summaryrefslogtreecommitdiffstats
path: root/arch/powerpc/kvm/book3s_hv.c
diff options
context:
space:
mode:
authorPaul Mackerras <paulus@samba.org>2011-06-29 02:25:44 +0200
committerAvi Kivity <avi@redhat.com>2011-07-12 12:16:57 +0200
commitaa04b4cc5be64b4fb9ef4e0fdf2418e2f4737fb2 (patch)
tree97a3ff14e43424e28a27e0f3be088649818c1b76 /arch/powerpc/kvm/book3s_hv.c
parentKVM: PPC: Allow book3s_hv guests to use SMT processor modes (diff)
downloadlinux-aa04b4cc5be64b4fb9ef4e0fdf2418e2f4737fb2.tar.xz
linux-aa04b4cc5be64b4fb9ef4e0fdf2418e2f4737fb2.zip
KVM: PPC: Allocate RMAs (Real Mode Areas) at boot for use by guests
This adds infrastructure which will be needed to allow book3s_hv KVM to run on older POWER processors, including PPC970, which don't support the Virtual Real Mode Area (VRMA) facility, but only the Real Mode Offset (RMO) facility. These processors require a physically contiguous, aligned area of memory for each guest. When the guest does an access in real mode (MMU off), the address is compared against a limit value, and if it is lower, the address is ORed with an offset value (from the Real Mode Offset Register (RMOR)) and the result becomes the real address for the access. The size of the RMA has to be one of a set of supported values, which usually includes 64MB, 128MB, 256MB and some larger powers of 2. Since we are unlikely to be able to allocate 64MB or more of physically contiguous memory after the kernel has been running for a while, we allocate a pool of RMAs at boot time using the bootmem allocator. The size and number of the RMAs can be set using the kvm_rma_size=xx and kvm_rma_count=xx kernel command line options. KVM exports a new capability, KVM_CAP_PPC_RMA, to signal the availability of the pool of preallocated RMAs. The capability value is 1 if the processor can use an RMA but doesn't require one (because it supports the VRMA facility), or 2 if the processor requires an RMA for each guest. This adds a new ioctl, KVM_ALLOCATE_RMA, which allocates an RMA from the pool and returns a file descriptor which can be used to map the RMA. It also returns the size of the RMA in the argument structure. Having an RMA means we will get multiple KMV_SET_USER_MEMORY_REGION ioctl calls from userspace. To cope with this, we now preallocate the kvm->arch.ram_pginfo array when the VM is created with a size sufficient for up to 64GB of guest memory. Subsequently we will get rid of this array and use memory associated with each memslot instead. This moves most of the code that translates the user addresses into host pfns (page frame numbers) out of kvmppc_prepare_vrma up one level to kvmppc_core_prepare_memory_region. Also, instead of having to look up the VMA for each page in order to check the page size, we now check that the pages we get are compound pages of 16MB. However, if we are adding memory that is mapped to an RMA, we don't bother with calling get_user_pages_fast and instead just offset from the base pfn for the RMA. Typically the RMA gets added after vcpus are created, which makes it inconvenient to have the LPCR (logical partition control register) value in the vcpu->arch struct, since the LPCR controls whether the processor uses RMA or VRMA for the guest. This moves the LPCR value into the kvm->arch struct and arranges for the MER (mediated external request) bit, which is the only bit that varies between vcpus, to be set in assembly code when going into the guest if there is a pending external interrupt request. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
Diffstat (limited to 'arch/powerpc/kvm/book3s_hv.c')
-rw-r--r--arch/powerpc/kvm/book3s_hv.c259
1 files changed, 250 insertions, 9 deletions
diff --git a/arch/powerpc/kvm/book3s_hv.c b/arch/powerpc/kvm/book3s_hv.c
index 36b6d98f1197..04da135cae61 100644
--- a/arch/powerpc/kvm/book3s_hv.c
+++ b/arch/powerpc/kvm/book3s_hv.c
@@ -27,6 +27,8 @@
#include <linux/fs.h>
#include <linux/anon_inodes.h>
#include <linux/cpumask.h>
+#include <linux/spinlock.h>
+#include <linux/page-flags.h>
#include <asm/reg.h>
#include <asm/cputable.h>
@@ -40,11 +42,22 @@
#include <asm/lppaca.h>
#include <asm/processor.h>
#include <asm/cputhreads.h>
+#include <asm/page.h>
#include <linux/gfp.h>
#include <linux/sched.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
+/*
+ * For now, limit memory to 64GB and require it to be large pages.
+ * This value is chosen because it makes the ram_pginfo array be
+ * 64kB in size, which is about as large as we want to be trying
+ * to allocate with kmalloc.
