summaryrefslogtreecommitdiffstats
path: root/arch/x86/kvm/mmu.c
diff options
context:
space:
mode:
authorPaolo Bonzini <pbonzini@redhat.com>2019-11-21 10:45:07 +0100
committerPaolo Bonzini <pbonzini@redhat.com>2019-11-21 12:03:50 +0100
commitc50d8ae3a1274f32c9033bbb0e1c5b3115da2112 (patch)
treeea3c1611243a67c029590a241f07bc5f0796962c /arch/x86/kvm/mmu.c
parentKVM: nVMX: Remove unnecessary TLB flushes on L1<->L2 switches when L1 use api... (diff)
downloadlinux-c50d8ae3a1274f32c9033bbb0e1c5b3115da2112.tar.xz
linux-c50d8ae3a1274f32c9033bbb0e1c5b3115da2112.zip
KVM: x86: create mmu/ subdirectory
Preparatory work for shattering mmu.c into multiple files. Besides making it easier to follow, this will also make it possible to write unit tests for various parts. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Diffstat (limited to 'arch/x86/kvm/mmu.c')
-rw-r--r--arch/x86/kvm/mmu.c6502
1 files changed, 0 insertions, 6502 deletions
diff --git a/arch/x86/kvm/mmu.c b/arch/x86/kvm/mmu.c
deleted file mode 100644
index 6f92b40d798c..000000000000
--- a/arch/x86/kvm/mmu.c
+++ /dev/null
@@ -1,6502 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-only
-/*
- * Kernel-based Virtual Machine driver for Linux
- *
- * This module enables machines with Intel VT-x extensions to run virtual
- * machines without emulation or binary translation.
- *
- * MMU support
- *
- * Copyright (C) 2006 Qumranet, Inc.
- * Copyright 2010 Red Hat, Inc. and/or its affiliates.
- *
- * Authors:
- * Yaniv Kamay <yaniv@qumranet.com>
- * Avi Kivity <avi@qumranet.com>
- */
-
-#include "irq.h"
-#include "mmu.h"
-#include "x86.h"
-#include "kvm_cache_regs.h"
-#include "cpuid.h"
-
-#include <linux/kvm_host.h>
-#include <linux/types.h>
-#include <linux/string.h>
-#include <linux/mm.h>
-#include <linux/highmem.h>
-#include <linux/moduleparam.h>
-#include <linux/export.h>
-#include <linux/swap.h>
-#include <linux/hugetlb.h>
-#include <linux/compiler.h>
-#include <linux/srcu.h>
-#include <linux/slab.h>
-#include <linux/sched/signal.h>
-#include <linux/uaccess.h>
-#include <linux/hash.h>
-#include <linux/kern_levels.h>
-#include <linux/kthread.h>
-
-#include <asm/page.h>
-#include <asm/pat.h>
-#include <asm/cmpxchg.h>
-#include <asm/e820/api.h>
-#include <asm/io.h>
-#include <asm/vmx.h>
-#include <asm/kvm_page_track.h>
-#include "trace.h"
-
-extern bool itlb_multihit_kvm_mitigation;
-
-static int __read_mostly nx_huge_pages = -1;
-#ifdef CONFIG_PREEMPT_RT
-/* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
-static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
-#else
-static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
-#endif
-
-static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
-static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
-
-static struct kernel_param_ops nx_huge_pages_ops = {
- .set = set_nx_huge_pages,
- .get = param_get_bool,
-};
-
-static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
- .set = set_nx_huge_pages_recovery_ratio,
- .get = param_get_uint,
-};
-
-module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
-__MODULE_PARM_TYPE(nx_huge_pages, "bool");
-module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
- &nx_huge_pages_recovery_ratio, 0644);
-__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
-
-/*
- * When setting this variable to true it enables Two-Dimensional-Paging
- * where the hardware walks 2 page tables:
- * 1. the guest-virtual to guest-physical
- * 2. while doing 1. it walks guest-physical to host-physical
- * If the hardware supports that we don't need to do shadow paging.
- */
-bool tdp_enabled = false;
-
-enum {
- AUDIT_PRE_PAGE_FAULT,
- AUDIT_POST_PAGE_FAULT,
- AUDIT_PRE_PTE_WRITE,
- AUDIT_POST_PTE_WRITE,
- AUDIT_PRE_SYNC,
- AUDIT_POST_SYNC
-};
-
-#undef MMU_DEBUG
-
-#ifdef MMU_DEBUG
-static bool dbg = 0;
-module_param(dbg, bool, 0644);
-
-#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
-#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
-#define MMU_WARN_ON(x) WARN_ON(x)
-#else
-#define pgprintk(x...) do { } while (0)
-#define rmap_printk(x...) do { } while (0)
-#define MMU_WARN_ON(x) do { } while (0)
-#endif
-
-#define PTE_PREFETCH_NUM 8
-
-#define PT_FIRST_AVAIL_BITS_SHIFT 10
-#define PT64_SECOND_AVAIL_BITS_SHIFT 54
-
-/*
- * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
- * Access Tracking SPTEs.
- */
-#define SPTE_SPECIAL_MASK (3ULL << 52)
-#define SPTE_AD_ENABLED_MASK (0ULL << 52)
-#define SPTE_AD_DISABLED_MASK (1ULL << 52)
-#define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
-#define SPTE_MMIO_MASK (3ULL << 52)
-
-#define PT64_LEVEL_BITS 9
-
-#define PT64_LEVEL_SHIFT(level) \
- (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
-
-#define PT64_INDEX(address, level)\
- (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
-
-
-#define PT32_LEVEL_BITS 10
-
-#define PT32_LEVEL_SHIFT(level) \
- (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
-
-#define PT32_LVL_OFFSET_MASK(level) \
- (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
- * PT32_LEVEL_BITS))) - 1))
-
-#define PT32_INDEX(address, level)\
- (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
-
-
-#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
-#define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
-#else
-#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
-#endif
-#define PT64_LVL_ADDR_MASK(level) \
- (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
- * PT64_LEVEL_BITS))) - 1))
-#define PT64_LVL_OFFSET_MASK(level) \
- (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
- * PT64_LEVEL_BITS))) - 1))
-
-#define PT32_BASE_ADDR_MASK PAGE_MASK
-#define PT32_DIR_BASE_ADDR_MASK \
- (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
-#define PT32_LVL_ADDR_MASK(level) \
- (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
- * PT32_LEVEL_BITS))) - 1))
-
-#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
- | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
-
-#define ACC_EXEC_MASK 1
-#define ACC_WRITE_MASK PT_WRITABLE_MASK
-#define ACC_USER_MASK PT_USER_MASK
-#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
-
-/* The mask for the R/X bits in EPT PTEs */
-#define PT64_EPT_READABLE_MASK 0x1ull
-#define PT64_EPT_EXECUTABLE_MASK 0x4ull
-
-#include <trace/events/kvm.h>
-
-#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
-#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
-
-#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
-
-/* make pte_list_desc fit well in cache line */
-#define PTE_LIST_EXT 3
-
-/*
- * Return values of handle_mmio_page_fault and mmu.page_fault:
- * RET_PF_RETRY: let CPU fault again on the address.
- * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
- *
- * For handle_mmio_page_fault only:
- * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
- */
-enum {
- RET_PF_RETRY = 0,
- RET_PF_EMULATE = 1,
- RET_PF_INVALID = 2,
-};
-
-struct pte_list_desc {
- u64 *sptes[PTE_LIST_EXT];
- struct pte_list_desc *more;
-};
-
-struct kvm_shadow_walk_iterator {
- u64 addr;
- hpa_t shadow_addr;
- u64 *sptep;
- int level;
- unsigned index;
-};
-
-static const union kvm_mmu_page_role mmu_base_role_mask = {
- .cr0_wp = 1,
- .gpte_is_8_bytes = 1,
- .nxe = 1,
- .smep_andnot_wp = 1,
- .smap_andnot_wp = 1,
- .smm = 1,
- .guest_mode = 1,
- .ad_disabled = 1,
-};
-
-#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
- for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
- (_root), (_addr)); \
- shadow_walk_okay(&(_walker)); \
- shadow_walk_next(&(_walker)))
-
-#define for_each_shadow_entry(_vcpu, _addr, _walker) \
- for (shadow_walk_init(&(_walker), _vcpu, _addr); \
- shadow_walk_okay(&(_walker)); \
- shadow_walk_next(&(_walker)))
-
-#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
- for (shadow_walk_init(&(_walker), _vcpu, _addr); \
- shadow_walk_okay(&(_walker)) && \
- ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
- __shadow_walk_next(&(_walker), spte))
-
-static struct kmem_cache *pte_list_desc_cache;
-static struct kmem_cache *mmu_page_header_cache;
-static struct percpu_counter kvm_total_used_mmu_pages;
-
-static u64 __read_mostly shadow_nx_mask;
-static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
-static u64 __read_mostly shadow_user_mask;
-static u64 __read_mostly shadow_accessed_mask;
-static u64 __read_mostly shadow_dirty_mask;
-static u64 __read_mostly shadow_mmio_mask;
-static u64 __read_mostly shadow_mmio_value;
-static u64 __read_mostly shadow_mmio_access_mask;
-static u64 __read_mostly shadow_present_mask;
-static u64 __read_mostly shadow_me_mask;
-
-/*
- * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
- * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
- * pages.
- */
-static u64 __read_mostly shadow_acc_track_mask;
-
-/*
- * The mask/shift to use for saving the original R/X bits when marking the PTE
- * as not-present for access tracking purposes. We do not save the W bit as the
- * PTEs being access tracked also need to be dirty tracked, so the W bit will be
- * restored only when a write is attempted to the page.
- */
-static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
- PT64_EPT_EXECUTABLE_MASK;
-static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
-
-/*
- * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
- * to guard against L1TF attacks.
- */
-static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
-
-/*
- * The number of high-order 1 bits to use in the mask above.
- */
-static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
-
-/*
- * In some cases, we need to preserve the GFN of a non-present or reserved
- * SPTE when we usurp the upper five bits of the physical address space to
- * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll
- * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
- * left into the reserved bits, i.e. the GFN in the SPTE will be split into
- * high and low parts. This mask covers the lower bits of the GFN.
- */
-static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
-
-/*
- * The number of non-reserved physical address bits irrespective of features
- * that repurpose legal bits, e.g. MKTME.
- */
-static u8 __read_mostly shadow_phys_bits;
-
-static void mmu_spte_set(u64 *sptep, u64 spte);
-static bool is_executable_pte(u64 spte);
-static union kvm_mmu_page_role
-kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
-
-#define CREATE_TRACE_POINTS
-#include "mmutrace.h"
-
-
-static inline bool kvm_available_flush_tlb_with_range(void)
-{
- return kvm_x86_ops->tlb_remote_flush_with_range;
-}
-
-static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
- struct kvm_tlb_range *range)
-{
- int ret = -ENOTSUPP;
-
- if (range && kvm_x86_ops->tlb_remote_flush_with_range)
- ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range);
-
- if (ret)
- kvm_flush_remote_tlbs(kvm);
-}
-
-static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
- u64 start_gfn, u64 pages)
-{
- struct kvm_tlb_range range;
-
- range.start_gfn = start_gfn;
- range.pages = pages;
-
- kvm_flush_remote_tlbs_with_range(kvm, &range);
-}
-
-void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value, u64 access_mask)
-{
- BUG_ON((u64)(unsigned)access_mask != access_mask);
- BUG_ON((mmio_mask & mmio_value) != mmio_value);
- shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
- shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
- shadow_mmio_access_mask = access_mask;
-}
-EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
-
-static bool is_mmio_spte(u64 spte)
-{
- return (spte & shadow_mmio_mask) == shadow_mmio_value;
-}
-
-static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
-{
- return sp->role.ad_disabled;
-}
-
-static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
-{
- /*
- * When using the EPT page-modification log, the GPAs in the log
- * would come from L2 rather than L1. Therefore, we need to rely
- * on write protection to record dirty pages. This also bypasses
- * PML, since writes now result in a vmexit.
- */
- return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
-}
-
-static inline bool spte_ad_enabled(u64 spte)
-{
- MMU_WARN_ON(is_mmio_spte(spte));
- return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
-}
-
-static inline bool spte_ad_need_write_protect(u64 spte)
-{
- MMU_WARN_ON(is_mmio_spte(spte));
- return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
-}
-
-static bool is_nx_huge_page_enabled(void)
-{
- return READ_ONCE(nx_huge_pages);
-}
-
-static inline u64 spte_shadow_accessed_mask(u64 spte)
-{
- MMU_WARN_ON(is_mmio_spte(spte));
- return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
-}
-
-static inline u64 spte_shadow_dirty_mask(u64 spte)
-{
- MMU_WARN_ON(is_mmio_spte(spte));
- return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
-}
-
-static inline bool is_access_track_spte(u64 spte)
-{
- return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
-}
-
-/*
- * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
- * the memslots generation and is derived as follows:
- *
- * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
- * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
- *
- * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
- * the MMIO generation number, as doing so would require stealing a bit from
- * the "real" generation number and thus effectively halve the maximum number
- * of MMIO generations that can be handled before encountering a wrap (which
- * requires a full MMU zap). The flag is instead explicitly queried when
- * checking for MMIO spte cache hits.
- */
-#define MMIO_SPTE_GEN_MASK GENMASK_ULL(18, 0)
-
-#define MMIO_SPTE_GEN_LOW_START 3
-#define MMIO_SPTE_GEN_LOW_END 11
-#define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
- MMIO_SPTE_GEN_LOW_START)
-
-#define MMIO_SPTE_GEN_HIGH_START 52
-#define MMIO_SPTE_GEN_HIGH_END 61
-#define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
- MMIO_SPTE_GEN_HIGH_START)
-static u64 generation_mmio_spte_mask(u64 gen)
-{
- u64 mask;
-
- WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
-
- mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
- mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
- return mask;
-}
-
-static u64 get_mmio_spte_generation(u64 spte)
-{
- u64 gen;
-
- spte &= ~shadow_mmio_mask;
-
- gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
- gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
- return gen;
-}
-
-static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
- unsigned access)
-{
- u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
- u64 mask = generation_mmio_spte_mask(gen);
- u64 gpa = gfn << PAGE_SHIFT;
-
- access &= shadow_mmio_access_mask;
- mask |= shadow_mmio_value | access;
- mask |= gpa | shadow_nonpresent_or_rsvd_mask;
- mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
- << shadow_nonpresent_or_rsvd_mask_len;
-
- trace_mark_mmio_spte(sptep, gfn, access, gen);
- mmu_spte_set(sptep, mask);
-}
-
-static gfn_t get_mmio_spte_gfn(u64 spte)
-{
- u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
-
- gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
- & shadow_nonpresent_or_rsvd_mask;
-
- return gpa >> PAGE_SHIFT;
-}
-
-static unsigned get_mmio_spte_access(u64 spte)
-{
- return spte & shadow_mmio_access_mask;
-}
-
-static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
- kvm_pfn_t pfn, unsigned access)
-{
- if (unlikely(is_noslot_pfn(pfn))) {
- mark_mmio_spte(vcpu, sptep, gfn, access);
- return true;
- }
-
- return false;
-}
-
-static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
-{
- u64 kvm_gen, spte_gen, gen;
-
- gen = kvm_vcpu_memslots(vcpu)->generation;
- if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
- return false;
-
- kvm_gen = gen & MMIO_SPTE_GEN_MASK;
- spte_gen = get_mmio_spte_generation(spte);
-
- trace_check_mmio_spte(spte, kvm_gen, spte_gen);
- return likely(kvm_gen == spte_gen);
-}
-
-/*
- * Sets the shadow PTE masks used by the MMU.
- *
- * Assumptions:
- * - Setting either @accessed_mask or @dirty_mask requires setting both
- * - At least one of @accessed_mask or @acc_track_mask must be set
- */
-void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
- u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
- u64 acc_track_mask, u64 me_mask)
-{
- BUG_ON(!dirty_mask != !accessed_mask);
- BUG_ON(!accessed_mask && !acc_track_mask);
- BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
-
- shadow_user_mask = user_mask;
- shadow_accessed_mask = accessed_mask;
- shadow_dirty_mask = dirty_mask;
- shadow_nx_mask = nx_mask;
- shadow_x_mask = x_mask;
- shadow_present_mask = p_mask;
- shadow_acc_track_mask = acc_track_mask;
- shadow_me_mask = me_mask;
-}
-EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
-
-static u8 kvm_get_shadow_phys_bits(void)
-{
- /*
- * boot_cpu_data.x86_phys_bits is reduced when MKTME is detected
- * in CPU detection code, but MKTME treats those reduced bits as
- * 'keyID' thus they are not reserved bits. Therefore for MKTME
- * we should still return physical address bits reported by CPUID.
- */
- if (!boot_cpu_has(X86_FEATURE_TME) ||
- WARN_ON_ONCE(boot_cpu_data.extended_cpuid_level < 0x80000008))
- return boot_cpu_data.x86_phys_bits;
-
- return cpuid_eax(0x80000008) & 0xff;
-}
-
-static void kvm_mmu_reset_all_pte_masks(void)
-{
- u8 low_phys_bits;
-
- shadow_user_mask = 0;
- shadow_accessed_mask = 0;
- shadow_dirty_mask = 0;
- shadow_nx_mask = 0;
- shadow_x_mask = 0;
- shadow_mmio_mask = 0;
- shadow_present_mask = 0;
- shadow_acc_track_mask = 0;
-
- shadow_phys_bits = kvm_get_shadow_phys_bits();
-
- /*
- * If the CPU has 46 or less physical address bits, then set an
- * appropriate mask to guard against L1TF attacks. Otherwise, it is
- * assumed that the CPU is not vulnerable to L1TF.
- *
- * Some Intel CPUs address the L1 cache using more PA bits than are
- * reported by CPUID. Use the PA width of the L1 cache when possible
- * to achieve more effective mitigation, e.g. if system RAM overlaps
- * the most significant bits of legal physical address space.
- */
- shadow_nonpresent_or_rsvd_mask = 0;
- low_phys_bits = boot_cpu_data.x86_cache_bits;
- if (boot_cpu_data.x86_cache_bits <
- 52 - shadow_nonpresent_or_rsvd_mask_len) {
- shadow_nonpresent_or_rsvd_mask =
- rsvd_bits(boot_cpu_data.x86_cache_bits -
- shadow_nonpresent_or_rsvd_mask_len,
- boot_cpu_data.x86_cache_bits - 1);
- low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
- } else
- WARN_ON_ONCE(boot_cpu_has_bug(X86_BUG_L1TF));
-
- shadow_nonpresent_or_rsvd_lower_gfn_mask =
- GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
-}
-
-static int is_cpuid_PSE36(void)
-{
- return 1;
-}
-
-static int is_nx(struct kvm_vcpu *vcpu)
-{
- return vcpu->arch.efer & EFER_NX;
-}
-
-static int is_shadow_present_pte(u64 pte)
-{
- return (pte != 0) && !is_mmio_spte(pte);
-}
-
-static int is_large_pte(u64 pte)
-{
- return pte & PT_PAGE_SIZE_MASK;
-}
-
-static int is_last_spte(u64 pte, int level)
-{
- if (level == PT_PAGE_TABLE_LEVEL)
- return 1;
- if (is_large_pte(pte))
- return 1;
- return 0;
-}
-
-static bool is_executable_pte(u64 spte)
-{
- return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
-}
-
-static kvm_pfn_t spte_to_pfn(u64 pte)
-{
- return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
-}
-
-static gfn_t pse36_gfn_delta(u32 gpte)
-{
- int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
-
- return (gpte & PT32_DIR_PSE36_MASK) << shift;
-}
-
-#ifdef CONFIG_X86_64
-static void __set_spte(u64 *sptep, u64 spte)
-{
- WRITE_ONCE(*sptep, spte);
-}
-
-static void __update_clear_spte_fast(u64 *sptep, u64 spte)
-{
- WRITE_ONCE(*sptep, spte);
-}
-
-static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
-{
- return xchg(sptep, spte);
-}
-
-static u64 __get_spte_lockless(u64 *sptep)
-{
- return READ_ONCE(*sptep);
-}
-#else
-union split_spte {
- struct {
- u32 spte_low;
- u32 spte_high;
- };
- u64 spte;
-};
-
-static void count_spte_clear(u64 *sptep, u64 spte)
-{
- struct kvm_mmu_page *sp = page_header(__pa(sptep));
-
- if (is_shadow_present_pte(spte))
- return;
-
- /* Ensure the spte is completely set before we increase the count */
- smp_wmb();
- sp->clear_spte_count++;
-}
-
-static void __set_spte(u64 *sptep, u64 spte)
-{
- union split_spte *ssptep, sspte;
-
- ssptep = (union split_spte *)sptep;
- sspte = (union split_spte)spte;
-
- ssptep->spte_high = sspte.spte_high;
-
- /*
- * If we map the spte from nonpresent to present, We should store
- * the high bits firstly, then set present bit, so cpu can not
- * fetch this spte while we are setting the spte.
- */
- smp_wmb();
-
- WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
-}
-
-static void __update_clear_spte_fast(u64 *sptep, u64 spte)
-{
- union split_spte *ssptep, sspte;
-
- ssptep = (union split_spte *)sptep;
- sspte = (union split_spte)spte;
-
- WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
-
- /*
- * If we map the spte from present to nonpresent, we should clear
- * present bit firstly to avoid vcpu fetch the old high bits.
