summaryrefslogtreecommitdiffstats
path: root/arch/x86/kvm/mmu/mmu.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2024-11-24 01:00:50 +0100
committerLinus Torvalds <torvalds@linux-foundation.org>2024-11-24 01:00:50 +0100
commit9f16d5e6f220661f73b36a4be1b21575651d8833 (patch)
tree8d26e5eeb7d74c83667ad91332c961c631ac6907 /arch/x86/kvm/mmu/mmu.c
parentMerge tag 'powerpc-6.13-1' of git://git.kernel.org/pub/scm/linux/kernel/git/p... (diff)
parentKVM: x86: Break CONFIG_KVM_X86's direct dependency on KVM_INTEL || KVM_AMD (diff)
downloadlinux-9f16d5e6f220661f73b36a4be1b21575651d8833.tar.xz
linux-9f16d5e6f220661f73b36a4be1b21575651d8833.zip
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini: "The biggest change here is eliminating the awful idea that KVM had of essentially guessing which pfns are refcounted pages. The reason to do so was that KVM needs to map both non-refcounted pages (for example BARs of VFIO devices) and VM_PFNMAP/VM_MIXMEDMAP VMAs that contain refcounted pages. However, the result was security issues in the past, and more recently the inability to map VM_IO and VM_PFNMAP memory that _is_ backed by struct page but is not refcounted. In particular this broke virtio-gpu blob resources (which directly map host graphics buffers into the guest as "vram" for the virtio-gpu device) with the amdgpu driver, because amdgpu allocates non-compound higher order pages and the tail pages could not be mapped into KVM. This requires adjusting all uses of struct page in the per-architecture code, to always work on the pfn whenever possible. The large series that did this, from David Stevens and Sean Christopherson, also cleaned up substantially the set of functions that provided arch code with the pfn for a host virtual addresses. The previous maze of twisty little passages, all different, is replaced by five functions (__gfn_to_page, __kvm_faultin_pfn, the non-__ versions of these two, and kvm_prefetch_pages) saving almost 200 lines of code. ARM: - Support for stage-1 permission indirection (FEAT_S1PIE) and permission overlays (FEAT_S1POE), including nested virt + the emulated page table walker - Introduce PSCI SYSTEM_OFF2 support to KVM + client driver. This call was introduced in PSCIv1.3 as a mechanism to request hibernation, similar to the S4 state in ACPI - Explicitly trap + hide FEAT_MPAM (QoS controls) from KVM guests. As part of it, introduce trivial initialization of the host's MPAM context so KVM can use the corresponding traps - PMU support under nested virtualization, honoring the guest hypervisor's trap configuration and event filtering when running a nested guest - Fixes to vgic ITS serialization where stale device/interrupt table entries are not zeroed when the mapping is invalidated by the VM - Avoid emulated MMIO completion if userspace has requested synchronous external abort injection - Various fixes and cleanups affecting pKVM, vCPU initialization, and selftests LoongArch: - Add iocsr and mmio bus simulation in kernel. - Add in-kernel interrupt controller emulation. - Add support for virtualization extensions to the eiointc irqchip. PPC: - Drop lingering and utterly obsolete references to PPC970 KVM, which was removed 10 years ago. - Fix incorrect documentation references to non-existing ioctls RISC-V: - Accelerate KVM RISC-V when running as a guest - Perf support to collect KVM guest statistics from host side s390: - New selftests: more ucontrol selftests and CPU model sanity checks - Support for the gen17 CPU model - List registers supported by KVM_GET/SET_ONE_REG in the documentation x86: - Cleanup KVM's handling of Accessed and Dirty bits to dedup code, improve documentation, harden against unexpected changes. Even if the hardware A/D tracking is disabled, it is possible to use the hardware-defined A/D bits to track if a PFN is Accessed and/or Dirty, and that removes a lot of special cases. - Elide TLB flushes when aging secondary PTEs, as has been done in x86's primary MMU for over 10 years. - Recover huge pages in-place in the TDP MMU when dirty page logging is toggled off, instead of zapping them and waiting until the page is re-accessed to create a huge mapping. This reduces vCPU jitter. - Batch TLB flushes when dirty page logging is toggled off. This reduces the time it