diff options
author | Finn Thain <fthain@telegraphics.com.au> | 2020-07-23 01:25:51 +0200 |
---|---|---|
committer | Geert Uytterhoeven <geert@linux-m68k.org> | 2020-08-26 13:26:52 +0200 |
commit | 5661bccb70ef134502b9d2e80a19465ad943b022 (patch) | |
tree | b248bf72ae6262a6373fa9b4232bfb04acf8955d /arch/m68k | |
parent | m68k: Use get_kernel_nofault() in show_registers() (diff) | |
download | linux-5661bccb70ef134502b9d2e80a19465ad943b022.tar.xz linux-5661bccb70ef134502b9d2e80a19465ad943b022.zip |
m68k: Correct some typos in comments
Signed-off-by: Finn Thain <fthain@telegraphics.com.au>
Link: https://lore.kernel.org/r/f54e99e9bd1e25ad70a6a1d7a7ec9ab2b4e50d68.1595460351.git.fthain@telegraphics.com.au
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Diffstat (limited to 'arch/m68k')
-rw-r--r-- | arch/m68k/kernel/head.S | 16 |
1 files changed, 8 insertions, 8 deletions
diff --git a/arch/m68k/kernel/head.S b/arch/m68k/kernel/head.S index 29de2b3108ea..493c95db0e51 100644 --- a/arch/m68k/kernel/head.S +++ b/arch/m68k/kernel/head.S @@ -57,7 +57,7 @@ * Of course, readability is a subjective issue, so it will never be * argued that that goal was accomplished. It was merely a goal. * A key way to help make code more readable is to give good - * documentation. So, the first thing you will find is exaustive + * documentation. So, the first thing you will find is exhaustive * write-ups on the structure of the file, and the features of the * functional subroutines. * @@ -1304,7 +1304,7 @@ L(mmu_fixup_done): * mmu_engage * * This chunk of code performs the gruesome task of engaging the MMU. - * The reason its gruesome is because when the MMU becomes engaged it + * The reason it's gruesome is because when the MMU becomes engaged it * maps logical addresses to physical addresses. The Program Counter * register is then passed through the MMU before the next instruction * is fetched (the instruction following the engage MMU instruction). @@ -1369,7 +1369,7 @@ L(mmu_fixup_done): /* * After this point no new memory is allocated and * the start of available memory is stored in availmem. - * (The bootmem allocator requires now the physicall address.) + * (The bootmem allocator requires now the physical address.) */ movel L(memory_start),availmem @@ -1547,7 +1547,7 @@ func_return get_bi_record * seven bits of the logical address (LA) are used as an * index into the "root table." Each entry in the root * table has a bit which specifies if it's a valid pointer to a - * pointer table. Each entry defines a 32KMeg range of memory. + * pointer table. Each entry defines a 32Meg range of memory. * If an entry is invalid then that logical range of 32M is * invalid and references to that range of memory (when the MMU * is enabled) will fault. If the entry is valid, then it does @@ -1584,7 +1584,7 @@ func_return get_bi_record * bits 17..12 - index into the Page Table * bits 11..0 - offset into a particular 4K page * - * The algorithms which follows do one thing: they abstract + * The algorithms which follow do one thing: they abstract * the MMU hardware. For example, there are three kinds of * cache settings that are relevant. Either, memory is * being mapped in which case it is either Kernel Code (or @@ -2082,7 +2082,7 @@ func_return mmu_map_tt * mmu_map * * This routine will map a range of memory using a pointer - * table and allocating the pages on the fly from the kernel. + * table and allocate the pages on the fly from the kernel. * The pointer table does not have to be already linked into * the root table, this routine will do that if necessary. * @@ -2528,7 +2528,7 @@ func_start mmu_get_root_table_entry,%d0/%a1 /* Find the start of free memory, get_bi_record does this for us, * as the bootinfo structure is located directly behind the kernel - * and and we simply search for the last entry. + * we simply search for the last entry. */ get_bi_record BI_LAST addw #PAGESIZE-1,%a0 @@ -2654,7 +2654,7 @@ func_start mmu_get_page_table_entry,%d0/%a1 jne 2f /* If the page table entry doesn't exist, we allocate a complete new - * page and use it as one continues big page table which can cover + * page and use it as one continuous big page table which can cover * 4MB of memory, nearly almost all mappings have that alignment. */ get_new_page |