diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2024-07-16 20:12:25 +0200 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2024-07-16 20:12:25 +0200 |
commit | 408323581b722c9bd504dd296920f392049a7f52 (patch) | |
tree | 651e7d137b01ee1a3cca49787c014aba1e42652e /arch/x86/coco | |
parent | Merge tag 'x86_cache_for_v6.11_rc1' of git://git.kernel.org/pub/scm/linux/ker... (diff) | |
parent | Documentation/ABI/configfs-tsm: Fix an unexpected indentation silly (diff) | |
download | linux-408323581b722c9bd504dd296920f392049a7f52.tar.xz linux-408323581b722c9bd504dd296920f392049a7f52.zip |
Merge tag 'x86_sev_for_v6.11_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 SEV updates from Borislav Petkov:
- Add support for running the kernel in a SEV-SNP guest, over a Secure
VM Service Module (SVSM).
When running over a SVSM, different services can run at different
protection levels, apart from the guest OS but still within the
secure SNP environment. They can provide services to the guest, like
a vTPM, for example.
This series adds the required facilities to interface with such a
SVSM module.
- The usual fixlets, refactoring and cleanups
[ And as always: "SEV" is AMD's "Secure Encrypted Virtualization".
I can't be the only one who gets all the newer x86 TLA's confused,
can I?
- Linus ]
* tag 'x86_sev_for_v6.11_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
Documentation/ABI/configfs-tsm: Fix an unexpected indentation silly
x86/sev: Do RMP memory coverage check after max_pfn has been set
x86/sev: Move SEV compilation units
virt: sev-guest: Mark driver struct with __refdata to prevent section mismatch
x86/sev: Allow non-VMPL0 execution when an SVSM is present
x86/sev: Extend the config-fs attestation support for an SVSM
x86/sev: Take advantage of configfs visibility support in TSM
fs/configfs: Add a callback to determine attribute visibility
sev-guest: configfs-tsm: Allow the privlevel_floor attribute to be updated
virt: sev-guest: Choose the VMPCK key based on executing VMPL
x86/sev: Provide guest VMPL level to userspace
x86/sev: Provide SVSM discovery support
x86/sev: Use the SVSM to create a vCPU when not in VMPL0
x86/sev: Perform PVALIDATE using the SVSM when not at VMPL0
x86/sev: Use kernel provided SVSM Calling Areas
x86/sev: Check for the presence of an SVSM in the SNP secrets page
x86/irqflags: Provide native versions of the local_irq_save()/restore()
Diffstat (limited to 'arch/x86/coco')
-rw-r--r-- | arch/x86/coco/Makefile | 1 | ||||
-rw-r--r-- | arch/x86/coco/sev/Makefile | 15 | ||||
-rw-r--r-- | arch/x86/coco/sev/core.c | 2606 | ||||
-rw-r--r-- | arch/x86/coco/sev/shared.c | 1717 |
4 files changed, 4339 insertions, 0 deletions
diff --git a/arch/x86/coco/Makefile b/arch/x86/coco/Makefile index c816acf78b6a..eabdc7486538 100644 --- a/arch/x86/coco/Makefile +++ b/arch/x86/coco/Makefile @@ -6,3 +6,4 @@ CFLAGS_core.o += -fno-stack-protector obj-y += core.o obj-$(CONFIG_INTEL_TDX_GUEST) += tdx/ +obj-$(CONFIG_AMD_MEM_ENCRYPT) += sev/ diff --git a/arch/x86/coco/sev/Makefile b/arch/x86/coco/sev/Makefile new file mode 100644 index 000000000000..4e375e7305ac --- /dev/null +++ b/arch/x86/coco/sev/Makefile @@ -0,0 +1,15 @@ +# SPDX-License-Identifier: GPL-2.0 + +obj-y += core.o + +ifdef CONFIG_FUNCTION_TRACER +CFLAGS_REMOVE_core.o = -pg +endif + +KASAN_SANITIZE_core.o := n +KMSAN_SANITIZE_core.o := n +KCOV_INSTRUMENT_core.o := n + +# With some compiler versions the generated code results in boot hangs, caused +# by several compilation units. To be safe, disable all instrumentation. +KCSAN_SANITIZE := n diff --git a/arch/x86/coco/sev/core.c b/arch/x86/coco/sev/core.c new file mode 100644 index 000000000000..082d61d85dfc --- /dev/null +++ b/arch/x86/coco/sev/core.c @@ -0,0 +1,2606 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * AMD Memory Encryption Support + * + * Copyright (C) 2019 SUSE + * + * Author: Joerg Roedel <jroedel@suse.de> + */ + +#define pr_fmt(fmt) "SEV: " fmt + +#include <linux/sched/debug.h> /* For show_regs() */ +#include <linux/percpu-defs.h> +#include <linux/cc_platform.h> +#include <linux/printk.h> +#include <linux/mm_types.h> +#include <linux/set_memory.h> +#include <linux/memblock.h> +#include <linux/kernel.h> +#include <linux/mm.h> +#include <linux/cpumask.h> +#include <linux/efi.h> +#include <linux/platform_device.h> +#include <linux/io.h> +#include <linux/psp-sev.h> +#include <linux/dmi.h> +#include <uapi/linux/sev-guest.h> + +#include <asm/init.h> +#include <asm/cpu_entry_area.h> +#include <asm/stacktrace.h> +#include <asm/sev.h> +#include <asm/insn-eval.h> +#include <asm/fpu/xcr.h> +#include <asm/processor.h> +#include <asm/realmode.h> +#include <asm/setup.h> +#include <asm/traps.h> +#include <asm/svm.h> +#include <asm/smp.h> +#include <asm/cpu.h> +#include <asm/apic.h> +#include <asm/cpuid.h> +#include <asm/cmdline.h> + +#define DR7_RESET_VALUE 0x400 + +/* AP INIT values as documented in the APM2 section "Processor Initialization State" */ +#define AP_INIT_CS_LIMIT 0xffff +#define AP_INIT_DS_LIMIT 0xffff +#define AP_INIT_LDTR_LIMIT 0xffff +#define AP_INIT_GDTR_LIMIT 0xffff +#define AP_INIT_IDTR_LIMIT 0xffff +#define AP_INIT_TR_LIMIT 0xffff +#define AP_INIT_RFLAGS_DEFAULT 0x2 +#define AP_INIT_DR6_DEFAULT 0xffff0ff0 +#define AP_INIT_GPAT_DEFAULT 0x0007040600070406ULL +#define AP_INIT_XCR0_DEFAULT 0x1 +#define AP_INIT_X87_FTW_DEFAULT 0x5555 +#define AP_INIT_X87_FCW_DEFAULT 0x0040 +#define AP_INIT_CR0_DEFAULT 0x60000010 +#define AP_INIT_MXCSR_DEFAULT 0x1f80 + +static const char * const sev_status_feat_names[] = { + [MSR_AMD64_SEV_ENABLED_BIT] = "SEV", + [MSR_AMD64_SEV_ES_ENABLED_BIT] = "SEV-ES", + [MSR_AMD64_SEV_SNP_ENABLED_BIT] = "SEV-SNP", + [MSR_AMD64_SNP_VTOM_BIT] = "vTom", + [MSR_AMD64_SNP_REFLECT_VC_BIT] = "ReflectVC", + [MSR_AMD64_SNP_RESTRICTED_INJ_BIT] = "RI", + [MSR_AMD64_SNP_ALT_INJ_BIT] = "AI", + [MSR_AMD64_SNP_DEBUG_SWAP_BIT] = "DebugSwap", + [MSR_AMD64_SNP_PREVENT_HOST_IBS_BIT] = "NoHostIBS", + [MSR_AMD64_SNP_BTB_ISOLATION_BIT] = "BTBIsol", + [MSR_AMD64_SNP_VMPL_SSS_BIT] = "VmplSSS", + [MSR_AMD64_SNP_SECURE_TSC_BIT] = "SecureTSC", + [MSR_AMD64_SNP_VMGEXIT_PARAM_BIT] = "VMGExitParam", + [MSR_AMD64_SNP_IBS_VIRT_BIT] = "IBSVirt", + [MSR_AMD64_SNP_VMSA_REG_PROT_BIT] = "VMSARegProt", + [MSR_AMD64_SNP_SMT_PROT_BIT] = "SMTProt", +}; + +/* For early boot hypervisor communication in SEV-ES enabled guests */ +static struct ghcb boot_ghcb_page __bss_decrypted __aligned(PAGE_SIZE); + +/* + * Needs to be in the .data section because we need it NULL before bss is + * cleared + */ +static struct ghcb *boot_ghcb __section(".data"); + +/* Bitmap of SEV features supported by the hypervisor */ +static u64 sev_hv_features __ro_after_init; + +/* #VC handler runtime per-CPU data */ +struct sev_es_runtime_data { + struct ghcb ghcb_page; + + /* + * Reserve one page per CPU as backup storage for the unencrypted GHCB. + * It is needed when an NMI happens while the #VC handler uses the real + * GHCB, and the NMI handler itself is causing another #VC exception. In + * that case the GHCB content of the first handler needs to be backed up + * and restored. + */ + struct ghcb backup_ghcb; + + /* + * Mark the per-cpu GHCBs as in-use to detect nested #VC exceptions. + * There is no need for it to be atomic, because nothing is written to + * the GHCB between the read and the write of ghcb_active. So it is safe + * to use it when a nested #VC exception happens before the write. + * + * This is necessary for example in the #VC->NMI->#VC case when the NMI + * happens while the first #VC handler uses the GHCB. When the NMI code + * raises a second #VC handler it might overwrite the contents of the + * GHCB written by the first handler. To avoid this the content of the + * GHCB is saved and restored when the GHCB is detected to be in use + * already. + */ + bool ghcb_active; + bool backup_ghcb_active; + + /* + * Cached DR7 value - write it on DR7 writes and return it on reads. + * That value will never make it to the real hardware DR7 as debugging + * is currently unsupported in SEV-ES guests. + */ + unsigned long dr7; +}; + +struct ghcb_state { + struct ghcb *ghcb; +}; + +/* For early boot SVSM communication */ +static struct svsm_ca boot_svsm_ca_page __aligned(PAGE_SIZE); + +static DEFINE_PER_CPU(struct sev_es_runtime_data*, runtime_data); +static DEFINE_PER_CPU(struct sev_es_save_area *, sev_vmsa); +static DEFINE_PER_CPU(struct svsm_ca *, svsm_caa); +static DEFINE_PER_CPU(u64, svsm_caa_pa); + +struct sev_config { + __u64 debug : 1, + + /* + * Indicates when the per-CPU GHCB has been created and registered + * and thus can be used by the BSP instead of the early boot GHCB. + * + * For APs, the per-CPU GHCB is created before they are started + * and registered upon startup, so this flag can be used globally + * for the BSP and APs. + */ + ghcbs_initialized : 1, + + /* + * Indicates when the per-CPU SVSM CA is to be used instead of the + * boot SVSM CA. + * + * For APs, the per-CPU SVSM CA is created as part of the AP + * bringup, so this flag can be used globally for the BSP and APs. + */ + use_cas : 1, + + __reserved : 62; +}; + +static struct sev_config sev_cfg __read_mostly; + +static __always_inline bool on_vc_stack(struct pt_regs *regs) +{ + unsigned long sp = regs->sp; + + /* User-mode RSP is not trusted */ + if (user_mode(regs)) + return false; + + /* SYSCALL gap still has user-mode RSP */ + if (ip_within_syscall_gap(regs)) + return false; + + return ((sp >= __this_cpu_ist_bottom_va(VC)) && (sp < __this_cpu_ist_top_va(VC))); +} + +/* + * This function handles the case when an NMI is raised in the #VC + * exception handler entry code, before the #VC handler has switched off + * its IST stack. In this case, the IST entry for #VC must be adjusted, + * so that any nested #VC exception will not overwrite the stack + * contents of the interrupted #VC handler. + * + * The IST entry is adjusted unconditionally so that it can be also be + * unconditionally adjusted back in __sev_es_ist_exit(). Otherwise a + * nested sev_es_ist_exit() call may adjust back the IST entry too + * early. + * + * The __sev_es_ist_enter() and __sev_es_ist_exit() functions always run + * on the NMI IST stack, as they are only called from NMI handling code + * right now. + */ +void noinstr __sev_es_ist_enter(struct pt_regs *regs) +{ + unsigned long old_ist, new_ist; + + /* Read old IST entry */ + new_ist = old_ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]); + + /* + * If NMI happened while on the #VC IST stack, set the new IST + * value below regs->sp, so that the interrupted stack frame is + * not overwritten by subsequent #VC exceptions. + */ + if (on_vc_stack(regs)) + new_ist = regs->sp; + + /* + * Reserve additional 8 bytes and store old IST value so this + * adjustment can be unrolled in __sev_es_ist_exit(). + */ + new_ist -= sizeof(old_ist); + *(unsigned long *)new_ist = old_ist; + + /* Set new IST entry */ + this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], new_ist); +} + +void noinstr __sev_es_ist_exit(void) +{ + unsigned long ist; + + /* Read IST entry */ + ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]); + + if (WARN_ON(ist == __this_cpu_ist_top_va(VC))) + return; + + /* Read back old IST entry and write it to the TSS */ + this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], *(unsigned long *)ist); +} + +/* + * Nothing shall interrupt this code path while holding the per-CPU + * GHCB. The backup GHCB is only for NMIs interrupting this path. + * + * Callers must disable local interrupts around it. + */ +static noinstr struct ghcb *__sev_get_ghcb(struct ghcb_state *state) +{ + struct sev_es_runtime_data *data; + struct ghcb *ghcb; + + WARN_ON(!irqs_disabled()); + + data = this_cpu_read(runtime_data); + ghcb = &data->ghcb_page; + + if (unlikely(data->ghcb_active)) { + /* GHCB is already in use - save its contents */ + + if (unlikely(data->backup_ghcb_active)) { + /* + * Backup-GHCB is also already in use. There is no way + * to continue here so just kill the machine. To make + * panic() work, mark GHCBs inactive so that messages + * can be printed out. + */ + data->ghcb_active = false; + data->backup_ghcb_active = false; + + instrumentation_begin(); + panic("Unable to handle #VC exception! GHCB and Backup GHCB are already in use"); + instrumentation_end(); + } + + /* Mark backup_ghcb active before writing to it */ + data->backup_ghcb_active = true; + + state->ghcb = &data->backup_ghcb; + + /* Backup GHCB content */ + *state->ghcb = *ghcb; + } else { + state->ghcb = NULL; + data->ghcb_active = true; + } + + return ghcb; +} + +static inline u64 sev_es_rd_ghcb_msr(void) +{ + return __rdmsr(MSR_AMD64_SEV_ES_GHCB); +} + +static __always_inline void sev_es_wr_ghcb_msr(u64 val) +{ + u32 low, high; + + low = (u32)(val); + high = (u32)(val >> 32); + + native_wrmsr(MSR_AMD64_SEV_ES_GHCB, low, high); +} + +static int vc_fetch_insn_kernel(struct es_em_ctxt *ctxt, + unsigned char *buffer) +{ + return copy_from_kernel_nofault(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE); +} + +static enum es_result __vc_decode_user_insn(struct es_em_ctxt *ctxt) +{ + char buffer[MAX_INSN_SIZE]; + int insn_bytes; + + insn_bytes = insn_fetch_from_user_inatomic(ctxt->regs, buffer); + if (insn_bytes == 0) { + /* Nothing could be copied */ + ctxt->fi.vector = X86_TRAP_PF; + ctxt->fi.error_code = X86_PF_INSTR | X86_PF_USER; + ctxt->fi.cr2 = ctxt->regs->ip; + return ES_EXCEPTION; + } else if (insn_bytes == -EINVAL) { + /* Effective RIP could not be calculated */ + ctxt->fi.vector = X86_TRAP_GP; + ctxt->fi.error_code = 0; + ctxt->fi.cr2 = 0; + return ES_EXCEPTION; + } + + if (!insn_decode_from_regs(&ctxt->insn, ctxt->regs, buffer, insn_bytes)) + return ES_DECODE_FAILED; + + if (ctxt->insn.immediate.got) + return ES_OK; + else + return ES_DECODE_FAILED; +} + +static enum es_result __vc_decode_kern_insn(struct es_em_ctxt *ctxt) +{ + char buffer[MAX_INSN_SIZE]; + int res, ret; + + res = vc_fetch_insn_kernel(ctxt, buffer); + if (res) { + ctxt->fi.vector = X86_TRAP_PF; + ctxt->fi.error_code = X86_PF_INSTR; + ctxt->fi.cr2 = ctxt->regs->ip; + return ES_EXCEPTION; + } + + ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64); + if (ret < 0) + return ES_DECODE_FAILED; + else + return ES_OK; +} + +static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt) +{ + if (user_mode(ctxt->regs)) + return __vc_decode_user_insn(ctxt); + else + return __vc_decode_kern_insn(ctxt); +} + +static enum es_result vc_write_mem(struct es_em_ctxt *ctxt, + char *dst, char *buf, size_t size) +{ + unsigned long error_code = X86_PF_PROT | X86_PF_WRITE; + + /* + * This function uses __put_user() independent of whether kernel or user + * memory is accessed. This works fine because __put_user() does no + * sanity checks of the pointer being accessed. All that it does is + * to report when the access failed. + * + * Also, this function runs in atomic context, so __put_user() is not + * allowed to sleep. The page-fault handler detects that it is running + * in atomic context and will not try to take mmap_sem and handle the + * fault, so additional pagefault_enable()/disable() calls are not + * needed. + * + * The access can't be done via copy_to_user() here because + * vc_write_mem() must not use string instructions to access unsafe + * memory. The reason is that MOVS is emulated by the #VC handler by + * splitting the move up into a read and a write and taking a nested #VC + * exception on whatever of them is the MMIO access. Using string + * instructions here would cause infinite nesting. + */ + switch (size) { + case 1: { + u8 d1; + u8 __user *target = (u8 __user *)dst; + + memcpy(&d1, buf, 1); + if (__put_user(d1, target)) + goto fault; + break; + } + case 2: { + u16 d2; + u16 __user *target = (u16 __user *)dst; + + memcpy(&d2, buf, 2); + if (__put_user(d2, target)) + goto fault; + break; + } + case 4: { + u32 d4; + u32 __user *target = (u32 __user *)dst; + + memcpy(&d4, buf, 4); + if (__put_user(d4, target)) + goto fault; + break; + } + case 8: { + u64 d8; + u64 __user *target = (u64 __user *)dst; + + memcpy(&d8, buf, 8); + if (__put_user(d8, target)) + goto fault; + break; + } + default: + WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size); + return ES_UNSUPPORTED; + } + + return ES_OK; + +fault: + if (user_mode(ctxt->regs)) + error_code |= X86_PF_USER; + + ctxt->fi.vector = X86_TRAP_PF; + ctxt->fi.error_code = error_code; + ctxt->fi.cr2 = (unsigned long)dst; + + return ES_EXCEPTION; +} + +static enum es_result vc_read_mem(struct es_em_ctxt *ctxt, + char *src, char *buf, size_t size) +{ + unsigned long error_code = X86_PF_PROT; + + /* + * This function uses __get_user() independent of whether kernel or user + * memory is accessed. This works fine because __get_user() does no + * sanity checks of the pointer being accessed. All that it does is + * to report when the access failed. + * + * Also, this function runs in atomic context, so __get_user() is not + * allowed to sleep. The page-fault handler detects that it is running + * in atomic context and will not try to take mmap_sem and handle the + * fault, so additional pagefault_enable()/disable() calls are not + * needed. + * + * The access can't be done via copy_from_user() here because + * vc_read_mem() must not use string instructions to access unsafe + * memory. The reason is that MOVS is emulated by the #VC handler by + * splitting the move up into a read and a write and taking a nested #VC + * exception on whatever of them is the MMIO access. Using string + * instructions here would cause infinite nesting. + */ + switch (size) { + case 1: { + u8 d1; + u8 __user *s = (u8 __user *)src; + + if (__get_user(d1, s)) + goto fault; + memcpy(buf, &d1, 1); + break; + } + case 2: { + u16 d2; + u16 __user *s = (u16 __user *)src; + + if (__get_user(d2, s)) + goto fault; + memcpy(buf, &d2, 2); + break; + } + case 4: { + u32 d4; + u32 __user *s = (u32 __user *)src; + + if (__get_user(d4, s)) + goto fault; + memcpy(buf, &d4, 4); + break; + } + case 8: { + u64 d8; + u64 __user *s = (u64 __user *)src; + if (__get_user(d8, s)) + goto fault; + memcpy(buf, &d8, 8); + break; + } + default: + WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size); + return ES_UNSUPPORTED; + } + + return ES_OK; + +fault: + if (user_mode(ctxt->regs)) + error_code |= X86_PF_USER; + + ctxt->fi.vector = X86_TRAP_PF; + ctxt->fi.error_code = error_code; + ctxt->fi.cr2 = (unsigned long)src; + + return ES_EXCEPTION; +} + +static enum es_result vc_slow_virt_to_phys(struct ghcb *ghcb, struct es_em_ctxt *ctxt, + unsigned long vaddr, phys_addr_t *paddr) +{ + unsigned long va = (unsigned long)vaddr; + unsigned int level; + phys_addr_t pa; + pgd_t *pgd; + pte_t *pte; + + pgd = __va(read_cr3_pa()); + pgd = &pgd[pgd_index(va)]; + pte = lookup_address_in_pgd(pgd, va, &level); + if (!pte) { + ctxt->fi.vector = X86_TRAP_PF; + ctxt->fi.cr2 = vaddr; + ctxt->fi.error_code = 0; + + if (user_mode(ctxt->regs)) + ctxt->fi.error_code |= X86_PF_USER; + + return ES_EXCEPTION; + } + + if (WARN_ON_ONCE(pte_val(*pte) & _PAGE_ENC)) + /* Emulated MMIO to/from encrypted memory not supported */ + return ES_UNSUPPORTED; + + pa = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT; + pa |= va & ~page_level_mask(level); + + *paddr = pa; + + return ES_OK; +} + +static enum es_result vc_ioio_check(struct es_em_ctxt *ctxt, u16 port, size_t size) +{ + BUG_ON(size > 4); + + if (user_mode(ctxt->regs)) { + struct thread_struct *t = ¤t->thread; + struct io_bitmap *iobm = t->io_bitmap; + size_t idx; + + if (!iobm) + goto fault; + + for (idx = port; idx < port + size; ++idx) { + if (test_bit(idx, iobm->bitmap)) + goto fault; + } + } + + return ES_OK; + +fault: + ctxt->fi.vector = X86_TRAP_GP; + ctxt->fi.error_code = 0; + + return ES_EXCEPTION; +} + +static __always_inline void vc_forward_exception(struct es_em_ctxt *ctxt) +{ + long error_code = ctxt->fi.error_code; + int trapnr = ctxt->fi.vector; + + ctxt->regs->orig_ax = ctxt->fi.error_code; + + switch (trapnr) { + case X86_TRAP_GP: + exc_general_protection(ctxt->regs, error_code); + break; + case X86_TRAP_UD: + exc_invalid_op(ctxt->regs); + break; + case X86_TRAP_PF: + write_cr2(ctxt->fi.cr2); + exc_page_fault(ctxt->regs, error_code); + break; + case X86_TRAP_AC: + exc_alignment_check(ctxt->regs, error_code); + break; + default: + pr_emerg("Unsupported exception in #VC instruction emulation - can't continue\n"); + BUG(); + } +} + +/* Include code shared with pre-decompression boot stage */ +#include "shared.c" + +static inline struct svsm_ca *svsm_get_caa(void) +{ + /* + * Use rIP-relative references when called early in the boot. If + * ->use_cas is set, then it is late in the boot and no need + * to worry about rIP-relative references. + */ + if (RIP_REL_REF(sev_cfg).use_cas) + return this_cpu_read(svsm_caa); + else + return RIP_REL_REF(boot_svsm_caa); +} + +static u64 svsm_get_caa_pa(void) +{ + /* + * Use rIP-relative references when called early in the boot. If + * ->use_cas is set, then it is late in the boot and no need + * to worry about rIP-relative references. + */ + if (RIP_REL_REF(sev_cfg).use_cas) + return this_cpu_read(svsm_caa_pa); + else + return RIP_REL_REF(boot_svsm_caa_pa); +} + +static noinstr void __sev_put_ghcb(struct ghcb_state *state) +{ + struct sev_es_runtime_data *data; + struct ghcb *ghcb; + + WARN_ON(!irqs_disabled()); + + data = this_cpu_read(runtime_data); + ghcb = &data->ghcb_page; + + if (state->ghcb) { + /* Restore GHCB from Backup */ + *ghcb = *state->ghcb; + data->backup_ghcb_active = false; + state->ghcb = NULL; + } else { + /* + * Invalidate the GHCB so a VMGEXIT instruction issued + * from userspace won't appear to be valid. + */ + vc_ghcb_invalidate(ghcb); + data->ghcb_active = false; + } +} + +static int svsm_perform_call_protocol(struct svsm_call *call) +{ + struct ghcb_state state; + unsigned long flags; + struct ghcb *ghcb; + int ret; + + /* + * This can be called very early in the boot, use native functions in + * order to avoid paravirt issues. + */ + flags = native_local_irq_save(); + + /* + * Use rip-relative references when called early in the boot. If + * ghcbs_initialized is set, then it is late in the boot and no need + * to worry about rip-relative references in called functions. + */ + if (RIP_REL_REF(sev_cfg).ghcbs_initialized) + ghcb = __sev_get_ghcb(&state); + else if (RIP_REL_REF(boot_ghcb)) + ghcb = RIP_REL_REF(boot_ghcb); + else + ghcb = NULL; + + do { + ret = ghcb ? svsm_perform_ghcb_protocol(ghcb, call) + : svsm_perform_msr_protocol(call); + } while (ret == -EAGAIN); + + if (RIP_REL_REF(sev_cfg).ghcbs_initialized) + __sev_put_ghcb(&state); + + native_local_irq_restore(flags); + + return ret; +} + +void noinstr __sev_es_nmi_complete(void) +{ + struct ghcb_state state; + struct ghcb *ghcb; + + ghcb = __sev_get_ghcb(&state); + + vc_ghcb_invalidate(ghcb); + ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_NMI_COMPLETE); + ghcb_set_sw_exit_info_1(ghcb, 0); + ghcb_set_sw_exit_info_2(ghcb, 0); + + sev_es_wr_ghcb_msr(__pa_nodebug(ghcb)); + VMGEXIT(); + + __sev_put_ghcb(&state); +} + +static u64 __init get_secrets_page(void) +{ + u64 pa_data = boot_params.cc_blob_address; + struct cc_blob_sev_info info; + void *map; + + /* + * The CC blob contains the address of the secrets page, check if the + * blob is present. + */ + if (!pa_data) + return 0; + + map = early_memremap(pa_data, sizeof(info)); + if (!map) { + pr_err("Unable to locate SNP secrets page: failed to map the Confidential Computing blob.\n"); + return 0; + } + memcpy(&info, map, sizeof(info)); + early_memunmap(map, sizeof(info)); + + /* smoke-test the secrets page passed */ + if (!info.secrets_phys || info.secrets_len != PAGE_SIZE) + return 0; + + return info.secrets_phys; +} + +static u64 __init get_snp_jump_table_addr(void) +{ + struct snp_secrets_page *secrets; + void __iomem *mem; + u64 pa, addr; + + pa = get_secrets_page(); + if (!pa) + return 0; + + mem = ioremap_encrypted(pa, PAGE_SIZE); + if (!mem) { + pr_err("Unable to locate AP jump table address: failed to map the SNP secrets page.\n"); + return 0; + } + + secrets = (__force struct snp_secrets_page *)mem; + + addr = secrets->os_area.ap_jump_table_pa; + iounmap(mem); + + return addr; +} + +static u64 __init get_jump_table_addr(void) +{ + struct ghcb_state state; + unsigned long flags; + struct ghcb *ghcb; + u64 ret = 0; + + if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) + return get_snp_jump_table_addr(); + + local_irq_save(flags); + + ghcb = __sev_get_ghcb(&state); + + vc_ghcb_invalidate(ghcb); + ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_JUMP_TABLE); + ghcb_set_sw_exit_info_1(ghcb, SVM_VMGEXIT_GET_AP_JUMP_TABLE); + ghcb_set_sw_exit_info_2(ghcb, 0); + + sev_es_wr_ghcb_msr(__pa(ghcb)); + VMGEXIT(); + + if (ghcb_sw_exit_info_1_is_valid(ghcb) && + ghcb_sw_exit_info_2_is_valid(ghcb)) + ret = ghcb->save.sw_exit_info_2; + + __sev_put_ghcb(&state); + + local_irq_restore(flags); + + return ret; +} + +static void __head +early_set_pages_state(unsigned long vaddr, unsigned long paddr, + unsigned long npages, enum psc_op op) +{ + unsigned long paddr_end; + u64 val; + + vaddr = vaddr & PAGE_MASK; + + paddr = paddr & PAGE_MASK; + paddr_end = paddr + (npages << PAGE_SHIFT); + + while (paddr < paddr_end) { + /* Page validation must be rescinded before changing to shared */ + if (op == SNP_PAGE_STATE_SHARED) + pvalidate_4k_page(vaddr, paddr, false); + + /* + * Use the MSR protocol because this function can be called before + * the GHCB is established. + */ + sev_es_wr_ghcb_msr(GHCB_MSR_PSC_REQ_GFN(paddr >> PAGE_SHIFT, op)); + VMGEXIT(); + + val = sev_es_rd_ghcb_msr(); + + if (WARN(GHCB_RESP_CODE(val) != GHCB_MSR_PSC_RESP, + "Wrong PSC response code: 0x%x\n", + (unsigned int)GHCB_RESP_CODE(val))) + goto e_term; + + if (WARN(GHCB_MSR_PSC_RESP_VAL(val), + "Failed to change page state to '%s' paddr 0x%lx error 0x%llx\n", + op == SNP_PAGE_STATE_PRIVATE ? "private" : "shared", + paddr, GHCB_MSR_PSC_RESP_VAL(val))) + goto e_term; + + /* Page validation must be performed after changing to private */ + if (op == SNP_PAGE_STATE_PRIVATE) + pvalidate_4k_page(vaddr, paddr, true); + + vaddr += PAGE_SIZE; + paddr += PAGE_SIZE; + } + + return; + +e_term: + sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC); +} + +void __head early_snp_set_memory_private(unsigned long vaddr, unsigned long paddr, + unsigned long npages) +{ + /* + * This can be invoked in early boot while running identity mapped, so + * use an open coded check for SNP instead of using cc_platform_has(). + * This eliminates worries about jump tables or checking boot_cpu_data + * in the cc_platform_has() function. + */ + if (!(RIP_REL_REF(sev_status) & MSR_AMD64_SEV_SNP_ENABLED)) + return; + + /* + * Ask the hypervisor to mark the memory pages as private in the RMP + * table. + */ + early_set_pages_state(vaddr, paddr, npages, SNP_PAGE_STATE_PRIVATE); +} + +void __init early_snp_set_memory_shared(unsigned long vaddr, unsigned long paddr, + unsigned long npages) +{ + /* + * This can be invoked in early boot while running identity mapped, so + * use an open coded check for SNP instead of using cc_platform_has(). + * This eliminates worries about jump tables or checking boot_cpu_data + * in the cc_platform_has() function. + */ + if (!