summaryrefslogtreecommitdiffstats
path: root/arch/unicore32
diff options
context:
space:
mode:
authorMichael Ellerman <mpe@ellerman.id.au>2018-07-19 16:33:16 +0200
committerMichael Ellerman <mpe@ellerman.id.au>2018-07-30 14:48:21 +0200
commita984506c542e26b31cbb446438f8439fa2253b2e (patch)
treee4f8dfd49bfdd3d5069239f759e17d7c3f4dcb2c /arch/unicore32
parentpowerpc: split asm/tlbflush.h (diff)
downloadlinux-a984506c542e26b31cbb446438f8439fa2253b2e.tar.xz
linux-a984506c542e26b31cbb446438f8439fa2253b2e.zip
powerpc/mm: Don't report PUDs as memory leaks when using kmemleak
Paul Menzel reported that kmemleak was producing reports such as: unreferenced object 0xc0000000f8b80000 (size 16384): comm "init", pid 1, jiffies 4294937416 (age 312.240s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<00000000d997deb7>] __pud_alloc+0x80/0x190 [<0000000087f2e8a3>] move_page_tables+0xbac/0xdc0 [<00000000091e51c2>] shift_arg_pages+0xc0/0x210 [<00000000ab88670c>] setup_arg_pages+0x22c/0x2a0 [<0000000060871529>] load_elf_binary+0x41c/0x1648 [<00000000ecd9d2d4>] search_binary_handler.part.11+0xbc/0x280 [<0000000034e0cdd7>] __do_execve_file.isra.13+0x73c/0x940 [<000000005f953a6e>] sys_execve+0x58/0x70 [<000000009700a858>] system_call+0x5c/0x70 Indicating that a PUD was being leaked. However what's really happening is that kmemleak is not able to recognise the references from the PGD to the PUD, because they are not fully qualified pointers. We can confirm that in xmon, eg: Find the task struct for pid 1 "init": 0:mon> P task_struct ->thread.ksp PID PPID S P CMD c0000001fe7c0000 c0000001fe803960 1 0 S 13 systemd Dump virtual address 0 to find the PGD: 0:mon> dv 0 c0000001fe7c0000 pgd @ 0xc0000000f8b01000 Dump the memory of the PGD: 0:mon> d c0000000f8b01000 c0000000f8b01000 00000000f8b90000 0000000000000000 |................| c0000000f8b01010 0000000000000000 0000000000000000 |................| c0000000f8b01020 0000000000000000 0000000000000000 |................| c0000000f8b01030 0000000000000000 00000000f8b80000 |................| ^^^^^^^^^^^^^^^^ There we can see the reference to our supposedly leaked PUD. But because it's missing the leading 0xc, kmemleak won't recognise it. We can confirm it's still in use by translating an address that is mapped via it: 0:mon> dv 7fff94000000 c0000001fe7c0000 pgd @ 0xc0000000f8b01000 pgdp @ 0xc0000000f8b01038 = 0x00000000f8b80000 <-- pudp @ 0xc0000000f8b81ff8 = 0x00000000037c4000 pmdp @ 0xc0000000037c5ca0 = 0x00000000fbd89000 ptep @ 0xc0000000fbd89000 = 0xc0800001d5ce0386 Maps physical address = 0x00000001d5ce0000 Flags = Accessed Dirty Read Write The fix is fairly simple. We need to tell kmemleak to ignore PUD allocations and never report them as leaks. We can also tell it not to scan the PGD, because it will never find pointers in there. However it will still notice if we allocate a PGD and then leak it. Reported-by: Paul Menzel <pmenzel@molgen.mpg.de> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Paul Menzel <pmenzel@molgen.mpg.de> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Diffstat (limited to 'arch/unicore32')
0 files changed, 0 insertions, 0 deletions