takes to disable dirty logging by ~3x. - Remove the shrinker that was (poorly) attempting to reclaim shadow page tables in low-memory situations. - Clean up and optimize KVM's handling of writes to MSR_IA32_APICBASE. - Advertise CPUIDs for new instructions in Clearwater Forest - Quirk KVM's misguided behavior of initialized certain feature MSRs to their maximum supported feature set, which can result in KVM creating invalid vCPU state. E.g. initializing PERF_CAPABILITIES to a non-zero value results in the vCPU having invalid state if userspace hides PDCM from the guest, which in turn can lead to save/restore failures. - Fix KVM's handling of non-canonical checks for vCPUs that support LA57 to better follow the "architecture", in quotes because the actual behavior is poorly documented. E.g. most MSR writes and descriptor table loads ignore CR4.LA57 and operate purely on whether the CPU supports LA57. - Bypass the register cache when querying CPL from kvm_sched_out(), as filling the cache from IRQ context is generally unsafe; harden the cache accessors to try to prevent similar issues from occuring in the future. The issue that triggered this change was already fixed in 6.12, but was still kinda latent. - Advertise AMD_IBPB_RET to userspace, and fix a related bug where KVM over-advertises SPEC_CTRL when trying to support cross-vendor VMs. - Minor cleanups - Switch hugepage recovery thread to use vhost_task. These kthreads can consume significant amounts of CPU time on behalf of a VM or in response to how the VM behaves (for example how it accesses its memory); therefore KVM tried to place the thread in the VM's cgroups and charge the CPU time consumed by that work to the VM's container. However the kthreads did not process SIGSTOP/SIGCONT, and therefore cgroups which had KVM instances inside could not complete freezing. Fix this by replacing the kthread with a PF_USER_WORKER thread, via the vhost_task abstraction. Another 100+ lines removed, with generally better behavior too like having these threads properly parented in the process tree. - Revert a workaround for an old CPU erratum (Nehalem/Westmere) that didn't really work; there was really nothing to work around anyway: the broken patch was meant to fix nested virtualization, but the PERF_GLOBAL_CTRL MSR is virtualized and therefore unaffected by the erratum. - Fix 6.12 regression where CONFIG_KVM will be built as a module even if asked to be builtin, as long as neither KVM_INTEL nor KVM_AMD is 'y'. x86 selftests: - x86 selftests can now use AVX. Documentation: - Use rST internal links - Reorganize the introduction to the API document Generic: - Protect vcpu->pid accesses outside of vcpu->mutex with a rwlock instead of RCU, so that running a vCPU on a different task doesn't encounter long due to having to wait for all CPUs become quiescent. In general both reads and writes are rare, but userspace that supports confidential computing is introducing the use of "helper" vCPUs that may jump from one host processor to another. Those will be very happy to trigger a synchronize_rcu(), and the effect on performance is quite the disaster" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (298 commits) KVM: x86: Break CONFIG_KVM_X86's direct dependency on KVM_INTEL || KVM_AMD KVM: x86: add back X86_LOCAL_APIC dependency Revert "KVM: VMX: Move LOAD_IA32_PERF_GLOBAL_CTRL errata handling out of setup_vmcs_config()" KVM: x86: switch hugepage recovery thread to vhost_task KVM: x86: expose MSR_PLATFORM_INFO as a feature MSR x86: KVM: Advertise CPUIDs for new instructions in Clearwater Forest Documentation: KVM: fix malformed table irqchip/loongson-eiointc: Add virt extension support LoongArch: KVM: Add irqfd support LoongArch: KVM: Add PCHPIC user mode read and write functions LoongArch: KVM: Add PCHPIC read and write functions LoongArch: KVM: Add PCHPIC device support LoongArch: KVM: Add EIOINTC user mode read and write functions LoongArch: KVM: Add EIOINTC read and write functions LoongArch: KVM: Add EIOINTC device support LoongArch: KVM: Add IPI user mode read and write function LoongArch: KVM: Add IPI read and write function LoongArch: KVM: Add IPI device support LoongArch: KVM: Add iocsr and mmio bus simulation in kernel KVM: arm64: Pass on SVE mapping failures ...