(RIP_REL_REF(sev_status) & MSR_AMD64_SEV_SNP_ENABLED)) + return; + + /* Ask hypervisor to mark the memory pages shared in the RMP table. */ + early_set_pages_state(vaddr, paddr, npages, SNP_PAGE_STATE_SHARED); +} + +static unsigned long __set_pages_state(struct snp_psc_desc *data, unsigned long vaddr, + unsigned long vaddr_end, int op) +{ + struct ghcb_state state; + bool use_large_entry; + struct psc_hdr *hdr; + struct psc_entry *e; + unsigned long flags; + unsigned long pfn; + struct ghcb *ghcb; + int i; + + hdr = &data->hdr; + e = data->entries; + + memset(data, 0, sizeof(*data)); + i = 0; + + while (vaddr < vaddr_end && i < ARRAY_SIZE(data->entries)) { + hdr->end_entry = i; + + if (is_vmalloc_addr((void *)vaddr)) { + pfn = vmalloc_to_pfn((void *)vaddr); + use_large_entry = false; + } else { + pfn = __pa(vaddr) >> PAGE_SHIFT; + use_large_entry = true; + } + + e->gfn = pfn; + e->operation = op; + + if (use_large_entry && IS_ALIGNED(vaddr, PMD_SIZE) && + (vaddr_end - vaddr) >= PMD_SIZE) { + e->pagesize = RMP_PG_SIZE_2M; + vaddr += PMD_SIZE; + } else { + e->pagesize = RMP_PG_SIZE_4K; + vaddr += PAGE_SIZE; + } + + e++; + i++; + } + + /* Page validation must be rescinded before changing to shared */ + if (op == SNP_PAGE_STATE_SHARED) + pvalidate_pages(data); + + local_irq_save(flags); + + if (sev_cfg.ghcbs_initialized) + ghcb = __sev_get_ghcb(&state); + else + ghcb = boot_ghcb; + + /* Invoke the hypervisor to perform the page state changes */ + if (!ghcb || vmgexit_psc(ghcb, data)) + sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC); + + if (sev_cfg.ghcbs_initialized) + __sev_put_ghcb(&state); + + local_irq_restore(flags); + + /* Page validation must be performed after changing to private */ + if (op == SNP_PAGE_STATE_PRIVATE) + pvalidate_pages(data); + + return vaddr; +} + +static void set_pages_state(unsigned long vaddr, unsigned long npages, int op) +{ + struct snp_psc_desc desc; + unsigned long vaddr_end; + + /* Use the MSR protocol when a GHCB is not available. */ + if (!boot_ghcb) + return early_set_pages_state(vaddr, __pa(vaddr), npages, op); + + vaddr = vaddr & PAGE_MASK; + vaddr_end = vaddr + (npages << PAGE_SHIFT); + + while (vaddr < vaddr_end) + vaddr = __set_pages_state(&desc, vaddr, vaddr_end, op); +} + +void snp_set_memory_shared(unsigned long vaddr, unsigned long npages) +{ + if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) + return; + + set_pages_state(vaddr, npages, SNP_PAGE_STATE_SHARED); +} + +void snp_set_memory_private(unsigned long vaddr, unsigned long npages) +{ + if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) + return; + + set_pages_state(vaddr, npages, SNP_PAGE_STATE_PRIVATE); +} + +void snp_accept_memory(phys_addr_t start, phys_addr_t end) +{ + unsigned long vaddr, npages; + + if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) + return; + + vaddr = (unsigned long)__va(start); + npages = (end - start) >> PAGE_SHIFT; + + set_pages_state(vaddr, npages, SNP_PAGE_STATE_PRIVATE); +} + +static int snp_set_vmsa(void *va, void *caa, int apic_id, bool make_vmsa) +{ + int ret; + + if (snp_vmpl) { + struct svsm_call call = {}; + unsigned long flags; + + local_irq_save(flags); + + call.caa = this_cpu_read(svsm_caa); + call.rcx = __pa(va); + + if (make_vmsa) { + /* Protocol 0, Call ID 2 */ + call.rax = SVSM_CORE_CALL(SVSM_CORE_CREATE_VCPU); + call.rdx = __pa(caa); + call.r8 = apic_id; + } else { + /* Protocol 0, Call ID 3 */ + call.rax = SVSM_CORE_CALL(SVSM_CORE_DELETE_VCPU); + } + + ret = svsm_perform_call_protocol(&call); + + local_irq_restore(flags); + } else { + /* + * If the kernel runs at VMPL0, it can change the VMSA + * bit for a page using the RMPADJUST instruction. + * However, for the instruction to succeed it must + * target the permissions of a lesser privileged (higher + * numbered) VMPL level, so use VMPL1. + */ + u64 attrs = 1; + + if (make_vmsa) + attrs |= RMPADJUST_VMSA_PAGE_BIT; + + ret = rmpadjust((unsigned long)va, RMP_PG_SIZE_4K, attrs); + } + + return ret; +} + +#define __ATTR_BASE (SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK) +#define INIT_CS_ATTRIBS (__ATTR_BASE | SVM_SELECTOR_READ_MASK | SVM_SELECTOR_CODE_MASK) +#define INIT_DS_ATTRIBS (__ATTR_BASE | SVM_SELECTOR_WRITE_MASK) + +#define INIT_LDTR_ATTRIBS (SVM_SELECTOR_P_MASK | 2) +#define INIT_TR_ATTRIBS (SVM_SELECTOR_P_MASK | 3) + +static void *snp_alloc_vmsa_page(int cpu) +{ + struct page *p; + + /* + * Allocate VMSA page to work around the SNP erratum where the CPU will + * incorrectly signal an RMP violation #PF if a large page (2MB or 1GB) + * collides with the RMP entry of VMSA page. The recommended workaround + * is to not use a large page. + * + * Allocate an 8k page which is also 8k-aligned. + */ + p = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL_ACCOUNT | __GFP_ZERO, 1); + if (!p) + return NULL; + + split_page(p, 1); + + /* Free the first 4k. This page may be 2M/1G aligned and cannot be used. */ + __free_page(p); + + return page_address(p + 1); +} + +static void snp_cleanup_vmsa(struct sev_es_save_area *vmsa, int apic_id) +{ + int err; + + err = snp_set_vmsa(vmsa, NULL, apic_id, false); + if (err) + pr_err("clear VMSA page failed (%u), leaking page\n", err); + else + free_page((unsigned long)vmsa); +} + +static int wakeup_cpu_via_vmgexit(u32 apic_id, unsigned long start_ip) +{ + struct sev_es_save_area *cur_vmsa, *vmsa; + struct ghcb_state state; + struct svsm_ca *caa; + unsigned long flags; + struct ghcb *ghcb; + u8 sipi_vector; + int cpu, ret; + u64 cr4; + + /* + * The hypervisor SNP feature support check has happened earlier, just check + * the AP_CREATION one here. + */ + if (!(sev_hv_features & GHCB_HV_FT_SNP_AP_CREATION)) + return -EOPNOTSUPP; + + /* + * Verify the desired start IP against the known trampoline start IP + * to catch any future new trampolines that may be introduced that + * would require a new protected guest entry point. + */ + if (WARN_ONCE(start_ip != real_mode_header->trampoline_start, + "Unsupported SNP start_ip: %lx\n", start_ip)) + return -EINVAL; + + /* Override start_ip with known protected guest start IP */ + start_ip = real_mode_header->sev_es_trampoline_start; + + /* Find the logical CPU for the APIC ID */ + for_each_present_cpu(cpu) { + if (arch_match_cpu_phys_id(cpu, apic_id)) + break; + } + if (cpu >= nr_cpu_ids) + return -EINVAL; + + cur_vmsa = per_cpu(sev_vmsa, cpu); + + /* + * A new VMSA is created each time because there is no guarantee that + * the current VMSA is the kernels or that the vCPU is not running. If + * an attempt was done to use the current VMSA with a running vCPU, a + * #VMEXIT of that vCPU would wipe out all of the settings being done + * here. + */ + vmsa = (struct sev_es_save_area *)snp_alloc_vmsa_page(cpu); + if (!vmsa) + return -ENOMEM; + + /* If an SVSM is present, the SVSM per-CPU CAA will be !NULL */ + caa = per_cpu(svsm_caa, cpu); + + /* CR4 should maintain the MCE value */ + cr4 = native_read_cr4() & X86_CR4_MCE; + + /* Set the CS value based on the start_ip converted to a SIPI vector */ + sipi_vector = (start_ip >> 12); + vmsa->cs.base = sipi_vector << 12; + vmsa->cs.limit = AP_INIT_CS_LIMIT; + vmsa->cs.attrib = INIT_CS_ATTRIBS; + vmsa->cs.selector = sipi_vector << 8; + + /* Set the RIP value based on start_ip */ + vmsa->rip = start_ip & 0xfff; + + /* Set AP INIT defaults as documented in the APM */ + vmsa->ds.limit = AP_INIT_DS_LIMIT; + vmsa->ds.attrib = INIT_DS_ATTRIBS; + vmsa->es = vmsa->ds; + vmsa->fs = vmsa->ds; + vmsa->gs = vmsa->ds; + vmsa->ss = vmsa->ds; + + vmsa->gdtr.limit = AP_INIT_GDTR_LIMIT; + vmsa->ldtr.limit = AP_INIT_LDTR_LIMIT; + vmsa->ldtr.attrib = INIT_LDTR_ATTRIBS; + vmsa->idtr.limit = AP_INIT_IDTR_LIMIT; + vmsa->tr.limit = AP_INIT_TR_LIMIT; + vmsa->tr.attrib = INIT_TR_ATTRIBS; + + vmsa->cr4 = cr4; + vmsa->cr0 = AP_INIT_CR0_DEFAULT; + vmsa->dr7 = DR7_RESET_VALUE; + vmsa->dr6 = AP_INIT_DR6_DEFAULT; + vmsa->rflags = AP_INIT_RFLAGS_DEFAULT; + vmsa->g_pat = AP_INIT_GPAT_DEFAULT; + vmsa->xcr0 = AP_INIT_XCR0_DEFAULT; + vmsa->mxcsr = AP_INIT_MXCSR_DEFAULT; + vmsa->x87_ftw = AP_INIT_X87_FTW_DEFAULT; + vmsa->x87_fcw = AP_INIT_X87_FCW_DEFAULT; + + /* SVME must be set. */ + vmsa->efer = EFER_SVME; + + /* + * Set the SNP-specific fields for this VMSA: + * VMPL level + * SEV_FEATURES (matches the SEV STATUS MSR right shifted 2 bits) + */ + vmsa->vmpl = snp_vmpl; + vmsa->sev_features = sev_status >> 2; + + /* Switch the page over to a VMSA page now that it is initialized */ + ret = snp_set_vmsa(vmsa, caa, apic_id, true); + if (ret) { + pr_err("set VMSA page failed (%u)\n", ret); + free_page((unsigned long)vmsa); + + return -EINVAL; + } + + /* Issue VMGEXIT AP Creation NAE event */ + local_irq_save(flags); + + ghcb = __sev_get_ghcb(&state); + + vc_ghcb_invalidate(ghcb); + ghcb_set_rax(ghcb, vmsa->sev_features); + ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_CREATION); + ghcb_set_sw_exit_info_1(ghcb, + ((u64)apic_id << 32) | + ((u64)snp_vmpl << 16) | + SVM_VMGEXIT_AP_CREATE); + ghcb_set_sw_exit_info_2(ghcb, __pa(vmsa)); + + sev_es_wr_ghcb_msr(__pa(ghcb)); + VMGEXIT(); + + if (!ghcb_sw_exit_info_1_is_valid(ghcb) || + lower_32_bits(ghcb->save.sw_exit_info_1)) { + pr_err("SNP AP Creation error\n"); + ret = -EINVAL; + } + + __sev_put_ghcb(&state); + + local_irq_restore(flags); + + /* Perform cleanup if there was an error */ + if (ret) { + snp_cleanup_vmsa(vmsa, apic_id); + vmsa = NULL; + } + + /* Free up any previous VMSA page */ + if (cur_vmsa) + snp_cleanup_vmsa(cur_vmsa, apic_id); + + /* Record the current VMSA page */ + per_cpu(sev_vmsa, cpu) = vmsa; + + return ret; +} + +void __init snp_set_wakeup_secondary_cpu(void) +{ + if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) + return; + + /* + * Always set this override if SNP is enabled. This makes it the + * required method to start APs under SNP. If the hypervisor does + * not support AP creation, then no APs will be started. + */ + apic_update_callback(wakeup_secondary_cpu, wakeup_cpu_via_vmgexit); +} + +int __init sev_es_setup_ap_jump_table(struct real_mode_header *rmh) +{ + u16 startup_cs, startup_ip; + phys_addr_t jump_table_pa; + u64 jump_table_addr; + u16 __iomem *jump_table; + + jump_table_addr = get_jump_table_addr(); + + /* On UP guests there is no jump table so this is not a failure */ + if (!jump_table_addr) + return 0; + + /* Check if AP Jump Table is page-aligned */ + if (jump_table_addr & ~PAGE_MASK) + return -EINVAL; + + jump_table_pa = jump_table_addr & PAGE_MASK; + + startup_cs = (u16)(rmh->trampoline_start >> 4); + startup_ip = (u16)(rmh->sev_es_trampoline_start - + rmh->trampoline_start); + + jump_table = ioremap_encrypted(jump_table_pa, PAGE_SIZE); + if (!jump_table) + return -EIO; + + writew(startup_ip, &jump_table[0]); + writew(startup_cs, &jump_table[1]); + + iounmap(jump_table); + + return 0; +} + +/* + * This is needed by the OVMF UEFI firmware which will use whatever it finds in + * the GHCB MSR as its GHCB to talk to the hypervisor. So make sure the per-cpu + * runtime GHCBs used by the kernel are also mapped in the EFI page-table. + */ +int __init sev_es_efi_map_ghcbs(pgd_t *pgd) +{ + struct sev_es_runtime_data *data; + unsigned long address, pflags; + int cpu; + u64 pfn; + + if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT)) + return 0; + + pflags = _PAGE_NX | _PAGE_RW; + + for_each_possible_cpu(cpu) { + data = per_cpu(runtime_data, cpu); + + address = __pa(&data->ghcb_page); + pfn = address >> PAGE_SHIFT; + + if (kernel_map_pages_in_pgd(pgd, pfn, address, 1, pflags)) + return 1; + } + + return 0; +} + +static enum es_result vc_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt) +{ + struct pt_regs *regs = ctxt->regs; + enum es_result ret; + u64 exit_info_1; + + /* Is it a WRMSR? */ + exit_info_1 = (ctxt->insn.opcode.bytes[1] == 0x30) ? 1 : 0; + + if (regs->cx == MSR_SVSM_CAA) { + /* Writes to the SVSM CAA msr are ignored */ + if (exit_info_1) + return ES_OK; + + regs->ax = lower_32_bits(this_cpu_read(svsm_caa_pa)); + regs->dx = upper_32_bits(this_cpu_read(svsm_caa_pa)); + + return ES_OK; + } + + ghcb_set_rcx(ghcb, regs->cx); + if (exit_info_1) { + ghcb_set_rax(ghcb, regs->ax); + ghcb_set_rdx(ghcb, regs->dx); + } + + ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_MSR, exit_info_1, 0); + + if ((ret == ES_OK) && (!exit_info_1)) { + regs->ax = ghcb->save.rax; + regs->dx = ghcb->save.rdx; + } + + return ret; +} + +static void snp_register_per_cpu_ghcb(void) +{ + struct sev_es_runtime_data *data; + struct ghcb *ghcb; + + data = this_cpu_read(runtime_data); + ghcb = &data->ghcb_page; + + snp_register_ghcb_early(__pa(ghcb)); +} + +void setup_ghcb(void) +{ + if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT)) + return; + + /* + * Check whether the runtime #VC exception handler is active. It uses + * the per-CPU GHCB page which is set up by sev_es_init_vc_handling(). + * + * If SNP is active, register the per-CPU GHCB page so that the runtime + * exception handler can use it. + */ + if (initial_vc_handler == (unsigned long)kernel_exc_vmm_communication) { + if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) + snp_register_per_cpu_ghcb(); + + sev_cfg.ghcbs_initialized = true; + + return; + } + + /* + * Make sure the hypervisor talks a supported protocol. + * This gets called only in the BSP boot phase. + */ + if (!sev_es_negotiate_protocol()) + sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ); + + /* + * Clear the boot_ghcb. The first exception comes in before the bss + * section is cleared. + */ + memset(&boot_ghcb_page, 0, PAGE_SIZE); + + /* Alright - Make the boot-ghcb public */ + boot_ghcb = &boot_ghcb_page; + + /* SNP guest requires that GHCB GPA must be registered. */ + if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) + snp_register_ghcb_early(__pa(&boot_ghcb_page)); +} + +#ifdef CONFIG_HOTPLUG_CPU +static void sev_es_ap_hlt_loop(void) +{ + struct ghcb_state state; + struct ghcb *ghcb; + + ghcb = __sev_get_ghcb(&state); + + while (true) { + vc_ghcb_invalidate(ghcb); + ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_HLT_LOOP); + ghcb_set_sw_exit_info_1(ghcb, 0); + ghcb_set_sw_exit_info_2(ghcb, 0); + + sev_es_wr_ghcb_msr(__pa(ghcb)); + VMGEXIT(); + + /* Wakeup signal? */ + if (ghcb_sw_exit_info_2_is_valid(ghcb) && + ghcb->save.sw_exit_info_2) + break; + } + + __sev_put_ghcb(&state); +} + +/* + * Play_dead handler when running under SEV-ES. This is needed because + * the hypervisor can't deliver an SIPI request to restart the AP. + * Instead the kernel has to issue a VMGEXIT to halt the VCPU until the + * hypervisor wakes it up again. + */ +static void sev_es_play_dead(void) +{ + play_dead_common(); + + /* IRQs now disabled */ + + sev_es_ap_hlt_loop(); + + /* + * If we get here, the VCPU was woken up again. Jump to CPU + * startup code to get it back online. + */ + soft_restart_cpu(); +} +#else /* CONFIG_HOTPLUG_CPU */ +#define sev_es_play_dead native_play_dead +#endif /* CONFIG_HOTPLUG_CPU */ + +#ifdef CONFIG_SMP +static void __init sev_es_setup_play_dead(void) +{ + smp_ops.play_dead = sev_es_play_dead; +} +#else +static inline void sev_es_setup_play_dead(void) { } +#endif + +static void __init alloc_runtime_data(int cpu) +{ + struct sev_es_runtime_data *data; + + data = memblock_alloc_node(sizeof(*data), PAGE_SIZE, cpu_to_node(cpu)); + if (!data) + panic("Can't allocate SEV-ES runtime data"); + + per_cpu(runtime_data, cpu) = data; + + if (snp_vmpl) { + struct svsm_ca *caa; + + /* Allocate the SVSM CA page if an SVSM is present */ + caa = memblock_alloc(sizeof(*caa), PAGE_SIZE); + if (!caa) + panic("Can't allocate SVSM CA page\n"); + + per_cpu(svsm_caa, cpu) = caa; + per_cpu(svsm_caa_pa, cpu) = __pa(caa); + } +} + +static void __init init_ghcb(int cpu) +{ + struct sev_es_runtime_data *data; + int err; + + data = per_cpu(runtime_data, cpu); + + err = early_set_memory_decrypted((unsigned long)&data->ghcb_page, + sizeof(data->ghcb_page)); + if (err) + panic("Can't map GHCBs unencrypted"); + + memset(&data->ghcb_page, 0, sizeof(data->ghcb_page)); + + data->ghcb_active = false; + data->backup_ghcb_active = false; +} + +void __init sev_es_init_vc_handling(void) +{ + int cpu; + + BUILD_BUG_ON(offsetof(struct sev_es_runtime_data, ghcb_page) % PAGE_SIZE); + + if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT)) + return; + + if (!sev_es_check_cpu_features()) + panic("SEV-ES CPU Features missing"); + + /* + * SNP is supported in v2 of the GHCB spec which mandates support for HV + * features. + */ + if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) { + sev_hv_features = get_hv_features(); + + if (!