+ */
+#define MAX_MEM_ORDER 36
+
+#define LARGE_PAGE_ORDER 24 /* 16MB pages */
+
/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */
@@ -129,7 +142,7 @@ void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
pr_err(" ESID = %.16llx VSID = %.16llx\n",
vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
- vcpu->arch.lpcr, vcpu->kvm->arch.sdr1,
+ vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
vcpu->arch.last_inst);
}
@@ -441,7 +454,6 @@ struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
int err = -EINVAL;
int core;
struct kvmppc_vcore *vcore;
- unsigned long lpcr;
core = id / threads_per_core;
if (core >= KVM_MAX_VCORES)
@@ -464,10 +476,6 @@ struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
vcpu->arch.pvr = mfspr(SPRN_PVR);
kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
- lpcr = kvm->arch.host_lpcr & (LPCR_PECE | LPCR_LPES);
- lpcr |= LPCR_VPM0 | LPCR_VRMA_L | (4UL << LPCR_DPFD_SH) | LPCR_HDICE;
- vcpu->arch.lpcr = lpcr;
-
kvmppc_mmu_book3s_hv_init(vcpu);
/*
@@ -910,24 +918,216 @@ fail:
return ret;
}
+/* Work out RMLS (real mode limit selector) field value for a given RMA size.
+ Assumes POWER7. */
+static inline int lpcr_rmls(unsigned long rma_size)
+{
+ switch (rma_size) {
+ case 32ul << 20: /* 32 MB */
+ return 8;
+ case 64ul << 20: /* 64 MB */
+ return 3;
+ case 128ul << 20: /* 128 MB */
+ return 7;
+ case 256ul << 20: /* 256 MB */
+ return 4;
+ case 1ul << 30: /* 1 GB */
+ return 2;
+ case 16ul << 30: /* 16 GB */
+ return 1;
+ case 256ul << 30: /* 256 GB */
+ return 0;
+ default:
+ return -1;
+ }
+}
+
+static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
+{
+ struct kvmppc_rma_info *ri = vma->vm_file->private_data;
+ struct page *page;
+
+ if (vmf->pgoff >= ri->npages)
+ return VM_FAULT_SIGBUS;
+
+ page = pfn_to_page(ri->base_pfn + vmf->pgoff);
+ get_page(page);
+ vmf->page = page;
+ return 0;
+}
+
+static const struct vm_operations_struct kvm_rma_vm_ops = {
+ .fault = kvm_rma_fault,
+};
+
+static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
+{
+ vma->vm_flags |= VM_RESERVED;
+ vma->vm_ops = &kvm_rma_vm_ops;
+ return 0;
+}
+
+static int kvm_rma_release(struct inode *inode, struct file *filp)
+{
+ struct kvmppc_rma_info *ri = filp->private_data;
+
+ kvm_release_rma(ri);
+ return 0;
+}
+
+static struct file_operations kvm_rma_fops = {
+ .mmap = kvm_rma_mmap,
+ .release = kvm_rma_release,
+};
+
+long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
+{
+ struct kvmppc_rma_info *ri;
+ long fd;
+
+ ri = kvm_alloc_rma();
+ if (!ri)
+ return -ENOMEM;
+
+ fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
+ if (fd < 0)
+ kvm_release_rma(ri);
+
+ ret->rma_size = ri->npages << PAGE_SHIFT;
+ return fd;
+}
+
+static struct page *hva_to_page(unsigned long addr)
+{
+ struct page *page[1];
+ int npages;
+
+ might_sleep();
+
+ npages = get_user_pages_fast(addr, 1, 1, page);
+
+ if (unlikely(npages != 1))
+ return 0;
+
+ return page[0];
+}
+
int kvmppc_core_prepare_memory_region(struct kvm *kvm,
struct kvm_userspace_memory_region *mem)
{
- if (mem->guest_phys_addr == 0 && mem->memory_size != 0)
- return kvmppc_prepare_vrma(kvm, mem);
+ unsigned long psize, porder;
+ unsigned long i, npages, totalpages;
+ unsigned long pg_ix;
+ struct kvmppc_pginfo *pginfo;
+ unsigned long hva;
+ struct kvmppc_rma_info *ri = NULL;
+ struct page *page;
+
+ /* For now, only allow 16MB pages */
+ porder = LARGE_PAGE_ORDER;
+ psize = 1ul << porder;
+ if ((mem->memory_size & (psize - 1)) ||
+ (mem->guest_phys_addr & (psize - 1))) {
+ pr_err("bad memory_size=%llx @ %llx\n",
+ mem->memory_size, mem->guest_phys_addr);
+ return -EINVAL;
+ }
+
+ npages = mem->memory_size >> porder;
+ totalpages = (mem->guest_phys_addr + mem->memory_size) >> porder;
+
+ /* More memory than we have space to track? */