- */
- smp_wmb();
-
- ssptep->spte_high = sspte.spte_high;
- count_spte_clear(sptep, spte);
-}
-
-static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
-{
- union split_spte *ssptep, sspte, orig;
-
- ssptep = (union split_spte *)sptep;
- sspte = (union split_spte)spte;
-
- /* xchg acts as a barrier before the setting of the high bits */
- orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
- orig.spte_high = ssptep->spte_high;
- ssptep->spte_high = sspte.spte_high;
- count_spte_clear(sptep, spte);
-
- return orig.spte;
-}
-
-/*
- * The idea using the light way get the spte on x86_32 guest is from
- * gup_get_pte (mm/gup.c).
- *
- * An spte tlb flush may be pending, because kvm_set_pte_rmapp
- * coalesces them and we are running out of the MMU lock. Therefore
- * we need to protect against in-progress updates of the spte.
- *
- * Reading the spte while an update is in progress may get the old value
- * for the high part of the spte. The race is fine for a present->non-present
- * change (because the high part of the spte is ignored for non-present spte),
- * but for a present->present change we must reread the spte.
- *
- * All such changes are done in two steps (present->non-present and
- * non-present->present), hence it is enough to count the number of
- * present->non-present updates: if it changed while reading the spte,
- * we might have hit the race. This is done using clear_spte_count.
- */
-static u64 __get_spte_lockless(u64 *sptep)
-{
- struct kvm_mmu_page *sp = page_header(__pa(sptep));
- union split_spte spte, *orig = (union split_spte *)sptep;
- int count;
-
-retry:
- count = sp->clear_spte_count;
- smp_rmb();
-
- spte.spte_low = orig->spte_low;
- smp_rmb();
-
- spte.spte_high = orig->spte_high;
- smp_rmb();
-
- if (unlikely(spte.spte_low != orig->spte_low ||
- count != sp->clear_spte_count))
- goto retry;
-
- return spte.spte;
-}
-#endif
-
-static bool spte_can_locklessly_be_made_writable(u64 spte)
-{
- return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
- (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
-}
-
-static bool spte_has_volatile_bits(u64 spte)
-{
- if (!is_shadow_present_pte(spte))
- return false;
-
- /*
- * Always atomically update spte if it can be updated
- * out of mmu-lock, it can ensure dirty bit is not lost,
- * also, it can help us to get a stable is_writable_pte()
- * to ensure tlb flush is not missed.
- */
- if (spte_can_locklessly_be_made_writable(spte) ||
- is_access_track_spte(spte))
- return true;
-
- if (spte_ad_enabled(spte)) {
- if ((spte & shadow_accessed_mask) == 0 ||
- (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
- return true;
- }
-
- return false;
-}
-
-static bool is_accessed_spte(u64 spte)
-{
- u64 accessed_mask = spte_shadow_accessed_mask(spte);
-
- return accessed_mask ? spte & accessed_mask
- : !is_access_track_spte(spte);
-}
-
-static bool is_dirty_spte(u64 spte)
-{
- u64 dirty_mask = spte_shadow_dirty_mask(spte);
-
- return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
-}
-
-/* Rules for using mmu_spte_set:
- * Set the sptep from nonpresent to present.
- * Note: the sptep being assigned *must* be either not present
- * or in a state where the hardware will not attempt to update
- * the spte.
- */
-static void mmu_spte_set(u64 *sptep, u64 new_spte)
-{
- WARN_ON(is_shadow_present_pte(*sptep));
- __set_spte(sptep, new_spte);
-}
-
-/*
- * Update the SPTE (excluding the PFN), but do not track changes in its
- * accessed/dirty status.
- */
-static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
-{
- u64 old_spte = *sptep;
-
- WARN_ON(!is_shadow_present_pte(new_spte));
-
- if (!is_shadow_present_pte(old_spte)) {
- mmu_spte_set(sptep, new_spte);
- return old_spte;
- }
-
- if (!spte_has_volatile_bits(old_spte))
- __update_clear_spte_fast(sptep, new_spte);
- else
- old_spte = __update_clear_spte_slow(sptep, new_spte);
-
- WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
-
- return old_spte;
-}
-
-/* Rules for using mmu_spte_update:
- * Update the state bits, it means the mapped pfn is not changed.
- *
- * Whenever we overwrite a writable spte with a read-only one we
- * should flush remote TLBs. Otherwise rmap_write_protect
- * will find a read-only spte, even though the writable spte
- * might be cached on a CPU's TLB, the return value indicates this
- * case.
- *
- * Returns true if the TLB needs to be flushed
- */
-static bool mmu_spte_update(u64 *sptep, u64 new_spte)
-{
- bool flush = false;
- u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
-
- if (!is_shadow_present_pte(old_spte))
- return false;
-
- /*
- * For the spte updated out of mmu-lock is safe, since
- * we always atomically update it, see the comments in
- * spte_has_volatile_bits().
- */
- if (spte_can_locklessly_be_made_writable(old_spte) &&
- !is_writable_pte(new_spte))
- flush = true;
-
- /*
- * Flush TLB when accessed/dirty states are changed in the page tables,
- * to guarantee consistency between TLB and page tables.
- */
-
- if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
- flush = true;
- kvm_set_pfn_accessed(spte_to_pfn(old_spte));
- }
-
- if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
- flush = true;
- kvm_set_pfn_dirty(spte_to_pfn(old_spte));
- }
-
- return flush;
-}
-
-/*
- * Rules for using mmu_spte_clear_track_bits:
- * It sets the sptep from present to nonpresent, and track the
- * state bits, it is used to clear the last level sptep.
- * Returns non-zero if the PTE was previously valid.
- */
-static int mmu_spte_clear_track_bits(u64 *sptep)
-{
- kvm_pfn_t pfn;
- u64 old_spte = *sptep;
-
- if (!spte_has_volatile_bits(old_spte))
- __update_clear_spte_fast(sptep, 0ull);
- else
- old_spte = __update_clear_spte_slow(sptep, 0ull);
-
- if (!is_shadow_present_pte(old_spte))
- return 0;
-
- pfn = spte_to_pfn(old_spte);
-
- /*
- * KVM does not hold the refcount of the page used by
- * kvm mmu, before reclaiming the page, we should
- * unmap it from mmu first.
- */
- WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
-
- if (is_accessed_spte(old_spte))
- kvm_set_pfn_accessed(pfn);
-
- if (is_dirty_spte(old_spte))
- kvm_set_pfn_dirty(pfn);
-
- return 1;
-}
-
-/*
- * Rules for using mmu_spte_clear_no_track:
- * Directly clear spte without caring the state bits of sptep,
- * it is used to set the upper level spte.
- */
-static void mmu_spte_clear_no_track(u64 *sptep)
-{
- __update_clear_spte_fast(sptep, 0ull);
-}
-
-static u64 mmu_spte_get_lockless(u64 *sptep)
-{
- return __get_spte_lockless(sptep);
-}
-
-static u64 mark_spte_for_access_track(u64 spte)
-{
- if (spte_ad_enabled(spte))
- return spte & ~shadow_accessed_mask;
-
- if (is_access_track_spte(spte))
- return spte;
-
- /*
- * Making an Access Tracking PTE will result in removal of write access
- * from the PTE. So, verify that we will be able to restore the write
- * access in the fast page fault path later on.
- */
- WARN_ONCE((spte & PT_WRITABLE_MASK) &&
- !spte_can_locklessly_be_made_writable(spte),
- "kvm: Writable SPTE is not locklessly dirty-trackable\n");
-
- WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
- shadow_acc_track_saved_bits_shift),
- "kvm: Access Tracking saved bit locations are not zero\n");
-
- spte |= (spte & shadow_acc_track_saved_bits_mask) <<
- shadow_acc_track_saved_bits_shift;
- spte &= ~shadow_acc_track_mask;
-
- return spte;
-}
-
-/* Restore an acc-track PTE back to a regular PTE */
-static u64 restore_acc_track_spte(u64 spte)
-{
- u64 new_spte = spte;
- u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
- & shadow_acc_track_saved_bits_mask;
-
- WARN_ON_ONCE(spte_ad_enabled(spte));
- WARN_ON_ONCE(!is_access_track_spte(spte));
-
- new_spte &= ~shadow_acc_track_mask;
- new_spte &= ~(shadow_acc_track_saved_bits_mask <<
- shadow_acc_track_saved_bits_shift);
- new_spte |= saved_bits;
-
- return new_spte;
-}
-
-/* Returns the Accessed status of the PTE and resets it at the same time. */
-static bool mmu_spte_age(u64 *sptep)
-{
- u64 spte = mmu_spte_get_lockless(sptep);
-
- if (!is_accessed_spte(spte))
- return false;
-
- if (spte_ad_enabled(spte)) {
- clear_bit((ffs(shadow_accessed_mask) - 1),
- (unsigned long *)sptep);
- } else {
- /*
- * Capture the dirty status of the page, so that it doesn't get
- * lost when the SPTE is marked for access tracking.
- */
- if (is_writable_pte(spte))
- kvm_set_pfn_dirty(spte_to_pfn(spte));
-
- spte = mark_spte_for_access_track(spte);
- mmu_spte_update_no_track(sptep, spte);
- }
-
- return true;
-}
-
-static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
-{
- /*
- * Prevent page table teardown by making any free-er wait during
- * kvm_flush_remote_tlbs() IPI to all active vcpus.
- */
- local_irq_disable();
-
- /*
- * Make sure a following spte read is not reordered ahead of the write
- * to vcpu->mode.
- */
- smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
-}
-
-static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
-{
- /*
- * Make sure the write to vcpu->mode is not reordered in front of
- * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
- * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
- */
- smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
- local_irq_enable();
-}
-
-static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
- struct kmem_cache *base_cache, int min)
-{
- void *obj;
-
- if (cache->nobjs >= min)
- return 0;
- while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
- obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
- if (!obj)
- return cache->nobjs >= min ? 0 : -ENOMEM;
- cache->objects[cache->nobjs++] = obj;
- }
- return 0;
-}
-
-static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
-{
- return cache->nobjs;
-}
-
-static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
- struct kmem_cache *cache)
-{
- while (mc->nobjs)
- kmem_cache_free(cache, mc->objects[--mc->nobjs]);
-}
-
-static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
- int min)
-{
- void *page;
-
- if (cache->nobjs >= min)
- return 0;
- while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
- page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
- if (!page)
- return cache->nobjs >= min ? 0 : -ENOMEM;
- cache->objects[cache->nobjs++] = page;
- }
- return 0;
-}
-
-static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
-{
- while (mc->nobjs)
- free_page((unsigned long)mc->objects[--mc->nobjs]);
-}
-
-static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
-{
- int r;
-
- r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
- pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
- if (r)
- goto out;
- r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
- if (r)
- goto out;
- r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
- mmu_page_header_cache, 4);
-out:
- return r;
-}
-
-static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
-{
- mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
- pte_list_desc_cache);
- mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
- mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
- mmu_page_header_cache);
-}
-
-static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
-{
- void *p;
-
- BUG_ON(!mc->nobjs);
- p = mc->objects[--mc->nobjs];
- return p;
-}
-
-static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
-{
- return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
-}
-
-static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
-{
- kmem_cache_free(pte_list_desc_cache, pte_list_desc);
-}
-
-static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
-{
- if (!sp->role.direct)
- return sp->gfns[index];
-
- return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
-}
-
-static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
-{
- if (!sp->role.direct) {
- sp->gfns[index] = gfn;
- return;
- }
-
- if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
- pr_err_ratelimited("gfn mismatch under direct page %llx "
- "(expected %llx, got %llx)\n",
- sp->gfn,
- kvm_mmu_page_get_gfn(sp, index), gfn);
-}
-
-/*
- * Return the pointer to the large page information for a given gfn,
- * handling slots that are not large page aligned.
- */
-static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
- struct kvm_memory_slot *slot,
- int level)
-{
- unsigned long idx;
-
- idx = gfn_to_index(gfn, slot->base_gfn, level);
- return &slot->arch.lpage_info[level - 2][idx];
-}
-
-static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
- gfn_t gfn, int count)
-{
- struct kvm_lpage_info *linfo;
- int i;
-
- for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
- linfo = lpage_info_slot(gfn, slot, i);
- linfo->disallow_lpage += count;
- WARN_ON(linfo->disallow_lpage < 0);
- }
-}
-
-void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
-{
- update_gfn_disallow_lpage_count(slot, gfn, 1);
-}
-
-void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
-{
- update_gfn_disallow_lpage_count(slot, gfn, -1);
-}
-
-static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
-{
- struct kvm_memslots *slots;
- struct kvm_memory_slot *slot;
- gfn_t gfn;
-
- kvm->arch.indirect_shadow_pages++;
- gfn = sp->gfn;
- slots = kvm_memslots_for_spte_role(kvm, sp->role);
- slot = __gfn_to_memslot(slots, gfn);
-
- /* the non-leaf shadow pages are keeping readonly. */
- if (sp->role.level > PT_PAGE_TABLE_LEVEL)
- return kvm_slot_page_track_add_page(kvm, slot, gfn,
- KVM_PAGE_TRACK_WRITE);
-
- kvm_mmu_gfn_disallow_lpage(slot, gfn);
-}
-
-static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
-{
- if (sp->lpage_disallowed)
- return;
-
- ++kvm->stat.nx_lpage_splits;
- list_add_tail(&sp->lpage_disallowed_link,
- &kvm->arch.lpage_disallowed_mmu_pages);
- sp->lpage_disallowed = true;
-}
-
-static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
-{
- struct kvm_memslots *slots;
- struct kvm_memory_slot *slot;
- gfn_t gfn;
-
- kvm->arch.indirect_shadow_pages--;
- gfn = sp->gfn;
- slots = kvm_memslots_for_spte_role(kvm, sp->role);
- slot = __gfn_to_memslot(slots, gfn);
- if (sp->role.level > PT_PAGE_TABLE_LEVEL)
- return kvm_slot_page_track_remove_page(kvm, slot, gfn,
- KVM_PAGE_TRACK_WRITE);
-
- kvm_mmu_gfn_allow_lpage(slot, gfn);
-}
-
-static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
-{
- --kvm->stat.nx_lpage_splits;
- sp->lpage_disallowed = false;
- list_del(&sp->lpage_disallowed_link);
-}
-
-static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
- struct kvm_memory_slot *slot)
-{
- struct kvm_lpage_info *linfo;
-
- if (slot) {
- linfo = lpage_info_slot(gfn, slot, level);
- return !!linfo->disallow_lpage;
- }
-
- return true;
-}
-
-static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
- int level)
-{
- struct kvm_memory_slot *slot;
-
- slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
- return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
-}
-
-static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
-{
- unsigned long page_size;
- int i, ret = 0;
-
- page_size = kvm_host_page_size(kvm, gfn);
-
- for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
- if (page_size >= KVM_HPAGE_SIZE(i))
- ret = i;
- else
- break;
- }
-
- return ret;
-}
-
-static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
- bool no_dirty_log)
-{
- if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
- return false;
- if (no_dirty_log && slot->dirty_bitmap)
- return false;
-
- return true;
-}
-
-static struct kvm_memory_slot *
-gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
- bool no_dirty_log)
-{
- struct kvm_memory_slot *slot;
-
- slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
- if (!memslot_valid_for_gpte(slot, no_dirty_log))
- slot = NULL;
-
- return slot;
-}
-
-static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
- bool *force_pt_level)
-{
- int host_level, level, max_level;
- struct kvm_memory_slot *slot;
-
- if (unlikely(*force_pt_level))
- return PT_PAGE_TABLE_LEVEL;
-
- slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
- *force_pt_level = !memslot_valid_for_gpte(slot, true);
- if (unlikely(*force_pt_level))
- return PT_PAGE_TABLE_LEVEL;
-
- host_level = host_mapping_level(vcpu->kvm, large_gfn);
-
- if (host_level == PT_PAGE_TABLE_LEVEL)
- return host_level;
-
- max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
-
- for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
- if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
- break;
-
- return level - 1;
-}
-
-/*
- * About rmap_head encoding:
- *
- * If the bit zero of rmap_head->val is clear, then it points to the only spte
- * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
- * pte_list_desc containing more mappings.
- */
-
-/*
- * Returns the number of pointers in the rmap chain, not counting the new one.
- */
-static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
- struct kvm_rmap_head *rmap_head)
-{
- struct pte_list_desc *desc;
- int i, count = 0;
-
- if (!rmap_head->val) {
- rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
- rmap_head->val = (unsigned long)spte;
- } else if (!(rmap_head->val & 1)) {
- rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
- desc = mmu_alloc_pte_list_desc(vcpu);
- desc->sptes[0] = (u64 *)rmap_head->val;
- desc->sptes[1] = spte;
- rmap_head->val = (unsigned long)desc | 1;
- ++count;
- } else {
- rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
- desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
- while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
- desc = desc->more;
- count += PTE_LIST_EXT;
- }
- if (desc->sptes[PTE_LIST_EXT-1]) {
- desc->more = mmu_alloc_pte_list_desc(vcpu);
- desc = desc->more;
- }
- for (i = 0; desc->sptes[i]; ++i)
- ++count;
- desc->sptes[i] = spte;
- }
- return count;
-}
-
-static void
-pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
- struct pte_list_desc *desc, int i,
- struct pte_list_desc *prev_desc)
-{
- int j;
-
- for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
- ;
- desc->sptes[i] = desc->sptes[j];
- desc->sptes[j] = NULL;
- if (j != 0)
- return;
- if (!prev_desc && !desc->more)
- rmap_head->val = (unsigned long)desc->sptes[0];
- else
- if (prev_desc)
- prev_desc->more = desc->more;
- else
- rmap_head->val = (unsigned long)desc->more | 1;
- mmu_free_pte_list_desc(desc);
-}
-
-static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
-{
- struct pte_list_desc *desc;
- struct pte_list_desc *prev_desc;
- int i;
-
- if (!rmap_head->val) {
- pr_err("%s: %p 0->BUG\n", __func__, spte);
- BUG();
- } else if (!(rmap_head->val & 1)) {
- rmap_printk("%s: %p 1->0\n", __func__, spte);
- if ((u64 *)rmap_head->val != spte) {
- pr_err("%s: %p 1->BUG\n", __func__, spte);
- BUG();
- }
- rmap_head->val = 0;
- } else {
- rmap_printk("%s: %p many->many\n", __func__, spte);
- desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
- prev_desc = NULL;
- while (desc) {
- for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
- if (desc->sptes[i] == spte) {
- pte_list_desc_remove_entry(rmap_head,
- desc, i, prev_desc);
- return;
- }
- }
- prev_desc = desc;
- desc = desc->more;
- }
- pr_err("%s: %p many->many\n", __func__, spte);
- BUG();
- }
-}
-
-static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
-{
- mmu_spte_clear_track_bits(sptep);
- __pte_list_remove(sptep, rmap_head);
-}
-
-static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
- struct kvm_memory_slot *slot)
-{
- unsigned long idx;
-
- idx = gfn_to_index(gfn, slot->base_gfn, level);
- return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
-}
-
-static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
- struct kvm_mmu_page *sp)
-{
- struct kvm_memslots *slots;
- struct kvm_memory_slot *slot;
-
- slots = kvm_memslots_for_spte_role(kvm, sp->role);
- slot = __gfn_to_memslot(slots, gfn);
- return __gfn_to_rmap(gfn, sp->role.level, slot);
-}
-
-static bool rmap_can_add(struct kvm_vcpu *vcpu)
-{
- struct kvm_mmu_memory_cache *cache;
-
- cache = &vcpu->arch.mmu_pte_list_desc_cache;
- return mmu_memory_cache_free_objects(cache);
-}
-
-static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
-{
- struct kvm_mmu_page *sp;
- struct kvm_rmap_head *rmap_head;
-
- sp = page_header(__pa(spte));
- kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
- rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
- return pte_list_add(vcpu, spte, rmap_head);
-}
-
-static void rmap_remove(struct kvm *kvm, u64 *spte)
-{
- struct kvm_mmu_page *sp;
- gfn_t gfn;
- struct kvm_rmap_head *rmap_head;
-
- sp = page_header(__pa(spte));
- gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
- rmap_head = gfn_to_rmap(kvm, gfn, sp);
- __pte_list_remove(spte, rmap_head);
-}
-
-/*
- * Used by the following functions to iterate through the sptes linked by a
- * rmap. All fields are private and not assumed to be used outside.
- */
-struct rmap_iterator {
- /* private fields */
- struct pte_list_desc *desc; /* holds the sptep if not NULL */
- int pos; /* index of the sptep */
-};
-
-/*
- * Iteration must be started by this function. This should also be used after
- * removing/dropping sptes from the rmap link because in such cases the
- * information in the itererator may not be valid.
- *
- * Returns sptep if found, NULL otherwise.
- */
-static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
- struct rmap_iterator *iter)
-{
- u64 *sptep;
-
- if (!rmap_head->val)
- return NULL;
-
- if (!(rmap_head->val & 1)) {
- iter->desc = NULL;
- sptep = (u64 *)rmap_head->val;
- goto out;
- }
-
- iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
- iter->pos = 0;
- sptep = iter->desc->sptes[iter->pos];
-out:
- BUG_ON(!is_shadow_present_pte(*sptep));
- return sptep;
-}
-
-/*
- * Must be used with a valid iterator: e.g. after rmap_get_first().
- *
- * Returns sptep if found, NULL otherwise.
