summaryrefslogtreecommitdiffstats
path: root/arch/x86/events/amd
diff options
context:
space:
mode:
authorPeter Zijlstra <peterz@infradead.org>2022-10-08 08:24:24 +0200
committerPeter Zijlstra <peterz@infradead.org>2022-10-27 20:12:16 +0200
commitbd27568117664b8b3e259721393df420ed51f57b (patch)
treef87b8d9e35a7a1bdd058c43e49371e6f39b2037b /arch/x86/events/amd
parentLinux 6.1-rc2 (diff)
downloadlinux-bd27568117664b8b3e259721393df420ed51f57b.tar.xz
linux-bd27568117664b8b3e259721393df420ed51f57b.zip
perf: Rewrite core context handling
There have been various issues and limitations with the way perf uses (task) contexts to track events. Most notable is the single hardware PMU task context, which has resulted in a number of yucky things (both proposed and merged). Notably: - HW breakpoint PMU - ARM big.little PMU / Intel ADL PMU - Intel Branch Monitoring PMU - AMD IBS PMU - S390 cpum_cf PMU - PowerPC trace_imc PMU *Current design:* Currently we have a per task and per cpu perf_event_contexts: task_struct::perf_events_ctxp[] <-> perf_event_context <-> perf_cpu_context ^ | ^ | ^ `---------------------------------' | `--> pmu ---' v ^ perf_event ------' Each task has an array of pointers to a perf_event_context. Each perf_event_context has a direct relation to a PMU and a group of events for that PMU. The task related perf_event_context's have a pointer back to that task. Each PMU has a per-cpu pointer to a per-cpu perf_cpu_context, which includes a perf_event_context, which again has a direct relation to that PMU, and a group of events for that PMU. The perf_cpu_context also tracks which task context is currently associated with that CPU and includes a few other things like the hrtimer for rotation etc. Each perf_event is then associated with its PMU and one perf_event_context. *Proposed design:* New design proposed by this patch reduce to a single task context and a single CPU context but adds some intermediate data-structures: task_struct::perf_event_ctxp -> perf_event_context <- perf_cpu_context ^ | ^ ^ `---------------------------' | | | | perf_cpu_pmu_context <--. | `----. ^ | | | | | | v v | | ,--> perf_event_pmu_context | | | | | | | v v | perf_event ---> pmu ----------------' With the new design, perf_event_context will hold all events for all pmus in the (respective pinned/flexible) rbtrees. This can be achieved by adding pmu to rbtree key: {cpu, pmu, cgroup, group_index} Each perf_event_context carries a list of perf_event_pmu_context which is used to hold per-pmu-per-context state. For example, it keeps track of currently active events for that pmu, a pmu specific task_ctx_data, a flag to tell whether rotation is required or not etc. Additionally, perf_cpu_pmu_context is used to hold per-pmu-per-cpu state like hrtimer details to drive the event rotation, a pointer to perf_event_pmu_context of currently running task and some other ancillary information. Each perf_event is associated to it's pmu, perf_event_context and perf_event_pmu_context. Further optimizations to current implementation are possible. For example, ctx_resched() can be optimized to reschedule only single pmu events. Much thanks to Ravi for picking this up and pushing it towards completion. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Co-developed-by: Ravi Bangoria <ravi.bangoria@amd.com> Signed-off-by: Ravi Bangoria <ravi.bangoria@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20221008062424.313-1-ravi.bangoria@amd.com
Diffstat (limited to 'arch/x86/events/amd')
-rw-r--r--arch/x86/events/amd/brs.c2
-rw-r--r--arch/x86/events/amd/lbr.c6
2 files changed, 4 insertions, 4 deletions
diff --git a/arch/x86/events/amd/brs.c b/arch/x86/events/amd/brs.c
index f1bff153d945..58461fa18b6f 100644
--- a/arch/x86/events/amd/brs.c
+++ b/arch/x86/events/amd/brs.c
@@ -384,7 +384,7 @@ static void amd_brs_poison_buffer(void)
* On ctxswin, sched_in = true, called after the PMU has started
* On ctxswout, sched_in = false, called before the PMU is stopped
*/
-void amd_pmu_brs_sched_task(struct perf_event_context *ctx, bool sched_in)
+void amd_pmu_brs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
diff --git a/arch/x86/events/amd/lbr.c b/arch/x86/events/amd/lbr.c
index 38a75216c12c..eb31f850841a 100644
--- a/arch/x86/events/amd/lbr.c
+++ b/arch/x86/events/amd/lbr.c
@@ -352,7 +352,7 @@ void amd_pmu_lbr_add(struct perf_event *event)
cpuc->br_sel = reg->reg;
}
- perf_sched_cb_inc(event->ctx->pmu);
+ perf_sched_cb_inc(event->pmu);
if (!cpuc->lbr_users++ && !event->total_time_running)
amd_pmu_lbr_reset();
@@ -370,10 +370,10 @@ void amd_pmu_lbr_del(struct perf_event *event)
cpuc->lbr_users--;
WARN_ON_ONCE(cpuc->lbr_users < 0);
- perf_sched_cb_dec(event->ctx->pmu);
+ perf_sched_cb_dec(event->pmu);
}
-void amd_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in)
+void amd_pmu_lbr_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);