Diffstat (limited to 'arch/x86/kvm/mmu/mmu.c')
-rw-r--r--arch/x86/kvm/mmu/mmu.c444
1 files changed, 151 insertions, 293 deletions
diff --git a/arch/x86/kvm/mmu/mmu.c b/arch/x86/kvm/mmu/mmu.c
index 8e853a5fc867..22e7ad235123 100644
--- a/arch/x86/kvm/mmu/mmu.c
+++ b/arch/x86/kvm/mmu/mmu.c
@@ -179,7 +179,6 @@ struct kvm_shadow_walk_iterator {
static struct kmem_cache *pte_list_desc_cache;
struct kmem_cache *mmu_page_header_cache;
-static struct percpu_counter kvm_total_used_mmu_pages;
static void mmu_spte_set(u64 *sptep, u64 spte);
@@ -485,11 +484,12 @@ static void mmu_spte_set(u64 *sptep, u64 new_spte)
__set_spte(sptep, new_spte);
}
-/*
- * Update the SPTE (excluding the PFN), but do not track changes in its
- * accessed/dirty status.
+/* Rules for using mmu_spte_update:
+ * Update the state bits, it means the mapped pfn is not changed.
+ *
+ * Returns true if the TLB needs to be flushed
*/
-static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
+static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
u64 old_spte = *sptep;
@@ -498,7 +498,7 @@ static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
if (!is_shadow_present_pte(old_spte)) {
mmu_spte_set(sptep, new_spte);
- return old_spte;
+ return false;
}
if (!spte_has_volatile_bits(old_spte))
@@ -506,53 +506,10 @@ static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
else
old_spte = __update_clear_spte_slow(sptep, new_spte);
- WARN_ON_ONCE(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
+ WARN_ON_ONCE(!is_shadow_present_pte(old_spte) ||
+ spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
- return old_spte;
-}
-
-/* Rules for using mmu_spte_update:
- * Update the state bits, it means the mapped pfn is not changed.
- *
- * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote
- * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only
- * spte, even though the writable spte might be cached on a CPU's TLB.
- *
- * Returns true if the TLB needs to be flushed
- */
-static bool mmu_spte_update(u64 *sptep, u64 new_spte)
-{
- bool flush = false;
- u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
-
- if (!is_shadow_present_pte(old_spte))
- return false;
-
- /*
- * For the spte updated out of mmu-lock is safe, since
- * we always atomically update it, see the comments in
- * spte_has_volatile_bits().
- */
- if (is_mmu_writable_spte(old_spte) &&
- !is_writable_pte(new_spte))
- flush = true;
-
- /*
- * Flush TLB when accessed/dirty states are changed in the page tables,
- * to guarantee consistency between TLB and page tables.
- */
-
- if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
- flush = true;
- kvm_set_pfn_accessed(spte_to_pfn(old_spte));
- }
-
- if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
- flush = true;
- kvm_set_pfn_dirty(spte_to_pfn(old_spte));
- }
-
- return flush;
+ return leaf_spte_change_needs_tlb_flush(old_spte, new_spte);
}
/*
@@ -563,10 +520,8 @@ static bool mmu_spte_update(u64 *sptep, u64 new_spte)
*/
static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
{
- kvm_pfn_t pfn;
u64 old_spte = *sptep;
int level = sptep_to_sp(sptep)->role.level;
- struct page *page;
if (!is_shadow_present_pte(old_spte) ||
!spte_has_volatile_bits(old_spte))
@@ -578,24 +533,6 @@ static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
return old_spte;
kvm_update_page_stats(kvm, level, -1);
-
- pfn = spte_to_pfn(old_spte);
-
- /*
- * KVM doesn't hold a reference to any pages mapped into the guest, and
- * instead uses the mmu_notifier to ensure that KVM unmaps any pages
- * before they are reclaimed. Sanity check that, if the pfn is backed
- * by a refcounted page, the refcount is elevated.
- */
- page = kvm_pfn_to_refcounted_page(pfn);
- WARN_ON_ONCE(page && !page_count(page));
-
- if (is_accessed_spte(old_spte))
- kvm_set_pfn_accessed(pfn);
-
- if (is_dirty_spte(old_spte))
- kvm_set_pfn_dirty(pfn);
-
return old_spte;
}
@@ -1250,16 +1187,6 @@ static bool spte_clear_dirty(u64 *sptep)
return mmu_spte_update(sptep, spte);
}
-static bool spte_wrprot_for_clear_dirty(u64 *sptep)
-{
- bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
- (unsigned long *)sptep);
- if (was_writable && !spte_ad_enabled(*sptep))
- kvm_set_pfn_dirty(spte_to_pfn(*sptep));
-
- return was_writable;
-}
-
/*
* Gets the GFN ready for another round of dirty logging by clearing the
* - D bit on ad-enabled SPTEs, and
@@ -1275,7 +1202,8 @@ static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
for_each_rmap_spte(rmap_head, &iter, sptep)
if (spte_ad_need_write_protect(*sptep))
- flush |= spte_wrprot_for_clear_dirty(sptep);
+ flush |= test_and_clear_bit(PT_WRITABLE_SHIFT,
+ (unsigned long *)sptep);
else
flush |= spte_clear_dirty(sptep);
@@ -1640,15 +1568,12 @@ static bool kvm_rmap_age_gfn_range(struct kvm *kvm,
(unsigned long *)sptep);
} else {
/*
- * Capture the dirty status of the page, so that
- * it doesn't get lost when the SPTE is marked
- * for access tracking.
