diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2022-08-04 23:59:54 +0200 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2022-08-04 23:59:54 +0200 |
commit | 7c5c3a6177fa9646884114fc7f2e970b0bc50dc9 (patch) | |
tree | 956857522574ae7cb07d2227dc16e53d7e9e00e7 /arch/arm64/kernel | |
parent | drm/amd/amdgpu: fix build failure due to implicit declaration (diff) | |
parent | selftests: kvm: set rax before vmcall (diff) | |
download | linux-7c5c3a6177fa9646884114fc7f2e970b0bc50dc9.tar.xz linux-7c5c3a6177fa9646884114fc7f2e970b0bc50dc9.zip |
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"Quite a large pull request due to a selftest API overhaul and some
patches that had come in too late for 5.19.
ARM:
- Unwinder implementations for both nVHE modes (classic and
protected), complete with an overflow stack
- Rework of the sysreg access from userspace, with a complete rewrite
of the vgic-v3 view to allign with the rest of the infrastructure
- Disagregation of the vcpu flags in separate sets to better track
their use model.
- A fix for the GICv2-on-v3 selftest
- A small set of cosmetic fixes
RISC-V:
- Track ISA extensions used by Guest using bitmap
- Added system instruction emulation framework
- Added CSR emulation framework
- Added gfp_custom flag in struct kvm_mmu_memory_cache
- Added G-stage ioremap() and iounmap() functions
- Added support for Svpbmt inside Guest
s390:
- add an interface to provide a hypervisor dump for secure guests
- improve selftests to use TAP interface
- enable interpretive execution of zPCI instructions (for PCI
passthrough)
- First part of deferred teardown
- CPU Topology
- PV attestation
- Minor fixes
x86:
- Permit guests to ignore single-bit ECC errors
- Intel IPI virtualization
- Allow getting/setting pending triple fault with
KVM_GET/SET_VCPU_EVENTS
- PEBS virtualization
- Simplify PMU emulation by just using PERF_TYPE_RAW events
- More accurate event reinjection on SVM (avoid retrying
instructions)
- Allow getting/setting the state of the speaker port data bit
- Refuse starting the kvm-intel module if VM-Entry/VM-Exit controls
are inconsistent
- "Notify" VM exit (detect microarchitectural hangs) for Intel
- Use try_cmpxchg64 instead of cmpxchg64
- Ignore benign host accesses to PMU MSRs when PMU is disabled
- Allow disabling KVM's "MONITOR/MWAIT are NOPs!" behavior
- Allow NX huge page mitigation to be disabled on a per-vm basis
- Port eager page splitting to shadow MMU as well
- Enable CMCI capability by default and handle injected UCNA errors
- Expose pid of vcpu threads in debugfs
- x2AVIC support for AMD
- cleanup PIO emulation
- Fixes for LLDT/LTR emulation
- Don't require refcounted "struct page" to create huge SPTEs
- Miscellaneous cleanups:
- MCE MSR emulation
- Use separate namespaces for guest PTEs and shadow PTEs bitmasks
- PIO emulation
- Reorganize rmap API, mostly around rmap destruction
- Do not workaround very old KVM bugs for L0 that runs with nesting enabled
- new selftests API for CPUID
Generic:
- Fix races in gfn->pfn cache refresh; do not pin pages tracked by
the cache
- new selftests API using struct kvm_vcpu instead of a (vm, id)
tuple"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (606 commits)
selftests: kvm: set rax before vmcall
selftests: KVM: Add exponent check for boolean stats
selftests: KVM: Provide descriptive assertions in kvm_binary_stats_test
selftests: KVM: Check stat name before other fields
KVM: x86/mmu: remove unused variable
RISC-V: KVM: Add support for Svpbmt inside Guest/VM
RISC-V: KVM: Use PAGE_KERNEL_IO in kvm_riscv_gstage_ioremap()
RISC-V: KVM: Add G-stage ioremap() and iounmap() functions
KVM: Add gfp_custom flag in struct kvm_mmu_memory_cache
RISC-V: KVM: Add extensible CSR emulation framework
RISC-V: KVM: Add extensible system instruction emulation framework
RISC-V: KVM: Factor-out instruction emulation into separate sources
RISC-V: KVM: move preempt_disable() call in kvm_arch_vcpu_ioctl_run
RISC-V: KVM: Make kvm_riscv_guest_timer_init a void function
RISC-V: KVM: Fix variable spelling mistake
RISC-V: KVM: Improve ISA extension by using a bitmap
KVM, x86/mmu: Fix the comment around kvm_tdp_mmu_zap_leafs()
KVM: SVM: Dump Virtual Machine Save Area (VMSA) to klog
KVM: x86/mmu: Treat NX as a valid SPTE bit for NPT
KVM: x86: Do not block APIC write for non ICR registers
...