- */
-static u64 *rmap_get_next(struct rmap_iterator *iter)
-{
- u64 *sptep;
-
- if (iter->desc) {
- if (iter->pos < PTE_LIST_EXT - 1) {
- ++iter->pos;
- sptep = iter->desc->sptes[iter->pos];
- if (sptep)
- goto out;
- }
-
- iter->desc = iter->desc->more;
-
- if (iter->desc) {
- iter->pos = 0;
- /* desc->sptes[0] cannot be NULL */
- sptep = iter->desc->sptes[iter->pos];
- goto out;
- }
- }
-
- return NULL;
-out:
- BUG_ON(!is_shadow_present_pte(*sptep));
- return sptep;
-}
-
-#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
- for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
- _spte_; _spte_ = rmap_get_next(_iter_))
-
-static void drop_spte(struct kvm *kvm, u64 *sptep)
-{
- if (mmu_spte_clear_track_bits(sptep))
- rmap_remove(kvm, sptep);
-}
-
-
-static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
-{
- if (is_large_pte(*sptep)) {
- WARN_ON(page_header(__pa(sptep))->role.level ==
- PT_PAGE_TABLE_LEVEL);
- drop_spte(kvm, sptep);
- --kvm->stat.lpages;
- return true;
- }
-
- return false;
-}
-
-static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
-{
- if (__drop_large_spte(vcpu->kvm, sptep)) {
- struct kvm_mmu_page *sp = page_header(__pa(sptep));
-
- kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
- KVM_PAGES_PER_HPAGE(sp->role.level));
- }
-}
-
-/*
- * Write-protect on the specified @sptep, @pt_protect indicates whether
- * spte write-protection is caused by protecting shadow page table.
- *
- * Note: write protection is difference between dirty logging and spte
- * protection:
- * - for dirty logging, the spte can be set to writable at anytime if
- * its dirty bitmap is properly set.
- * - for spte protection, the spte can be writable only after unsync-ing
- * shadow page.
- *
- * Return true if tlb need be flushed.
- */
-static bool spte_write_protect(u64 *sptep, bool pt_protect)
-{
- u64 spte = *sptep;
-
- if (!is_writable_pte(spte) &&
- !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
- return false;
-
- rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
-
- if (pt_protect)
- spte &= ~SPTE_MMU_WRITEABLE;
- spte = spte & ~PT_WRITABLE_MASK;
-
- return mmu_spte_update(sptep, spte);
-}
-
-static bool __rmap_write_protect(struct kvm *kvm,
- struct kvm_rmap_head *rmap_head,
- bool pt_protect)
-{
- u64 *sptep;
- struct rmap_iterator iter;
- bool flush = false;
-
- for_each_rmap_spte(rmap_head, &iter, sptep)
- flush |= spte_write_protect(sptep, pt_protect);
-
- return flush;
-}
-
-static bool spte_clear_dirty(u64 *sptep)
-{
- u64 spte = *sptep;
-
- rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
-
- MMU_WARN_ON(!spte_ad_enabled(spte));
- spte &= ~shadow_dirty_mask;
- return mmu_spte_update(sptep, spte);
-}
-
-static bool spte_wrprot_for_clear_dirty(u64 *sptep)
-{
- bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
- (unsigned long *)sptep);
- if (was_writable && !spte_ad_enabled(*sptep))
- kvm_set_pfn_dirty(spte_to_pfn(*sptep));
-
- return was_writable;
-}
-
-/*
- * Gets the GFN ready for another round of dirty logging by clearing the
- * - D bit on ad-enabled SPTEs, and
- * - W bit on ad-disabled SPTEs.
- * Returns true iff any D or W bits were cleared.
- */
-static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
-{
- u64 *sptep;
- struct rmap_iterator iter;
- bool flush = false;
-
- for_each_rmap_spte(rmap_head, &iter, sptep)
- if (spte_ad_need_write_protect(*sptep))
- flush |= spte_wrprot_for_clear_dirty(sptep);
- else
- flush |= spte_clear_dirty(sptep);
-
- return flush;
-}
-
-static bool spte_set_dirty(u64 *sptep)
-{
- u64 spte = *sptep;
-
- rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
-
- /*
- * Similar to the !kvm_x86_ops->slot_disable_log_dirty case,
- * do not bother adding back write access to pages marked
- * SPTE_AD_WRPROT_ONLY_MASK.
- */
- spte |= shadow_dirty_mask;
-
- return mmu_spte_update(sptep, spte);
-}
-
-static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
-{
- u64 *sptep;
- struct rmap_iterator iter;
- bool flush = false;
-
- for_each_rmap_spte(rmap_head, &iter, sptep)
- if (spte_ad_enabled(*sptep))
- flush |= spte_set_dirty(sptep);
-
- return flush;
-}
-
-/**
- * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
- * @kvm: kvm instance
- * @slot: slot to protect
- * @gfn_offset: start of the BITS_PER_LONG pages we care about
- * @mask: indicates which pages we should protect
- *
- * Used when we do not need to care about huge page mappings: e.g. during dirty
- * logging we do not have any such mappings.
- */
-static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
- struct kvm_memory_slot *slot,
- gfn_t gfn_offset, unsigned long mask)
-{
- struct kvm_rmap_head *rmap_head;
-
- while (mask) {
- rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
- PT_PAGE_TABLE_LEVEL, slot);
- __rmap_write_protect(kvm, rmap_head, false);
-
- /* clear the first set bit */
- mask &= mask - 1;
- }
-}
-
-/**
- * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
- * protect the page if the D-bit isn't supported.
- * @kvm: kvm instance
- * @slot: slot to clear D-bit
- * @gfn_offset: start of the BITS_PER_LONG pages we care about
- * @mask: indicates which pages we should clear D-bit
- *
- * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
- */
-void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
- struct kvm_memory_slot *slot,
- gfn_t gfn_offset, unsigned long mask)
-{
- struct kvm_rmap_head *rmap_head;
-
- while (mask) {
- rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
- PT_PAGE_TABLE_LEVEL, slot);
- __rmap_clear_dirty(kvm, rmap_head);
-
- /* clear the first set bit */
- mask &= mask - 1;
- }
-}
-EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
-
-/**
- * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
- * PT level pages.
- *
- * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
- * enable dirty logging for them.
- *
- * Used when we do not need to care about huge page mappings: e.g. during dirty
- * logging we do not have any such mappings.
- */
-void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
- struct kvm_memory_slot *slot,
- gfn_t gfn_offset, unsigned long mask)
-{
- if (kvm_x86_ops->enable_log_dirty_pt_masked)
- kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
- mask);
- else
- kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
-}
-
-/**
- * kvm_arch_write_log_dirty - emulate dirty page logging
- * @vcpu: Guest mode vcpu
- *
- * Emulate arch specific page modification logging for the
- * nested hypervisor
- */
-int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
-{
- if (kvm_x86_ops->write_log_dirty)
- return kvm_x86_ops->write_log_dirty(vcpu);
-
- return 0;
-}
-
-bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
- struct kvm_memory_slot *slot, u64 gfn)
-{
- struct kvm_rmap_head *rmap_head;
- int i;
- bool write_protected = false;
-
- for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
- rmap_head = __gfn_to_rmap(gfn, i, slot);
- write_protected |= __rmap_write_protect(kvm, rmap_head, true);
- }
-
- return write_protected;
-}
-
-static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
-{
- struct kvm_memory_slot *slot;
-
- slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
- return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
-}
-
-static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
-{
- u64 *sptep;
- struct rmap_iterator iter;
- bool flush = false;
-
- while ((sptep = rmap_get_first(rmap_head, &iter))) {
- rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
-
- pte_list_remove(rmap_head, sptep);
- flush = true;
- }
-
- return flush;
-}
-
-static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
- struct kvm_memory_slot *slot, gfn_t gfn, int level,
- unsigned long data)
-{
- return kvm_zap_rmapp(kvm, rmap_head);
-}
-
-static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
- struct kvm_memory_slot *slot, gfn_t gfn, int level,
- unsigned long data)
-{
- u64 *sptep;
- struct rmap_iterator iter;
- int need_flush = 0;
- u64 new_spte;
- pte_t *ptep = (pte_t *)data;
- kvm_pfn_t new_pfn;
-
- WARN_ON(pte_huge(*ptep));
- new_pfn = pte_pfn(*ptep);
-
-restart:
- for_each_rmap_spte(rmap_head, &iter, sptep) {
- rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
- sptep, *sptep, gfn, level);
-
- need_flush = 1;
-
- if (pte_write(*ptep)) {
- pte_list_remove(rmap_head, sptep);
- goto restart;
- } else {
- new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
- new_spte |= (u64)new_pfn << PAGE_SHIFT;
-
- new_spte &= ~PT_WRITABLE_MASK;
- new_spte &= ~SPTE_HOST_WRITEABLE;
-
- new_spte = mark_spte_for_access_track(new_spte);
-
- mmu_spte_clear_track_bits(sptep);
- mmu_spte_set(sptep, new_spte);
- }
- }
-
- if (need_flush && kvm_available_flush_tlb_with_range()) {
- kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
- return 0;
- }
-
- return need_flush;
-}
-
-struct slot_rmap_walk_iterator {
- /* input fields. */
- struct kvm_memory_slot *slot;
- gfn_t start_gfn;
- gfn_t end_gfn;
- int start_level;
- int end_level;
-
- /* output fields. */
- gfn_t gfn;
- struct kvm_rmap_head *rmap;
- int level;
-
- /* private field. */
- struct kvm_rmap_head *end_rmap;
-};
-
-static void
-rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
-{
- iterator->level = level;
- iterator->gfn = iterator->start_gfn;
- iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
- iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
- iterator->slot);
-}
-
-static void
-slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
- struct kvm_memory_slot *slot, int start_level,
- int end_level, gfn_t start_gfn, gfn_t end_gfn)
-{
- iterator->slot = slot;
- iterator->start_level = start_level;
- iterator->end_level = end_level;
- iterator->start_gfn = start_gfn;
- iterator->end_gfn = end_gfn;
-
- rmap_walk_init_level(iterator, iterator->start_level);
-}
-
-static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
-{
- return !!iterator->rmap;
-}
-
-static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
-{
- if (++iterator->rmap <= iterator->end_rmap) {
- iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
- return;
- }
-
- if (++iterator->level > iterator->end_level) {
- iterator->rmap = NULL;
- return;
- }
-
- rmap_walk_init_level(iterator, iterator->level);
-}
-
-#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
- _start_gfn, _end_gfn, _iter_) \
- for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
- _end_level_, _start_gfn, _end_gfn); \
- slot_rmap_walk_okay(_iter_); \
- slot_rmap_walk_next(_iter_))
-
-static int kvm_handle_hva_range(struct kvm *kvm,
- unsigned long start,
- unsigned long end,
- unsigned long data,
- int (*handler)(struct kvm *kvm,
- struct kvm_rmap_head *rmap_head,
- struct kvm_memory_slot *slot,
- gfn_t gfn,
- int level,
- unsigned long data))
-{
- struct kvm_memslots *slots;
- struct kvm_memory_slot *memslot;
- struct slot_rmap_walk_iterator iterator;
- int ret = 0;
- int i;
-
- for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
- slots = __kvm_memslots(kvm, i);
- kvm_for_each_memslot(memslot, slots) {
- unsigned long hva_start, hva_end;
- gfn_t gfn_start, gfn_end;
-
- hva_start = max(start, memslot->userspace_addr);
- hva_end = min(end, memslot->userspace_addr +
- (memslot->npages << PAGE_SHIFT));
- if (hva_start >= hva_end)
- continue;
- /*
- * {gfn(page) | page intersects with [hva_start, hva_end)} =
- * {gfn_start, gfn_start+1, ..., gfn_end-1}.
- */
- gfn_start = hva_to_gfn_memslot(hva_start, memslot);
- gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
-
- for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
- PT_MAX_HUGEPAGE_LEVEL,
- gfn_start, gfn_end - 1,
- &iterator)
- ret |= handler(kvm, iterator.rmap, memslot,
- iterator.gfn, iterator.level, data);
- }
- }
-
- return ret;
-}
-
-static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
- unsigned long data,
- int (*handler)(struct kvm *kvm,
- struct kvm_rmap_head *rmap_head,
- struct kvm_memory_slot *slot,
- gfn_t gfn, int level,
- unsigned long data))
-{
- return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
-}
-
-int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
-{
- return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
-}
-
-int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
-{
- return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
-}
-
-static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
- struct kvm_memory_slot *slot, gfn_t gfn, int level,
- unsigned long data)
-{
- u64 *sptep;
- struct rmap_iterator uninitialized_var(iter);
- int young = 0;
-
- for_each_rmap_spte(rmap_head, &iter, sptep)
- young |= mmu_spte_age(sptep);
-
- trace_kvm_age_page(gfn, level, slot, young);
- return young;
-}
-
-static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
- struct kvm_memory_slot *slot, gfn_t gfn,
- int level, unsigned long data)
-{
- u64 *sptep;
- struct rmap_iterator iter;
-
- for_each_rmap_spte(rmap_head, &iter, sptep)
- if (is_accessed_spte(*sptep))
- return 1;
- return 0;
-}
-
-#define RMAP_RECYCLE_THRESHOLD 1000
-
-static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
-{
- struct kvm_rmap_head *rmap_head;
- struct kvm_mmu_page *sp;
-
- sp = page_header(__pa(spte));
-
- rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
-
- kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
- kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
- KVM_PAGES_PER_HPAGE(sp->role.level));
-}
-
-int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
-{
- return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
-}
-
-int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
-{
- return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
-}
-
-#ifdef MMU_DEBUG
-static int is_empty_shadow_page(u64 *spt)
-{
- u64 *pos;
- u64 *end;
-
- for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
- if (is_shadow_present_pte(*pos)) {
- printk(KERN_ERR "%s: %p %llx\n", __func__,
- pos, *pos);
- return 0;
- }
- return 1;
-}
-#endif
-
-/*
- * This value is the sum of all of the kvm instances's
- * kvm->arch.n_used_mmu_pages values. We need a global,
- * aggregate version in order to make the slab shrinker
- * faster
- */
-static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
-{
- kvm->arch.n_used_mmu_pages += nr;
- percpu_counter_add(&kvm_total_used_mmu_pages, nr);
-}
-
-static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
-{
- MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
- hlist_del(&sp->hash_link);
- list_del(&sp->link);
- free_page((unsigned long)sp->spt);
- if (!sp->role.direct)
- free_page((unsigned long)sp->gfns);
- kmem_cache_free(mmu_page_header_cache, sp);
-}
-
-static unsigned kvm_page_table_hashfn(gfn_t gfn)
-{
- return hash_64(gfn, KVM_MMU_HASH_SHIFT);
-}
-
-static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
- struct kvm_mmu_page *sp, u64 *parent_pte)
-{
- if (!parent_pte)
- return;
-
- pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
-}
-
-static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
- u64 *parent_pte)
-{
- __pte_list_remove(parent_pte, &sp->parent_ptes);
-}
-
-static void drop_parent_pte(struct kvm_mmu_page *sp,
- u64 *parent_pte)
-{
- mmu_page_remove_parent_pte(sp, parent_pte);
- mmu_spte_clear_no_track(parent_pte);
-}
-
-static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
-{
- struct kvm_mmu_page *sp;
-
- sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
- sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
- if (!direct)
- sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
- set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
-
- /*
- * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
- * depends on valid pages being added to the head of the list. See
- * comments in kvm_zap_obsolete_pages().
- */
- sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
- list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
- kvm_mod_used_mmu_pages(vcpu->kvm, +1);
- return sp;
-}
-
-static void mark_unsync(u64 *spte);
-static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
-{
- u64 *sptep;
- struct rmap_iterator iter;
-
- for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
- mark_unsync(sptep);
- }
-}
-
-static void mark_unsync(u64 *spte)
-{
- struct kvm_mmu_page *sp;
- unsigned int index;
-
- sp = page_header(__pa(spte));
- index = spte - sp->spt;
- if (__test_and_set_bit(index, sp->unsync_child_bitmap))
- return;
- if (sp->unsync_children++)
- return;
- kvm_mmu_mark_parents_unsync(sp);
-}
-
-static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
- struct kvm_mmu_page *sp)
-{
- return 0;
-}
-
-static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
-{
-}
-
-static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
- struct kvm_mmu_page *sp, u64 *spte,
- const void *pte)
-{
- WARN_ON(1);
-}
-
-#define KVM_PAGE_ARRAY_NR 16
-
-struct kvm_mmu_pages {
- struct mmu_page_and_offset {
- struct kvm_mmu_page *sp;
- unsigned int idx;
- } page[KVM_PAGE_ARRAY_NR];
- unsigned int nr;
-};
-
-static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
- int idx)
-{
- int i;
-
- if (sp->unsync)
- for (i=0; i < pvec->nr; i++)
- if (pvec->page[i].sp == sp)
- return 0;
-
- pvec->page[pvec->nr].sp = sp;
- pvec->page[pvec->nr].idx = idx;
- pvec->nr++;
- return (pvec->nr == KVM_PAGE_ARRAY_NR);
-}
-
-static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
-{
- --sp->unsync_children;
- WARN_ON((int)sp->unsync_children < 0);
- __clear_bit(idx, sp->unsync_child_bitmap);
-}
-
-static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
- struct kvm_mmu_pages *pvec)
-{
- int i, ret, nr_unsync_leaf = 0;
-
- for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
- struct kvm_mmu_page *child;
- u64 ent = sp->spt[i];
-
- if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
- clear_unsync_child_bit(sp, i);
- continue;
- }
-
- child = page_header(ent & PT64_BASE_ADDR_MASK);
-
- if (child->unsync_children) {
- if (mmu_pages_add(pvec, child, i))
- return -ENOSPC;
-
- ret = __mmu_unsync_walk(child, pvec);
- if (!ret) {
- clear_unsync_child_bit(sp, i);
- continue;
- } else if (ret > 0) {
- nr_unsync_leaf += ret;
- } else
- return ret;
- } else if (child->unsync) {
- nr_unsync_leaf++;
- if (mmu_pages_add(pvec, child, i))
- return -ENOSPC;
- } else
- clear_unsync_child_bit(sp, i);
- }
-
- return nr_unsync_leaf;
-}
-
-#define INVALID_INDEX (-1)
-
-static int mmu_unsync_walk(struct kvm_mmu_page *sp,
- struct kvm_mmu_pages *pvec)
-{
- pvec->nr = 0;
- if (!sp->unsync_children)
- return 0;
-
- mmu_pages_add(pvec, sp, INVALID_INDEX);
- return __mmu_unsync_walk(sp, pvec);
-}
-
-static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
-{
- WARN_ON(!sp->unsync);
- trace_kvm_mmu_sync_page(sp);
- sp->unsync = 0;
- --kvm->stat.mmu_unsync;
-}
-
-static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
- struct list_head *invalid_list);
-static void kvm_mmu_commit_zap_page(struct kvm *kvm,
- struct list_head *invalid_list);
-
-
-#define for_each_valid_sp(_kvm, _sp, _gfn) \
- hlist_for_each_entry(_sp, \
- &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
- if (is_obsolete_sp((_kvm), (_sp))) { \
- } else
-
-#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
- for_each_valid_sp(_kvm, _sp, _gfn) \
- if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
-
-static inline bool is_ept_sp(struct kvm_mmu_page *sp)
-{
- return sp->role.cr0_wp && sp->role.smap_andnot_wp;
-}
-
-/* @sp->gfn should be write-protected at the call site */
-static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
- struct list_head *invalid_list)
-{
- if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
- vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
- kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
- return false;
- }
-
- return true;
-}
-
-static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
- struct list_head *invalid_list,
- bool remote_flush)
-{
- if (!remote_flush && list_empty(invalid_list))
- return false;
-
- if (!list_empty(invalid_list))
- kvm_mmu_commit_zap_page(kvm, invalid_list);
- else
- kvm_flush_remote_tlbs(kvm);
- return true;
-}
-
-static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
- struct list_head *invalid_list,
- bool remote_flush, bool local_flush)
-{
- if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
- return;
-
- if (local_flush)
- kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
-}
-
-#ifdef CONFIG_KVM_MMU_AUDIT
-#include "mmu_audit.c"
-#else
-static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
-static void mmu_audit_disable(void) { }
-#endif
-
-static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
-{
- return sp->role.invalid ||
- unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
-}
-
-static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
- struct list_head *invalid_list)
-{
- kvm_unlink_unsync_page(vcpu->kvm, sp);
- return __kvm_sync_page(vcpu, sp, invalid_list);
-}
-
-/* @gfn should be write-protected at the call site */
-static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
- struct list_head *invalid_list)
-{
- struct kvm_mmu_page *s;
- bool ret = false;
-
- for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
- if (!s->unsync)
- continue;
-
- WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
- ret |= kvm_sync_page(vcpu, s, invalid_list);
- }
-
- return ret;
-}
-
-struct mmu_page_path {
- struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
- unsigned int idx[PT64_ROOT_MAX_LEVEL];
-};
-
-#define for_each_sp(pvec, sp, parents, i) \
- for (i = mmu_pages_first(&pvec, &parents); \
- i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
- i = mmu_pages_next(&pvec, &parents, i))
-
-static int mmu_pages_next(struct kvm_mmu_pages *pvec,
- struct mmu_page_path *parents,
- int i)
-{
- int n;
-
- for (n = i+1; n < pvec->nr; n++) {
- struct kvm_mmu_page *sp = pvec->page[n].sp;
- unsigned idx = pvec->page[n].idx;
- int level = sp->role.level;
-
- parents->idx[level-1] = idx;
- if (level == PT_PAGE_TABLE_LEVEL)
- break;
-
- parents->parent[level-2] = sp;
- }
-
- return n;
-}
-
-static int mmu_pages_first(struct kvm_mmu_pages *pvec,
- struct mmu_page_path *parents)
-{
- struct kvm_mmu_page *sp;
- int level;
-
- if (pvec->nr == 0)
- return 0;
-
- WARN_ON(pvec->page[0].idx != INVALID_INDEX);
-
- sp = pvec->page[0].sp;
- level = sp->role.level;
- WARN_ON(level == PT_PAGE_TABLE_LEVEL);
-
- parents->parent[level-2] = sp;
-
- /* Also set up a sentinel. Further entries in pvec are all
- * children of sp, so this element is never overwritten.
