock(&rac_lock);
+
+ return 0;
+}
+
+/* Running on a non-dying CPU */
+static int b15_rac_dead_cpu(unsigned int cpu)
+{
+ spin_lock(&rac_lock);
+
+ /* And enable it */
+ __b15_rac_enable(rac_config0_reg);
+ __set_bit(RAC_ENABLED, &b15_rac_flags);
+
+ spin_unlock(&rac_lock);
+
+ return 0;
+}
+#endif /* CONFIG_HOTPLUG_CPU */
+
static int __init b15_rac_init(void)
{
struct device_node *dn;
@@ -157,6 +228,20 @@ static int __init b15_rac_init(void)
goto out;
}
+#ifdef CONFIG_HOTPLUG_CPU
+ ret = cpuhp_setup_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DEAD,
+ "arm/cache-b15-rac:dead",
+ NULL, b15_rac_dead_cpu);
+ if (ret)
+ goto out_unmap;
+
+ ret = cpuhp_setup_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DYING,
+ "arm/cache-b15-rac:dying",
+ NULL, b15_rac_dying_cpu);
+ if (ret)
+ goto out_cpu_dead;
+#endif
+
spin_lock(&rac_lock);
reg = __raw_readl(b15_rac_base + RAC_CONFIG0_REG);
for_each_possible_cpu(cpu)
@@ -170,6 +255,12 @@ static int __init b15_rac_init(void)
pr_info("Broadcom Brahma-B15 readahead cache at: 0x%p\n",
b15_rac_base + RAC_CONFIG0_REG);
+ goto out;
+
+out_cpu_dead:
+ cpuhp_remove_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DYING);
+out_unmap:
+ iounmap(b15_rac_base);
out:
of_node_put(dn);
return ret;