Diffstat (limited to 'arch/arm64/kernel')
-rw-r--r-- | arch/arm64/kernel/stacktrace.c | 125 |
1 files changed, 29 insertions, 96 deletions
diff --git a/arch/arm64/kernel/stacktrace.c b/arch/arm64/kernel/stacktrace.c index fcaa151b81f1..ce190ee18a20 100644 --- a/arch/arm64/kernel/stacktrace.c +++ b/arch/arm64/kernel/stacktrace.c @@ -7,75 +7,16 @@ #include <linux/kernel.h> #include <linux/export.h> #include <linux/ftrace.h> -#include <linux/kprobes.h> #include <linux/sched.h> #include <linux/sched/debug.h> #include <linux/sched/task_stack.h> #include <linux/stacktrace.h> #include <asm/irq.h> -#include <asm/pointer_auth.h> #include <asm/stack_pointer.h> #include <asm/stacktrace.h> /* - * A snapshot of a frame record or fp/lr register values, along with some - * accounting information necessary for robust unwinding. - * - * @fp: The fp value in the frame record (or the real fp) - * @pc: The lr value in the frame record (or the real lr) - * - * @stacks_done: Stacks which have been entirely unwound, for which it is no - * longer valid to unwind to. - * - * @prev_fp: The fp that pointed to this frame record, or a synthetic value - * of 0. This is used to ensure that within a stack, each - * subsequent frame record is at an increasing address. - * @prev_type: The type of stack this frame record was on, or a synthetic - * value of STACK_TYPE_UNKNOWN. This is used to detect a - * transition from one stack to another. - * - * @kr_cur: When KRETPROBES is selected, holds the kretprobe instance - * associated with the most recently encountered replacement lr - * value. - * - * @task: The task being unwound. - */ -struct unwind_state { - unsigned long fp; - unsigned long pc; - DECLARE_BITMAP(stacks_done, __NR_STACK_TYPES); - unsigned long prev_fp; - enum stack_type prev_type; -#ifdef CONFIG_KRETPROBES - struct llist_node *kr_cur; -#endif - struct task_struct *task; -}; - -static void unwind_init_common(struct unwind_state *state, - struct task_struct *task) -{ - state->task = task; -#ifdef CONFIG_KRETPROBES - state->kr_cur = NULL; -#endif - - /* - * Prime the first unwind. - * - * In unwind_next() we'll check that the FP points to a valid stack, - * which can't be STACK_TYPE_UNKNOWN, and the first unwind will be - * treated as a transition to whichever stack that happens to be. The - * prev_fp value won't be used, but we set it to 0 such that it is - * definitely not an accessible stack address. - */ - bitmap_zero(state->stacks_done, __NR_STACK_TYPES); - state->prev_fp = 0; - state->prev_type = STACK_TYPE_UNKNOWN; -} - -/* * Start an unwind from a pt_regs. * * The unwind will begin at the PC within the regs. @@ -127,6 +68,31 @@ static inline void unwind_init_from_task(struct unwind_state *state, } /* + * We can only safely access per-cpu stacks from current in a non-preemptible + * context. + */ +static bool on_accessible_stack(const struct task_struct *tsk, + unsigned long sp, unsigned long size, + struct stack_info *info) +{ + if (info) + info->type = STACK_TYPE_UNKNOWN; + + if (on_task_stack(tsk, sp, size, info)) + return true; + if (tsk != current || preemptible()) + return false; + if (on_irq_stack(sp, size, info)) + return true; + if (on_overflow_stack(sp, size, info)) + return true; + if (on_sdei_stack(sp, size, info)) + return true; + + return false; +} + +/* * Unwind from one frame record (A) to the next frame record (B). * * We terminate early if the location of B indicates a malformed chain of frame @@ -138,48 +104,15 @@ static int notrace unwind_next(struct unwind_state *state) struct task_struct *tsk = state->task; unsigned long fp = state->fp; struct stack_info info; + int err; /* Final frame; nothing to unwind */ if (fp == (unsigned long)task_pt_regs(tsk)->stackframe) return -ENOENT; - if (fp & 0x7) - return -EINVAL; - - if (!on_accessible_stack(tsk, fp, 16, &info)) - return -EINVAL; - - if (test_bit(info.type, state->stacks_done)) - return -EINVAL; - - /* - * As stacks grow downward, any valid record on the same stack must be - * at a strictly higher address than the prior record. - * - * Stacks can nest in several valid orders, e.g. - * - * TASK -> IRQ -> OVERFLOW -> SDEI_NORMAL - * TASK -> SDEI_NORMAL -> SDEI_CRITICAL -> OVERFLOW - * - * ... but the nesting itself is strict. Once we transition from one - * stack to another, it's never valid to unwind back to that first - * stack. - */ - if (info.type == state->prev_type) { - if (fp <= state->prev_fp) - return -EINVAL; - } else { - __set_bit(state->prev_type, state->stacks_done); - } - - /* - * Record this frame record's values and location. The prev_fp and - * prev_type are only meaningful to the next unwind_next() invocation. - */ - state->fp = READ_ONCE(*(unsigned long *)(fp)); - state->pc = READ_ONCE(*(unsigned long *)(fp + 8)); - state->prev_fp = fp; - state->prev_type = info.type; + err = unwind_next_common(state, &info, on_accessible_stack, NULL); + if (err) + return err; state->pc = ptrauth_strip_insn_pac(state->pc); |