- */
- parents->parent[level-1] = NULL;
- return mmu_pages_next(pvec, parents, 0);
-}
-
-static void mmu_pages_clear_parents(struct mmu_page_path *parents)
-{
- struct kvm_mmu_page *sp;
- unsigned int level = 0;
-
- do {
- unsigned int idx = parents->idx[level];
- sp = parents->parent[level];
- if (!sp)
- return;
-
- WARN_ON(idx == INVALID_INDEX);
- clear_unsync_child_bit(sp, idx);
- level++;
- } while (!sp->unsync_children);
-}
-
-static void mmu_sync_children(struct kvm_vcpu *vcpu,
- struct kvm_mmu_page *parent)
-{
- int i;
- struct kvm_mmu_page *sp;
- struct mmu_page_path parents;
- struct kvm_mmu_pages pages;
- LIST_HEAD(invalid_list);
- bool flush = false;
-
- while (mmu_unsync_walk(parent, &pages)) {
- bool protected = false;
-
- for_each_sp(pages, sp, parents, i)
- protected |= rmap_write_protect(vcpu, sp->gfn);
-
- if (protected) {
- kvm_flush_remote_tlbs(vcpu->kvm);
- flush = false;
- }
-
- for_each_sp(pages, sp, parents, i) {
- flush |= kvm_sync_page(vcpu, sp, &invalid_list);
- mmu_pages_clear_parents(&parents);
- }
- if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
- kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
- cond_resched_lock(&vcpu->kvm->mmu_lock);
- flush = false;
- }
- }
-
- kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
-}
-
-static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
-{
- atomic_set(&sp->write_flooding_count, 0);
-}
-
-static void clear_sp_write_flooding_count(u64 *spte)
-{
- struct kvm_mmu_page *sp = page_header(__pa(spte));
-
- __clear_sp_write_flooding_count(sp);
-}
-
-static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
- gfn_t gfn,
- gva_t gaddr,
- unsigned level,
- int direct,
- unsigned access)
-{
- union kvm_mmu_page_role role;
- unsigned quadrant;
- struct kvm_mmu_page *sp;
- bool need_sync = false;
- bool flush = false;
- int collisions = 0;
- LIST_HEAD(invalid_list);
-
- role = vcpu->arch.mmu->mmu_role.base;
- role.level = level;
- role.direct = direct;
- if (role.direct)
- role.gpte_is_8_bytes = true;
- role.access = access;
- if (!vcpu->arch.mmu->direct_map
- && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
- quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
- quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
- role.quadrant = quadrant;
- }
- for_each_valid_sp(vcpu->kvm, sp, gfn) {
- if (sp->gfn != gfn) {
- collisions++;
- continue;
- }
-
- if (!need_sync && sp->unsync)
- need_sync = true;
-
- if (sp->role.word != role.word)
- continue;
-
- if (sp->unsync) {
- /* The page is good, but __kvm_sync_page might still end
- * up zapping it. If so, break in order to rebuild it.
- */
- if (!__kvm_sync_page(vcpu, sp, &invalid_list))
- break;
-
- WARN_ON(!list_empty(&invalid_list));
- kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
- }
-
- if (sp->unsync_children)
- kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
-
- __clear_sp_write_flooding_count(sp);
- trace_kvm_mmu_get_page(sp, false);
- goto out;
- }
-
- ++vcpu->kvm->stat.mmu_cache_miss;
-
- sp = kvm_mmu_alloc_page(vcpu, direct);
-
- sp->gfn = gfn;
- sp->role = role;
- hlist_add_head(&sp->hash_link,
- &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
- if (!direct) {
- /*
- * we should do write protection before syncing pages
- * otherwise the content of the synced shadow page may
- * be inconsistent with guest page table.
- */
- account_shadowed(vcpu->kvm, sp);
- if (level == PT_PAGE_TABLE_LEVEL &&
- rmap_write_protect(vcpu, gfn))
- kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
-
- if (level > PT_PAGE_TABLE_LEVEL && need_sync)
- flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
- }
- clear_page(sp->spt);
- trace_kvm_mmu_get_page(sp, true);
-
- kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
-out:
- if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
- vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
- return sp;
-}
-
-static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
- struct kvm_vcpu *vcpu, hpa_t root,
- u64 addr)
-{
- iterator->addr = addr;
- iterator->shadow_addr = root;
- iterator->level = vcpu->arch.mmu->shadow_root_level;
-
- if (iterator->level == PT64_ROOT_4LEVEL &&
- vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
- !vcpu->arch.mmu->direct_map)
- --iterator->level;
-
- if (iterator->level == PT32E_ROOT_LEVEL) {
- /*
- * prev_root is currently only used for 64-bit hosts. So only
- * the active root_hpa is valid here.
- */
- BUG_ON(root != vcpu->arch.mmu->root_hpa);
-
- iterator->shadow_addr
- = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
- iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
- --iterator->level;
- if (!iterator->shadow_addr)
- iterator->level = 0;
- }
-}
-
-static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
- struct kvm_vcpu *vcpu, u64 addr)
-{
- shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
- addr);
-}
-
-static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
-{
- if (iterator->level < PT_PAGE_TABLE_LEVEL)
- return false;
-
- iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
- iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
- return true;
-}
-
-static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
- u64 spte)
-{
- if (is_last_spte(spte, iterator->level)) {
- iterator->level = 0;
- return;
- }
-
- iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
- --iterator->level;
-}
-
-static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
-{
- __shadow_walk_next(iterator, *iterator->sptep);
-}
-
-static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
- struct kvm_mmu_page *sp)
-{
- u64 spte;
-
- BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
-
- spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
- shadow_user_mask | shadow_x_mask | shadow_me_mask;
-
- if (sp_ad_disabled(sp))
- spte |= SPTE_AD_DISABLED_MASK;
- else
- spte |= shadow_accessed_mask;
-
- mmu_spte_set(sptep, spte);
-
- mmu_page_add_parent_pte(vcpu, sp, sptep);
-
- if (sp->unsync_children || sp->unsync)
- mark_unsync(sptep);
-}
-
-static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
- unsigned direct_access)
-{
- if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
- struct kvm_mmu_page *child;
-
- /*
- * For the direct sp, if the guest pte's dirty bit
- * changed form clean to dirty, it will corrupt the
- * sp's access: allow writable in the read-only sp,
- * so we should update the spte at this point to get
- * a new sp with the correct access.
- */
- child = page_header(*sptep & PT64_BASE_ADDR_MASK);
- if (child->role.access == direct_access)
- return;
-
- drop_parent_pte(child, sptep);
- kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
- }
-}
-
-static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
- u64 *spte)
-{
- u64 pte;
- struct kvm_mmu_page *child;
-
- pte = *spte;
- if (is_shadow_present_pte(pte)) {
- if (is_last_spte(pte, sp->role.level)) {
- drop_spte(kvm, spte);
- if (is_large_pte(pte))
- --kvm->stat.lpages;
- } else {
- child = page_header(pte & PT64_BASE_ADDR_MASK);
- drop_parent_pte(child, spte);
- }
- return true;
- }
-
- if (is_mmio_spte(pte))
- mmu_spte_clear_no_track(spte);
-
- return false;
-}
-
-static void kvm_mmu_page_unlink_children(struct kvm *kvm,
- struct kvm_mmu_page *sp)
-{
- unsigned i;
-
- for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
- mmu_page_zap_pte(kvm, sp, sp->spt + i);
-}
-
-static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
-{
- u64 *sptep;
- struct rmap_iterator iter;
-
- while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
- drop_parent_pte(sp, sptep);
-}
-
-static int mmu_zap_unsync_children(struct kvm *kvm,
- struct kvm_mmu_page *parent,
- struct list_head *invalid_list)
-{
- int i, zapped = 0;
- struct mmu_page_path parents;
- struct kvm_mmu_pages pages;
-
- if (parent->role.level == PT_PAGE_TABLE_LEVEL)
- return 0;
-
- while (mmu_unsync_walk(parent, &pages)) {
- struct kvm_mmu_page *sp;
-
- for_each_sp(pages, sp, parents, i) {
- kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
- mmu_pages_clear_parents(&parents);
- zapped++;
- }
- }
-
- return zapped;
-}
-
-static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
- struct kvm_mmu_page *sp,
- struct list_head *invalid_list,
- int *nr_zapped)
-{
- bool list_unstable;
-
- trace_kvm_mmu_prepare_zap_page(sp);
- ++kvm->stat.mmu_shadow_zapped;
- *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
- kvm_mmu_page_unlink_children(kvm, sp);
- kvm_mmu_unlink_parents(kvm, sp);
-
- /* Zapping children means active_mmu_pages has become unstable. */
- list_unstable = *nr_zapped;
-
- if (!sp->role.invalid && !sp->role.direct)
- unaccount_shadowed(kvm, sp);
-
- if (sp->unsync)
- kvm_unlink_unsync_page(kvm, sp);
- if (!sp->root_count) {
- /* Count self */
- (*nr_zapped)++;
- list_move(&sp->link, invalid_list);
- kvm_mod_used_mmu_pages(kvm, -1);
- } else {
- list_move(&sp->link, &kvm->arch.active_mmu_pages);
-
- /*
- * Obsolete pages cannot be used on any vCPUs, see the comment
- * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
- * treats invalid shadow pages as being obsolete.
- */
- if (!is_obsolete_sp(kvm, sp))
- kvm_reload_remote_mmus(kvm);
- }
-
- if (sp->lpage_disallowed)
- unaccount_huge_nx_page(kvm, sp);
-
- sp->role.invalid = 1;
- return list_unstable;
-}
-
-static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
- struct list_head *invalid_list)
-{
- int nr_zapped;
-
- __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
- return nr_zapped;
-}
-
-static void kvm_mmu_commit_zap_page(struct kvm *kvm,
- struct list_head *invalid_list)
-{
- struct kvm_mmu_page *sp, *nsp;
-
- if (list_empty(invalid_list))
- return;
-
- /*
- * We need to make sure everyone sees our modifications to
- * the page tables and see changes to vcpu->mode here. The barrier
- * in the kvm_flush_remote_tlbs() achieves this. This pairs
- * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
- *
- * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
- * guest mode and/or lockless shadow page table walks.
- */
- kvm_flush_remote_tlbs(kvm);
-
- list_for_each_entry_safe(sp, nsp, invalid_list, link) {
- WARN_ON(!sp->role.invalid || sp->root_count);
- kvm_mmu_free_page(sp);
- }
-}
-
-static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
- struct list_head *invalid_list)
-{
- struct kvm_mmu_page *sp;
-
- if (list_empty(&kvm->arch.active_mmu_pages))
- return false;
-
- sp = list_last_entry(&kvm->arch.active_mmu_pages,
- struct kvm_mmu_page, link);
- return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
-}
-
-/*
- * Changing the number of mmu pages allocated to the vm
- * Note: if goal_nr_mmu_pages is too small, you will get dead lock
- */
-void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
-{
- LIST_HEAD(invalid_list);
-
- spin_lock(&kvm->mmu_lock);
-
- if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
- /* Need to free some mmu pages to achieve the goal. */
- while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
- if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
- break;
-
- kvm_mmu_commit_zap_page(kvm, &invalid_list);
- goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
- }
-
- kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
-
- spin_unlock(&kvm->mmu_lock);
-}
-
-int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
-{
- struct kvm_mmu_page *sp;
- LIST_HEAD(invalid_list);
- int r;
-
- pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
- r = 0;
- spin_lock(&kvm->mmu_lock);
- for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
- pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
- sp->role.word);
- r = 1;
- kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
- }
- kvm_mmu_commit_zap_page(kvm, &invalid_list);
- spin_unlock(&kvm->mmu_lock);
-
- return r;
-}
-EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
-
-static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
-{
- trace_kvm_mmu_unsync_page(sp);
- ++vcpu->kvm->stat.mmu_unsync;
- sp->unsync = 1;
-
- kvm_mmu_mark_parents_unsync(sp);
-}
-
-static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
- bool can_unsync)
-{
- struct kvm_mmu_page *sp;
-
- if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
- return true;
-
- for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
- if (!can_unsync)
- return true;
-
- if (sp->unsync)
- continue;
-
- WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
- kvm_unsync_page(vcpu, sp);
- }
-
- /*
- * We need to ensure that the marking of unsync pages is visible
- * before the SPTE is updated to allow writes because
- * kvm_mmu_sync_roots() checks the unsync flags without holding
- * the MMU lock and so can race with this. If the SPTE was updated
- * before the page had been marked as unsync-ed, something like the
- * following could happen:
- *
- * CPU 1 CPU 2
- * ---------------------------------------------------------------------
- * 1.2 Host updates SPTE
- * to be writable
- * 2.1 Guest writes a GPTE for GVA X.
- * (GPTE being in the guest page table shadowed
- * by the SP from CPU 1.)
- * This reads SPTE during the page table walk.
- * Since SPTE.W is read as 1, there is no
- * fault.
- *
- * 2.2 Guest issues TLB flush.
- * That causes a VM Exit.
- *
- * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
- * Since it is false, so it just returns.
- *
- * 2.4 Guest accesses GVA X.
- * Since the mapping in the SP was not updated,
- * so the old mapping for GVA X incorrectly
- * gets used.
- * 1.1 Host marks SP
- * as unsync
- * (sp->unsync = true)
- *
- * The write barrier below ensures that 1.1 happens before 1.2 and thus
- * the situation in 2.4 does not arise. The implicit barrier in 2.2
- * pairs with this write barrier.
- */
- smp_wmb();
-
- return false;
-}
-
-static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
-{
- if (pfn_valid(pfn))
- return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
- /*
- * Some reserved pages, such as those from NVDIMM
- * DAX devices, are not for MMIO, and can be mapped
- * with cached memory type for better performance.
- * However, the above check misconceives those pages
- * as MMIO, and results in KVM mapping them with UC
- * memory type, which would hurt the performance.
- * Therefore, we check the host memory type in addition
- * and only treat UC/UC-/WC pages as MMIO.
- */
- (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
-
- return !e820__mapped_raw_any(pfn_to_hpa(pfn),
- pfn_to_hpa(pfn + 1) - 1,
- E820_TYPE_RAM);
-}
-
-/* Bits which may be returned by set_spte() */
-#define SET_SPTE_WRITE_PROTECTED_PT BIT(0)
-#define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1)
-
-static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
- unsigned pte_access, int level,
- gfn_t gfn, kvm_pfn_t pfn, bool speculative,
- bool can_unsync, bool host_writable)
-{
- u64 spte = 0;
- int ret = 0;
- struct kvm_mmu_page *sp;
-
- if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
- return 0;
-
- sp = page_header(__pa(sptep));
- if (sp_ad_disabled(sp))
- spte |= SPTE_AD_DISABLED_MASK;
- else if (kvm_vcpu_ad_need_write_protect(vcpu))
- spte |= SPTE_AD_WRPROT_ONLY_MASK;
-
- /*
- * For the EPT case, shadow_present_mask is 0 if hardware
- * supports exec-only page table entries. In that case,
- * ACC_USER_MASK and shadow_user_mask are used to represent
- * read access. See FNAME(gpte_access) in paging_tmpl.h.
- */
- spte |= shadow_present_mask;
- if (!speculative)
- spte |= spte_shadow_accessed_mask(spte);
-
- if (level > PT_PAGE_TABLE_LEVEL && (pte_access & ACC_EXEC_MASK) &&
- is_nx_huge_page_enabled()) {
- pte_access &= ~ACC_EXEC_MASK;
- }
-
- if (pte_access & ACC_EXEC_MASK)
- spte |= shadow_x_mask;
- else
- spte |= shadow_nx_mask;
-
- if (pte_access & ACC_USER_MASK)
- spte |= shadow_user_mask;
-
- if (level > PT_PAGE_TABLE_LEVEL)
- spte |= PT_PAGE_SIZE_MASK;
- if (tdp_enabled)
- spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
- kvm_is_mmio_pfn(pfn));
-
- if (host_writable)
- spte |= SPTE_HOST_WRITEABLE;
- else
- pte_access &= ~ACC_WRITE_MASK;
-
- if (!kvm_is_mmio_pfn(pfn))
- spte |= shadow_me_mask;
-
- spte |= (u64)pfn << PAGE_SHIFT;
-
- if (pte_access & ACC_WRITE_MASK) {
-
- /*
- * Other vcpu creates new sp in the window between
- * mapping_level() and acquiring mmu-lock. We can
- * allow guest to retry the access, the mapping can
- * be fixed if guest refault.
- */
- if (level > PT_PAGE_TABLE_LEVEL &&
- mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
- goto done;
-
- spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
-
- /*
- * Optimization: for pte sync, if spte was writable the hash
- * lookup is unnecessary (and expensive). Write protection
- * is responsibility of mmu_get_page / kvm_sync_page.
- * Same reasoning can be applied to dirty page accounting.
- */
- if (!can_unsync && is_writable_pte(*sptep))
- goto set_pte;
-
- if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
- pgprintk("%s: found shadow page for %llx, marking ro\n",
- __func__, gfn);
- ret |= SET_SPTE_WRITE_PROTECTED_PT;
- pte_access &= ~ACC_WRITE_MASK;
- spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
- }
- }
-
- if (pte_access & ACC_WRITE_MASK) {
- kvm_vcpu_mark_page_dirty(vcpu, gfn);
- spte |= spte_shadow_dirty_mask(spte);
- }
-
- if (speculative)
- spte = mark_spte_for_access_track(spte);
-
-set_pte:
- if (mmu_spte_update(sptep, spte))
- ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
-done:
- return ret;
-}
-
-static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
- int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
- bool speculative, bool host_writable)
-{
- int was_rmapped = 0;
- int rmap_count;
- int set_spte_ret;
- int ret = RET_PF_RETRY;
- bool flush = false;
-
- pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
- *sptep, write_fault, gfn);
-
- if (is_shadow_present_pte(*sptep)) {
- /*
- * If we overwrite a PTE page pointer with a 2MB PMD, unlink
- * the parent of the now unreachable PTE.
- */
- if (level > PT_PAGE_TABLE_LEVEL &&
- !is_large_pte(*sptep)) {
- struct kvm_mmu_page *child;
- u64 pte = *sptep;
-
- child = page_header(pte & PT64_BASE_ADDR_MASK);
- drop_parent_pte(child, sptep);
- flush = true;
- } else if (pfn != spte_to_pfn(*sptep)) {
- pgprintk("hfn old %llx new %llx\n",
- spte_to_pfn(*sptep), pfn);
- drop_spte(vcpu->kvm, sptep);
- flush = true;
- } else
- was_rmapped = 1;
- }
-
- set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
- speculative, true, host_writable);
- if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
- if (write_fault)
- ret = RET_PF_EMULATE;
- kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
- }
-
- if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
- kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
- KVM_PAGES_PER_HPAGE(level));
-
- if (unlikely(is_mmio_spte(*sptep)))
- ret = RET_PF_EMULATE;
-
- pgprintk("%s: setting spte %llx\n", __func__, *sptep);
- trace_kvm_mmu_set_spte(level, gfn, sptep);
- if (!was_rmapped && is_large_pte(*sptep))
- ++vcpu->kvm->stat.lpages;
-
- if (is_shadow_present_pte(*sptep)) {
- if (!was_rmapped) {
- rmap_count = rmap_add(vcpu, sptep, gfn);
- if (rmap_count > RMAP_RECYCLE_THRESHOLD)
- rmap_recycle(vcpu, sptep, gfn);
- }
- }
-
- return ret;
-}
-
-static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
- bool no_dirty_log)
-{
- struct kvm_memory_slot *slot;
-
- slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
- if (!slot)
- return KVM_PFN_ERR_FAULT;
-
- return gfn_to_pfn_memslot_atomic(slot, gfn);
-}
-
-static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
- struct kvm_mmu_page *sp,
- u64 *start, u64 *end)
-{
- struct page *pages[PTE_PREFETCH_NUM];
- struct kvm_memory_slot *slot;
- unsigned access = sp->role.access;
- int i, ret;
- gfn_t gfn;
-
- gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
- slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
- if (!slot)
- return -1;
-
- ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
- if (ret <= 0)
- return -1;
-
- for (i = 0; i < ret; i++, gfn++, start++) {
- mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
- page_to_pfn(pages[i]), true, true);
- put_page(pages[i]);
- }
-
- return 0;
-}
-
-static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
- struct kvm_mmu_page *sp, u64 *sptep)
-{
- u64 *spte, *start = NULL;
- int i;
-
- WARN_ON(!sp->role.direct);
-
- i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
- spte = sp->spt + i;
-
- for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
- if (is_shadow_present_pte(*spte) || spte == sptep) {
- if (!start)
- continue;
- if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
- break;
- start = NULL;
- } else if (!start)
- start = spte;
- }
-}
-
-static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
-{
- struct kvm_mmu_page *sp;
-
- sp = page_header(__pa(sptep));
-
- /*
- * Without accessed bits, there's no way to distinguish between
- * actually accessed translations and prefetched, so disable pte
- * prefetch if accessed bits aren't available.