(sev_hv_features & GHCB_HV_FT_SNP)) + sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED); + } + + /* Initialize per-cpu GHCB pages */ + for_each_possible_cpu(cpu) { + alloc_runtime_data(cpu); + init_ghcb(cpu); + } + + /* If running under an SVSM, switch to the per-cpu CA */ + if (snp_vmpl) { + struct svsm_call call = {}; + unsigned long flags; + int ret; + + local_irq_save(flags); + + /* + * SVSM_CORE_REMAP_CA call: + * RAX = 0 (Protocol=0, CallID=0) + * RCX = New CA GPA + */ + call.caa = svsm_get_caa(); + call.rax = SVSM_CORE_CALL(SVSM_CORE_REMAP_CA); + call.rcx = this_cpu_read(svsm_caa_pa); + ret = svsm_perform_call_protocol(&call); + if (ret) + panic("Can't remap the SVSM CA, ret=%d, rax_out=0x%llx\n", + ret, call.rax_out); + + sev_cfg.use_cas = true; + + local_irq_restore(flags); + } + + sev_es_setup_play_dead(); + + /* Secondary CPUs use the runtime #VC handler */ + initial_vc_handler = (unsigned long)kernel_exc_vmm_communication; +} + +static void __init vc_early_forward_exception(struct es_em_ctxt *ctxt) +{ + int trapnr = ctxt->fi.vector; + + if (trapnr == X86_TRAP_PF) + native_write_cr2(ctxt->fi.cr2); + + ctxt->regs->orig_ax = ctxt->fi.error_code; + do_early_exception(ctxt->regs, trapnr); +} + +static long *vc_insn_get_rm(struct es_em_ctxt *ctxt) +{ + long *reg_array; + int offset; + + reg_array = (long *)ctxt->regs; + offset = insn_get_modrm_rm_off(&ctxt->insn, ctxt->regs); + + if (offset < 0) + return NULL; + + offset /= sizeof(long); + + return reg_array + offset; +} +static enum es_result vc_do_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt, + unsigned int bytes, bool read) +{ + u64 exit_code, exit_info_1, exit_info_2; + unsigned long ghcb_pa = __pa(ghcb); + enum es_result res; + phys_addr_t paddr; + void __user *ref; + + ref = insn_get_addr_ref(&ctxt->insn, ctxt->regs); + if (ref == (void __user *)-1L) + return ES_UNSUPPORTED; + + exit_code = read ? SVM_VMGEXIT_MMIO_READ : SVM_VMGEXIT_MMIO_WRITE; + + res = vc_slow_virt_to_phys(ghcb, ctxt, (unsigned long)ref, &paddr); + if (res != ES_OK) { + if (res == ES_EXCEPTION && !read) + ctxt->fi.error_code |= X86_PF_WRITE; + + return res; + } + + exit_info_1 = paddr; + /* Can never be greater than 8 */ + exit_info_2 = bytes; + + ghcb_set_sw_scratch(ghcb, ghcb_pa + offsetof(struct ghcb, shared_buffer)); + + return sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, exit_info_1, exit_info_2); +} + +/* + * The MOVS instruction has two memory operands, which raises the + * problem that it is not known whether the access to the source or the + * destination caused the #VC exception (and hence whether an MMIO read + * or write operation needs to be emulated). + * + * Instead of playing games with walking page-tables and trying to guess + * whether the source or destination is an MMIO range, split the move + * into two operations, a read and a write with only one memory operand. + * This will cause a nested #VC exception on the MMIO address which can + * then be handled. + * + * This implementation has the benefit that it also supports MOVS where + * source _and_ destination are MMIO regions. + * + * It will slow MOVS on MMIO down a lot, but in SEV-ES guests it is a + * rare operation. If it turns out to be a performance problem the split + * operations can be moved to memcpy_fromio() and memcpy_toio(). + */ +static enum es_result vc_handle_mmio_movs(struct es_em_ctxt *ctxt, + unsigned int bytes) +{ + unsigned long ds_base, es_base; + unsigned char *src, *dst; + unsigned char buffer[8]; + enum es_result ret; + bool rep; + int off; + + ds_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_DS); + es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES); + + if (ds_base == -1L || es_base == -1L) { + ctxt->fi.vector = X86_TRAP_GP; + ctxt->fi.error_code = 0; + return ES_EXCEPTION; + } + + src = ds_base + (unsigned char *)ctxt->regs->si; + dst = es_base + (unsigned char *)ctxt->regs->di; + + ret = vc_read_mem(ctxt, src, buffer, bytes); + if (ret != ES_OK) + return ret; + + ret = vc_write_mem(ctxt, dst, buffer, bytes); + if (ret != ES_OK) + return ret; + + if (ctxt->regs->flags & X86_EFLAGS_DF) + off = -bytes; + else + off = bytes; + + ctxt->regs->si += off; + ctxt->regs->di += off; + + rep = insn_has_rep_prefix(&ctxt->insn); + if (rep) + ctxt->regs->cx -= 1; + + if (!rep || ctxt->regs->cx == 0) + return ES_OK; + else + return ES_RETRY; +} + +static enum es_result vc_handle_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt) +{ + struct insn *insn = &ctxt->insn; + enum insn_mmio_type mmio; + unsigned int bytes = 0; + enum es_result ret; + u8 sign_byte; + long *reg_data; + + mmio = insn_decode_mmio(insn, &bytes); + if (mmio == INSN_MMIO_DECODE_FAILED) + return ES_DECODE_FAILED; + + if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) { + reg_data = insn_get_modrm_reg_ptr(insn, ctxt->regs); + if (!reg_data) + return ES_DECODE_FAILED; + } + + if (user_mode(ctxt->regs)) + return ES_UNSUPPORTED; + + switch (mmio) { + case INSN_MMIO_WRITE: + memcpy(ghcb->shared_buffer, reg_data, bytes); + ret = vc_do_mmio(ghcb, ctxt, bytes, false); + break; + case INSN_MMIO_WRITE_IMM: + memcpy(ghcb->shared_buffer, insn->immediate1.bytes, bytes); + ret = vc_do_mmio(ghcb, ctxt, bytes, false); + break; + case INSN_MMIO_READ: + ret = vc_do_mmio(ghcb, ctxt, bytes, true); + if (ret) + break; + + /* Zero-extend for 32-bit operation */ + if (bytes == 4) + *reg_data = 0; + + memcpy(reg_data, ghcb->shared_buffer, bytes); + break; + case INSN_MMIO_READ_ZERO_EXTEND: + ret = vc_do_mmio(ghcb, ctxt, bytes, true); + if (ret) + break; + + /* Zero extend based on operand size */ + memset(reg_data, 0, insn->opnd_bytes); + memcpy(reg_data, ghcb->shared_buffer, bytes); + break; + case INSN_MMIO_READ_SIGN_EXTEND: + ret = vc_do_mmio(ghcb, ctxt, bytes, true); + if (ret) + break; + + if (bytes == 1) { + u8 *val = (u8 *)ghcb->shared_buffer; + + sign_byte = (*val & 0x80) ? 0xff : 0x00; + } else { + u16 *val = (u16 *)ghcb->shared_buffer; + + sign_byte = (*val & 0x8000) ? 0xff : 0x00; + } + + /* Sign extend based on operand size */ + memset(reg_data, sign_byte, insn->opnd_bytes); + memcpy(reg_data, ghcb->shared_buffer, bytes); + break; + case INSN_MMIO_MOVS: + ret = vc_handle_mmio_movs(ctxt, bytes); + break; + default: + ret = ES_UNSUPPORTED; + break; + } + + return ret; +} + +static enum es_result vc_handle_dr7_write(struct ghcb *ghcb, + struct es_em_ctxt *ctxt) +{ + struct sev_es_runtime_data *data = this_cpu_read(runtime_data); + long val, *reg = vc_insn_get_rm(ctxt); + enum es_result ret; + + if (sev_status & MSR_AMD64_SNP_DEBUG_SWAP) + return ES_VMM_ERROR; + + if (!reg) + return ES_DECODE_FAILED; + + val = *reg; + + /* Upper 32 bits must be written as zeroes */ + if (val >> 32) { + ctxt->fi.vector = X86_TRAP_GP; + ctxt->fi.error_code = 0; + return ES_EXCEPTION; + } + + /* Clear out other reserved bits and set bit 10 */ + val = (val & 0xffff23ffL) | BIT(10); + + /* Early non-zero writes to DR7 are not supported */ + if (!data && (val & ~DR7_RESET_VALUE)) + return ES_UNSUPPORTED; + + /* Using a value of 0 for ExitInfo1 means RAX holds the value */ + ghcb_set_rax(ghcb, val); + ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WRITE_DR7, 0, 0); + if (ret != ES_OK) + return ret; + + if (data) + data->dr7 = val; + + return ES_OK; +} + +static enum es_result vc_handle_dr7_read(struct ghcb *ghcb, + struct es_em_ctxt *ctxt) +{ + struct sev_es_runtime_data *data = this_cpu_read(runtime_data); + long *reg = vc_insn_get_rm(ctxt); + + if (sev_status & MSR_AMD64_SNP_DEBUG_SWAP) + return ES_VMM_ERROR; + + if (!reg) + return ES_DECODE_FAILED; + + if (data) + *reg = data->dr7; + else + *reg = DR7_RESET_VALUE; + + return ES_OK; +} + +static enum es_result vc_handle_wbinvd(struct ghcb *ghcb, + struct es_em_ctxt *ctxt) +{ + return sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WBINVD, 0, 0); +} + +static enum es_result vc_handle_rdpmc(struct ghcb *ghcb, struct es_em_ctxt *ctxt) +{ + enum es_result ret; + + ghcb_set_rcx(ghcb, ctxt->regs->cx); + + ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_RDPMC, 0, 0); + if (ret != ES_OK) + return ret; + + if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb))) + return ES_VMM_ERROR; + + ctxt->regs->ax = ghcb->save.rax; + ctxt->regs->dx = ghcb->save.rdx; + + return ES_OK; +} + +static enum es_result vc_handle_monitor(struct ghcb *ghcb, + struct es_em_ctxt *ctxt) +{ + /* + * Treat it as a NOP and do not leak a physical address to the + * hypervisor. + */ + return ES_OK; +} + +static enum es_result vc_handle_mwait(struct ghcb *ghcb, + struct es_em_ctxt *ctxt) +{ + /* Treat the same as MONITOR/MONITORX */ + return ES_OK; +} + +static enum es_result vc_handle_vmmcall(struct ghcb *ghcb, + struct es_em_ctxt *ctxt) +{ + enum es_result ret; + + ghcb_set_rax(ghcb, ctxt->regs->ax); + ghcb_set_cpl(ghcb, user_mode(ctxt->regs) ? 3 : 0); + + if (x86_platform.hyper.sev_es_hcall_prepare) + x86_platform.hyper.sev_es_hcall_prepare(ghcb, ctxt->regs); + + ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_VMMCALL, 0, 0); + if (ret != ES_OK) + return ret; + + if (!ghcb_rax_is_valid(ghcb)) + return ES_VMM_ERROR; + + ctxt->regs->ax = ghcb->save.rax; + + /* + * Call sev_es_hcall_finish() after regs->ax is already set. + * This allows the hypervisor handler to overwrite it again if + * necessary. + */ + if (x86_platform.hyper.sev_es_hcall_finish && + !x86_platform.hyper.sev_es_hcall_finish(ghcb, ctxt->regs)) + return ES_VMM_ERROR; + + return ES_OK; +} + +static enum es_result vc_handle_trap_ac(struct ghcb *ghcb, + struct es_em_ctxt *ctxt) +{ + /* + * Calling ecx_alignment_check() directly does not work, because it + * enables IRQs and the GHCB is active. Forward the exception and call + * it later from vc_forward_exception(). + */ + ctxt->fi.vector = X86_TRAP_AC; + ctxt->fi.error_code = 0; + return ES_EXCEPTION; +} + +static enum es_result vc_handle_exitcode(struct es_em_ctxt *ctxt, + struct ghcb *ghcb, + unsigned long exit_code) +{ + enum es_result result = vc_check_opcode_bytes(ctxt, exit_code); + + if (result != ES_OK) + return result; + + switch (exit_code) { + case SVM_EXIT_READ_DR7: + result = vc_handle_dr7_read(ghcb, ctxt); + break; + case SVM_EXIT_WRITE_DR7: + result = vc_handle_dr7_write(ghcb, ctxt); + break; + case SVM_EXIT_EXCP_BASE + X86_TRAP_AC: + result = vc_handle_trap_ac(ghcb, ctxt); + break; + case SVM_EXIT_RDTSC: + case SVM_EXIT_RDTSCP: + result = vc_handle_rdtsc(ghcb, ctxt, exit_code); + break; + case SVM_EXIT_RDPMC: + result = vc_handle_rdpmc(ghcb, ctxt); + break; + case SVM_EXIT_INVD: + pr_err_ratelimited("#VC exception for INVD??? Seriously???\n"); + result = ES_UNSUPPORTED; + break; + case SVM_EXIT_CPUID: + result = vc_handle_cpuid(ghcb, ctxt); + break; + case SVM_EXIT_IOIO: + result = vc_handle_ioio(ghcb, ctxt); + break; + case SVM_EXIT_MSR: + result = vc_handle_msr(ghcb, ctxt); + break; + case SVM_EXIT_VMMCALL: + result = vc_handle_vmmcall(ghcb, ctxt); + break; + case SVM_EXIT_WBINVD: + result = vc_handle_wbinvd(ghcb, ctxt); + break; + case SVM_EXIT_MONITOR: + result = vc_handle_monitor(ghcb, ctxt); + break; + case SVM_EXIT_MWAIT: + result = vc_handle_mwait(ghcb, ctxt); + break; + case SVM_EXIT_NPF: + result = vc_handle_mmio(ghcb, ctxt); + break; + default: + /* + * Unexpected #VC exception + */ + result = ES_UNSUPPORTED; + } + + return result; +} + +static __always_inline bool is_vc2_stack(unsigned long sp) +{ + return (sp >= __this_cpu_ist_bottom_va(VC2) && sp < __this_cpu_ist_top_va(VC2)); +} + +static __always_inline bool vc_from_invalid_context(struct pt_regs *regs) +{ + unsigned long sp, prev_sp; + + sp = (unsigned long)regs; + prev_sp = regs->sp; + + /* + * If the code was already executing on the VC2 stack when the #VC + * happened, let it proceed to the normal handling routine. This way the + * code executing on the VC2 stack can cause #VC exceptions to get handled. + */ + return is_vc2_stack(sp) && !is_vc2_stack(prev_sp); +} + +static bool vc_raw_handle_exception(struct pt_regs *regs, unsigned long error_code) +{ + struct ghcb_state state; + struct es_em_ctxt ctxt; + enum es_result result; + struct ghcb *ghcb; + bool ret = true; + + ghcb = __sev_get_ghcb(&state); + + vc_ghcb_invalidate(ghcb); + result = vc_init_em_ctxt(&ctxt, regs, error_code); + + if (result == ES_OK) + result = vc_handle_exitcode(&ctxt, ghcb, error_code); + + __sev_put_ghcb(&state); + + /* Done - now check the result */ + switch (result) { + case ES_OK: + vc_finish_insn(&ctxt); + break; + case ES_UNSUPPORTED: + pr_err_ratelimited("Unsupported exit-code 0x%02lx in #VC exception (IP: 0x%lx)\n", + error_code, regs->ip); + ret = false; + break; + case ES_VMM_ERROR: + pr_err_ratelimited("Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n", + error_code, regs->ip); + ret = false; + break; + case ES_DECODE_FAILED: + pr_err_ratelimited("Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n", + error_code, regs->ip); + ret = false; + break; + case ES_EXCEPTION: + vc_forward_exception(&ctxt); + break; + case ES_RETRY: + /* Nothing to do */ + break; + default: + pr_emerg("Unknown result in %s():%d\n", __func__, result); + /* + * Emulating the instruction which caused the #VC exception + * failed - can't continue so print debug information + */ + BUG(); + } + + return ret; +} + +static __always_inline bool vc_is_db(unsigned long error_code) +{ + return error_code == SVM_EXIT_EXCP_BASE + X86_TRAP_DB; +} + +/* + * Runtime #VC exception handler when raised from kernel mode. Runs in NMI mode + * and will panic when an error happens. + */ +DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication) +{ + irqentry_state_t irq_state; + + /* + * With the current implementation it is always possible to switch to a + * safe stack because #VC exceptions only happen at known places, like + * intercepted instructions