+ * WARN if mmu_spte_update() signals the need
+ * for a TLB flush, as Access tracking a SPTE
+ * should never trigger an _immediate_ flush.
*/
- if (is_writable_pte(spte))
- kvm_set_pfn_dirty(spte_to_pfn(spte));
-
spte = mark_spte_for_access_track(spte);
- mmu_spte_update_no_track(sptep, spte);
+ WARN_ON_ONCE(mmu_spte_update(sptep, spte));
}
young = true;
}
@@ -1696,27 +1621,15 @@ static void kvm_mmu_check_sptes_at_free(struct kvm_mmu_page *sp)
#endif
}
-/*
- * This value is the sum of all of the kvm instances's
- * kvm->arch.n_used_mmu_pages values. We need a global,
- * aggregate version in order to make the slab shrinker
- * faster
- */
-static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
-{
- kvm->arch.n_used_mmu_pages += nr;
- percpu_counter_add(&kvm_total_used_mmu_pages, nr);
-}
-
static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
- kvm_mod_used_mmu_pages(kvm, +1);
+ kvm->arch.n_used_mmu_pages++;
kvm_account_pgtable_pages((void *)sp->spt, +1);
}
static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
- kvm_mod_used_mmu_pages(kvm, -1);
+ kvm->arch.n_used_mmu_pages--;
kvm_account_pgtable_pages((void *)sp->spt, -1);
}
@@ -2802,7 +2715,7 @@ static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
* be write-protected.
*/
int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
- gfn_t gfn, bool can_unsync, bool prefetch)
+ gfn_t gfn, bool synchronizing, bool prefetch)
{
struct kvm_mmu_page *sp;
bool locked = false;
@@ -2817,12 +2730,12 @@ int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
/*
* The page is not write-tracked, mark existing shadow pages unsync
- * unless KVM is synchronizing an unsync SP (can_unsync = false). In
- * that case, KVM must complete emulation of the guest TLB flush before
- * allowing shadow pages to become unsync (writable by the guest).
+ * unless KVM is synchronizing an unsync SP. In that case, KVM must
+ * complete emulation of the guest TLB flush before allowing shadow
+ * pages to become unsync (writable by the guest).
*/
for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
- if (!can_unsync)
+ if (synchronizing)
return -EPERM;
if (sp->unsync)
@@ -2926,6 +2839,9 @@ static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
}
if (is_shadow_present_pte(*sptep)) {
+ if (prefetch)
+ return RET_PF_SPURIOUS;
+
/*
* If we overwrite a PTE page pointer with a 2MB PMD, unlink
* the parent of the now unreachable PTE.
@@ -2945,7 +2861,7 @@ static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
}
wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
- true, host_writable, &spte);
+ false, host_writable, &spte);
if (*sptep == spte) {
ret = RET_PF_SPURIOUS;
@@ -2971,32 +2887,51 @@ static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
return ret;
}
-static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
- struct kvm_mmu_page *sp,
- u64 *start, u64 *end)
+static bool kvm_mmu_prefetch_sptes(struct kvm_vcpu *vcpu, gfn_t gfn, u64 *sptep,
+ int nr_pages, unsigned int access)
{
struct page *pages[PTE_PREFETCH_NUM];
struct kvm_memory_slot *slot;
- unsigned int access = sp->role.access;
- int i, ret;
- gfn_t gfn;
+ int i;
+
+ if (WARN_ON_ONCE(nr_pages > PTE_PREFETCH_NUM))
+ return false;
- gfn = kvm_mmu_page_get_gfn(sp, spte_index(start));
slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
if (!slot)
- return -1;
+ return false;
- ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
- if (ret <= 0)
- return -1;
+ nr_pages = kvm_prefetch_pages(slot, gfn, pages, nr_pages);
+ if (nr_pages <= 0)
+ return false;
- for (i = 0; i < ret; i++, gfn++, start++) {
- mmu_set_spte(vcpu, slot, start, access, gfn,
+ for (i = 0; i < nr_pages; i++, gfn++, sptep++) {
+ mmu_set_spte(vcpu, slot, sptep, access, gfn,
page_to_pfn(pages[i]), NULL);
- put_page(pages[i]);
+
+ /*
+ * KVM always prefetches writable pages from the primary MMU,
+ * and KVM can make its SPTE writable in the fast page handler,
+ * without notifying the primary MMU. Mark pages/folios dirty
+ * now to ensure file data is written back if it ends up being
+ * written by the guest. Because KVM's prefetching GUPs
+ * writable PTEs, the probability of unnecessary writeback is
+ * extremely low.
