diff options
author | Paul Mackerras <paulus@ozlabs.org> | 2018-03-21 11:32:01 +0100 |
---|---|---|
committer | Michael Ellerman <mpe@ellerman.id.au> | 2018-03-23 14:39:13 +0100 |
commit | 4bb3c7a0208fc13ca70598efd109901a7cd45ae7 (patch) | |
tree | 603753d07e9d0d0b9900a4c4ecb0c9d55a645d18 /arch/powerpc/include/asm/ppc-opcode.h | |
parent | powerpc/powernv: Provide a way to force a core into SMT4 mode (diff) | |
download | linux-4bb3c7a0208fc13ca70598efd109901a7cd45ae7.tar.xz linux-4bb3c7a0208fc13ca70598efd109901a7cd45ae7.zip |
KVM: PPC: Book3S HV: Work around transactional memory bugs in POWER9
POWER9 has hardware bugs relating to transactional memory and thread
reconfiguration (changes to hardware SMT mode). Specifically, the core
does not have enough storage to store a complete checkpoint of all the
architected state for all four threads. The DD2.2 version of POWER9
includes hardware modifications designed to allow hypervisor software
to implement workarounds for these problems. This patch implements
those workarounds in KVM code so that KVM guests see a full, working
transactional memory implementation.
The problems center around the use of TM suspended state, where the
CPU has a checkpointed state but execution is not transactional. The
workaround is to implement a "fake suspend" state, which looks to the
guest like suspended state but the CPU does not store a checkpoint.
In this state, any instruction that would cause a transition to
transactional state (rfid, rfebb, mtmsrd, tresume) or would use the
checkpointed state (treclaim) causes a "soft patch" interrupt (vector
0x1500) to the hypervisor so that it can be emulated. The trechkpt
instruction also causes a soft patch interrupt.
On POWER9 DD2.2, we avoid returning to the guest in any state which
would require a checkpoint to be present. The trechkpt in the guest
entry path which would normally create that checkpoint is replaced by
either a transition to fake suspend state, if the guest is in suspend
state, or a rollback to the pre-transactional state if the guest is in
transactional state. Fake suspend state is indicated by a flag in the
PACA plus a new bit in the PSSCR. The new PSSCR bit is write-only and
reads back as 0.
On exit from the guest, if the guest is in fake suspend state, we still
do the treclaim instruction as we would in real suspend state, in order
to get into non-transactional state, but we do not save the resulting
register state since there was no checkpoint.
Emulation of the instructions that cause a softpatch interrupt is
handled in two paths. If the guest is in real suspend mode, we call
kvmhv_p9_tm_emulation_early() to handle the cases where the guest is
transitioning to transactional state. This is called before we do the
treclaim in the guest exit path; because we haven't done treclaim, we
can get back to the guest with the transaction still active. If the
instruction is a case that kvmhv_p9_tm_emulation_early() doesn't
handle, or if the guest is in fake suspend state, then we proceed to
do the complete guest exit path and subsequently call
kvmhv_p9_tm_emulation() in host context with the MMU on. This handles
all the cases including the cases that generate program interrupts
(illegal instruction or TM Bad Thing) and facility unavailable
interrupts.
The emulation is reasonably straightforward and is mostly concerned
with checking for exception conditions and updating the state of
registers such as MSR and CR0. The treclaim emulation takes care to
ensure that the TEXASR register gets updated as if it were the guest
treclaim instruction that had done failure recording, not the treclaim
done in hypervisor state in the guest exit path.
With this, the KVM_CAP_PPC_HTM capability returns true (1) even if
transactional memory is not available to host userspace.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Diffstat (limited to 'arch/powerpc/include/asm/ppc-opcode.h')
-rw-r--r-- | arch/powerpc/include/asm/ppc-opcode.h | 4 |
1 files changed, 4 insertions, 0 deletions
diff --git a/arch/powerpc/include/asm/ppc-opcode.h b/arch/powerpc/include/asm/ppc-opcode.h index f1083bcf449c..772eff7fd446 100644 --- a/arch/powerpc/include/asm/ppc-opcode.h +++ b/arch/powerpc/include/asm/ppc-opcode.h @@ -232,6 +232,7 @@ #define PPC_INST_MSGSYNC 0x7c0006ec #define PPC_INST_MSGSNDP 0x7c00011c #define PPC_INST_MSGCLRP 0x7c00015c +#define PPC_INST_MTMSRD 0x7c000164 #define PPC_INST_MTTMR 0x7c0003dc #define PPC_INST_NOP 0x60000000 #define PPC_INST_PASTE 0x7c20070d @@ -239,8 +240,10 @@ #define PPC_INST_POPCNTB_MASK 0xfc0007fe #define PPC_INST_POPCNTD 0x7c0003f4 #define PPC_INST_POPCNTW 0x7c0002f4 +#define PPC_INST_RFEBB 0x4c000124 #define PPC_INST_RFCI 0x4c000066 #define PPC_INST_RFDI 0x4c00004e +#define PPC_INST_RFID 0x4c000024 #define PPC_INST_RFMCI 0x4c00004c #define PPC_INST_MFSPR 0x7c0002a6 #define PPC_INST_MFSPR_DSCR 0x7c1102a6 @@ -277,6 +280,7 @@ #define PPC_INST_TRECHKPT 0x7c0007dd #define PPC_INST_TRECLAIM 0x7c00075d #define PPC_INST_TABORT 0x7c00071d +#define PPC_INST_TSR 0x7c0005dd #define PPC_INST_NAP 0x4c000364 #define PPC_INST_SLEEP 0x4c0003a4 |