or accesses to MMIO areas/IO ports. They can + * also happen with code instrumentation when the hypervisor intercepts + * #DB, but the critical paths are forbidden to be instrumented, so #DB + * exceptions currently also only happen in safe places. + * + * But keep this here in case the noinstr annotations are violated due + * to bug elsewhere. + */ + if (unlikely(vc_from_invalid_context(regs))) { + instrumentation_begin(); + panic("Can't handle #VC exception from unsupported context\n"); + instrumentation_end(); + } + + /* + * Handle #DB before calling into !noinstr code to avoid recursive #DB. + */ + if (vc_is_db(error_code)) { + exc_debug(regs); + return; + } + + irq_state = irqentry_nmi_enter(regs); + + instrumentation_begin(); + + if (!vc_raw_handle_exception(regs, error_code)) { + /* Show some debug info */ + show_regs(regs); + + /* Ask hypervisor to sev_es_terminate */ + sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ); + + /* If that fails and we get here - just panic */ + panic("Returned from Terminate-Request to Hypervisor\n"); + } + + instrumentation_end(); + irqentry_nmi_exit(regs, irq_state); +} + +/* + * Runtime #VC exception handler when raised from user mode. Runs in IRQ mode + * and will kill the current task with SIGBUS when an error happens. + */ +DEFINE_IDTENTRY_VC_USER(exc_vmm_communication) +{ + /* + * Handle #DB before calling into !noinstr code to avoid recursive #DB. + */ + if (vc_is_db(error_code)) { + noist_exc_debug(regs); + return; + } + + irqentry_enter_from_user_mode(regs); + instrumentation_begin(); + + if (!vc_raw_handle_exception(regs, error_code)) { + /* + * Do not kill the machine if user-space triggered the + * exception. Send SIGBUS instead and let user-space deal with + * it. + */ + force_sig_fault(SIGBUS, BUS_OBJERR, (void __user *)0); + } + + instrumentation_end(); + irqentry_exit_to_user_mode(regs); +} + +bool __init handle_vc_boot_ghcb(struct pt_regs *regs) +{ + unsigned long exit_code = regs->orig_ax; + struct es_em_ctxt ctxt; + enum es_result result; + + vc_ghcb_invalidate(boot_ghcb); + + result = vc_init_em_ctxt(&ctxt, regs, exit_code); + if (result == ES_OK) + result = vc_handle_exitcode(&ctxt, boot_ghcb, exit_code); + + /* Done - now check the result */ + switch (result) { + case ES_OK: + vc_finish_insn(&ctxt); + break; + case ES_UNSUPPORTED: + early_printk("PANIC: Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n", + exit_code, regs->ip); + goto fail; + case ES_VMM_ERROR: + early_printk("PANIC: Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n", + exit_code, regs->ip); + goto fail; + case ES_DECODE_FAILED: + early_printk("PANIC: Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n", + exit_code, regs->ip); + goto fail; + case ES_EXCEPTION: + vc_early_forward_exception(&ctxt); + break; + case ES_RETRY: + /* Nothing to do */ + break; + default: + BUG(); + } + + return true; + +fail: + show_regs(regs); + + sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ); +} + +/* + * Initial set up of SNP relies on information provided by the + * Confidential Computing blob, which can be passed to the kernel + * in the following ways, depending on how it is booted: + * + * - when booted via the boot/decompress kernel: + * - via boot_params + * + * - when booted directly by firmware/bootloader (e.g. CONFIG_PVH): + * - via a setup_data entry, as defined by the Linux Boot Protocol + * + * Scan for the blob in that order. + */ +static __head struct cc_blob_sev_info *find_cc_blob(struct boot_params *bp) +{ + struct cc_blob_sev_info *cc_info; + + /* Boot kernel would have passed the CC blob via boot_params. */ + if (bp->cc_blob_address) { + cc_info = (struct cc_blob_sev_info *)(unsigned long)bp->cc_blob_address; + goto found_cc_info; + } + + /* + * If kernel was booted directly, without the use of the + * boot/decompression kernel, the CC blob may have been passed via + * setup_data instead. + */ + cc_info = find_cc_blob_setup_data(bp); + if (!cc_info) + return NULL; + +found_cc_info: + if (cc_info->magic != CC_BLOB_SEV_HDR_MAGIC) + snp_abort(); + + return cc_info; +} + +static __head void svsm_setup(struct cc_blob_sev_info *cc_info) +{ + struct svsm_call call = {}; + int ret; + u64 pa; + + /* + * Record the SVSM Calling Area address (CAA) if the guest is not + * running at VMPL0. The CA will be used to communicate with the + * SVSM to perform the SVSM services. + */ + if (!svsm_setup_ca(cc_info)) + return; + + /* + * It is very early in the boot and the kernel is running identity + * mapped but without having adjusted the pagetables to where the + * kernel was loaded (physbase), so the get the CA address using + * RIP-relative addressing. + */ + pa = (u64)&RIP_REL_REF(boot_svsm_ca_page); + + /* + * Switch over to the boot SVSM CA while the current CA is still + * addressable. There is no GHCB at this point so use the MSR protocol. + * + * SVSM_CORE_REMAP_CA call: + * RAX = 0 (Protocol=0, CallID=0) + * RCX = New CA GPA + */ + call.caa = svsm_get_caa(); + call.rax = SVSM_CORE_CALL(SVSM_CORE_REMAP_CA); + call.rcx = pa; + ret = svsm_perform_call_protocol(&call); + if (ret) + panic("Can't remap the SVSM CA, ret=%d, rax_out=0x%llx\n", ret, call.rax_out); + + RIP_REL_REF(boot_svsm_caa) = (struct svsm_ca *)pa; + RIP_REL_REF(boot_svsm_caa_pa) = pa; +} + +bool __head snp_init(struct boot_params *bp) +{ + struct cc_blob_sev_info *cc_info; + + if (!bp) + return false; + + cc_info = find_cc_blob(bp); + if (!cc_info) + return false; + + setup_cpuid_table(cc_info); + + svsm_setup(cc_info); + + /* + * The CC blob will be used later to access the secrets page. Cache + * it here like the boot kernel does. + */ + bp->cc_blob_address = (u32)(unsigned long)cc_info; + + return true; +} + +void __head __noreturn snp_abort(void) +{ + sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED); +} + +/* + * SEV-SNP guests should only execute dmi_setup() if EFI_CONFIG_TABLES are + * enabled, as the alternative (fallback) logic for DMI probing in the legacy + * ROM region can cause a crash since this region is not pre-validated. + */ +void __init snp_dmi_setup(void) +{ + if (efi_enabled(EFI_CONFIG_TABLES)) + dmi_setup(); +} + +static void dump_cpuid_table(void) +{ + const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table(); + int i = 0; + + pr_info("count=%d reserved=0x%x reserved2=0x%llx\n", + cpuid_table->count, cpuid_table->__reserved1, cpuid_table->__reserved2); + + for (i = 0; i < SNP_CPUID_COUNT_MAX; i++) { + const struct snp_cpuid_fn *fn = &cpuid_table->fn[i]; + + pr_info("index=%3d fn=0x%08x subfn=0x%08x: eax=0x%08x ebx=0x%08x ecx=0x%08x edx=0x%08x xcr0_in=0x%016llx xss_in=0x%016llx reserved=0x%016llx\n", + i, fn->eax_in, fn->ecx_in, fn->eax, fn->ebx, fn->ecx, + fn->edx, fn->xcr0_in, fn->xss_in, fn->__reserved); + } +} + +/* + * It is useful from an auditing/testing perspective to provide an easy way + * for the guest owner to know that the CPUID table has been initialized as + * expected, but that initialization happens too early in boot to print any + * sort of indicator, and there's not really any other good place to do it, + * so do it here. + * + * If running as an SNP guest, report the current VM privilege level (VMPL). + */ +static int __init report_snp_info(void) +{ + const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table(); + + if (cpuid_table->count) { + pr_info("Using SNP CPUID table, %d entries present.\n", + cpuid_table->count); + + if (sev_cfg.debug) + dump_cpuid_table(); + } + + if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) + pr_info("SNP running at VMPL%u.\n", snp_vmpl); + + return 0; +} +arch_initcall(report_snp_info); + +static int __init init_sev_config(char *str) +{ + char *s; + + while ((s = strsep(&str, ","))) { + if (!strcmp(s, "debug")) { + sev_cfg.debug = true; + continue; + } + + pr_info("SEV command-line option '%s' was not recognized\n", s); + } + + return 1; +} +__setup("sev=", init_sev_config); + +static void update_attest_input(struct svsm_call *call, struct svsm_attest_call *input) +{ + /* If (new) lengths have been returned, propagate them up */ + if (call->rcx_out != call->rcx) + input->manifest_buf.len = call->rcx_out; + + if (call->rdx_out != call->rdx) + input->certificates_buf.len = call->rdx_out; + + if (call->r8_out != call->r8) + input->report_buf.len = call->r8_out; +} + +int snp_issue_svsm_attest_req(u64 call_id, struct svsm_call *call, + struct svsm_attest_call *input) +{ + struct svsm_attest_call *ac; + unsigned long flags; + u64 attest_call_pa; + int ret; + + if (!snp_vmpl) + return -EINVAL; + + local_irq_save(flags); + + call->caa = svsm_get_caa(); + + ac = (struct svsm_attest_call *)call->caa->svsm_buffer; + attest_call_pa = svsm_get_caa_pa() + offsetof(struct svsm_ca, svsm_buffer); + + *ac = *input; + + /* + * Set input registers for the request and set RDX and R8 to known + * values in order to detect length values being returned in them. + */ + call->rax = call_id; + call->rcx = attest_call_pa; + call->rdx = -1; + call->r8 = -1; + ret = svsm_perform_call_protocol(call); + update_attest_input(call, input); + + local_irq_restore(flags); + + return ret; +} +EXPORT_SYMBOL_GPL(snp_issue_svsm_attest_req); + +int snp_issue_guest_request(u64 exit_code, struct snp_req_data *input, struct snp_guest_request_ioctl *rio) +{ + struct ghcb_state state; + struct es_em_ctxt ctxt; + unsigned long flags; + struct ghcb *ghcb; + int ret; + + rio->exitinfo2 = SEV_RET_NO_FW_CALL; + + /* + * __sev_get_ghcb() needs to run with IRQs disabled because it is using + * a per-CPU GHCB. + */ + local_irq_save(flags); + + ghcb = __sev_get_ghcb(&state); + if (!ghcb) { + ret = -EIO; + goto e_restore_irq; + } + + vc_ghcb_invalidate(ghcb); + + if (exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST) { + ghcb_set_rax(ghcb, input->data_gpa); + ghcb_set_rbx(ghcb, input->data_npages); + } + + ret = sev_es_ghcb_hv_call(ghcb, &ctxt, exit_code, input->req_gpa, input->resp_gpa); + if (ret) + goto e_put; + + rio->exitinfo2 = ghcb->save.sw_exit_info_2; + switch (rio->exitinfo2) { + case 0: + break; + + case SNP_GUEST_VMM_ERR(SNP_GUEST_VMM_ERR_BUSY): + ret = -EAGAIN; + break; + + case SNP_GUEST_VMM_ERR(SNP_GUEST_VMM_ERR_INVALID_LEN): + /* Number of expected pages are returned in RBX */ + if (exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST) { + input->data_npages = ghcb_get_rbx(ghcb); + ret = -ENOSPC; + break; + } + fallthrough; + default: + ret = -EIO; + break; + } + +e_put: + __sev_put_ghcb(&state); +e_restore_irq: + local_irq_restore(flags); + + return ret; +} +EXPORT_SYMBOL_GPL(snp_issue_guest_request); + +static struct platform_device sev_guest_device = { + .name = "sev-guest", + .id = -1, +}; + +static int __init snp_init_platform_device(void) +{ + struct sev_guest_platform_data data; + u64 gpa; + + if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) + return -ENODEV; + + gpa = get_secrets_page(); + if (!gpa) + return -ENODEV; + + data.secrets_gpa = gpa; + if (platform_device_add_data(&sev_guest_device, &data, sizeof(data))) + return -ENODEV; + + if (platform_device_register(&sev_guest_device)) + return -ENODEV; + + pr_info("SNP guest platform device initialized.\n"); + return 0; +} +device_initcall(snp_init_platform_device); + +void sev_show_status(void) +{ + int i; + + pr_info("Status: "); + for (i = 0; i < MSR_AMD64_SNP_RESV_BIT; i++) { + if (sev_status & BIT_ULL(i)) { + if (!sev_status_feat_names[i]) + continue; + + pr_cont("%s ", sev_status_feat_names[i]); + } + } + pr_cont("\n"); +} + +void __init snp_update_svsm_ca(void) +{ + if (!snp_vmpl) + return; + + /* Update the CAA to a proper kernel address */ + boot_svsm_caa = &boot_svsm_ca_page; +} + +#ifdef CONFIG_SYSFS +static ssize_t vmpl_show(struct kobject *kobj, + struct kobj_attribute *attr, char *buf) +{ + return sysfs_emit(buf, "%d\n", snp_vmpl); +} + +static struct kobj_attribute vmpl_attr = __ATTR_RO(vmpl); + +static struct attribute *vmpl_attrs[] = { + &vmpl_attr.attr, + NULL +}; + +static struct attribute_group sev_attr_group = { + .attrs = vmpl_attrs, +}; + +static int __init sev_sysfs_init(void) +{ + struct kobject *sev_kobj; + struct device *dev_root; + int ret; + + if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) + return -ENODEV; + + dev_root = bus_get_dev_root(&cpu_subsys); + if (!dev_root) + return -ENODEV; + + sev_kobj = kobject_create_and_add("sev", &dev_root->kobj); + put_device(dev_root); + + if (!sev_kobj) + return -ENOMEM; + + ret = sysfs_create_group(sev_kobj, &sev_attr_group); + if (ret) + kobject_put(sev_kobj); + + return ret; +} +arch_initcall(sev_sysfs_init); +#endif // CONFIG_SYSFS diff --git a/arch/x86/coco/sev/shared.c b/arch/x86/coco/sev/shared.c new file mode 100644 index 000000000000..71de53194089 --- /dev/null +++ b/arch/x86/coco/sev/shared.c @@ -0,0 +1,1717 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * AMD Encrypted Register State Support + * + * Author: Joerg Roedel <jroedel@suse.de> + * + * This file is not compiled stand-alone. It contains code shared + * between the pre-decompression boot code and the running Linux kernel + * and is included directly into both code-bases. + */ + +#include <asm/setup_data.h> + +#ifndef __BOOT_COMPRESSED +#define error(v) pr_err(v) +#define has_cpuflag(f) boot_cpu_has(f) +#define sev_printk(fmt, ...) printk(fmt, ##__VA_ARGS__) +#define sev_printk_rtl(fmt, ...) printk_ratelimited(fmt, ##__VA_ARGS__) +#else +#undef WARN +#define WARN(condition, format...) (!!