- */
- if (sp_ad_disabled(sp))
- return;
-
- if (sp->role.level > PT_PAGE_TABLE_LEVEL)
- return;
-
- __direct_pte_prefetch(vcpu, sp, sptep);
-}
-
-static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
- gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
-{
- int level = *levelp;
- u64 spte = *it.sptep;
-
- if (it.level == level && level > PT_PAGE_TABLE_LEVEL &&
- is_nx_huge_page_enabled() &&
- is_shadow_present_pte(spte) &&
- !is_large_pte(spte)) {
- /*
- * A small SPTE exists for this pfn, but FNAME(fetch)
- * and __direct_map would like to create a large PTE
- * instead: just force them to go down another level,
- * patching back for them into pfn the next 9 bits of
- * the address.
- */
- u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
- *pfnp |= gfn & page_mask;
- (*levelp)--;
- }
-}
-
-static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
- int map_writable, int level, kvm_pfn_t pfn,
- bool prefault, bool lpage_disallowed)
-{
- struct kvm_shadow_walk_iterator it;
- struct kvm_mmu_page *sp;
- int ret;
- gfn_t gfn = gpa >> PAGE_SHIFT;
- gfn_t base_gfn = gfn;
-
- if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
- return RET_PF_RETRY;
-
- trace_kvm_mmu_spte_requested(gpa, level, pfn);
- for_each_shadow_entry(vcpu, gpa, it) {
- /*
- * We cannot overwrite existing page tables with an NX
- * large page, as the leaf could be executable.
- */
- disallowed_hugepage_adjust(it, gfn, &pfn, &level);
-
- base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
- if (it.level == level)
- break;
-
- drop_large_spte(vcpu, it.sptep);
- if (!is_shadow_present_pte(*it.sptep)) {
- sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
- it.level - 1, true, ACC_ALL);
-
- link_shadow_page(vcpu, it.sptep, sp);
- if (lpage_disallowed)
- account_huge_nx_page(vcpu->kvm, sp);
- }
- }
-
- ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
- write, level, base_gfn, pfn, prefault,
- map_writable);
- direct_pte_prefetch(vcpu, it.sptep);
- ++vcpu->stat.pf_fixed;
- return ret;
-}
-
-static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
-{
- send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
-}
-
-static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
-{
- /*
- * Do not cache the mmio info caused by writing the readonly gfn
- * into the spte otherwise read access on readonly gfn also can
- * caused mmio page fault and treat it as mmio access.
- */
- if (pfn == KVM_PFN_ERR_RO_FAULT)
- return RET_PF_EMULATE;
-
- if (pfn == KVM_PFN_ERR_HWPOISON) {
- kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
- return RET_PF_RETRY;
- }
-
- return -EFAULT;
-}
-
-static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
- gfn_t gfn, kvm_pfn_t *pfnp,
- int *levelp)
-{
- kvm_pfn_t pfn = *pfnp;
- int level = *levelp;
-
- /*
- * Check if it's a transparent hugepage. If this would be an
- * hugetlbfs page, level wouldn't be set to
- * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
- * here.
- */
- if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
- !kvm_is_zone_device_pfn(pfn) && level == PT_PAGE_TABLE_LEVEL &&
- PageTransCompoundMap(pfn_to_page(pfn)) &&
- !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
- unsigned long mask;
- /*
- * mmu_notifier_retry was successful and we hold the
- * mmu_lock here, so the pmd can't become splitting
- * from under us, and in turn
- * __split_huge_page_refcount() can't run from under
- * us and we can safely transfer the refcount from
- * PG_tail to PG_head as we switch the pfn to tail to
- * head.
- */
- *levelp = level = PT_DIRECTORY_LEVEL;
- mask = KVM_PAGES_PER_HPAGE(level) - 1;
- VM_BUG_ON((gfn & mask) != (pfn & mask));
- if (pfn & mask) {
- kvm_release_pfn_clean(pfn);
- pfn &= ~mask;
- kvm_get_pfn(pfn);
- *pfnp = pfn;
- }
- }
-}
-
-static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
- kvm_pfn_t pfn, unsigned access, int *ret_val)
-{
- /* The pfn is invalid, report the error! */
- if (unlikely(is_error_pfn(pfn))) {
- *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
- return true;
- }
-
- if (unlikely(is_noslot_pfn(pfn)))
- vcpu_cache_mmio_info(vcpu, gva, gfn,
- access & shadow_mmio_access_mask);
-
- return false;
-}
-
-static bool page_fault_can_be_fast(u32 error_code)
-{
- /*
- * Do not fix the mmio spte with invalid generation number which
- * need to be updated by slow page fault path.
- */
- if (unlikely(error_code & PFERR_RSVD_MASK))
- return false;
-
- /* See if the page fault is due to an NX violation */
- if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
- == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
- return false;
-
- /*
- * #PF can be fast if:
- * 1. The shadow page table entry is not present, which could mean that
- * the fault is potentially caused by access tracking (if enabled).
- * 2. The shadow page table entry is present and the fault
- * is caused by write-protect, that means we just need change the W
- * bit of the spte which can be done out of mmu-lock.
- *
- * However, if access tracking is disabled we know that a non-present
- * page must be a genuine page fault where we have to create a new SPTE.
- * So, if access tracking is disabled, we return true only for write
- * accesses to a present page.
- */
-
- return shadow_acc_track_mask != 0 ||
- ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
- == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
-}
-
-/*
- * Returns true if the SPTE was fixed successfully. Otherwise,
- * someone else modified the SPTE from its original value.
- */
-static bool
-fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
- u64 *sptep, u64 old_spte, u64 new_spte)
-{
- gfn_t gfn;
-
- WARN_ON(!sp->role.direct);
-
- /*
- * Theoretically we could also set dirty bit (and flush TLB) here in
- * order to eliminate unnecessary PML logging. See comments in
- * set_spte. But fast_page_fault is very unlikely to happen with PML
- * enabled, so we do not do this. This might result in the same GPA
- * to be logged in PML buffer again when the write really happens, and
- * eventually to be called by mark_page_dirty twice. But it's also no
- * harm. This also avoids the TLB flush needed after setting dirty bit
- * so non-PML cases won't be impacted.
- *
- * Compare with set_spte where instead shadow_dirty_mask is set.
- */
- if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
- return false;
-
- if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
- /*
- * The gfn of direct spte is stable since it is
- * calculated by sp->gfn.
- */
- gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
- kvm_vcpu_mark_page_dirty(vcpu, gfn);
- }
-
- return true;
-}
-
-static bool is_access_allowed(u32 fault_err_code, u64 spte)
-{
- if (fault_err_code & PFERR_FETCH_MASK)
- return is_executable_pte(spte);
-
- if (fault_err_code & PFERR_WRITE_MASK)
- return is_writable_pte(spte);
-
- /* Fault was on Read access */
- return spte & PT_PRESENT_MASK;
-}
-
-/*
- * Return value:
- * - true: let the vcpu to access on the same address again.
- * - false: let the real page fault path to fix it.
- */
-static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
- u32 error_code)
-{
- struct kvm_shadow_walk_iterator iterator;
- struct kvm_mmu_page *sp;
- bool fault_handled = false;
- u64 spte = 0ull;
- uint retry_count = 0;
-
- if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
- return false;
-
- if (!page_fault_can_be_fast(error_code))
- return false;
-
- walk_shadow_page_lockless_begin(vcpu);
-
- do {
- u64 new_spte;
-
- for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
- if (!is_shadow_present_pte(spte) ||
- iterator.level < level)
- break;
-
- sp = page_header(__pa(iterator.sptep));
- if (!is_last_spte(spte, sp->role.level))
- break;
-
- /*
- * Check whether the memory access that caused the fault would
- * still cause it if it were to be performed right now. If not,
- * then this is a spurious fault caused by TLB lazily flushed,
- * or some other CPU has already fixed the PTE after the
- * current CPU took the fault.
- *
- * Need not check the access of upper level table entries since
- * they are always ACC_ALL.
- */
- if (is_access_allowed(error_code, spte)) {
- fault_handled = true;
- break;
- }
-
- new_spte = spte;
-
- if (is_access_track_spte(spte))
- new_spte = restore_acc_track_spte(new_spte);
-
- /*
- * Currently, to simplify the code, write-protection can
- * be removed in the fast path only if the SPTE was
- * write-protected for dirty-logging or access tracking.
- */
- if ((error_code & PFERR_WRITE_MASK) &&
- spte_can_locklessly_be_made_writable(spte))
- {
- new_spte |= PT_WRITABLE_MASK;
-
- /*
- * Do not fix write-permission on the large spte. Since
- * we only dirty the first page into the dirty-bitmap in
- * fast_pf_fix_direct_spte(), other pages are missed
- * if its slot has dirty logging enabled.
- *
- * Instead, we let the slow page fault path create a
- * normal spte to fix the access.
- *
- * See the comments in kvm_arch_commit_memory_region().
- */
- if (sp->role.level > PT_PAGE_TABLE_LEVEL)
- break;
- }
-
- /* Verify that the fault can be handled in the fast path */
- if (new_spte == spte ||
- !is_access_allowed(error_code, new_spte))
- break;
-
- /*
- * Currently, fast page fault only works for direct mapping
- * since the gfn is not stable for indirect shadow page. See
- * Documentation/virt/kvm/locking.txt to get more detail.
- */
- fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
- iterator.sptep, spte,
- new_spte);
- if (fault_handled)
- break;
-
- if (++retry_count > 4) {
- printk_once(KERN_WARNING
- "kvm: Fast #PF retrying more than 4 times.\n");
- break;
- }
-
- } while (true);
-
- trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
- spte, fault_handled);
- walk_shadow_page_lockless_end(vcpu);
-
- return fault_handled;
-}
-
-static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
- gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
-static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
-
-static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
- gfn_t gfn, bool prefault)
-{
- int r;
- int level;
- bool force_pt_level;
- kvm_pfn_t pfn;
- unsigned long mmu_seq;
- bool map_writable, write = error_code & PFERR_WRITE_MASK;
- bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
- is_nx_huge_page_enabled();
-
- force_pt_level = lpage_disallowed;
- level = mapping_level(vcpu, gfn, &force_pt_level);
- if (likely(!force_pt_level)) {
- /*
- * This path builds a PAE pagetable - so we can map
- * 2mb pages at maximum. Therefore check if the level
- * is larger than that.
- */
- if (level > PT_DIRECTORY_LEVEL)
- level = PT_DIRECTORY_LEVEL;
-
- gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
- }
-
- if (fast_page_fault(vcpu, v, level, error_code))
- return RET_PF_RETRY;
-
- mmu_seq = vcpu->kvm->mmu_notifier_seq;
- smp_rmb();
-
- if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
- return RET_PF_RETRY;
-
- if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
- return r;
-
- r = RET_PF_RETRY;
- spin_lock(&vcpu->kvm->mmu_lock);
- if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
- goto out_unlock;
- if (make_mmu_pages_available(vcpu) < 0)
- goto out_unlock;
- if (likely(!force_pt_level))
- transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
- r = __direct_map(vcpu, v, write, map_writable, level, pfn,
- prefault, false);
-out_unlock:
- spin_unlock(&vcpu->kvm->mmu_lock);
- kvm_release_pfn_clean(pfn);
- return r;
-}
-
-static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
- struct list_head *invalid_list)
-{
- struct kvm_mmu_page *sp;
-
- if (!VALID_PAGE(*root_hpa))
- return;
-
- sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
- --sp->root_count;
- if (!sp->root_count && sp->role.invalid)
- kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
-
- *root_hpa = INVALID_PAGE;
-}
-
-/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
-void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
- ulong roots_to_free)
-{
- int i;
- LIST_HEAD(invalid_list);
- bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
-
- BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
-
- /* Before acquiring the MMU lock, see if we need to do any real work. */
- if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
- for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
- if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
- VALID_PAGE(mmu->prev_roots[i].hpa))
- break;
-
- if (i == KVM_MMU_NUM_PREV_ROOTS)
- return;
- }
-
- spin_lock(&vcpu->kvm->mmu_lock);
-
- for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
- if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
- mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
- &invalid_list);
-
- if (free_active_root) {
- if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
- (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
- mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
- &invalid_list);
- } else {
- for (i = 0; i < 4; ++i)
- if (mmu->pae_root[i] != 0)
- mmu_free_root_page(vcpu->kvm,
- &mmu->pae_root[i],
- &invalid_list);
- mmu->root_hpa = INVALID_PAGE;
- }
- mmu->root_cr3 = 0;
- }
-
- kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
- spin_unlock(&vcpu->kvm->mmu_lock);
-}
-EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
-
-static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
-{
- int ret = 0;
-
- if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
- kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
- ret = 1;
- }
-
- return ret;
-}
-
-static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
-{
- struct kvm_mmu_page *sp;
- unsigned i;
-
- if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
- spin_lock(&vcpu->kvm->mmu_lock);
- if(make_mmu_pages_available(vcpu) < 0) {
- spin_unlock(&vcpu->kvm->mmu_lock);
- return -ENOSPC;
- }
- sp = kvm_mmu_get_page(vcpu, 0, 0,
- vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
- ++sp->root_count;
- spin_unlock(&vcpu->kvm->mmu_lock);
- vcpu->arch.mmu->root_hpa = __pa(sp->spt);
- } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
- for (i = 0; i < 4; ++i) {
- hpa_t root = vcpu->arch.mmu->pae_root[i];
-
- MMU_WARN_ON(VALID_PAGE(root));
- spin_lock(&vcpu->kvm->mmu_lock);
- if (make_mmu_pages_available(vcpu) < 0) {
- spin_unlock(&vcpu->kvm->mmu_lock);
- return -ENOSPC;
- }
- sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
- i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
- root = __pa(sp->spt);
- ++sp->root_count;
- spin_unlock(&vcpu->kvm->mmu_lock);
- vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
- }
- vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
- } else
- BUG();
- vcpu->arch.mmu->root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
-
- return 0;
-}
-
-static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
-{
- struct kvm_mmu_page *sp;
- u64 pdptr, pm_mask;
- gfn_t root_gfn, root_cr3;
- int i;
-
- root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
- root_gfn = root_cr3 >> PAGE_SHIFT;
-
- if (mmu_check_root(vcpu, root_gfn))
- return 1;
-
- /*
- * Do we shadow a long mode page table? If so we need to
- * write-protect the guests page table root.
- */
- if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
- hpa_t root = vcpu->arch.mmu->root_hpa;
-
- MMU_WARN_ON(VALID_PAGE(root));
-
- spin_lock(&vcpu->kvm->mmu_lock);
- if (make_mmu_pages_available(vcpu) < 0) {
- spin_unlock(&vcpu->kvm->mmu_lock);
- return -ENOSPC;
- }
- sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
- vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
- root = __pa(sp->spt);
- ++sp->root_count;
- spin_unlock(&vcpu->kvm->mmu_lock);
- vcpu->arch.mmu->root_hpa = root;
- goto set_root_cr3;
- }
-
- /*
- * We shadow a 32 bit page table. This may be a legacy 2-level
- * or a PAE 3-level page table. In either case we need to be aware that
- * the shadow page table may be a PAE or a long mode page table.
- */
- pm_mask = PT_PRESENT_MASK;
- if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
- pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
-
- for (i = 0; i < 4; ++i) {
- hpa_t root = vcpu->arch.mmu->pae_root[i];
-
- MMU_WARN_ON(VALID_PAGE(root));
- if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
- pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
- if (!(pdptr & PT_PRESENT_MASK)) {
- vcpu->arch.mmu->pae_root[i] = 0;
- continue;
- }
- root_gfn = pdptr >> PAGE_SHIFT;
- if (mmu_check_root(vcpu, root_gfn))
- return 1;
- }
- spin_lock(&vcpu->kvm->mmu_lock);
- if (make_mmu_pages_available(vcpu) < 0) {
- spin_unlock(&vcpu->kvm->mmu_lock);
- return -ENOSPC;
- }
- sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
- 0, ACC_ALL);
- root = __pa(sp->spt);
- ++sp->root_count;
- spin_unlock(&vcpu->kvm->mmu_lock);
-
- vcpu->arch.mmu->pae_root[i] = root | pm_mask;
- }
- vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
-
- /*
- * If we shadow a 32 bit page table with a long mode page
- * table we enter this path.
- */
- if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
- if (vcpu->arch.mmu->lm_root == NULL) {
- /*
- * The additional page necessary for this is only
- * allocated on demand.
- */
-
- u64 *lm_root;
-
- lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
- if (lm_root == NULL)
- return 1;
-
- lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
-
- vcpu->arch.mmu->lm_root = lm_root;
- }
-
- vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
- }
-
-set_root_cr3:
- vcpu->arch.mmu->root_cr3 = root_cr3;
-
- return 0;
-}
-
-static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
-{
- if (vcpu->arch.mmu->direct_map)
- return mmu_alloc_direct_roots(vcpu);
- else
- return mmu_alloc_shadow_roots(vcpu);
-}
-
-void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
-{
- int i;
- struct kvm_mmu_page *sp;
-
- if (vcpu->arch.mmu->direct_map)
- return;
-
- if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
- return;
-
- vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
-
- if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
- hpa_t root = vcpu->arch.mmu->root_hpa;
- sp = page_header(root);
-
- /*
- * Even if another CPU was marking the SP as unsync-ed
- * simultaneously, any guest page table changes are not
- * guaranteed to be visible anyway until this VCPU issues a TLB
- * flush strictly after those changes are made. We only need to
- * ensure that the other CPU sets these flags before any actual
- * changes to the page tables are made. The comments in
- * mmu_need_write_protect() describe what could go wrong if this
- * requirement isn't satisfied.
- */
- if (!smp_load_acquire(&sp->unsync) &&
- !smp_load_acquire(&sp->unsync_children))
- return;
-
- spin_lock(&vcpu->kvm->mmu_lock);
- kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
-
- mmu_sync_children(vcpu, sp);
-
- kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
- spin_unlock(&vcpu->kvm->mmu_lock);
- return;
- }
-
- spin_lock(&vcpu->kvm->mmu_lock);
- kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
-
- for (i = 0; i < 4; ++i) {
- hpa_t root = vcpu->arch.mmu->pae_root[i];
-
- if (root && VALID_PAGE(root)) {
- root &= PT64_BASE_ADDR_MASK;
- sp = page_header(root);
- mmu_sync_children(vcpu, sp);
- }
- }
-
- kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
- spin_unlock(&vcpu->kvm->mmu_lock);
-}
-EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
-
-static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
- u32 access, struct x86_exception *exception)
-{
- if (exception)
- exception->error_code = 0;
- return vaddr;
-}
-
-static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
- u32 access,
- struct x86_exception *exception)
-{
- if (exception)
- exception->error_code = 0;
- return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
-}
-
-static bool
-__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
-{
- int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
-
- return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
- ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
-}
-
-static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
-{
- return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
-}
-
-static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
-{
- return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
-}
-
-static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
-{
- /*
- * A nested guest cannot use the MMIO cache if it is using nested
- * page tables, because cr2 is a nGPA while the cache stores GPAs.
- */
- if (mmu_is_nested(vcpu))
- return false;
-
- if (direct)
- return vcpu_match_mmio_gpa(vcpu, addr);
-
- return vcpu_match_mmio_gva(vcpu, addr);
-}
-
-/* return true if reserved bit is detected on spte. */
-static bool
-walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
-{
- struct kvm_shadow_walk_iterator iterator;
- u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
- int root, leaf;
- bool reserved = false;
-
- if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
- goto exit;
-
- walk_shadow_page_lockless_begin(vcpu);
-
- for (shadow_walk_init(&iterator, vcpu, addr),
- leaf = root = iterator.level;
- shadow_walk_okay(&iterator);
- __shadow_walk_next(&iterator, spte)) {
- spte = mmu_spte_get_lockless(iterator.sptep);
-
- sptes[leaf - 1] = spte;
- leaf--;
-
- if (!is_shadow_present_pte(spte))
- break;
-
- reserved |= is_shadow_zero_bits_set(vcpu->arch.mmu, spte,
- iterator.level);
- }
-
- walk_shadow_page_lockless_end(vcpu);
-
- if (reserved) {
- pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
- __func__, addr);
- while (root > leaf) {
- pr_err("------ spte 0x%llx level %d.\n",
- sptes[root - 1], root);
- root--;
- }
- }
-exit:
- *sptep = spte;
- return reserved;
-}
-
-static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
-{
- u64 spte;
- bool reserved;
-
- if (mmio_info_in_cache(vcpu, addr, direct))
- return RET_PF_EMULATE;
-
- reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
- if (WARN_ON(reserved))
- return -EINVAL;
-
- if (is_mmio_spte(spte)) {
- gfn_t gfn = get_mmio_spte_gfn(spte);
- unsigned access = get_mmio_spte_access(spte);
-
- if (!check_mmio_spte(vcpu, spte))
- return RET_PF_INVALID;
-
- if (direct)
- addr = 0;
-
- trace_handle_mmio_page_fault(addr, gfn, access);
- vcpu_cache_mmio_info(vcpu, addr, gfn, access);
- return RET_PF_EMULATE;
- }
-
- /*
- * If the page table is zapped by other cpus, let CPU fault again on
- * the address.