+ if (totalpages > (1ul << (MAX_MEM_ORDER - LARGE_PAGE_ORDER)))
+ return -EINVAL;
+
+ /* Do we already have an RMA registered? */
+ if (mem->guest_phys_addr == 0 && kvm->arch.rma)
+ return -EINVAL;
+
+ if (totalpages > kvm->arch.ram_npages)
+ kvm->arch.ram_npages = totalpages;
+
+ /* Is this one of our preallocated RMAs? */
+ if (mem->guest_phys_addr == 0) {
+ struct vm_area_struct *vma;
+
+ down_read(&current->mm->mmap_sem);
+ vma = find_vma(current->mm, mem->userspace_addr);
+ if (vma && vma->vm_file &&
+ vma->vm_file->f_op == &kvm_rma_fops &&
+ mem->userspace_addr == vma->vm_start)
+ ri = vma->vm_file->private_data;
+ up_read(&current->mm->mmap_sem);
+ }
+
+ if (ri) {
+ unsigned long rma_size;
+ unsigned long lpcr;
+ long rmls;
+
+ rma_size = ri->npages << PAGE_SHIFT;
+ if (rma_size > mem->memory_size)
+ rma_size = mem->memory_size;
+ rmls = lpcr_rmls(rma_size);
+ if (rmls < 0) {
+ pr_err("Can't use RMA of 0x%lx bytes\n", rma_size);
+ return -EINVAL;
+ }
+ atomic_inc(&ri->use_count);
+ kvm->arch.rma = ri;
+ kvm->arch.n_rma_pages = rma_size >> porder;
+ lpcr = kvm->arch.lpcr & ~(LPCR_VPM0 | LPCR_VRMA_L);
+ lpcr |= rmls << LPCR_RMLS_SH;
+ kvm->arch.lpcr = lpcr;
+ kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
+ pr_info("Using RMO at %lx size %lx (LPCR = %lx)\n",
+ ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
+ }
+
+ pg_ix = mem->guest_phys_addr >> porder;
+ pginfo = kvm->arch.ram_pginfo + pg_ix;
+ for (i = 0; i < npages; ++i, ++pg_ix) {
+ if (ri && pg_ix < kvm->arch.n_rma_pages) {
+ pginfo[i].pfn = ri->base_pfn +
+ (pg_ix << (porder - PAGE_SHIFT));
+ continue;
+ }
+ hva = mem->userspace_addr + (i << porder);
+ page = hva_to_page(hva);
+ if (!page) {
+ pr_err("oops, no pfn for hva %lx\n", hva);
+ goto err;
+ }
+ /* Check it's a 16MB page */
+ if (!PageHead(page) ||
+ compound_order(page) != (LARGE_PAGE_ORDER - PAGE_SHIFT)) {
+ pr_err("page at %lx isn't 16MB (o=%d)\n",
+ hva, compound_order(page));
+ goto err;
+ }
+ pginfo[i].pfn = page_to_pfn(page);
+ }
+
return 0;
+
+ err:
+ return -EINVAL;
}
void kvmppc_core_commit_memory_region(struct kvm *kvm,
struct kvm_userspace_memory_region *mem)
{
- if (mem->guest_phys_addr == 0 && mem->memory_size != 0)
+ if (mem->guest_phys_addr == 0 && mem->memory_size != 0 &&
+ !kvm->arch.rma)
kvmppc_map_vrma(kvm, mem);
}
int kvmppc_core_init_vm(struct kvm *kvm)
{
long r;
+ unsigned long npages = 1ul << (MAX_MEM_ORDER - LARGE_PAGE_ORDER);
+ long err = -ENOMEM;
+ unsigned long lpcr;
/* Allocate hashed page table */
r = kvmppc_alloc_hpt(kvm);
@@ -935,11 +1135,52 @@ int kvmppc_core_init_vm(struct kvm *kvm)
return r;
INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
+
+ kvm->arch.ram_pginfo = kzalloc(npages * sizeof(struct kvmppc_pginfo),
+ GFP_KERNEL);
+ if (!kvm->arch.ram_pginfo) {
+ pr_err("kvmppc_core_init_vm: couldn't alloc %lu bytes\n",
+ npages * sizeof(struct kvmppc_pginfo));
+ goto out_free;
+ }
+
+ kvm->arch.ram_npages = 0;
+ kvm->arch.ram_psize = 1ul << LARGE_PAGE_ORDER;
+ kvm->arch.ram_porder = LARGE_PAGE_ORDER;
+ kvm->arch.rma = NULL;
+ kvm->arch.n_rma_pages = 0;
+
+ lpcr = kvm->arch.host_lpcr & (LPCR_PECE | LPCR_LPES);
+ lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
+ LPCR_VPM0 | LPCR_VRMA_L;
+ kvm->arch.lpcr = lpcr;
+
+
return 0;
+
+ out_free:
+ kvmppc_free_hpt(kvm);
+ return err;
}
void kvmppc_core_destroy_vm(struct kvm *kvm)
{
+ struct kvmppc_pginfo *pginfo;
+ unsigned long i;
+
+ if (kvm->arch.ram_pginfo) {
+ pginfo = kvm->arch.ram_pginfo;
+ kvm->arch.ram_pginfo = NULL;
+ for (i = kvm->arch.n_rma_pages; i < kvm->arch.ram_npages; ++i)
+ if (pginfo[i].pfn)
+ put_page(pfn_to_page(pginfo[i].pfn));
+ kfree(pginfo);
+ }
+ if (kvm->arch.rma) {
+ kvm_release_rma(kvm->arch.rma);
+ kvm->arch.rma = NULL;
+ }
+
kvmppc_free_hpt(kvm);
WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
}