diff options
author | Suresh Siddha <suresh.b.siddha@intel.com> | 2012-09-20 20:01:49 +0200 |
---|---|---|
committer | H. Peter Anvin <hpa@linux.intel.com> | 2012-09-22 01:59:04 +0200 |
commit | b1a74bf8212367be2b1d6685c11a84e056eaaaf1 (patch) | |
tree | 598eafb9d082cd7ba4d6299dc63bd3511963186d /arch/x86/include | |
parent | x86, fpu: remove cpu_has_xmm check in the fx_finit() (diff) | |
download | linux-b1a74bf8212367be2b1d6685c11a84e056eaaaf1.tar.xz linux-b1a74bf8212367be2b1d6685c11a84e056eaaaf1.zip |
x86, kvm: fix kvm's usage of kernel_fpu_begin/end()
Preemption is disabled between kernel_fpu_begin/end() and as such
it is not a good idea to use these routines in kvm_load/put_guest_fpu()
which can be very far apart.
kvm_load/put_guest_fpu() routines are already called with
preemption disabled and KVM already uses the preempt notifier to save
the guest fpu state using kvm_put_guest_fpu().
So introduce __kernel_fpu_begin/end() routines which don't touch
preemption and use them instead of kernel_fpu_begin/end()
for KVM's use model of saving/restoring guest FPU state.
Also with this change (and with eagerFPU model), fix the host cr0.TS vm-exit
state in the case of VMX. For eagerFPU case, host cr0.TS is always clear.
So no need to worry about it. For the traditional lazyFPU restore case,
change the cr0.TS bit for the host state during vm-exit to be always clear
and cr0.TS bit is set in the __vmx_load_host_state() when the FPU
(guest FPU or the host task's FPU) state is not active. This ensures
that the host/guest FPU state is properly saved, restored
during context-switch and with interrupts (using irq_fpu_usable()) not
stomping on the active FPU state.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1348164109.26695.338.camel@sbsiddha-desk.sc.intel.com
Cc: Avi Kivity <avi@redhat.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Diffstat (limited to 'arch/x86/include')
-rw-r--r-- | arch/x86/include/asm/i387.h | 28 |
1 files changed, 26 insertions, 2 deletions
diff --git a/arch/x86/include/asm/i387.h b/arch/x86/include/asm/i387.h index 6c3bd3782818..ed8089d69094 100644 --- a/arch/x86/include/asm/i387.h +++ b/arch/x86/include/asm/i387.h @@ -24,8 +24,32 @@ extern int dump_fpu(struct pt_regs *, struct user_i387_struct *); extern void math_state_restore(void); extern bool irq_fpu_usable(void); -extern void kernel_fpu_begin(void); -extern void kernel_fpu_end(void); + +/* + * Careful: __kernel_fpu_begin/end() must be called with preempt disabled + * and they don't touch the preempt state on their own. + * If you enable preemption after __kernel_fpu_begin(), preempt notifier + * should call the __kernel_fpu_end() to prevent the kernel/user FPU + * state from getting corrupted. KVM for example uses this model. + * + * All other cases use kernel_fpu_begin/end() which disable preemption + * during kernel FPU usage. + */ +extern void __kernel_fpu_begin(void); +extern void __kernel_fpu_end(void); + +static inline void kernel_fpu_begin(void) +{ + WARN_ON_ONCE(!irq_fpu_usable()); + preempt_disable(); + __kernel_fpu_begin(); +} + +static inline void kernel_fpu_end(void) +{ + __kernel_fpu_end(); + preempt_enable(); +} /* * Some instructions like VIA's padlock instructions generate a spurious |