- */
- return RET_PF_RETRY;
-}
-
-static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
- u32 error_code, gfn_t gfn)
-{
- if (unlikely(error_code & PFERR_RSVD_MASK))
- return false;
-
- if (!(error_code & PFERR_PRESENT_MASK) ||
- !(error_code & PFERR_WRITE_MASK))
- return false;
-
- /*
- * guest is writing the page which is write tracked which can
- * not be fixed by page fault handler.
- */
- if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
- return true;
-
- return false;
-}
-
-static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
-{
- struct kvm_shadow_walk_iterator iterator;
- u64 spte;
-
- if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
- return;
-
- walk_shadow_page_lockless_begin(vcpu);
- for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
- clear_sp_write_flooding_count(iterator.sptep);
- if (!is_shadow_present_pte(spte))
- break;
- }
- walk_shadow_page_lockless_end(vcpu);
-}
-
-static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
- u32 error_code, bool prefault)
-{
- gfn_t gfn = gva >> PAGE_SHIFT;
- int r;
-
- pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
-
- if (page_fault_handle_page_track(vcpu, error_code, gfn))
- return RET_PF_EMULATE;
-
- r = mmu_topup_memory_caches(vcpu);
- if (r)
- return r;
-
- MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
-
-
- return nonpaging_map(vcpu, gva & PAGE_MASK,
- error_code, gfn, prefault);
-}
-
-static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
-{
- struct kvm_arch_async_pf arch;
-
- arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
- arch.gfn = gfn;
- arch.direct_map = vcpu->arch.mmu->direct_map;
- arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu);
-
- return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
-}
-
-static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
- gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
-{
- struct kvm_memory_slot *slot;
- bool async;
-
- /*
- * Don't expose private memslots to L2.
- */
- if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
- *pfn = KVM_PFN_NOSLOT;
- return false;
- }
-
- slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
- async = false;
- *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
- if (!async)
- return false; /* *pfn has correct page already */
-
- if (!prefault && kvm_can_do_async_pf(vcpu)) {
- trace_kvm_try_async_get_page(gva, gfn);
- if (kvm_find_async_pf_gfn(vcpu, gfn)) {
- trace_kvm_async_pf_doublefault(gva, gfn);
- kvm_make_request(KVM_REQ_APF_HALT, vcpu);
- return true;
- } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
- return true;
- }
-
- *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
- return false;
-}
-
-int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
- u64 fault_address, char *insn, int insn_len)
-{
- int r = 1;
-
- vcpu->arch.l1tf_flush_l1d = true;
- switch (vcpu->arch.apf.host_apf_reason) {
- default:
- trace_kvm_page_fault(fault_address, error_code);
-
- if (kvm_event_needs_reinjection(vcpu))
- kvm_mmu_unprotect_page_virt(vcpu, fault_address);
- r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
- insn_len);
- break;
- case KVM_PV_REASON_PAGE_NOT_PRESENT:
- vcpu->arch.apf.host_apf_reason = 0;
- local_irq_disable();
- kvm_async_pf_task_wait(fault_address, 0);
- local_irq_enable();
- break;
- case KVM_PV_REASON_PAGE_READY:
- vcpu->arch.apf.host_apf_reason = 0;
- local_irq_disable();
- kvm_async_pf_task_wake(fault_address);
- local_irq_enable();
- break;
- }
- return r;
-}
-EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
-
-static bool
-check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
-{
- int page_num = KVM_PAGES_PER_HPAGE(level);
-
- gfn &= ~(page_num - 1);
-
- return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
-}
-
-static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
- bool prefault)
-{
- kvm_pfn_t pfn;
- int r;
- int level;
- bool force_pt_level;
- gfn_t gfn = gpa >> PAGE_SHIFT;
- unsigned long mmu_seq;
- int write = error_code & PFERR_WRITE_MASK;
- bool map_writable;
- bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
- is_nx_huge_page_enabled();
-
- MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
-
- if (page_fault_handle_page_track(vcpu, error_code, gfn))
- return RET_PF_EMULATE;
-
- r = mmu_topup_memory_caches(vcpu);
- if (r)
- return r;
-
- force_pt_level =
- lpage_disallowed ||
- !check_hugepage_cache_consistency(vcpu, gfn, PT_DIRECTORY_LEVEL);
- level = mapping_level(vcpu, gfn, &force_pt_level);
- if (likely(!force_pt_level)) {
- if (level > PT_DIRECTORY_LEVEL &&
- !check_hugepage_cache_consistency(vcpu, gfn, level))
- level = PT_DIRECTORY_LEVEL;
- gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
- }
-
- if (fast_page_fault(vcpu, gpa, level, error_code))
- return RET_PF_RETRY;
-
- mmu_seq = vcpu->kvm->mmu_notifier_seq;
- smp_rmb();
-
- if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
- return RET_PF_RETRY;
-
- if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
- return r;
-
- r = RET_PF_RETRY;
- spin_lock(&vcpu->kvm->mmu_lock);
- if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
- goto out_unlock;
- if (make_mmu_pages_available(vcpu) < 0)
- goto out_unlock;
- if (likely(!force_pt_level))
- transparent_hugepage_adjust(vcpu, gfn, &pfn, &level);
- r = __direct_map(vcpu, gpa, write, map_writable, level, pfn,
- prefault, lpage_disallowed);
-out_unlock:
- spin_unlock(&vcpu->kvm->mmu_lock);
- kvm_release_pfn_clean(pfn);
- return r;
-}
-
-static void nonpaging_init_context(struct kvm_vcpu *vcpu,
- struct kvm_mmu *context)
-{
- context->page_fault = nonpaging_page_fault;
- context->gva_to_gpa = nonpaging_gva_to_gpa;
- context->sync_page = nonpaging_sync_page;
- context->invlpg = nonpaging_invlpg;
- context->update_pte = nonpaging_update_pte;
- context->root_level = 0;
- context->shadow_root_level = PT32E_ROOT_LEVEL;
- context->direct_map = true;
- context->nx = false;
-}
-
-/*
- * Find out if a previously cached root matching the new CR3/role is available.
- * The current root is also inserted into the cache.
- * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
- * returned.
- * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
- * false is returned. This root should now be freed by the caller.
- */
-static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
- union kvm_mmu_page_role new_role)
-{
- uint i;
- struct kvm_mmu_root_info root;
- struct kvm_mmu *mmu = vcpu->arch.mmu;
-
- root.cr3 = mmu->root_cr3;
- root.hpa = mmu->root_hpa;
-
- for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
- swap(root, mmu->prev_roots[i]);
-
- if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
- page_header(root.hpa) != NULL &&
- new_role.word == page_header(root.hpa)->role.word)
- break;
- }
-
- mmu->root_hpa = root.hpa;
- mmu->root_cr3 = root.cr3;
-
- return i < KVM_MMU_NUM_PREV_ROOTS;
-}
-
-static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
- union kvm_mmu_page_role new_role,
- bool skip_tlb_flush)
-{
- struct kvm_mmu *mmu = vcpu->arch.mmu;
-
- /*
- * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
- * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
- * later if necessary.
- */
- if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
- mmu->root_level >= PT64_ROOT_4LEVEL) {
- if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
- return false;
-
- if (cached_root_available(vcpu, new_cr3, new_role)) {
- /*
- * It is possible that the cached previous root page is
- * obsolete because of a change in the MMU generation
- * number. However, changing the generation number is
- * accompanied by KVM_REQ_MMU_RELOAD, which will free
- * the root set here and allocate a new one.
- */
- kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
- if (!skip_tlb_flush) {
- kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
- kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
- }
-
- /*
- * The last MMIO access's GVA and GPA are cached in the
- * VCPU. When switching to a new CR3, that GVA->GPA
- * mapping may no longer be valid. So clear any cached
- * MMIO info even when we don't need to sync the shadow
- * page tables.
- */
- vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
-
- __clear_sp_write_flooding_count(
- page_header(mmu->root_hpa));
-
- return true;
- }
- }
-
- return false;
-}
-
-static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
- union kvm_mmu_page_role new_role,
- bool skip_tlb_flush)
-{
- if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
- kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
- KVM_MMU_ROOT_CURRENT);
-}
-
-void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
-{
- __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
- skip_tlb_flush);
-}
-EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
-
-static unsigned long get_cr3(struct kvm_vcpu *vcpu)
-{
- return kvm_read_cr3(vcpu);
-}
-
-static void inject_page_fault(struct kvm_vcpu *vcpu,
- struct x86_exception *fault)
-{
- vcpu->arch.mmu->inject_page_fault(vcpu, fault);
-}
-
-static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
- unsigned access, int *nr_present)
-{
- if (unlikely(is_mmio_spte(*sptep))) {
- if (gfn != get_mmio_spte_gfn(*sptep)) {
- mmu_spte_clear_no_track(sptep);
- return true;
- }
-
- (*nr_present)++;
- mark_mmio_spte(vcpu, sptep, gfn, access);
- return true;
- }
-
- return false;
-}
-
-static inline bool is_last_gpte(struct kvm_mmu *mmu,
- unsigned level, unsigned gpte)
-{
- /*
- * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
- * If it is clear, there are no large pages at this level, so clear
- * PT_PAGE_SIZE_MASK in gpte if that is the case.
- */
- gpte &= level - mmu->last_nonleaf_level;
-
- /*
- * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
- * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
- * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
- */
- gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
-
- return gpte & PT_PAGE_SIZE_MASK;
-}
-
-#define PTTYPE_EPT 18 /* arbitrary */
-#define PTTYPE PTTYPE_EPT
-#include "paging_tmpl.h"
-#undef PTTYPE
-
-#define PTTYPE 64
-#include "paging_tmpl.h"
-#undef PTTYPE
-
-#define PTTYPE 32
-#include "paging_tmpl.h"
-#undef PTTYPE
-
-static void
-__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
- struct rsvd_bits_validate *rsvd_check,
- int maxphyaddr, int level, bool nx, bool gbpages,
- bool pse, bool amd)
-{
- u64 exb_bit_rsvd = 0;
- u64 gbpages_bit_rsvd = 0;
- u64 nonleaf_bit8_rsvd = 0;
-
- rsvd_check->bad_mt_xwr = 0;
-
- if (!nx)
- exb_bit_rsvd = rsvd_bits(63, 63);
- if (!gbpages)
- gbpages_bit_rsvd = rsvd_bits(7, 7);
-
- /*
- * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
- * leaf entries) on AMD CPUs only.
- */
- if (amd)
- nonleaf_bit8_rsvd = rsvd_bits(8, 8);
-
- switch (level) {
- case PT32_ROOT_LEVEL:
- /* no rsvd bits for 2 level 4K page table entries */
- rsvd_check->rsvd_bits_mask[0][1] = 0;
- rsvd_check->rsvd_bits_mask[0][0] = 0;
- rsvd_check->rsvd_bits_mask[1][0] =
- rsvd_check->rsvd_bits_mask[0][0];
-
- if (!pse) {
- rsvd_check->rsvd_bits_mask[1][1] = 0;
- break;
- }
-
- if (is_cpuid_PSE36())
- /* 36bits PSE 4MB page */
- rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
- else
- /* 32 bits PSE 4MB page */
- rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
- break;
- case PT32E_ROOT_LEVEL:
- rsvd_check->rsvd_bits_mask[0][2] =
- rsvd_bits(maxphyaddr, 63) |
- rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
- rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
- rsvd_bits(maxphyaddr, 62); /* PDE */
- rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
- rsvd_bits(maxphyaddr, 62); /* PTE */
- rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
- rsvd_bits(maxphyaddr, 62) |
- rsvd_bits(13, 20); /* large page */
- rsvd_check->rsvd_bits_mask[1][0] =
- rsvd_check->rsvd_bits_mask[0][0];
- break;
- case PT64_ROOT_5LEVEL:
- rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
- nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
- rsvd_bits(maxphyaddr, 51);
- rsvd_check->rsvd_bits_mask[1][4] =
- rsvd_check->rsvd_bits_mask[0][4];
- /* fall through */
- case PT64_ROOT_4LEVEL:
- rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
- nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
- rsvd_bits(maxphyaddr, 51);
- rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
- nonleaf_bit8_rsvd | gbpages_bit_rsvd |
- rsvd_bits(maxphyaddr, 51);
- rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
- rsvd_bits(maxphyaddr, 51);
- rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
- rsvd_bits(maxphyaddr, 51);
- rsvd_check->rsvd_bits_mask[1][3] =
- rsvd_check->rsvd_bits_mask[0][3];
- rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
- gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
- rsvd_bits(13, 29);
- rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
- rsvd_bits(maxphyaddr, 51) |
- rsvd_bits(13, 20); /* large page */
- rsvd_check->rsvd_bits_mask[1][0] =
- rsvd_check->rsvd_bits_mask[0][0];
- break;
- }
-}
-
-static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
- struct kvm_mmu *context)
-{
- __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
- cpuid_maxphyaddr(vcpu), context->root_level,
- context->nx,
- guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
- is_pse(vcpu), guest_cpuid_is_amd(vcpu));
-}
-
-static void
-__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
- int maxphyaddr, bool execonly)
-{
- u64 bad_mt_xwr;
-
- rsvd_check->rsvd_bits_mask[0][4] =
- rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
- rsvd_check->rsvd_bits_mask[0][3] =
- rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
- rsvd_check->rsvd_bits_mask[0][2] =
- rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
- rsvd_check->rsvd_bits_mask[0][1] =
- rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
- rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
-
- /* large page */
- rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
- rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
- rsvd_check->rsvd_bits_mask[1][2] =
- rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
- rsvd_check->rsvd_bits_mask[1][1] =
- rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
- rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
-
- bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
- bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
- bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
- bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
- bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
- if (!execonly) {
- /* bits 0..2 must not be 100 unless VMX capabilities allow it */
- bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
- }
- rsvd_check->bad_mt_xwr = bad_mt_xwr;
-}
-
-static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
- struct kvm_mmu *context, bool execonly)
-{
- __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
- cpuid_maxphyaddr(vcpu), execonly);
-}
-
-/*
- * the page table on host is the shadow page table for the page
- * table in guest or amd nested guest, its mmu features completely
- * follow the features in guest.
- */
-void
-reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
-{
- bool uses_nx = context->nx ||
- context->mmu_role.base.smep_andnot_wp;
- struct rsvd_bits_validate *shadow_zero_check;
- int i;
-
- /*
- * Passing "true" to the last argument is okay; it adds a check
- * on bit 8 of the SPTEs which KVM doesn't use anyway.
- */
- shadow_zero_check = &context->shadow_zero_check;
- __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
- shadow_phys_bits,
- context->shadow_root_level, uses_nx,
- guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
- is_pse(vcpu), true);
-
- if (!shadow_me_mask)
- return;
-
- for (i = context->shadow_root_level; --i >= 0;) {
- shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
- shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
- }
-
-}
-EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
-
-static inline bool boot_cpu_is_amd(void)
-{
- WARN_ON_ONCE(!tdp_enabled);
- return shadow_x_mask == 0;
-}
-
-/*
- * the direct page table on host, use as much mmu features as
- * possible, however, kvm currently does not do execution-protection.
- */
-static void
-reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
- struct kvm_mmu *context)
-{
- struct rsvd_bits_validate *shadow_zero_check;
- int i;
-
- shadow_zero_check = &context->shadow_zero_check;
-
- if (boot_cpu_is_amd())
- __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
- shadow_phys_bits,
- context->shadow_root_level, false,
- boot_cpu_has(X86_FEATURE_GBPAGES),
- true, true);
- else
- __reset_rsvds_bits_mask_ept(shadow_zero_check,
- shadow_phys_bits,
- false);
-
- if (!shadow_me_mask)
- return;
-
- for (i = context->shadow_root_level; --i >= 0;) {
- shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
- shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
- }
-}
-
-/*
- * as the comments in reset_shadow_zero_bits_mask() except it
- * is the shadow page table for intel nested guest.
- */
-static void
-reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
- struct kvm_mmu *context, bool execonly)
-{
- __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
- shadow_phys_bits, execonly);
-}
-
-#define BYTE_MASK(access) \
- ((1 & (access) ? 2 : 0) | \
- (2 & (access) ? 4 : 0) | \
- (3 & (access) ? 8 : 0) | \
- (4 & (access) ? 16 : 0) | \
- (5 & (access) ? 32 : 0) | \
- (6 & (access) ? 64 : 0) | \
- (7 & (access) ? 128 : 0))
-
-
-static void update_permission_bitmask(struct kvm_vcpu *vcpu,
- struct kvm_mmu *mmu, bool ept)
-{
- unsigned byte;
-
- const u8 x = BYTE_MASK(ACC_EXEC_MASK);
- const u8 w = BYTE_MASK(ACC_WRITE_MASK);
- const u8 u = BYTE_MASK(ACC_USER_MASK);
-
- bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
- bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
- bool cr0_wp = is_write_protection(vcpu);
-
- for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
- unsigned pfec = byte << 1;
-
- /*
- * Each "*f" variable has a 1 bit for each UWX value
- * that causes a fault with the given PFEC.
- */
-
- /* Faults from writes to non-writable pages */
- u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
- /* Faults from user mode accesses to supervisor pages */
- u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
- /* Faults from fetches of non-executable pages*/
- u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
- /* Faults from kernel mode fetches of user pages */
- u8 smepf = 0;
- /* Faults from kernel mode accesses of user pages */
- u8 smapf = 0;
-
- if (!ept) {
- /* Faults from kernel mode accesses to user pages */
- u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
-
- /* Not really needed: !nx will cause pte.nx to fault */
- if (!mmu->nx)
- ff = 0;
-
- /* Allow supervisor writes if !cr0.wp */
- if (!cr0_wp)
- wf = (pfec & PFERR_USER_MASK) ? wf : 0;
-
- /* Disallow supervisor fetches of user code if cr4.smep */
- if (cr4_smep)
- smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
-
- /*
- * SMAP:kernel-mode data accesses from user-mode
- * mappings should fault. A fault is considered
- * as a SMAP violation if all of the following
- * conditions are true:
- * - X86_CR4_SMAP is set in CR4
- * - A user page is accessed
- * - The access is not a fetch
- * - Page fault in kernel mode
- * - if CPL = 3 or X86_EFLAGS_AC is clear
- *
- * Here, we cover the first three conditions.
- * The fourth is computed dynamically in permission_fault();
- * PFERR_RSVD_MASK bit will be set in PFEC if the access is
- * *not* subject to SMAP restrictions.
- */
- if (cr4_smap)
- smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
- }
-
- mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
- }
-}
-
-/*
-* PKU is an additional mechanism by which the paging controls access to
-* user-mode addresses based on the value in the PKRU register. Protection
-* key violations are reported through a bit in the page fault error code.
-* Unlike other bits of the error code, the PK bit is not known at the
-* call site of e.g. gva_to_gpa; it must be computed directly in
-* permission_fault based on two bits of PKRU, on some machine state (CR4,
-* CR0, EFER, CPL), and on other bits of the error code and the page tables.
-*
-* In particular the following conditions come from the error code, the
-* page tables and the machine state:
-* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
-* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
-* - PK is always zero if U=0 in the page tables
-* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
-*
-* The PKRU bitmask caches the result of these four conditions. The error
-* code (minus the P bit) and the page table's U bit form an index into the
-* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
-* with the two bits of the PKRU register corresponding to the protection key.
-* For the first three conditions above the bits will be 00, thus masking
-* away both AD and WD. For all reads or if the last condition holds, WD
-* only will be masked away.
-*/
-static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
- bool ept)
-{
- unsigned bit;
- bool wp;
-
- if (ept) {
- mmu->pkru_mask = 0;
- return;
- }
-
- /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
- if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
- mmu->pkru_mask = 0;
- return;
- }
-
- wp = is_write_protection(vcpu);
-
- for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
- unsigned pfec, pkey_bits;
- bool check_pkey, check_write, ff, uf, wf, pte_user;
-
- pfec = bit << 1;
- ff = pfec & PFERR_FETCH_MASK;
- uf = pfec & PFERR_USER_MASK;
- wf = pfec & PFERR_WRITE_MASK;
-
- /* PFEC.RSVD is replaced by ACC_USER_MASK. */
- pte_user = pfec & PFERR_RSVD_MASK;
-
- /*
- * Only need to check the access which is not an
- * instruction fetch and is to a user page.
- */
- check_pkey = (!ff && pte_user);
- /*
- * write access is controlled by PKRU if it is a
- * user access or CR0.WP = 1.
- */
- check_write = check_pkey && wf && (uf || wp);
-
- /* PKRU.AD stops both read and write access. */
- pkey_bits = !!check_pkey;
- /* PKRU.WD stops write access. */
- pkey_bits |= (!!check_write) << 1;
-
- mmu->pkru_mask |= (pkey_bits & 3) << pfec;
- }
-}
-
-static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
-{
- unsigned root_level = mmu->root_level;
-
- mmu->last_nonleaf_level = root_level;
- if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
- mmu->last_nonleaf_level++;
-}
-
-static void paging64_init_context_common(struct kvm_vcpu *vcpu,
- struct kvm_mmu *context,
- int level)
-{
- context->nx = is_nx(vcpu);
- context->root_level = level;
-
- reset_rsvds_bits_mask(vcpu, context);
- update_permission_bitmask(vcpu, context, false);
- update_pkru_bitmask(vcpu, context, false);
- update_last_nonleaf_level(vcpu, context);
-
- MMU_WARN_ON(!is_pae(vcpu));
- context->page_fault = paging64_page_fault;
- context->gva_to_gpa = paging64_gva_to_gpa;
- context->sync_page = paging64_sync_page;
- context->invlpg = paging64_invlpg;
- context->update_pte = paging64_update_pte;
- context->shadow_root_level = level;
- context->direct_map = false;
-}
-
-static void paging64_init_context(struct kvm_vcpu *vcpu,
- struct kvm_mmu *context)
-{
- int root_level = is_la57_mode(vcpu) ?
- PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
-
- paging64_init_context_common(vcpu, context, root_level);
-}
-
-static void paging32_init_context(struct kvm_vcpu *vcpu,
- struct kvm_mmu *context)
-{
- context->nx = false;
- context->root_level = PT32_ROOT_LEVEL;
-
- reset_rsvds_bits_mask(vcpu, context);
- update_permission_bitmask(vcpu, context, false);
- update_pkru_bitmask(vcpu, context, false);
- update_last_nonleaf_level(vcpu, context);
-
- context->page_fault = paging32_page_fault;
- context->gva_to_gpa = paging32_gva_to_gpa;
- context->sync_page = paging32_sync_page;
- context->invlpg = paging32_invlpg;
- context->update_pte = paging32_update_pte;
- context->shadow_root_level = PT32E_ROOT_LEVEL;
- context->direct_map = false;
-}
-
-static void paging32E_init_context(struct kvm_vcpu *vcpu,
- struct kvm_mmu *context)
-{
- paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
-}
-
-static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
-{
- union kvm_mmu_extended_role ext = {0};
-
- ext.cr0_pg = !!is_paging(vcpu);
- ext.cr4_pae = !!is_pae(vcpu);
- ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
- ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
- ext.cr4_pse = !!is_pse(vcpu);
- ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
- ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
- ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
-
- ext.valid = 1;
-
- return ext;
-}
-
-static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
- bool base_only)
-{
- union kvm_mmu_role role = {0};
-
- role.base.access = ACC_ALL;
- role.base.nxe = !!is_nx(vcpu);
- role.base.cr0_wp = is_write_protection(vcpu);
- role.base.smm = is_smm(vcpu);
- role.base.guest_mode = is_guest_mode(vcpu);
-
- if (base_only)
- return role;
-
- role.ext = kvm_calc_mmu_role_ext(vcpu);
-
- return role;
-}
-
-static union kvm_mmu_role
-kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
-{
- union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
-
- role.base.ad_disabled = (shadow_accessed_mask == 0);
- role.base.level = kvm_x86_ops->get_tdp_level(vcpu);
- role.base.direct = true;
- role.base.gpte_is_8_bytes = true;
-
- return role;
-}
-
-static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
-{
- struct kvm_mmu *context = vcpu->arch.mmu;
- union kvm_mmu_role new_role =
- kvm_calc_tdp_mmu_root_page_role(vcpu, false);
-
- new_role.base.word &= mmu_base_role_mask.word;
- if (new_role.as_u64 == context->mmu_role.as_u64)
- return;
-
- context->mmu_role.as_u64 = new_role.as_u64;
- context->page_fault = tdp_page_fault;
- context->sync_page = nonpaging_sync_page;
- context->invlpg = nonpaging_invlpg;
- context->update_pte = nonpaging_update_pte;
- context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
- context->direct_map = true;
- context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
- context->get_cr3 = get_cr3;
- context->get_pdptr = kvm_pdptr_read;
- context->inject_page_fault = kvm_inject_page_fault;
-
- if (!is_paging(vcpu)) {
- context->nx = false;
- context->gva_to_gpa = nonpaging_gva_to_gpa;
- context->root_level = 0;
- } else if (is_long_mode(vcpu)) {
- context->nx = is_nx(vcpu);
- context->root_level = is_la57_mode(vcpu) ?
- PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
- reset_rsvds_bits_mask(vcpu, context);
- context->gva_to_gpa = paging64_gva_to_gpa;
- } else if (is_pae(vcpu)) {
- context->nx = is_nx(vcpu);
- context->root_level = PT32E_ROOT_LEVEL;
- reset_rsvds_bits_mask(vcpu, context);
- context->gva_to_gpa = paging64_gva_to_gpa;
- } else {
- context->nx = false;
- context->root_level = PT32_ROOT_LEVEL;
- reset_rsvds_bits_mask(vcpu, context);
- context->gva_to_gpa = paging32_gva_to_gpa;
- }
-
- update_permission_bitmask(vcpu, context, false);
- update_pkru_bitmask(vcpu, context, false);
- update_last_nonleaf_level(vcpu, context);
- reset_tdp_shadow_zero_bits_mask(vcpu, context);
-}
-
-static union kvm_mmu_role
-kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
-{
- union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
-
- role.base.smep_andnot_wp = role.ext.cr4_smep &&
- !is_write_protection(vcpu);
- role.base.smap_andnot_wp = role.ext.cr4_smap &&
- !is_write_protection(vcpu);
- role.base.direct = !is_paging(vcpu);
- role.base.gpte_is_8_bytes = !!is_pae(vcpu);
-
- if (!is_long_mode(vcpu))
- role.base.level = PT32E_ROOT_LEVEL;
- else if (is_la57_mode(vcpu))
- role.base.level = PT64_ROOT_5LEVEL;
- else
- role.base.level = PT64_ROOT_4LEVEL;
-
- return role;
-}
-
-void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
-{
- struct kvm_mmu *context = vcpu->arch.mmu;
- union kvm_mmu_role new_role =
- kvm_calc_shadow_mmu_root_page_role(vcpu, false);
-
- new_role.base.word &= mmu_base_role_mask.word;
- if (new_role.as_u64 == context->mmu_role.as_u64)
- return;
-
- if (!is_paging(vcpu))
- nonpaging_init_context(vcpu, context);
- else if (is_long_mode(vcpu))
- paging64_init_context(vcpu, context);
- else if (is_pae(vcpu))
- paging32E_init_context(vcpu, context);
- else
- paging32_init_context(vcpu, context);
-
- context->mmu_role.as_u64 = new_role.as_u64;
- reset_shadow_zero_bits_mask(vcpu, context);
-}
-EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
-
-static union kvm_mmu_role
-kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
- bool execonly)
-{
- union kvm_mmu_role role = {0};
-
- /* SMM flag is inherited from root_mmu */
- role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
-
- role.base.level = PT64_ROOT_4LEVEL;
- role.base.gpte_is_8_bytes = true;
- role.base.direct = false;
- role.base.ad_disabled = !accessed_dirty;
- role.base.guest_mode = true;
- role.base.access = ACC_ALL;
-
- /*
- * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
- * SMAP variation to denote shadow EPT entries.
- */
- role.base.cr0_wp = true;
- role.base.smap_andnot_wp = true;
-
- role.ext = kvm_calc_mmu_role_ext(vcpu);
- role.ext.execonly = execonly;
-
- return role;
-}
-
-void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
- bool accessed_dirty, gpa_t new_eptp)
-{
- struct kvm_mmu *context = vcpu->arch.mmu;
- union kvm_mmu_role new_role =
- kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
- execonly);
-
- __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
-
- new_role.base.word &= mmu_base_role_mask.word;
- if (new_role.as_u64 == context->mmu_role.as_u64)
- return;
-
- context->shadow_root_level = PT64_ROOT_4LEVEL;
-
- context->nx = true;
- context->ept_ad = accessed_dirty;
- context->page_fault = ept_page_fault;
- context->gva_to_gpa = ept_gva_to_gpa;
- context->sync_page = ept_sync_page;
- context->invlpg = ept_invlpg;
- context->update_pte = ept_update_pte;
- context->root_level = PT64_ROOT_4LEVEL;
- context->direct_map = false;
- context->mmu_role.as_u64 = new_role.as_u64;
-
- update_permission_bitmask(vcpu, context, true);
- update_pkru_bitmask(vcpu, context, true);
- update_last_nonleaf_level(vcpu, context);
- reset_rsvds_bits_mask_ept(vcpu, context, execonly);
- reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
-}
-EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
-
-static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
-{
- struct kvm_mmu *context = vcpu->arch.mmu;
-
- kvm_init_shadow_mmu(vcpu);
- context->set_cr3 = kvm_x86_ops->set_cr3;
- context->get_cr3 = get_cr3;
- context->get_pdptr = kvm_pdptr_read;
- context->inject_page_fault = kvm_inject_page_fault;
-}
-
-static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
-{
- union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
- struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
-
- new_role.base.word &= mmu_base_role_mask.word;
- if (new_role.as_u64 == g_context->mmu_role.as_u64)
- return;
-
- g_context->mmu_role.as_u64 = new_role.as_u64;
- g_context->get_cr3 = get_cr3;
- g_context->get_pdptr = kvm_pdptr_read;
- g_context->inject_page_fault = kvm_inject_page_fault;
-
- /*
- * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
- * L1's nested page tables (e.g. EPT12). The nested translation
- * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
- * L2's page tables as the first level of translation and L1's
- * nested page tables as the second level of translation. Basically
- * the gva_to_gpa functions between mmu and nested_mmu are swapped.
- */
- if (!is_paging(vcpu)) {
- g_context->nx = false;
- g_context->root_level = 0;
- g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
- } else if (is_long_mode(vcpu)) {
- g_context->nx = is_nx(vcpu);
- g_context->root_level = is_la57_mode(vcpu) ?
- PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
- reset_rsvds_bits_mask(vcpu, g_context);
- g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
- } else if (is_pae(vcpu)) {
- g_context->nx = is_nx(vcpu);
- g_context->root_level = PT32E_ROOT_LEVEL;
- reset_rsvds_bits_mask(vcpu, g_context);
- g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
- } else {
- g_context->nx = false;
- g_context->root_level = PT32_ROOT_LEVEL;
- reset_rsvds_bits_mask(vcpu, g_context);
- g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
- }
-
- update_permission_bitmask(vcpu, g_context, false);
- update_pkru_bitmask(vcpu, g_context, false);
- update_last_nonleaf_level(vcpu, g_context);
-}
-
-void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
-{
- if (reset_roots) {
- uint i;
-
- vcpu->arch.mmu->root_hpa = INVALID_PAGE;
-
- for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
- vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
- }
-
- if (mmu_is_nested(vcpu))
- init_kvm_nested_mmu(vcpu);
- else if (tdp_enabled)
- init_kvm_tdp_mmu(vcpu);
- else
- init_kvm_softmmu(vcpu);
-}
-EXPORT_SYMBOL_GPL(kvm_init_mmu);
-
-static union kvm_mmu_page_role
-kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
-{
- union kvm_mmu_role role;
-
- if (tdp_enabled)
- role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
- else
- role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
-
- return role.base;
-}
-
-void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
-{
- kvm_mmu_unload(vcpu);
- kvm_init_mmu(vcpu, true);
-}
-EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
-
-int kvm_mmu_load(struct kvm_vcpu *vcpu)
-{
- int r;
-
- r = mmu_topup_memory_caches(vcpu);
- if (r)
- goto out;
- r = mmu_alloc_roots(vcpu);
- kvm_mmu_sync_roots(vcpu);
- if (r)
- goto out;
- kvm_mmu_load_cr3(vcpu);
- kvm_x86_ops->tlb_flush(vcpu, true);
-out:
- return r;
-}
-EXPORT_SYMBOL_GPL(kvm_mmu_load);
-
-void kvm_mmu_unload(struct kvm_vcpu *vcpu)
-{
- kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
- WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
- kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
- WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
-}
-EXPORT_SYMBOL_GPL(kvm_mmu_unload);
-
-static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
- struct kvm_mmu_page *sp, u64 *spte,
- const void *new)
-{
- if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
- ++vcpu->kvm->stat.mmu_pde_zapped;
- return;
- }
-
- ++vcpu->kvm->stat.mmu_pte_updated;
- vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
-}
-
-static bool need_remote_flush(u64 old, u64 new)
-{
- if (!is_shadow_present_pte(old))
- return false;
- if (!is_shadow_present_pte(new))
- return true;
- if ((old ^ new) & PT64_BASE_ADDR_MASK)
- return true;
- old ^= shadow_nx_mask;
- new ^= shadow_nx_mask;
- return (old & ~new & PT64_PERM_MASK) != 0;
-}
-
-static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
- int *bytes)
-{
- u64 gentry = 0;
- int r;
-
- /*
- * Assume that the pte write on a page table of the same type
- * as the current vcpu paging mode since we update the sptes only
- * when they have the same mode.
- */
- if (is_pae(vcpu) && *bytes == 4) {
- /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
- *gpa &= ~(gpa_t)7;
- *bytes = 8;
- }
-
- if (*bytes == 4 || *bytes == 8) {
- r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
- if (r)
- gentry = 0;
- }
-
- return gentry;
-}
-
-/*
- * If we're seeing too many writes to a page, it may no longer be a page table,
- * or we may be forking, in which case it is better to unmap the page.
- */
-static bool detect_write_flooding(struct kvm_mmu_page *sp)
-{
- /*
- * Skip write-flooding detected for the sp whose level is 1, because
- * it can become unsync, then the guest page is not write-protected.
- */
- if (sp->role.level == PT_PAGE_TABLE_LEVEL)
- return false;
-
- atomic_inc(&sp->write_flooding_count);
- return atomic_read(&sp->write_flooding_count) >= 3;
-}
-
-/*
- * Misaligned accesses are too much trouble to fix up; also, they usually
- * indicate a page is not used as a page table.
- */
-static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
- int bytes)
-{
- unsigned offset, pte_size, misaligned;
-
- pgprintk("misaligned: gpa %llx bytes %d role %x\n",
- gpa, bytes, sp->role.word);
-
- offset = offset_in_page(gpa);
- pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
-
- /*
- * Sometimes, the OS only writes the last one bytes to update status
- * bits, for example, in linux, andb instruction is used in clear_bit().
- */
- if (!(offset & (pte_size - 1)) && bytes == 1)
- return false;
-
- misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
- misaligned |= bytes < 4;
-
- return misaligned;
-}
-
-static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
-{
- unsigned page_offset, quadrant;
- u64 *spte;
- int level;
-
- page_offset = offset_in_page(gpa);
- level = sp->role.level;
- *nspte = 1;
- if (!sp->role.gpte_is_8_bytes) {
- page_offset <<= 1; /* 32->64 */
- /*
- * A 32-bit pde maps 4MB while the shadow pdes map
- * only 2MB. So we need to double the offset again
- * and zap two pdes instead of one.
- */
- if (level == PT32_ROOT_LEVEL) {
- page_offset &= ~7; /* kill rounding error */
- page_offset <<= 1;
- *nspte = 2;
- }
- quadrant = page_offset >> PAGE_SHIFT;
- page_offset &= ~PAGE_MASK;
- if (quadrant != sp->role.quadrant)
- return NULL;
- }
-
- spte = &sp->spt[page_offset / sizeof(*spte)];
- return spte;
-}
-
-static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
- const u8 *new, int bytes,
- struct kvm_page_track_notifier_node *node)
-{
- gfn_t gfn = gpa >> PAGE_SHIFT;
- struct kvm_mmu_page *sp;
- LIST_HEAD(invalid_list);
- u64 entry, gentry, *spte;
- int npte;
- bool remote_flush, local_flush;
-
- /*
- * If we don't have indirect shadow pages, it means no page is
- * write-protected, so we can exit simply.
- */
- if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
- return;
-
- remote_flush = local_flush = false;
-
- pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
-
- /*
- * No need to care whether allocation memory is successful
- * or not since pte prefetch is skiped if it does not have
- * enough objects in the cache.
- */
- mmu_topup_memory_caches(vcpu);
-
- spin_lock(&vcpu->kvm->mmu_lock);
-
- gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
-
- ++vcpu->kvm->stat.mmu_pte_write;
- kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
-
- for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
- if (detect_write_misaligned(sp, gpa, bytes) ||
- detect_write_flooding(sp)) {
- kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
- ++vcpu->kvm->stat.mmu_flooded;
- continue;
- }
-
- spte = get_written_sptes(sp, gpa, &npte);
- if (!spte)
- continue;
-
- local_flush = true;
- while (npte--) {
- u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
-
- entry = *spte;
- mmu_page_zap_pte(vcpu->kvm, sp, spte);
- if (gentry &&
- !((sp->role.word ^ base_role)
- & mmu_base_role_mask.word) && rmap_can_add(vcpu))
- mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
- if (need_remote_flush(entry, *spte))
- remote_flush = true;
- ++spte;
- }
- }
- kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
- kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
- spin_unlock(&vcpu->kvm->mmu_lock);
-}
-
-int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
-{
- gpa_t gpa;
- int r;
-
- if (vcpu->arch.mmu->direct_map)
- return 0;
-
- gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
-
- r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
-
- return r;
-}
-EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
-
-static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
-{
- LIST_HEAD(invalid_list);
-
- if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
- return 0;
-
- while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
- if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
- break;
-
- ++vcpu->kvm->stat.mmu_recycled;
- }
- kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
-
- if (!kvm_mmu_available_pages(vcpu->kvm))
- return -ENOSPC;
- return 0;
-}
-
-int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
- void *insn, int insn_len)
-{
- int r, emulation_type = 0;
- bool direct = vcpu->arch.mmu->direct_map;
-
- /* With shadow page tables, fault_address contains a GVA or nGPA. */
- if (vcpu->arch.mmu->direct_map) {
- vcpu->arch.gpa_available = true;
- vcpu->arch.gpa_val = cr2;
- }
-
- r = RET_PF_INVALID;
- if (unlikely(error_code & PFERR_RSVD_MASK)) {
- r = handle_mmio_page_fault(vcpu, cr2, direct);
- if (r == RET_PF_EMULATE)
- goto emulate;
- }
-
- if (r == RET_PF_INVALID) {
- r = vcpu->arch.mmu->page_fault(vcpu, cr2,
- lower_32_bits(error_code),
- false);
- WARN_ON(r == RET_PF_INVALID);
- }
-
- if (r == RET_PF_RETRY)
- return 1;
- if (r < 0)
- return r;
-
- /*
- * Before emulating the instruction, check if the error code
- * was due to a RO violation while translating the guest page.
- * This can occur when using nested virtualization with nested
- * paging in both guests. If true, we simply unprotect the page
- * and resume the guest.
- */
- if (vcpu->arch.mmu->direct_map &&
- (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
- kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
- return 1;
- }
-
- /*
- * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
- * optimistically try to just unprotect the page and let the processor
- * re-execute the instruction that caused the page fault. Do not allow
- * retrying MMIO emulation, as it's not only pointless but could also
- * cause us to enter an infinite loop because the processor will keep
- * faulting on the non-existent MMIO address. Retrying an instruction
- * from a nested guest is also pointless and dangerous as we are only
- * explicitly shadowing L1's page tables, i.e. unprotecting something
- * for L1 isn't going to magically fix whatever issue cause L2 to fail.
- */
- if (!mmio_info_in_cache(vcpu, cr2, direct) && !is_guest_mode(vcpu))
- emulation_type = EMULTYPE_ALLOW_RETRY;
-emulate:
- /*
- * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
- * This can happen if a guest gets a page-fault on data access but the HW
- * table walker is not able to read the instruction page (e.g instruction
- * page is not present in memory). In those cases we simply restart the
- * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
- */
- if (unlikely(insn && !insn_len)) {
- if (!kvm_x86_ops->need_emulation_on_page_fault(vcpu))
- return 1;
- }
-
- return x86_emulate_instruction(vcpu, cr2, emulation_type, insn,
- insn_len);
-}
-EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
-
-void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
-{
- struct kvm_mmu *mmu = vcpu->arch.mmu;
- int i;
-
- /* INVLPG on a * non-canonical address is a NOP according to the SDM. */
- if (is_noncanonical_address(gva, vcpu))
- return;
-
- mmu->invlpg(vcpu, gva, mmu->root_hpa);
-
- /*
- * INVLPG is required to invalidate any global mappings for the VA,
- * irrespective of PCID. Since it would take us roughly similar amount
- * of work to determine whether any of the prev_root mappings of the VA
- * is marked global, or to just sync it blindly, so we might as well
- * just always sync it.
- *
- * Mappings not reachable via the current cr3 or the prev_roots will be
- * synced when switching to that cr3, so nothing needs to be done here
- * for them.
- */
- for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
- if (VALID_PAGE(mmu->prev_roots[i].hpa))
- mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
-
- kvm_x86_ops->tlb_flush_gva(vcpu, gva);
- ++vcpu->stat.invlpg;
-}
-EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
-
-void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
-{
- struct kvm_mmu *mmu = vcpu->arch.mmu;
- bool tlb_flush = false;
- uint i;
-
- if (pcid == kvm_get_active_pcid(vcpu)) {
- mmu->invlpg(vcpu, gva, mmu->root_hpa);
- tlb_flush = true;
- }
-
- for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
- if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
- pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
- mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
- tlb_flush = true;
- }
- }
-
- if (tlb_flush)
- kvm_x86_ops->tlb_flush_gva(vcpu, gva);
-
- ++vcpu->stat.invlpg;
-
- /*
- * Mappings not reachable via the current cr3 or the prev_roots will be
- * synced when switching to that cr3, so nothing needs to be done here
- * for them.
