diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-17 00:20:36 +0200 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-17 00:20:36 +0200 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/ppc/math-emu/op-1.h | |
download | linux-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.tar.xz linux-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.zip |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/ppc/math-emu/op-1.h')
-rw-r--r-- | arch/ppc/math-emu/op-1.h | 245 |
1 files changed, 245 insertions, 0 deletions
diff --git a/arch/ppc/math-emu/op-1.h b/arch/ppc/math-emu/op-1.h new file mode 100644 index 000000000000..c92fa95f562e --- /dev/null +++ b/arch/ppc/math-emu/op-1.h @@ -0,0 +1,245 @@ +/* + * Basic one-word fraction declaration and manipulation. + */ + +#define _FP_FRAC_DECL_1(X) _FP_W_TYPE X##_f +#define _FP_FRAC_COPY_1(D,S) (D##_f = S##_f) +#define _FP_FRAC_SET_1(X,I) (X##_f = I) +#define _FP_FRAC_HIGH_1(X) (X##_f) +#define _FP_FRAC_LOW_1(X) (X##_f) +#define _FP_FRAC_WORD_1(X,w) (X##_f) + +#define _FP_FRAC_ADDI_1(X,I) (X##_f += I) +#define _FP_FRAC_SLL_1(X,N) \ + do { \ + if (__builtin_constant_p(N) && (N) == 1) \ + X##_f += X##_f; \ + else \ + X##_f <<= (N); \ + } while (0) +#define _FP_FRAC_SRL_1(X,N) (X##_f >>= N) + +/* Right shift with sticky-lsb. */ +#define _FP_FRAC_SRS_1(X,N,sz) __FP_FRAC_SRS_1(X##_f, N, sz) + +#define __FP_FRAC_SRS_1(X,N,sz) \ + (X = (X >> (N) | (__builtin_constant_p(N) && (N) == 1 \ + ? X & 1 : (X << (_FP_W_TYPE_SIZE - (N))) != 0))) + +#define _FP_FRAC_ADD_1(R,X,Y) (R##_f = X##_f + Y##_f) +#define _FP_FRAC_SUB_1(R,X,Y) (R##_f = X##_f - Y##_f) +#define _FP_FRAC_CLZ_1(z, X) __FP_CLZ(z, X##_f) + +/* Predicates */ +#define _FP_FRAC_NEGP_1(X) ((_FP_WS_TYPE)X##_f < 0) +#define _FP_FRAC_ZEROP_1(X) (X##_f == 0) +#define _FP_FRAC_OVERP_1(fs,X) (X##_f & _FP_OVERFLOW_##fs) +#define _FP_FRAC_EQ_1(X, Y) (X##_f == Y##_f) +#define _FP_FRAC_GE_1(X, Y) (X##_f >= Y##_f) +#define _FP_FRAC_GT_1(X, Y) (X##_f > Y##_f) + +#define _FP_ZEROFRAC_1 0 +#define _FP_MINFRAC_1 1 + +/* + * Unpack the raw bits of a native fp value. Do not classify or + * normalize the data. + */ + +#define _FP_UNPACK_RAW_1(fs, X, val) \ + do { \ + union _FP_UNION_##fs _flo; _flo.flt = (val); \ + \ + X##_f = _flo.bits.frac; \ + X##_e = _flo.bits.exp; \ + X##_s = _flo.bits.sign; \ + } while (0) + + +/* + * Repack the raw bits of a native fp value. + */ + +#define _FP_PACK_RAW_1(fs, val, X) \ + do { \ + union _FP_UNION_##fs _flo; \ + \ + _flo.bits.frac = X##_f; \ + _flo.bits.exp = X##_e; \ + _flo.bits.sign = X##_s; \ + \ + (val) = _flo.flt; \ + } while (0) + + +/* + * Multiplication algorithms: + */ + +/* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the + multiplication immediately. */ + +#define _FP_MUL_MEAT_1_imm(fs, R, X, Y) \ + do { \ + R##_f = X##_f * Y##_f; \ + /* Normalize since we know where the msb of the multiplicands \ + were (bit B), we know that the msb of the of the product is \ + at either 2B or 2B-1. */ \ + _FP_FRAC_SRS_1(R, _FP_WFRACBITS_##fs-1, 2*_FP_WFRACBITS_##fs); \ + } while (0) + +/* Given a 1W * 1W => 2W primitive, do the extended multiplication. */ + +#define _FP_MUL_MEAT_1_wide(fs, R, X, Y, doit) \ + do { \ + _FP_W_TYPE _Z_f0, _Z_f1; \ + doit(_Z_f1, _Z_f0, X##_f, Y##_f); \ + /* Normalize since we know where the msb of the multiplicands \ + were (bit B), we know that the msb of the of the product is \ + at either 2B or 2B-1. */ \ + _FP_FRAC_SRS_2(_Z, _FP_WFRACBITS_##fs-1, 2*_FP_WFRACBITS_##fs); \ + R##_f = _Z_f0; \ + } while (0) + +/* Finally, a simple widening multiply algorithm. What fun! */ + +#define _FP_MUL_MEAT_1_hard(fs, R, X, Y) \ + do { \ + _FP_W_TYPE _xh, _xl, _yh, _yl, _z_f0, _z_f1, _a_f0, _a_f1; \ + \ + /* split the words in half */ \ + _xh = X##_f >> (_FP_W_TYPE_SIZE/2); \ + _xl = X##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1); \ + _yh = Y##_f >> (_FP_W_TYPE_SIZE/2); \ + _yl = Y##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1); \ + \ + /* multiply the pieces */ \ + _z_f0 = _xl * _yl; \ + _a_f0 = _xh * _yl; \ + _a_f1 = _xl * _yh; \ + _z_f1 = _xh * _yh; \ + \ + /* reassemble into two full words */ \ + if ((_a_f0 += _a_f1) < _a_f1) \ + _z_f1 += (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2); \ + _a_f1 = _a_f0 >> (_FP_W_TYPE_SIZE/2); \ + _a_f0 = _a_f0 << (_FP_W_TYPE_SIZE/2); \ + _FP_FRAC_ADD_2(_z, _z, _a); \ + \ + /* normalize */ \ + _FP_FRAC_SRS_2(_z, _FP_WFRACBITS_##fs - 1, 2*_FP_WFRACBITS_##fs); \ + R##_f = _z_f0; \ + } while (0) + + +/* + * Division algorithms: + */ + +/* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the + division immediately. Give this macro either _FP_DIV_HELP_imm for + C primitives or _FP_DIV_HELP_ldiv for the ISO function. Which you + choose will depend on what the compiler does with divrem4. */ + +#define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit) \ + do { \ + _FP_W_TYPE _q, _r; \ + X##_f <<= (X##_f < Y##_f \ + ? R##_e--, _FP_WFRACBITS_##fs \ + : _FP_WFRACBITS_##fs - 1); \ + doit(_q, _r, X##_f, Y##_f); \ + R##_f = _q | (_r != 0); \ + } while (0) + +/* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd + that may be useful in this situation. This first is for a primitive + that requires normalization, the second for one that does not. Look + for UDIV_NEEDS_NORMALIZATION to tell which your machine needs. */ + +#define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y) \ + do { \ + _FP_W_TYPE _nh, _nl, _q, _r; \ + \ + /* Normalize Y -- i.e. make the most significant bit set. */ \ + Y##_f <<= _FP_WFRACXBITS_##fs - 1; \ + \ + /* Shift X op correspondingly high, that is, up one full word. */ \ + if (X##_f <= Y##_f) \ + { \ + _nl = 0; \ + _nh = X##_f; \ + } \ + else \ + { \ + R##_e++; \ + _nl = X##_f << (_FP_W_TYPE_SIZE-1); \ + _nh = X##_f >> 1; \ + } \ + \ + udiv_qrnnd(_q, _r, _nh, _nl, Y##_f); \ + R##_f = _q | (_r != 0); \ + } while (0) + +#define _FP_DIV_MEAT_1_udiv(fs, R, X, Y) \ + do { \ + _FP_W_TYPE _nh, _nl, _q, _r; \ + if (X##_f < Y##_f) \ + { \ + R##_e--; \ + _nl = X##_f << _FP_WFRACBITS_##fs; \ + _nh = X##_f >> _FP_WFRACXBITS_##fs; \ + } \ + else \ + { \ + _nl = X##_f << (_FP_WFRACBITS_##fs - 1); \ + _nh = X##_f >> (_FP_WFRACXBITS_##fs + 1); \ + } \ + udiv_qrnnd(_q, _r, _nh, _nl, Y##_f); \ + R##_f = _q | (_r != 0); \ + } while (0) + + +/* + * Square root algorithms: + * We have just one right now, maybe Newton approximation + * should be added for those machines where division is fast. + */ + +#define _FP_SQRT_MEAT_1(R, S, T, X, q) \ + do { \ + while (q) \ + { \ + T##_f = S##_f + q; \ + if (T##_f <= X##_f) \ + { \ + S##_f = T##_f + q; \ + X##_f -= T##_f; \ + R##_f += q; \ + } \ + _FP_FRAC_SLL_1(X, 1); \ + q >>= 1; \ + } \ + } while (0) + +/* + * Assembly/disassembly for converting to/from integral types. + * No shifting or overflow handled here. + */ + +#define _FP_FRAC_ASSEMBLE_1(r, X, rsize) (r = X##_f) +#define _FP_FRAC_DISASSEMBLE_1(X, r, rsize) (X##_f = r) + + +/* + * Convert FP values between word sizes + */ + +#define _FP_FRAC_CONV_1_1(dfs, sfs, D, S) \ + do { \ + D##_f = S##_f; \ + if (_FP_WFRACBITS_##sfs > _FP_WFRACBITS_##dfs) \ + _FP_FRAC_SRS_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs), \ + _FP_WFRACBITS_##sfs); \ + else \ + D##_f <<= _FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs; \ + } while (0) |