(condition)) +#define sev_printk(fmt, ...) +#define sev_printk_rtl(fmt, ...) +#undef vc_forward_exception +#define vc_forward_exception(c) panic("SNP: Hypervisor requested exception\n") +#endif + +/* + * SVSM related information: + * When running under an SVSM, the VMPL that Linux is executing at must be + * non-zero. The VMPL is therefore used to indicate the presence of an SVSM. + * + * During boot, the page tables are set up as identity mapped and later + * changed to use kernel virtual addresses. Maintain separate virtual and + * physical addresses for the CAA to allow SVSM functions to be used during + * early boot, both with identity mapped virtual addresses and proper kernel + * virtual addresses. + */ +u8 snp_vmpl __ro_after_init; +EXPORT_SYMBOL_GPL(snp_vmpl); +static struct svsm_ca *boot_svsm_caa __ro_after_init; +static u64 boot_svsm_caa_pa __ro_after_init; + +static struct svsm_ca *svsm_get_caa(void); +static u64 svsm_get_caa_pa(void); +static int svsm_perform_call_protocol(struct svsm_call *call); + +/* I/O parameters for CPUID-related helpers */ +struct cpuid_leaf { + u32 fn; + u32 subfn; + u32 eax; + u32 ebx; + u32 ecx; + u32 edx; +}; + +/* + * Individual entries of the SNP CPUID table, as defined by the SNP + * Firmware ABI, Revision 0.9, Section 7.1, Table 14. + */ +struct snp_cpuid_fn { + u32 eax_in; + u32 ecx_in; + u64 xcr0_in; + u64 xss_in; + u32 eax; + u32 ebx; + u32 ecx; + u32 edx; + u64 __reserved; +} __packed; + +/* + * SNP CPUID table, as defined by the SNP Firmware ABI, Revision 0.9, + * Section 8.14.2.6. Also noted there is the SNP firmware-enforced limit + * of 64 entries per CPUID table. + */ +#define SNP_CPUID_COUNT_MAX 64 + +struct snp_cpuid_table { + u32 count; + u32 __reserved1; + u64 __reserved2; + struct snp_cpuid_fn fn[SNP_CPUID_COUNT_MAX]; +} __packed; + +/* + * Since feature negotiation related variables are set early in the boot + * process they must reside in the .data section so as not to be zeroed + * out when the .bss section is later cleared. + * + * GHCB protocol version negotiated with the hypervisor. + */ +static u16 ghcb_version __ro_after_init; + +/* Copy of the SNP firmware's CPUID page. */ +static struct snp_cpuid_table cpuid_table_copy __ro_after_init; + +/* + * These will be initialized based on CPUID table so that non-present + * all-zero leaves (for sparse tables) can be differentiated from + * invalid/out-of-range leaves. This is needed since all-zero leaves + * still need to be post-processed. + */ +static u32 cpuid_std_range_max __ro_after_init; +static u32 cpuid_hyp_range_max __ro_after_init; +static u32 cpuid_ext_range_max __ro_after_init; + +static bool __init sev_es_check_cpu_features(void) +{ + if (!has_cpuflag(X86_FEATURE_RDRAND)) { + error("RDRAND instruction not supported - no trusted source of randomness available\n"); + return false; + } + + return true; +} + +static void __head __noreturn +sev_es_terminate(unsigned int set, unsigned int reason) +{ + u64 val = GHCB_MSR_TERM_REQ; + + /* Tell the hypervisor what went wrong. */ + val |= GHCB_SEV_TERM_REASON(set, reason); + + /* Request Guest Termination from Hypervisor */ + sev_es_wr_ghcb_msr(val); + VMGEXIT(); + + while (true) + asm volatile("hlt\n" : : : "memory"); +} + +/* + * The hypervisor features are available from GHCB version 2 onward. + */ +static u64 get_hv_features(void) +{ + u64 val; + + if (ghcb_version < 2) + return 0; + + sev_es_wr_ghcb_msr(GHCB_MSR_HV_FT_REQ); + VMGEXIT(); + + val = sev_es_rd_ghcb_msr(); + if (GHCB_RESP_CODE(val) != GHCB_MSR_HV_FT_RESP) + return 0; + + return GHCB_MSR_HV_FT_RESP_VAL(val); +} + +static void snp_register_ghcb_early(unsigned long paddr) +{ + unsigned long pfn = paddr >> PAGE_SHIFT; + u64 val; + + sev_es_wr_ghcb_msr(GHCB_MSR_REG_GPA_REQ_VAL(pfn)); + VMGEXIT(); + + val = sev_es_rd_ghcb_msr(); + + /* If the response GPA is not ours then abort the guest */ + if ((GHCB_RESP_CODE(val) != GHCB_MSR_REG_GPA_RESP) || + (GHCB_MSR_REG_GPA_RESP_VAL(val) != pfn)) + sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_REGISTER); +} + +static bool sev_es_negotiate_protocol(void) +{ + u64 val; + + /* Do the GHCB protocol version negotiation */ + sev_es_wr_ghcb_msr(GHCB_MSR_SEV_INFO_REQ); + VMGEXIT(); + val = sev_es_rd_ghcb_msr(); + + if (GHCB_MSR_INFO(val) != GHCB_MSR_SEV_INFO_RESP) + return false; + + if (GHCB_MSR_PROTO_MAX(val) < GHCB_PROTOCOL_MIN || + GHCB_MSR_PROTO_MIN(val) > GHCB_PROTOCOL_MAX) + return false; + + ghcb_version = min_t(size_t, GHCB_MSR_PROTO_MAX(val), GHCB_PROTOCOL_MAX); + + return true; +} + +static __always_inline void vc_ghcb_invalidate(struct ghcb *ghcb) +{ + ghcb->save.sw_exit_code = 0; + __builtin_memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); +} + +static bool vc_decoding_needed(unsigned long exit_code) +{ + /* Exceptions don't require to decode the instruction */ + return !(exit_code >= SVM_EXIT_EXCP_BASE && + exit_code <= SVM_EXIT_LAST_EXCP); +} + +static enum es_result vc_init_em_ctxt(struct es_em_ctxt *ctxt, + struct pt_regs *regs, + unsigned long exit_code) +{ + enum es_result ret = ES_OK; + + memset(ctxt, 0, sizeof(*ctxt)); + ctxt->regs = regs; + + if (vc_decoding_needed(exit_code)) + ret = vc_decode_insn(ctxt); + + return ret; +} + +static void vc_finish_insn(struct es_em_ctxt *ctxt) +{ + ctxt->regs->ip += ctxt->insn.length; +} + +static enum es_result verify_exception_info(struct ghcb *ghcb, struct es_em_ctxt *ctxt) +{ + u32 ret; + + ret = ghcb->save.sw_exit_info_1 & GENMASK_ULL(31, 0); + if (!ret) + return ES_OK; + + if (ret == 1) { + u64 info = ghcb->save.sw_exit_info_2; + unsigned long v = info & SVM_EVTINJ_VEC_MASK; + + /* Check if exception information from hypervisor is sane. */ + if ((info & SVM_EVTINJ_VALID) && + ((v == X86_TRAP_GP) || (v == X86_TRAP_UD)) && + ((info & SVM_EVTINJ_TYPE_MASK) == SVM_EVTINJ_TYPE_EXEPT)) { + ctxt->fi.vector = v; + + if (info & SVM_EVTINJ_VALID_ERR) + ctxt->fi.error_code = info >> 32; + + return ES_EXCEPTION; + } + } + + return ES_VMM_ERROR; +} + +static inline int svsm_process_result_codes(struct svsm_call *call) +{ + switch (call->rax_out) { + case SVSM_SUCCESS: + return 0; + case SVSM_ERR_INCOMPLETE: + case SVSM_ERR_BUSY: + return -EAGAIN; + default: + return -EINVAL; + } +} + +/* + * Issue a VMGEXIT to call the SVSM: + * - Load the SVSM register state (RAX, RCX, RDX, R8 and R9) + * - Set the CA call pending field to 1 + * - Issue VMGEXIT + * - Save the SVSM return register state (RAX, RCX, RDX, R8 and R9) + * - Perform atomic exchange of the CA call pending field + * + * - See the "Secure VM Service Module for SEV-SNP Guests" specification for + * details on the calling convention. + * - The calling convention loosely follows the Microsoft X64 calling + * convention by putting arguments in RCX, RDX, R8 and R9. + * - RAX specifies the SVSM protocol/callid as input and the return code + * as output. + */ +static __always_inline void svsm_issue_call(struct svsm_call *call, u8 *pending) +{ + register unsigned long rax asm("rax") = call->rax; + register unsigned long rcx asm("rcx") = call->rcx; + register unsigned long rdx asm("rdx") = call->rdx; + register unsigned long r8 asm("r8") = call->r8; + register unsigned long r9 asm("r9") = call->r9; + + call->caa->call_pending = 1; + + asm volatile("rep; vmmcall\n\t" + : "+r" (rax), "+r" (rcx), "+r" (rdx), "+r" (r8), "+r" (r9) + : : "memory"); + + *pending = xchg(&call->caa->call_pending, *pending); + + call->rax_out = rax; + call->rcx_out = rcx; + call->rdx_out = rdx; + call->r8_out = r8; + call->r9_out = r9; +} + +static int svsm_perform_msr_protocol(struct svsm_call *call) +{ + u8 pending = 0; + u64 val, resp; + + /* + * When using the MSR protocol, be sure to save and restore + * the current MSR value. + */ + val = sev_es_rd_ghcb_msr(); + + sev_es_wr_ghcb_msr(GHCB_MSR_VMPL_REQ_LEVEL(0)); + + svsm_issue_call(call, &pending); + + resp = sev_es_rd_ghcb_msr(); + + sev_es_wr_ghcb_msr(val); + + if (pending) + return -EINVAL; + + if (GHCB_RESP_CODE(resp) != GHCB_MSR_VMPL_RESP) + return -EINVAL; + + if (GHCB_MSR_VMPL_RESP_VAL(resp)) + return -EINVAL; + + return svsm_process_result_codes(call); +} + +static int svsm_perform_ghcb_protocol(struct ghcb *ghcb, struct svsm_call *call) +{ + struct es_em_ctxt ctxt; + u8 pending = 0; + + vc_ghcb_invalidate(ghcb); + + /* + * Fill in protocol and format specifiers. This can be called very early + * in the boot, so use rip-relative references as needed. + */ + ghcb->protocol_version = RIP_REL_REF(ghcb_version); + ghcb->ghcb_usage = GHCB_DEFAULT_USAGE; + + ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_SNP_RUN_VMPL); + ghcb_set_sw_exit_info_1(ghcb, 0); + ghcb_set_sw_exit_info_2(ghcb, 0); + + sev_es_wr_ghcb_msr(__pa(ghcb)); + + svsm_issue_call(call, &pending); + + if (pending) + return -EINVAL; + + switch (verify_exception_info(ghcb, &ctxt)) { + case ES_OK: + break; + case ES_EXCEPTION: + vc_forward_exception(&ctxt); + fallthrough; + default: + return -EINVAL; + } + + return svsm_process_result_codes(call); +} + +static enum es_result sev_es_ghcb_hv_call(struct ghcb *ghcb, + struct es_em_ctxt *ctxt, + u64 exit_code, u64 exit_info_1, + u64 exit_info_2) +{ + /* Fill in protocol and format specifiers */ + ghcb->protocol_version = ghcb_version; + ghcb->ghcb_usage = GHCB_DEFAULT_USAGE; + + ghcb_set_sw_exit_code(ghcb, exit_code); + ghcb_set_sw_exit_info_1(ghcb, exit_info_1); + ghcb_set_sw_exit_info_2(ghcb, exit_info_2); + + sev_es_wr_ghcb_msr(__pa(ghcb)); + VMGEXIT(); + + return verify_exception_info(ghcb, ctxt); +} + +static int __sev_cpuid_hv(u32 fn, int reg_idx, u32 *reg) +{ + u64 val; + + sev_es_wr_ghcb_msr(GHCB_CPUID_REQ(fn, reg_idx)); + VMGEXIT(); + val = sev_es_rd_ghcb_msr(); + if (GHCB_RESP_CODE(val) != GHCB_MSR_CPUID_RESP) + return -EIO; + + *reg = (val >> 32); + + return 0; +} + +static int __sev_cpuid_hv_msr(struct cpuid_leaf *leaf) +{ + int ret; + + /* + * MSR protocol does not support fetching non-zero subfunctions, but is + * sufficient to handle current early-boot cases. Should that change, + * make sure to report an error rather than ignoring the index and + * grabbing random values. If this issue arises in the future, handling + * can be added here to use GHCB-page protocol for cases that occur late + * enough in boot that GHCB page is available. + */ + if (cpuid_function_is_indexed(leaf->fn) && leaf->subfn) + return -EINVAL; + + ret = __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_EAX, &leaf->eax); + ret = ret ? : __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_EBX, &leaf->ebx); + ret = ret ? : __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_ECX, &leaf->ecx); + ret = ret ? : __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_EDX, &leaf->edx); + + return ret; +} + +static int __sev_cpuid_hv_ghcb(struct ghcb *ghcb, struct es_em_ctxt *ctxt, struct cpuid_leaf *leaf) +{ + u32 cr4 = native_read_cr4(); + int ret; + + ghcb_set_rax(ghcb, leaf->fn); + ghcb_set_rcx(ghcb, leaf->subfn); + + if (cr4 & X86_CR4_OSXSAVE) + /* Safe to read xcr0 */ + ghcb_set_xcr0(ghcb, xgetbv(XCR_XFEATURE_ENABLED_MASK)); + else + /* xgetbv will cause #UD - use reset value for xcr0 */ + ghcb_set_xcr0(ghcb, 1); + + ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_CPUID, 0, 0); + if (ret != ES_OK) + return ret; + + if (!(ghcb_rax_is_valid(ghcb) && + ghcb_rbx_is_valid(ghcb) && + ghcb_rcx_is_valid(ghcb) && + ghcb_rdx_is_valid(ghcb))) + return ES_VMM_ERROR; + + leaf->eax = ghcb->save.rax; + leaf->ebx = ghcb->save.rbx; + leaf->ecx = ghcb->save.rcx; + leaf->edx = ghcb->save.rdx; + + return ES_OK; +} + +static int sev_cpuid_hv(struct ghcb *ghcb, struct es_em_ctxt *ctxt, struct cpuid_leaf *leaf) +{ + return ghcb ? __sev_cpuid_hv_ghcb(ghcb, ctxt, leaf) + : __sev_cpuid_hv_msr(leaf); +} + +/* + * This may be called early while still running on the initial identity + * mapping. Use RIP-relative addressing to obtain the correct address + * while running with the initial identity mapping as well as the + * switch-over to kernel virtual addresses later. + */ +static const struct snp_cpuid_table *snp_cpuid_get_table(void) +{ + return &RIP_REL_REF(cpuid_table_copy); +} + +/* + * The SNP Firmware ABI, Revision 0.9, Section 7.1, details the use of + * XCR0_IN and XSS_IN to encode multiple versions of 0xD subfunctions 0 + * and 1 based on the corresponding features enabled by a particular + * combination of XCR0 and XSS registers so that a guest can look up the + * version corresponding to the features currently enabled in its XCR0/XSS + * registers. The only values that differ between these versions/table + * entries is the enabled XSAVE area size advertised via EBX. + * + * While hypervisors may choose to make use of this support, it is more + * robust/secure for a guest to simply find the entry corresponding to the + * base/legacy XSAVE area size (XCR0=1 or XCR0=3), and then calculate the + * XSAVE area size using subfunctions 2 through 64, as documented in APM + * Volume 3, Rev 3.31, Appendix E.3.8, which is what is done here. + * + * Since base/legacy XSAVE area size is documented as 0x240, use that value + * directly rather than relying on the base size in the CPUID table. + * + * Return: XSAVE area size on success, 0 otherwise. + */ +static u32 snp_cpuid_calc_xsave_size(u64 xfeatures_en, bool compacted) +{ + const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table(); + u64 xfeatures_found = 0; + u32 xsave_size = 0x240; + int i; + + for (i = 0; i < cpuid_table->count; i++) { + const struct snp_cpuid_fn *e = &cpuid_table->fn[i]; + + if (!(e->eax_in == 0xD && e->ecx_in > 1 && e->ecx_in < 64)) + continue; + if (!(xfeatures_en & (BIT_ULL(e->ecx_in)))) + continue; + if (xfeatures_found & (BIT_ULL(e->ecx_in))) + continue; + + xfeatures_found |= (BIT_ULL(e->ecx_in)); + + if (compacted) + xsave_size += e->eax; + else + xsave_size = max(xsave_size, e->eax + e->ebx); + } + + /* + * Either the guest set unsupported XCR0/XSS bits, or the corresponding + * entries in the CPUID table were not present. This is not a valid + * state to be in. + */ + if (xfeatures_found != (xfeatures_en & GENMASK_ULL(63, 2))) + return 0; + + return xsave_size; +} + +static bool __head +snp_cpuid_get_validated_func(struct cpuid_leaf *leaf) +{ + const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table(); + int i; + + for (i = 0; i < cpuid_table->count; i++) { + const struct snp_cpuid_fn *e = &cpuid_table->fn[i]; + + if (e->eax_in != leaf->fn) + continue; + + if (cpuid_function_is_indexed(leaf->fn) && e->ecx_in != leaf->subfn) + continue; + + /* + * For 0xD subfunctions 0 and 1, only use the entry corresponding + * to the base/legacy XSAVE area size (XCR0=1 or XCR0=3, XSS=0). + * See the comments above snp_cpuid_calc_xsave_size() for more + * details. + */ + if (e->eax_in == 0xD && (e->ecx_in == 0 || e->ecx_in == 1)) + if (!