- */
-}
-EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
-
-void kvm_enable_tdp(void)
-{
- tdp_enabled = true;
-}
-EXPORT_SYMBOL_GPL(kvm_enable_tdp);
-
-void kvm_disable_tdp(void)
-{
- tdp_enabled = false;
-}
-EXPORT_SYMBOL_GPL(kvm_disable_tdp);
-
-
-/* The return value indicates if tlb flush on all vcpus is needed. */
-typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
-
-/* The caller should hold mmu-lock before calling this function. */
-static __always_inline bool
-slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
- slot_level_handler fn, int start_level, int end_level,
- gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
-{
- struct slot_rmap_walk_iterator iterator;
- bool flush = false;
-
- for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
- end_gfn, &iterator) {
- if (iterator.rmap)
- flush |= fn(kvm, iterator.rmap);
-
- if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
- if (flush && lock_flush_tlb) {
- kvm_flush_remote_tlbs_with_address(kvm,
- start_gfn,
- iterator.gfn - start_gfn + 1);
- flush = false;
- }
- cond_resched_lock(&kvm->mmu_lock);
- }
- }
-
- if (flush && lock_flush_tlb) {
- kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
- end_gfn - start_gfn + 1);
- flush = false;
- }
-
- return flush;
-}
-
-static __always_inline bool
-slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
- slot_level_handler fn, int start_level, int end_level,
- bool lock_flush_tlb)
-{
- return slot_handle_level_range(kvm, memslot, fn, start_level,
- end_level, memslot->base_gfn,
- memslot->base_gfn + memslot->npages - 1,
- lock_flush_tlb);
-}
-
-static __always_inline bool
-slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
- slot_level_handler fn, bool lock_flush_tlb)
-{
- return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
- PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
-}
-
-static __always_inline bool
-slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
- slot_level_handler fn, bool lock_flush_tlb)
-{
- return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
- PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
-}
-
-static __always_inline bool
-slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
- slot_level_handler fn, bool lock_flush_tlb)
-{
- return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
- PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
-}
-
-static void free_mmu_pages(struct kvm_mmu *mmu)
-{
- free_page((unsigned long)mmu->pae_root);
- free_page((unsigned long)mmu->lm_root);
-}
-
-static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
-{
- struct page *page;
- int i;
-
- /*
- * When using PAE paging, the four PDPTEs are treated as 'root' pages,
- * while the PDP table is a per-vCPU construct that's allocated at MMU
- * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
- * x86_64. Therefore we need to allocate the PDP table in the first
- * 4GB of memory, which happens to fit the DMA32 zone. Except for
- * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
- * skip allocating the PDP table.
- */
- if (tdp_enabled && kvm_x86_ops->get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
- return 0;
-
- page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
- if (!page)
- return -ENOMEM;
-
- mmu->pae_root = page_address(page);
- for (i = 0; i < 4; ++i)
- mmu->pae_root[i] = INVALID_PAGE;
-
- return 0;
-}
-
-int kvm_mmu_create(struct kvm_vcpu *vcpu)
-{
- uint i;
- int ret;
-
- vcpu->arch.mmu = &vcpu->arch.root_mmu;
- vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
-
- vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
- vcpu->arch.root_mmu.root_cr3 = 0;
- vcpu->arch.root_mmu.translate_gpa = translate_gpa;
- for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
- vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
-
- vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
- vcpu->arch.guest_mmu.root_cr3 = 0;
- vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
- for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
- vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
-
- vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
-
- ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
- if (ret)
- return ret;
-
- ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
- if (ret)
- goto fail_allocate_root;
-
- return ret;
- fail_allocate_root:
- free_mmu_pages(&vcpu->arch.guest_mmu);
- return ret;
-}
-
-#define BATCH_ZAP_PAGES 10
-static void kvm_zap_obsolete_pages(struct kvm *kvm)
-{
- struct kvm_mmu_page *sp, *node;
- int nr_zapped, batch = 0;
-
-restart:
- list_for_each_entry_safe_reverse(sp, node,
- &kvm->arch.active_mmu_pages, link) {
- /*
- * No obsolete valid page exists before a newly created page
- * since active_mmu_pages is a FIFO list.
- */
- if (!is_obsolete_sp(kvm, sp))
- break;
-
- /*
- * Skip invalid pages with a non-zero root count, zapping pages
- * with a non-zero root count will never succeed, i.e. the page
- * will get thrown back on active_mmu_pages and we'll get stuck
- * in an infinite loop.
- */
- if (sp->role.invalid && sp->root_count)
- continue;
-
- /*
- * No need to flush the TLB since we're only zapping shadow
- * pages with an obsolete generation number and all vCPUS have
- * loaded a new root, i.e. the shadow pages being zapped cannot
- * be in active use by the guest.
- */
- if (batch >= BATCH_ZAP_PAGES &&
- cond_resched_lock(&kvm->mmu_lock)) {
- batch = 0;
- goto restart;
- }
-
- if (__kvm_mmu_prepare_zap_page(kvm, sp,
- &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
- batch += nr_zapped;
- goto restart;
- }
- }
-
- /*
- * Trigger a remote TLB flush before freeing the page tables to ensure
- * KVM is not in the middle of a lockless shadow page table walk, which
- * may reference the pages.
- */
- kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
-}
-
-/*
- * Fast invalidate all shadow pages and use lock-break technique
- * to zap obsolete pages.
- *
- * It's required when memslot is being deleted or VM is being
- * destroyed, in these cases, we should ensure that KVM MMU does
- * not use any resource of the being-deleted slot or all slots
- * after calling the function.
- */
-static void kvm_mmu_zap_all_fast(struct kvm *kvm)
-{
- lockdep_assert_held(&kvm->slots_lock);
-
- spin_lock(&kvm->mmu_lock);
- trace_kvm_mmu_zap_all_fast(kvm);
-
- /*
- * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
- * held for the entire duration of zapping obsolete pages, it's
- * impossible for there to be multiple invalid generations associated
- * with *valid* shadow pages at any given time, i.e. there is exactly
- * one valid generation and (at most) one invalid generation.
- */
- kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
-
- /*
- * Notify all vcpus to reload its shadow page table and flush TLB.
- * Then all vcpus will switch to new shadow page table with the new
- * mmu_valid_gen.
- *
- * Note: we need to do this under the protection of mmu_lock,
- * otherwise, vcpu would purge shadow page but miss tlb flush.
- */
- kvm_reload_remote_mmus(kvm);
-
- kvm_zap_obsolete_pages(kvm);
- spin_unlock(&kvm->mmu_lock);
-}
-
-static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
-{
- return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
-}
-
-static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
- struct kvm_memory_slot *slot,
- struct kvm_page_track_notifier_node *node)
-{
- kvm_mmu_zap_all_fast(kvm);
-}
-
-void kvm_mmu_init_vm(struct kvm *kvm)
-{
- struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
-
- node->track_write = kvm_mmu_pte_write;
- node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
- kvm_page_track_register_notifier(kvm, node);
-}
-
-void kvm_mmu_uninit_vm(struct kvm *kvm)
-{
- struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
-
- kvm_page_track_unregister_notifier(kvm, node);
-}
-
-void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
-{
- struct kvm_memslots *slots;
- struct kvm_memory_slot *memslot;
- int i;
-
- spin_lock(&kvm->mmu_lock);
- for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
- slots = __kvm_memslots(kvm, i);
- kvm_for_each_memslot(memslot, slots) {
- gfn_t start, end;
-
- start = max(gfn_start, memslot->base_gfn);
- end = min(gfn_end, memslot->base_gfn + memslot->npages);
- if (start >= end)
- continue;
-
- slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
- PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
- start, end - 1, true);
- }
- }
-
- spin_unlock(&kvm->mmu_lock);
-}
-
-static bool slot_rmap_write_protect(struct kvm *kvm,
- struct kvm_rmap_head *rmap_head)
-{
- return __rmap_write_protect(kvm, rmap_head, false);
-}
-
-void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
- struct kvm_memory_slot *memslot)
-{
- bool flush;
-
- spin_lock(&kvm->mmu_lock);
- flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
- false);
- spin_unlock(&kvm->mmu_lock);
-
- /*
- * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
- * which do tlb flush out of mmu-lock should be serialized by
- * kvm->slots_lock otherwise tlb flush would be missed.
- */
- lockdep_assert_held(&kvm->slots_lock);
-
- /*
- * We can flush all the TLBs out of the mmu lock without TLB
- * corruption since we just change the spte from writable to
- * readonly so that we only need to care the case of changing
- * spte from present to present (changing the spte from present
- * to nonpresent will flush all the TLBs immediately), in other
- * words, the only case we care is mmu_spte_update() where we
- * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
- * instead of PT_WRITABLE_MASK, that means it does not depend
- * on PT_WRITABLE_MASK anymore.
- */
- if (flush)
- kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
- memslot->npages);
-}
-
-static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
- struct kvm_rmap_head *rmap_head)
-{
- u64 *sptep;
- struct rmap_iterator iter;
- int need_tlb_flush = 0;
- kvm_pfn_t pfn;
- struct kvm_mmu_page *sp;
-
-restart:
- for_each_rmap_spte(rmap_head, &iter, sptep) {
- sp = page_header(__pa(sptep));
- pfn = spte_to_pfn(*sptep);
-
- /*
- * We cannot do huge page mapping for indirect shadow pages,
- * which are found on the last rmap (level = 1) when not using
- * tdp; such shadow pages are synced with the page table in
- * the guest, and the guest page table is using 4K page size
- * mapping if the indirect sp has level = 1.
- */
- if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
- !kvm_is_zone_device_pfn(pfn) &&
- PageTransCompoundMap(pfn_to_page(pfn))) {
- pte_list_remove(rmap_head, sptep);
-
- if (kvm_available_flush_tlb_with_range())
- kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
- KVM_PAGES_PER_HPAGE(sp->role.level));
- else
- need_tlb_flush = 1;
-
- goto restart;
- }
- }
-
- return need_tlb_flush;
-}
-
-void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
- const struct kvm_memory_slot *memslot)
-{
- /* FIXME: const-ify all uses of struct kvm_memory_slot. */
- spin_lock(&kvm->mmu_lock);
- slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
- kvm_mmu_zap_collapsible_spte, true);
- spin_unlock(&kvm->mmu_lock);
-}
-
-void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
- struct kvm_memory_slot *memslot)
-{
- bool flush;
-
- spin_lock(&kvm->mmu_lock);
- flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
- spin_unlock(&kvm->mmu_lock);
-
- lockdep_assert_held(&kvm->slots_lock);
-
- /*
- * It's also safe to flush TLBs out of mmu lock here as currently this
- * function is only used for dirty logging, in which case flushing TLB
- * out of mmu lock also guarantees no dirty pages will be lost in
- * dirty_bitmap.
- */
- if (flush)
- kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
- memslot->npages);
-}
-EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
-
-void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
- struct kvm_memory_slot *memslot)
-{
- bool flush;
-
- spin_lock(&kvm->mmu_lock);
- flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
- false);
- spin_unlock(&kvm->mmu_lock);
-
- /* see kvm_mmu_slot_remove_write_access */
- lockdep_assert_held(&kvm->slots_lock);
-
- if (flush)
- kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
- memslot->npages);
-}
-EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
-
-void kvm_mmu_slot_set_dirty(struct kvm *kvm,
- struct kvm_memory_slot *memslot)
-{
- bool flush;
-
- spin_lock(&kvm->mmu_lock);
- flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
- spin_unlock(&kvm->mmu_lock);
-
- lockdep_assert_held(&kvm->slots_lock);
-
- /* see kvm_mmu_slot_leaf_clear_dirty */
- if (flush)
- kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
- memslot->npages);
-}
-EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
-
-void kvm_mmu_zap_all(struct kvm *kvm)
-{
- struct kvm_mmu_page *sp, *node;
- LIST_HEAD(invalid_list);
- int ign;
-
- spin_lock(&kvm->mmu_lock);
-restart:
- list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
- if (sp->role.invalid && sp->root_count)
- continue;
- if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
- goto restart;
- if (cond_resched_lock(&kvm->mmu_lock))
- goto restart;
- }
-
- kvm_mmu_commit_zap_page(kvm, &invalid_list);
- spin_unlock(&kvm->mmu_lock);
-}
-
-void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
-{
- WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
-
- gen &= MMIO_SPTE_GEN_MASK;
-
- /*
- * Generation numbers are incremented in multiples of the number of
- * address spaces in order to provide unique generations across all
- * address spaces. Strip what is effectively the address space
- * modifier prior to checking for a wrap of the MMIO generation so
- * that a wrap in any address space is detected.
- */
- gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
-
- /*
- * The very rare case: if the MMIO generation number has wrapped,
- * zap all shadow pages.
- */
- if (unlikely(gen == 0)) {
- kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
- kvm_mmu_zap_all_fast(kvm);
- }
-}
-
-static unsigned long
-mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
-{
- struct kvm *kvm;
- int nr_to_scan = sc->nr_to_scan;
- unsigned long freed = 0;
-
- mutex_lock(&kvm_lock);
-
- list_for_each_entry(kvm, &vm_list, vm_list) {
- int idx;
- LIST_HEAD(invalid_list);
-
- /*
- * Never scan more than sc->nr_to_scan VM instances.
- * Will not hit this condition practically since we do not try
- * to shrink more than one VM and it is very unlikely to see
- * !n_used_mmu_pages so many times.
- */
- if (!nr_to_scan--)
- break;
- /*
- * n_used_mmu_pages is accessed without holding kvm->mmu_lock
- * here. We may skip a VM instance errorneosly, but we do not
- * want to shrink a VM that only started to populate its MMU
- * anyway.
- */
- if (!kvm->arch.n_used_mmu_pages &&
- !kvm_has_zapped_obsolete_pages(kvm))
- continue;
-
- idx = srcu_read_lock(&kvm->srcu);
- spin_lock(&kvm->mmu_lock);
-
- if (kvm_has_zapped_obsolete_pages(kvm)) {
- kvm_mmu_commit_zap_page(kvm,
- &kvm->arch.zapped_obsolete_pages);
- goto unlock;
- }
-
- if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
- freed++;
- kvm_mmu_commit_zap_page(kvm, &invalid_list);
-
-unlock:
- spin_unlock(&kvm->mmu_lock);
- srcu_read_unlock(&kvm->srcu, idx);
-
- /*
- * unfair on small ones
- * per-vm shrinkers cry out
- * sadness comes quickly
- */
- list_move_tail(&kvm->vm_list, &vm_list);
- break;
- }
-
- mutex_unlock(&kvm_lock);
- return freed;
-}
-
-static unsigned long
-mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
-{
- return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
-}
-
-static struct shrinker mmu_shrinker = {
- .count_objects = mmu_shrink_count,
- .scan_objects = mmu_shrink_scan,
- .seeks = DEFAULT_SEEKS * 10,
-};
-
-static void mmu_destroy_caches(void)
-{
- kmem_cache_destroy(pte_list_desc_cache);
- kmem_cache_destroy(mmu_page_header_cache);
-}
-
-static void kvm_set_mmio_spte_mask(void)
-{
- u64 mask;
-
- /*
- * Set the reserved bits and the present bit of an paging-structure
- * entry to generate page fault with PFER.RSV = 1.
- */
-
- /*
- * Mask the uppermost physical address bit, which would be reserved as
- * long as the supported physical address width is less than 52.
- */
- mask = 1ull << 51;
-
- /* Set the present bit. */
- mask |= 1ull;
-
- /*
- * If reserved bit is not supported, clear the present bit to disable
- * mmio page fault.
- */
- if (IS_ENABLED(CONFIG_X86_64) && shadow_phys_bits == 52)
- mask &= ~1ull;
-
- kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
-}
-
-static bool get_nx_auto_mode(void)
-{
- /* Return true when CPU has the bug, and mitigations are ON */
- return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
-}
-
-static void __set_nx_huge_pages(bool val)
-{
- nx_huge_pages = itlb_multihit_kvm_mitigation = val;
-}
-
-static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
-{
- bool old_val = nx_huge_pages;
- bool new_val;
-
- /* In "auto" mode deploy workaround only if CPU has the bug. */
- if (sysfs_streq(val, "off"))
- new_val = 0;
- else if (sysfs_streq(val, "force"))
- new_val = 1;
- else if (sysfs_streq(val, "auto"))
- new_val = get_nx_auto_mode();
- else if (strtobool(val, &new_val) < 0)
- return -EINVAL;
-
- __set_nx_huge_pages(new_val);
-
- if (new_val != old_val) {
- struct kvm *kvm;
-
- mutex_lock(&kvm_lock);
-
- list_for_each_entry(kvm, &vm_list, vm_list) {
- mutex_lock(&kvm->slots_lock);
- kvm_mmu_zap_all_fast(kvm);
- mutex_unlock(&kvm->slots_lock);
-
- wake_up_process(kvm->arch.nx_lpage_recovery_thread);
- }
- mutex_unlock(&kvm_lock);
- }
-
- return 0;
-}
-
-int kvm_mmu_module_init(void)
-{
- int ret = -ENOMEM;
-
- if (nx_huge_pages == -1)
- __set_nx_huge_pages(get_nx_auto_mode());
-
- /*
- * MMU roles use union aliasing which is, generally speaking, an
- * undefined behavior. However, we supposedly know how compilers behave
- * and the current status quo is unlikely to change. Guardians below are
- * supposed to let us know if the assumption becomes false.
- */
- BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
- BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
- BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
-
- kvm_mmu_reset_all_pte_masks();
-
- kvm_set_mmio_spte_mask();
-
- pte_list_desc_cache = kmem_cache_create("pte_list_desc",
- sizeof(struct pte_list_desc),
- 0, SLAB_ACCOUNT, NULL);
- if (!pte_list_desc_cache)
- goto out;
-
- mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
- sizeof(struct kvm_mmu_page),
- 0, SLAB_ACCOUNT, NULL);
- if (!mmu_page_header_cache)
- goto out;
-
- if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
- goto out;
-
- ret = register_shrinker(&mmu_shrinker);
- if (ret)
- goto out;
-
- return 0;
-
-out:
- mmu_destroy_caches();
- return ret;
-}
-
-/*
- * Calculate mmu pages needed for kvm.
- */
-unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
-{
- unsigned long nr_mmu_pages;
- unsigned long nr_pages = 0;
- struct kvm_memslots *slots;
- struct kvm_memory_slot *memslot;
- int i;
-
- for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
- slots = __kvm_memslots(kvm, i);
-
- kvm_for_each_memslot(memslot, slots)
- nr_pages += memslot->npages;
- }
-
- nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
- nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
-
- return nr_mmu_pages;
-}
-
-void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
-{
- kvm_mmu_unload(vcpu);
- free_mmu_pages(&vcpu->arch.root_mmu);
- free_mmu_pages(&vcpu->arch.guest_mmu);
- mmu_free_memory_caches(vcpu);
-}
-
-void kvm_mmu_module_exit(void)
-{
- mmu_destroy_caches();
- percpu_counter_destroy(&kvm_total_used_mmu_pages);
- unregister_shrinker(&mmu_shrinker);
- mmu_audit_disable();
-}
-
-static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
-{
- unsigned int old_val;
- int err;
-
- old_val = nx_huge_pages_recovery_ratio;
- err = param_set_uint(val, kp);
- if (err)
- return err;
-
- if (READ_ONCE(nx_huge_pages) &&
- !old_val && nx_huge_pages_recovery_ratio) {
- struct kvm *kvm;
-
- mutex_lock(&kvm_lock);
-
- list_for_each_entry(kvm, &vm_list, vm_list)
- wake_up_process(kvm->arch.nx_lpage_recovery_thread);
-
- mutex_unlock(&kvm_lock);
- }
-
- return err;
-}
-
-static void kvm_recover_nx_lpages(struct kvm *kvm)
-{
- int rcu_idx;
- struct kvm_mmu_page *sp;
- unsigned int ratio;
- LIST_HEAD(invalid_list);
- ulong to_zap;
-
- rcu_idx = srcu_read_lock(&kvm->srcu);
- spin_lock(&kvm->mmu_lock);
-
- ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
- to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
- while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
- /*
- * We use a separate list instead of just using active_mmu_pages
- * because the number of lpage_disallowed pages is expected to
- * be relatively small compared to the total.
- */
- sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
- struct kvm_mmu_page,
- lpage_disallowed_link);
- WARN_ON_ONCE(!sp->lpage_disallowed);
- kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
- WARN_ON_ONCE(sp->lpage_disallowed);
-
- if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
- kvm_mmu_commit_zap_page(kvm, &invalid_list);
- if (to_zap)
- cond_resched_lock(&kvm->mmu_lock);
- }
- }
-
- spin_unlock(&kvm->mmu_lock);
- srcu_read_unlock(&kvm->srcu, rcu_idx);
-}
-
-static long get_nx_lpage_recovery_timeout(u64 start_time)
-{
- return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
- ? start_time + 60 * HZ - get_jiffies_64()
- : MAX_SCHEDULE_TIMEOUT;
-}
-
-static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
-{
- u64 start_time;
- long remaining_time;
-
- while (true) {
- start_time = get_jiffies_64();
- remaining_time = get_nx_lpage_recovery_timeout(start_time);
-
- set_current_state(TASK_INTERRUPTIBLE);
- while (!kthread_should_stop() && remaining_time > 0) {
- schedule_timeout(remaining_time);
- remaining_time = get_nx_lpage_recovery_timeout(start_time);
- set_current_state(TASK_INTERRUPTIBLE);
- }
-
- set_current_state(TASK_RUNNING);
-
- if (kthread_should_stop())
- return 0;
-
- kvm_recover_nx_lpages(kvm);
- }
-}
-
-int kvm_mmu_post_init_vm(struct kvm *kvm)
-{
- int err;
-
- err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
- "kvm-nx-lpage-recovery",
- &kvm->arch.nx_lpage_recovery_thread);
- if (!err)
- kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
-
- return err;
-}
-
-void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
-{
- if (kvm->arch.nx_lpage_recovery_thread)
- kthread_stop(kvm->arch.nx_lpage_recovery_thread);
-}