(e->xcr0_in == 1 || e->xcr0_in == 3) || e->xss_in) + continue; + + leaf->eax = e->eax; + leaf->ebx = e->ebx; + leaf->ecx = e->ecx; + leaf->edx = e->edx; + + return true; + } + + return false; +} + +static void snp_cpuid_hv(struct ghcb *ghcb, struct es_em_ctxt *ctxt, struct cpuid_leaf *leaf) +{ + if (sev_cpuid_hv(ghcb, ctxt, leaf)) + sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_CPUID_HV); +} + +static int snp_cpuid_postprocess(struct ghcb *ghcb, struct es_em_ctxt *ctxt, + struct cpuid_leaf *leaf) +{ + struct cpuid_leaf leaf_hv = *leaf; + + switch (leaf->fn) { + case 0x1: + snp_cpuid_hv(ghcb, ctxt, &leaf_hv); + + /* initial APIC ID */ + leaf->ebx = (leaf_hv.ebx & GENMASK(31, 24)) | (leaf->ebx & GENMASK(23, 0)); + /* APIC enabled bit */ + leaf->edx = (leaf_hv.edx & BIT(9)) | (leaf->edx & ~BIT(9)); + + /* OSXSAVE enabled bit */ + if (native_read_cr4() & X86_CR4_OSXSAVE) + leaf->ecx |= BIT(27); + break; + case 0x7: + /* OSPKE enabled bit */ + leaf->ecx &= ~BIT(4); + if (native_read_cr4() & X86_CR4_PKE) + leaf->ecx |= BIT(4); + break; + case 0xB: + leaf_hv.subfn = 0; + snp_cpuid_hv(ghcb, ctxt, &leaf_hv); + + /* extended APIC ID */ + leaf->edx = leaf_hv.edx; + break; + case 0xD: { + bool compacted = false; + u64 xcr0 = 1, xss = 0; + u32 xsave_size; + + if (leaf->subfn != 0 && leaf->subfn != 1) + return 0; + + if (native_read_cr4() & X86_CR4_OSXSAVE) + xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); + if (leaf->subfn == 1) { + /* Get XSS value if XSAVES is enabled. */ + if (leaf->eax & BIT(3)) { + unsigned long lo, hi; + + asm volatile("rdmsr" : "=a" (lo), "=d" (hi) + : "c" (MSR_IA32_XSS)); + xss = (hi << 32) | lo; + } + + /* + * The PPR and APM aren't clear on what size should be + * encoded in 0xD:0x1:EBX when compaction is not enabled + * by either XSAVEC (feature bit 1) or XSAVES (feature + * bit 3) since SNP-capable hardware has these feature + * bits fixed as 1. KVM sets it to 0 in this case, but + * to avoid this becoming an issue it's safer to simply + * treat this as unsupported for SNP guests. + */ + if (!(leaf->eax & (BIT(1) | BIT(3)))) + return -EINVAL; + + compacted = true; + } + + xsave_size = snp_cpuid_calc_xsave_size(xcr0 | xss, compacted); + if (!xsave_size) + return -EINVAL; + + leaf->ebx = xsave_size; + } + break; + case 0x8000001E: + snp_cpuid_hv(ghcb, ctxt, &leaf_hv); + + /* extended APIC ID */ + leaf->eax = leaf_hv.eax; + /* compute ID */ + leaf->ebx = (leaf->ebx & GENMASK(31, 8)) | (leaf_hv.ebx & GENMASK(7, 0)); + /* node ID */ + leaf->ecx = (leaf->ecx & GENMASK(31, 8)) | (leaf_hv.ecx & GENMASK(7, 0)); + break; + default: + /* No fix-ups needed, use values as-is. */ + break; + } + + return 0; +} + +/* + * Returns -EOPNOTSUPP if feature not enabled. Any other non-zero return value + * should be treated as fatal by caller. + */ +static int __head +snp_cpuid(struct ghcb *ghcb, struct es_em_ctxt *ctxt, struct cpuid_leaf *leaf) +{ + const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table(); + + if (!cpuid_table->count) + return -EOPNOTSUPP; + + if (!snp_cpuid_get_validated_func(leaf)) { + /* + * Some hypervisors will avoid keeping track of CPUID entries + * where all values are zero, since they can be handled the + * same as out-of-range values (all-zero). This is useful here + * as well as it allows virtually all guest configurations to + * work using a single SNP CPUID table. + * + * To allow for this, there is a need to distinguish between + * out-of-range entries and in-range zero entries, since the + * CPUID table entries are only a template that may need to be + * augmented with additional values for things like + * CPU-specific information during post-processing. So if it's + * not in the table, set the values to zero. Then, if they are + * within a valid CPUID range, proceed with post-processing + * using zeros as the initial values. Otherwise, skip + * post-processing and just return zeros immediately. + */ + leaf->eax = leaf->ebx = leaf->ecx = leaf->edx = 0; + + /* Skip post-processing for out-of-range zero leafs. */ + if (!(leaf->fn <= RIP_REL_REF(cpuid_std_range_max) || + (leaf->fn >= 0x40000000 && leaf->fn <= RIP_REL_REF(cpuid_hyp_range_max)) || + (leaf->fn >= 0x80000000 && leaf->fn <= RIP_REL_REF(cpuid_ext_range_max)))) + return 0; + } + + return snp_cpuid_postprocess(ghcb, ctxt, leaf); +} + +/* + * Boot VC Handler - This is the first VC handler during boot, there is no GHCB + * page yet, so it only supports the MSR based communication with the + * hypervisor and only the CPUID exit-code. + */ +void __head do_vc_no_ghcb(struct pt_regs *regs, unsigned long exit_code) +{ + unsigned int subfn = lower_bits(regs->cx, 32); + unsigned int fn = lower_bits(regs->ax, 32); + u16 opcode = *(unsigned short *)regs->ip; + struct cpuid_leaf leaf; + int ret; + + /* Only CPUID is supported via MSR protocol */ + if (exit_code != SVM_EXIT_CPUID) + goto fail; + + /* Is it really a CPUID insn? */ + if (opcode != 0xa20f) + goto fail; + + leaf.fn = fn; + leaf.subfn = subfn; + + ret = snp_cpuid(NULL, NULL, &leaf); + if (!ret) + goto cpuid_done; + + if (ret != -EOPNOTSUPP) + goto fail; + + if (__sev_cpuid_hv_msr(&leaf)) + goto fail; + +cpuid_done: + regs->ax = leaf.eax; + regs->bx = leaf.ebx; + regs->cx = leaf.ecx; + regs->dx = leaf.edx; + + /* + * This is a VC handler and the #VC is only raised when SEV-ES is + * active, which means SEV must be active too. Do sanity checks on the + * CPUID results to make sure the hypervisor does not trick the kernel + * into the no-sev path. This could map sensitive data unencrypted and + * make it accessible to the hypervisor. + * + * In particular, check for: + * - Availability of CPUID leaf 0x8000001f + * - SEV CPUID bit. + * + * The hypervisor might still report the wrong C-bit position, but this + * can't be checked here. + */ + + if (fn == 0x80000000 && (regs->ax < 0x8000001f)) + /* SEV leaf check */ + goto fail; + else if ((fn == 0x8000001f && !(regs->ax & BIT(1)))) + /* SEV bit */ + goto fail; + + /* Skip over the CPUID two-byte opcode */ + regs->ip += 2; + + return; + +fail: + /* Terminate the guest */ + sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ); +} + +static enum es_result vc_insn_string_check(struct es_em_ctxt *ctxt, + unsigned long address, + bool write) +{ + if (user_mode(ctxt->regs) && fault_in_kernel_space(address)) { + ctxt->fi.vector = X86_TRAP_PF; + ctxt->fi.error_code = X86_PF_USER; + ctxt->fi.cr2 = address; + if (write) + ctxt->fi.error_code |= X86_PF_WRITE; + + return ES_EXCEPTION; + } + + return ES_OK; +} + +static enum es_result vc_insn_string_read(struct es_em_ctxt *ctxt, + void *src, char *buf, + unsigned int data_size, + unsigned int count, + bool backwards) +{ + int i, b = backwards ? -1 : 1; + unsigned long address = (unsigned long)src; + enum es_result ret; + + ret = vc_insn_string_check(ctxt, address, false); + if (ret != ES_OK) + return ret; + + for (i = 0; i < count; i++) { + void *s = src + (i * data_size * b); + char *d = buf + (i * data_size); + + ret = vc_read_mem(ctxt, s, d, data_size); + if (ret != ES_OK) + break; + } + + return ret; +} + +static enum es_result vc_insn_string_write(struct es_em_ctxt *ctxt, + void *dst, char *buf, + unsigned int data_size, + unsigned int count, + bool backwards) +{ + int i, s = backwards ? -1 : 1; + unsigned long address = (unsigned long)dst; + enum es_result ret; + + ret = vc_insn_string_check(ctxt, address, true); + if (ret != ES_OK) + return ret; + + for (i = 0; i < count; i++) { + void *d = dst + (i * data_size * s); + char *b = buf + (i * data_size); + + ret = vc_write_mem(ctxt, d, b, data_size); + if (ret != ES_OK) + break; + } + + return ret; +} + +#define IOIO_TYPE_STR BIT(2) +#define IOIO_TYPE_IN 1 +#define IOIO_TYPE_INS (IOIO_TYPE_IN | IOIO_TYPE_STR) +#define IOIO_TYPE_OUT 0 +#define IOIO_TYPE_OUTS (IOIO_TYPE_OUT | IOIO_TYPE_STR) + +#define IOIO_REP BIT(3) + +#define IOIO_ADDR_64 BIT(9) +#define IOIO_ADDR_32 BIT(8) +#define IOIO_ADDR_16 BIT(7) + +#define IOIO_DATA_32 BIT(6) +#define IOIO_DATA_16 BIT(5) +#define IOIO_DATA_8 BIT(4) + +#define IOIO_SEG_ES (0 << 10) +#define IOIO_SEG_DS (3 << 10) + +static enum es_result vc_ioio_exitinfo(struct es_em_ctxt *ctxt, u64 *exitinfo) +{ + struct insn *insn = &ctxt->insn; + size_t size; + u64 port; + + *exitinfo = 0; + + switch (insn->opcode.bytes[0]) { + /* INS opcodes */ + case 0x6c: + case 0x6d: + *exitinfo |= IOIO_TYPE_INS; + *exitinfo |= IOIO_SEG_ES; + port = ctxt->regs->dx & 0xffff; + break; + + /* OUTS opcodes */ + case 0x6e: + case 0x6f: + *exitinfo |= IOIO_TYPE_OUTS; + *exitinfo |= IOIO_SEG_DS; + port = ctxt->regs->dx & 0xffff; + break; + + /* IN immediate opcodes */ + case 0xe4: + case 0xe5: + *exitinfo |= IOIO_TYPE_IN; + port = (u8)insn->immediate.value & 0xffff; + break; + + /* OUT immediate opcodes */ + case 0xe6: + case 0xe7: + *exitinfo |= IOIO_TYPE_OUT; + port = (u8)insn->immediate.value & 0xffff; + break; + + /* IN register opcodes */ + case 0xec: + case 0xed: + *exitinfo |= IOIO_TYPE_IN; + port = ctxt->regs->dx & 0xffff; + break; + + /* OUT register opcodes */ + case 0xee: + case 0xef: + *exitinfo |= IOIO_TYPE_OUT; + port = ctxt->regs->dx & 0xffff; + break; + + default: + return ES_DECODE_FAILED; + } + + *exitinfo |= port << 16; + + switch (insn->opcode.bytes[0]) { + case 0x6c: + case 0x6e: + case 0xe4: + case 0xe6: + case 0xec: + case 0xee: + /* Single byte opcodes */ + *exitinfo |= IOIO_DATA_8; + size = 1; + break; + default: + /* Length determined by instruction parsing */ + *exitinfo |= (insn->opnd_bytes == 2) ? IOIO_DATA_16 + : IOIO_DATA_32; + size = (insn->opnd_bytes == 2) ? 2 : 4; + } + + switch (insn->addr_bytes) { + case 2: + *exitinfo |= IOIO_ADDR_16; + break; + case 4: + *exitinfo |= IOIO_ADDR_32; + break; + case 8: + *exitinfo |= IOIO_ADDR_64; + break; + } + + if (insn_has_rep_prefix(insn)) + *exitinfo |= IOIO_REP; + + return vc_ioio_check(ctxt, (u16)port, size); +} + +static enum es_result vc_handle_ioio(struct ghcb *ghcb, struct es_em_ctxt *ctxt) +{ + struct pt_regs *regs = ctxt->regs; + u64 exit_info_1, exit_info_2; + enum es_result ret; + + ret = vc_ioio_exitinfo(ctxt, &exit_info_1); + if (ret != ES_OK) + return ret; + + if (exit_info_1 & IOIO_TYPE_STR) { + + /* (REP) INS/OUTS */ + + bool df = ((regs->flags & X86_EFLAGS_DF) == X86_EFLAGS_DF); + unsigned int io_bytes, exit_bytes; + unsigned int ghcb_count, op_count; + unsigned long es_base; + u64 sw_scratch; + + /* + * For the string variants with rep prefix the amount of in/out + * operations per #VC exception is limited so that the kernel + * has a chance to take interrupts and re-schedule while the + * instruction is emulated. + */ + io_bytes = (exit_info_1 >> 4) & 0x7; + ghcb_count = sizeof(ghcb->shared_buffer) / io_bytes; + + op_count = (exit_info_1 & IOIO_REP) ? regs->cx : 1; + exit_info_2 = min(op_count, ghcb_count); + exit_bytes = exit_info_2 * io_bytes; + + es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES); + + /* Read bytes of OUTS into the shared buffer */ + if (!(exit_info_1 & IOIO_TYPE_IN)) { + ret = vc_insn_string_read(ctxt, + (void *)(es_base + regs->si), + ghcb->shared_buffer, io_bytes, + exit_info_2, df); + if (ret) + return ret; + } + + /* + * Issue an VMGEXIT to the HV to consume the bytes from the + * shared buffer or to have it write them into the shared buffer + * depending on the instruction: OUTS or INS. + */ + sw_scratch = __pa(ghcb) + offsetof(struct ghcb, shared_buffer); + ghcb_set_sw_scratch(ghcb, sw_scratch); + ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_IOIO, + exit_info_1, exit_info_2); + if (ret != ES_OK) + return ret; + + /* Read bytes from shared buffer into the guest's destination. */ + if (exit_info_1 & IOIO_TYPE_IN) { + ret = vc_insn_string_write(ctxt, + (void *)(es_base + regs->di), + ghcb->shared_buffer, io_bytes, + exit_info_2, df); + if (ret) + return ret; + + if (df) + regs->di -= exit_bytes; + else + regs->di += exit_bytes; + } else { + if (df) + regs->si -= exit_bytes; + else + regs->si += exit_bytes; + } + + if (exit_info_1 & IOIO_REP) + regs->cx -= exit_info_2; + + ret = regs->cx ? ES_RETRY : ES_OK; + + } else { + + /* IN/OUT into/from rAX */ + + int bits = (exit_info_1 & 0x70) >> 1; + u64 rax = 0; + + if (!(exit_info_1 & IOIO_TYPE_IN)) + rax = lower_bits(regs->ax, bits); + + ghcb_set_rax(ghcb, rax); + + ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_IOIO, exit_info_1, 0); + if (ret != ES_OK) + return ret; + + if (exit_info_1 & IOIO_TYPE_IN) { + if (!ghcb_rax_is_valid(ghcb)) + return ES_VMM_ERROR; + regs->ax = lower_bits(ghcb->save.rax, bits); + } + } + + return ret; +} + +static int vc_handle_cpuid_snp(struct ghcb *ghcb, struct es_em_ctxt *ctxt) +{ + struct pt_regs *regs = ctxt->regs; + struct cpuid_leaf leaf; + int ret; + + leaf.fn = regs->ax; + leaf.subfn = regs->cx; + ret = snp_cpuid(ghcb, ctxt, &leaf); + if (!ret) { + regs->ax = leaf.eax; + regs->bx = leaf.ebx; + regs->cx = leaf.ecx; + regs->dx = leaf.edx; + } + + return ret; +} + +static enum es_result vc_handle_cpuid(struct ghcb *ghcb, + struct es_em_ctxt *ctxt) +{ + struct pt_regs *regs = ctxt->regs; + u32 cr4 = native_read_cr4(); + enum es_result ret; + int snp_cpuid_ret; + + snp_cpuid_ret = vc_handle_cpuid_snp(ghcb, ctxt); + if (!snp_cpuid_ret) + return ES_OK; + if (snp_cpuid_ret != -EOPNOTSUPP) + return ES_VMM_ERROR; + + ghcb_set_rax(ghcb, regs->ax); + ghcb_set_rcx(ghcb, regs->cx); + + if (cr4 & X86_CR4_OSXSAVE) + /* Safe to read xcr0 */ + ghcb_set_xcr0(ghcb, xgetbv(XCR_XFEATURE_ENABLED_MASK)); + else + /* xgetbv will cause #GP - use reset value for xcr0 */ + ghcb_set_xcr0(ghcb, 1); + + ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_CPUID, 0, 0); + if (ret != ES_OK) + return ret; + + if (!(ghcb_rax_is_valid(ghcb) && + ghcb_rbx_is_valid(ghcb) && + ghcb_rcx_is_valid(ghcb) && + ghcb_rdx_is_valid(ghcb))) + return ES_VMM_ERROR; + + regs->ax = ghcb->save.rax; + regs->bx = ghcb->save.rbx; + regs->cx = ghcb->save.rcx; + regs->dx = ghcb->save.rdx; + + return ES_OK; +} + +static enum es_result vc_handle_rdtsc(struct ghcb *ghcb, + struct es_em_ctxt *ctxt, + unsigned long exit_code) +{ + bool rdtscp = (exit_code == SVM_EXIT_RDTSCP); + enum es_result ret; + + ret = sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, 0, 0); + if (ret != ES_OK) + return ret; + + if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb) && + (!rdtscp || ghcb_rcx_is_valid(ghcb)))) + return ES_VMM_ERROR; + + ctxt->regs->ax = ghcb->save.rax; + ctxt->regs->dx = ghcb->save.rdx; + if (rdtscp) + ctxt->regs->cx = ghcb->save.rcx; + + return ES_OK; +} + +struct cc_setup_data { + struct setup_data header; + u32 cc_blob_address; +}; + +/* + * Search for a Confidential Computing blob passed in as a setup_data entry + * via the Linux Boot Protocol. + */ +static __head +struct cc_blob_sev_info *find_cc_blob_setup_data(struct boot_params *bp) +{ + struct cc_setup_data *sd = NULL; + struct setup_data *hdr; + + hdr = (struct setup_data *)bp->hdr.setup_data; + + while (hdr) { + if (hdr->type == SETUP_CC_BLOB) { + sd = (struct cc_setup_data *)hdr; + return (struct cc_blob_sev_info *)(unsigned long)sd->cc_blob_address; + } + hdr = (struct setup_data *)hdr->next; + } + + return NULL; +} + +/* + * Initialize the kernel's copy of the SNP CPUID table, and set up the + * pointer that will be used to access it. + * + * Maintaining a direct mapping of the SNP CPUID table used by firmware would + * be possible as an alternative, but the approach is brittle since the + * mapping needs to be updated in sync with all the changes to virtual memory + * layout and related mapping facilities throughout the boot process. + */ +static void __head setup_cpuid_table(const struct cc_blob_sev_info *cc_info) +{ + const struct snp_cpuid_table *cpuid_table_fw, *cpuid_table; + int i; + + if (!cc_info || !cc_info->cpuid_phys || cc_info->cpuid_len < PAGE_SIZE) + sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_CPUID); + + cpuid_table_fw = (const struct snp_cpuid_table *)cc_info->cpuid_phys; + if (!cpuid_table_fw->count || cpuid_table_fw->count > SNP_CPUID_COUNT_MAX) + sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_CPUID); + + cpuid_table = snp_cpuid_get_table(); + memcpy((void *)cpuid_table, cpuid_table_fw, sizeof(*cpuid_table)); + + /* Initialize CPUID ranges for range-checking. */ + for (i = 0; i < cpuid_table->count; i++) { + const struct snp_cpuid_fn *fn = &cpuid_table->fn[i]; + + if (fn->eax_in == 0x0) + RIP_REL_REF(cpuid_std_range_max) = fn->eax; + else if (fn->eax_in == 0x40000000) + RIP_REL_REF(cpuid_hyp_range_max) = fn->eax; + else if (fn->eax_in == 0x80000000) + RIP_REL_REF(cpuid_ext_range_max) = fn->eax; + } +} + +static inline void __pval_terminate(u64 pfn, bool action, unsigned int page_size, + int ret, u64 svsm_ret) +{ + WARN(1, "PVALIDATE failure: pfn: 0x%llx, action: %u, size: %u, ret: %d, svsm_ret: 0x%llx\n", + pfn, action, page_size, ret, svsm_ret); + + sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PVALIDATE); +} + +static void svsm_pval_terminate(struct svsm_pvalidate_call *pc, int ret, u64 svsm_ret) +{ + unsigned int page_size; + bool action; + u64 pfn; + + pfn = pc->entry[pc->cur_index].pfn; + action = pc->entry[pc->cur_index].action; + page_size = pc->entry[pc->cur_index].page_size; + + __pval_terminate(pfn, action, page_size, ret, svsm_ret); +} + +static void svsm_pval_4k_page(unsigned long paddr, bool validate) +{ + struct svsm_pvalidate_call *pc; + struct svsm_call call = {}; + unsigned long flags; + u64 pc_pa; + int ret; + + /* + * This can be called very early in the boot, use native functions in + * order to avoid paravirt issues. + */ + flags = native_local_irq_save(); + + call.caa = svsm_get_caa(); + + pc = (struct svsm_pvalidate_call *)call.caa->svsm_buffer; + pc_pa = svsm_get_caa_pa() + offsetof(struct svsm_ca, svsm_buffer); + + pc->num_entries = 1; + pc->cur_index = 0; + pc->entry[0].page_size = RMP_PG_SIZE_4K; + pc->entry[0].action = validate; + pc->entry[0].ignore_cf = 0; + pc->entry[0].pfn = paddr >> PAGE_SHIFT; + + /* Protocol 0, Call ID 1 */ + call.rax = SVSM_CORE_CALL(SVSM_CORE_PVALIDATE); + call.rcx = pc_pa; + + ret = svsm_perform_call_protocol(&call); + if (ret) + svsm_pval_terminate(pc, ret, call.rax_out); + + native_local_irq_restore(flags); +} + +static void pvalidate_4k_page(unsigned long vaddr, unsigned long paddr, bool validate) +{ + int ret; + + /* + * This can be called very early during boot, so use rIP-relative + * references as needed. + */ + if (RIP_REL_REF(snp_vmpl)) { + svsm_pval_4k_page(paddr, validate); + } else { + ret = pvalidate(vaddr, RMP_PG_SIZE_4K, validate); + if (ret) + __pval_terminate(PHYS_PFN(paddr), validate, RMP_PG_SIZE_4K, ret, 0); + } +} + +static void pval_pages(struct snp_psc_desc *desc) +{ + struct psc_entry *e; + unsigned long vaddr; + unsigned int size; + unsigned int i; + bool validate; + u64 pfn; + int rc; + + for (i = 0; i <= desc->hdr.end_entry; i++) { + e = &desc->entries[i]; + + pfn = e->gfn; + vaddr = (unsigned long)pfn_to_kaddr(pfn); + size = e->pagesize ? RMP_PG_SIZE_2M : RMP_PG_SIZE_4K; + validate = e->operation == SNP_PAGE_STATE_PRIVATE; + + rc = pvalidate(vaddr, size, validate); + if (!rc) + continue; + + if (rc == PVALIDATE_FAIL_SIZEMISMATCH && size == RMP_PG_SIZE_2M) { + unsigned long vaddr_end = vaddr + PMD_SIZE; + + for (; vaddr < vaddr_end; vaddr += PAGE_SIZE, pfn++) { + rc = pvalidate(vaddr, RMP_PG_SIZE_4K, validate); + if (rc) + __pval_terminate(pfn, validate, RMP_PG_SIZE_4K, rc, 0); + } + } else { + __pval_terminate(pfn, validate, size, rc, 0); + } + } +} + +static u64 svsm_build_ca_from_pfn_range(u64 pfn, u64 pfn_end, bool action, + struct svsm_pvalidate_call *pc) +{ + struct svsm_pvalidate_entry *pe; + + /* Nothing in the CA yet */ + pc->num_entries = 0; + pc->cur_index = 0; + + pe = &pc->entry[0]; + + while (pfn < pfn_end) { + pe->page_size = RMP_PG_SIZE_4K; + pe->action = action; + pe->ignore_cf = 0; + pe->pfn = pfn; + + pe++; + pfn++; + + pc->num_entries++; + if (pc->num_entries == SVSM_PVALIDATE_MAX_COUNT) + break; + } + + return pfn; +} + +static int svsm_build_ca_from_psc_desc(struct snp_psc_desc *desc, unsigned int desc_entry, + struct svsm_pvalidate_call *pc) +{ + struct svsm_pvalidate_entry *pe; + struct psc_entry *e; + + /* Nothing in the CA yet */ + pc->num_entries = 0; + pc->cur_index = 0; + + pe = &pc->entry[0]; + e = &desc->entries[desc_entry]; + + while (desc_entry <= desc->hdr.end_entry) { + pe->page_size = e->pagesize ? RMP_PG_SIZE_2M : RMP_PG_SIZE_4K; + pe->action = e->operation == SNP_PAGE_STATE_PRIVATE; + pe->ignore_cf = 0; + pe->pfn = e->gfn; + + pe++; + e++; + + desc_entry++; + pc->num_entries++; + if (pc->num_entries == SVSM_PVALIDATE_MAX_COUNT) + break; + } + + return desc_entry; +} + +static void svsm_pval_pages(struct snp_psc_desc *desc) +{ + struct svsm_pvalidate_entry pv_4k[VMGEXIT_PSC_MAX_ENTRY]; + unsigned int i, pv_4k_count = 0; + struct svsm_pvalidate_call *pc; + struct svsm_call call = {}; + unsigned long flags; + bool action; + u64 pc_pa; + int ret; + + /* + * This can be called very early in the boot, use native functions in + * order to avoid paravirt issues. + */ + flags = native_local_irq_save(); + + /* + * The SVSM calling area (CA) can support processing 510 entries at a + * time. Loop through the Page State Change descriptor until the CA is + * full or the last entry in the descriptor is reached, at which time + * the SVSM is invoked. This repeats until all entries in the descriptor + * are processed. + */ + call.caa = svsm_get_caa(); + + pc = (struct svsm_pvalidate_call *)call.caa->svsm_buffer; + pc_pa = svsm_get_caa_pa() + offsetof(struct svsm_ca, svsm_buffer); + + /* Protocol 0, Call ID 1 */ + call.rax = SVSM_CORE_CALL(SVSM_CORE_PVALIDATE); + call.rcx = pc_pa; + + for (i = 0; i <= desc->hdr.end_entry;) { + i = svsm_build_ca_from_psc_desc(desc, i, pc); + + do { + ret = svsm_perform_call_protocol(&call); + if (!ret) + continue; + + /* + * Check if the entry failed because of an RMP mismatch (a + * PVALIDATE at 2M was requested, but the page is mapped in + * the RMP as 4K). + */ + + if (call.rax_out == SVSM_PVALIDATE_FAIL_SIZEMISMATCH && + pc->entry[pc->cur_index].page_size == RMP_PG_SIZE_2M) { + /* Save this entry for post-processing at 4K */ + pv_4k[pv_4k_count++] = pc->entry[pc->cur_index]; + + /* Skip to the next one unless at the end of the list */ + pc->cur_index++; + if (pc->cur_index < pc->num_entries) + ret = -EAGAIN; + else + ret = 0; + } + } while (ret == -EAGAIN); + + if (ret) + svsm_pval_terminate(pc, ret, call.rax_out); + } + + /* Process any entries that failed to be validated at 2M and validate them at 4K */ + for (i = 0; i < pv_4k_count; i++) { + u64 pfn, pfn_end; + + action = pv_4k[i].action; + pfn = pv_4k[i].pfn; + pfn_end = pfn + 512; + + while (pfn < pfn_end) { + pfn = svsm_build_ca_from_pfn_range(pfn, pfn_end, action, pc); + + ret = svsm_perform_call_protocol(&call); + if (ret) + svsm_pval_terminate(pc, ret, call.rax_out); + } + } + + native_local_irq_restore(flags); +} + +static void pvalidate_pages(struct snp_psc_desc *desc) +{ + if (snp_vmpl) + svsm_pval_pages(desc); + else + pval_pages(desc); +} + +static int vmgexit_psc(struct ghcb *ghcb, struct snp_psc_desc *desc) +{ + int cur_entry, end_entry, ret = 0; + struct snp_psc_desc *data; + struct es_em_ctxt ctxt; + + vc_ghcb_invalidate(ghcb); + + /* Copy the input desc into GHCB shared buffer */ + data = (struct snp_psc_desc *)ghcb->shared_buffer; + memcpy(ghcb->shared_buffer, desc, min_t(int, GHCB_SHARED_BUF_SIZE, sizeof(*desc))); + + /* + * As per the GHCB specification, the hypervisor can resume the guest + * before processing all the entries. Check whether all the entries + * are processed. If not, then keep retrying. Note, the hypervisor + * will update the data memory directly to indicate the status, so + * reference the data->hdr everywhere. + * + * The strategy here is to wait for the hypervisor to change the page + * state in the RMP table before guest accesses the memory pages. If the + * page state change was not successful, then later memory access will + * result in a crash. + */ + cur_entry = data->hdr.cur_entry; + end_entry = data->hdr.end_entry; + + while (data->hdr.cur_entry <= data->hdr.end_entry) { + ghcb_set_sw_scratch(ghcb, (u64)__pa(data)); + + /* This will advance the shared buffer data points to. */ + ret = sev_es_ghcb_hv_call(ghcb, &ctxt, SVM_VMGEXIT_PSC, 0, 0); + + /* + * Page State Change VMGEXIT can pass error code through + * exit_info_2. + */ + if (WARN(ret || ghcb->save.sw_exit_info_2, + "SNP: PSC failed ret=%d exit_info_2=%llx\n", + ret, ghcb->save.sw_exit_info_2)) { + ret = 1; + goto out; + } + + /* Verify that reserved bit is not set */ + if (WARN(data->hdr.reserved, "Reserved bit is set in the PSC header\n")) { + ret = 1; + goto out; + } + + /* + * Sanity check that entry processing is not going backwards. + * This will happen only if hypervisor is tricking us. + */ + if (WARN(data->hdr.end_entry > end_entry || cur_entry > data->hdr.cur_entry, +"SNP: PSC processing going backward, end_entry %d (got %d) cur_entry %d (got %d)\n", + end_entry, data->hdr.end_entry, cur_entry, data->hdr.cur_entry)) { + ret = 1; + goto out; + } + } + +out: + return ret; +} + +static enum es_result vc_check_opcode_bytes(struct es_em_ctxt *ctxt, + unsigned long exit_code) +{ + unsigned int opcode = (unsigned int)ctxt->insn.opcode.value; + u8 modrm = ctxt->insn.modrm.value; + + switch (exit_code) { + + case SVM_EXIT_IOIO: + case SVM_EXIT_NPF: + /* handled separately */ + return ES_OK; + + case SVM_EXIT_CPUID: + if (opcode == 0xa20f) + return ES_OK; + break; + + case SVM_EXIT_INVD: + if (opcode == 0x080f) + return ES_OK; + break; + + case SVM_EXIT_MONITOR: + /* MONITOR and MONITORX instructions generate the same error code */ + if (opcode == 0x010f && (modrm == 0xc8 || modrm == 0xfa)) + return ES_OK; + break; + + case SVM_EXIT_MWAIT: + /* MWAIT and MWAITX instructions generate the same error code */ + if (opcode == 0x010f && (modrm == 0xc9 || modrm == 0xfb)) + return ES_OK; + break; + + case SVM_EXIT_MSR: + /* RDMSR */ + if (opcode == 0x320f || + /* WRMSR */ + opcode == 0x300f) + return ES_OK; + break; + + case SVM_EXIT_RDPMC: + if (opcode == 0x330f) + return ES_OK; + break; + + case SVM_EXIT_RDTSC: + if (opcode == 0x310f) + return ES_OK; + break; + + case SVM_EXIT_RDTSCP: + if (opcode == 0x010f && modrm == 0xf9) + return ES_OK; + break; + + case SVM_EXIT_READ_DR7: + if (opcode == 0x210f && + X86_MODRM_REG(ctxt->insn.modrm.value) == 7) + return ES_OK; + break; + + case SVM_EXIT_VMMCALL: + if (opcode == 0x010f && modrm == 0xd9) + return ES_OK; + + break; + + case SVM_EXIT_WRITE_DR7: + if (opcode == 0x230f && + X86_MODRM_REG(ctxt->insn.modrm.value) == 7) + return ES_OK; + break; + + case SVM_EXIT_WBINVD: + if (opcode == 0x90f) + return ES_OK; + break; + + default: + break; + } + + sev_printk(KERN_ERR "Wrong/unhandled opcode bytes: 0x%x, exit_code: 0x%lx, rIP: 0x%lx\n", + opcode, exit_code, ctxt->regs->ip); + + return ES_UNSUPPORTED; +} + +/* + * Maintain the GPA of the SVSM Calling Area (CA) in order to utilize the SVSM + * services needed when not running in VMPL0. + */ +static bool __head svsm_setup_ca(const struct cc_blob_sev_info *cc_info) +{ + struct snp_secrets_page *secrets_page; + struct snp_cpuid_table *cpuid_table; + unsigned int i; + u64 caa; + + BUILD_BUG_ON(sizeof(*secrets_page) != PAGE_SIZE); + + /* + * Check if running at VMPL0. + * + * Use RMPADJUST (see the rmpadjust() function for a description of what + * the instruction does) to update the VMPL1 permissions of a page. If + * the guest is running at VMPL0, this will succeed and implies there is + * no SVSM. If the guest is running at any other VMPL, this will fail. + * Linux SNP guests only ever run at a single VMPL level so permission mask + * changes of a lesser-privileged VMPL are a don't-care. + * + * Use a rip-relative reference to obtain the proper address, since this + * routine is running identity mapped when called, both by the decompressor + * code and the early kernel code. + */ + if (!rmpadjust((unsigned long)&RIP_REL_REF(boot_ghcb_page), RMP_PG_SIZE_4K, 1)) + return false; + + /* + * Not running at VMPL0, ensure everything has been properly supplied + * for running under an SVSM. + */ + if (!cc_info || !cc_info->secrets_phys || cc_info->secrets_len != PAGE_SIZE) + sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_SECRETS_PAGE); + + secrets_page = (struct snp_secrets_page *)cc_info->secrets_phys; + if (!secrets_page->svsm_size) + sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_NO_SVSM); + + if (!secrets_page->svsm_guest_vmpl) + sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_SVSM_VMPL0); + + RIP_REL_REF(snp_vmpl) = secrets_page->svsm_guest_vmpl; + + caa = secrets_page->svsm_caa; + + /* + * An open-coded PAGE_ALIGNED() in order to avoid including + * kernel-proper headers into the decompressor. + */ + if (caa & (PAGE_SIZE - 1)) + sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_SVSM_CAA); + + /* + * The CA is identity mapped when this routine is called, both by the + * decompressor code and the early kernel code. + */ + RIP_REL_REF(boot_svsm_caa) = (struct svsm_ca *)caa; + RIP_REL_REF(boot_svsm_caa_pa) = caa; + + /* Advertise the SVSM presence via CPUID. */ + cpuid_table = (struct snp_cpuid_table *)snp_cpuid_get_table(); + for (i = 0; i < cpuid_table->count; i++) { + struct snp_cpuid_fn *fn = &cpuid_table->fn[i]; + + if (fn->eax_in == 0x8000001f) + fn->eax |= BIT(28); + } + + return true; +} |