+ */
+ kvm_release_page_dirty(pages[i]);
}
- return 0;
+ return true;
+}
+
+static bool direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
+ struct kvm_mmu_page *sp,
+ u64 *start, u64 *end)
+{
+ gfn_t gfn = kvm_mmu_page_get_gfn(sp, spte_index(start));
+ unsigned int access = sp->role.access;
+
+ return kvm_mmu_prefetch_sptes(vcpu, gfn, start, end - start, access);
}
static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
@@ -3014,8 +2949,9 @@ static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
if (is_shadow_present_pte(*spte) || spte == sptep) {
if (!start)
continue;
- if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
+ if (!direct_pte_prefetch_many(vcpu, sp, start, spte))
return;
+
start = NULL;
} else if (!start)
start = spte;
@@ -3165,13 +3101,12 @@ static int __kvm_mmu_max_mapping_level(struct kvm *kvm,
}
int kvm_mmu_max_mapping_level(struct kvm *kvm,
- const struct kvm_memory_slot *slot, gfn_t gfn,
- int max_level)
+ const struct kvm_memory_slot *slot, gfn_t gfn)
{
bool is_private = kvm_slot_can_be_private(slot) &&
kvm_mem_is_private(kvm, gfn);
- return __kvm_mmu_max_mapping_level(kvm, slot, gfn, max_level, is_private);
+ return __kvm_mmu_max_mapping_level(kvm, slot, gfn, PG_LEVEL_NUM, is_private);
}
void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
@@ -3322,7 +3257,6 @@ static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu,
fault->slot = NULL;
fault->pfn = KVM_PFN_NOSLOT;
fault->map_writable = false;
- fault->hva = KVM_HVA_ERR_BAD;
/*
* If MMIO caching is disabled, emulate immediately without
@@ -3392,7 +3326,7 @@ static bool page_fault_can_be_fast(struct kvm *kvm, struct kvm_page_fault *fault
* by setting the Writable bit, which can be done out of mmu_lock.
*/
if (!fault->present)
- return !kvm_ad_enabled();
+ return !kvm_ad_enabled;
/*
* Note, instruction fetches and writes are mutually exclusive, ignore
@@ -3419,7 +3353,7 @@ static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu,
* harm. This also avoids the TLB flush needed after setting dirty bit
* so non-PML cases won't be impacted.
*
- * Compare with set_spte where instead shadow_dirty_mask is set.
+ * Compare with make_spte() where instead shadow_dirty_mask is set.
*/
if (!try_cmpxchg64(sptep, &old_spte, new_spte))
return false;
@@ -3527,8 +3461,9 @@ static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
* uses A/D bits for non-nested MMUs. Thus, if A/D bits are
* enabled, the SPTE can't be an access-tracked SPTE.
*/
- if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte))
- new_spte = restore_acc_track_spte(new_spte);
+ if (unlikely(!kvm_ad_enabled) && is_access_track_spte(spte))
+ new_spte = restore_acc_track_spte(new_spte) |
+ shadow_accessed_mask;
/*
* To keep things simple, only SPTEs that are MMU-writable can
@@ -4376,8 +4311,15 @@ static u8 kvm_max_private_mapping_level(struct kvm *kvm, kvm_pfn_t pfn,
return max_level;
}
-static int kvm_faultin_pfn_private(struct kvm_vcpu *vcpu,
- struct kvm_page_fault *fault)
+static void kvm_mmu_finish_page_fault(struct kvm_vcpu *vcpu,
+ struct kvm_page_fault *fault, int r)
+{
+ kvm_release_faultin_page(vcpu->kvm, fault->refcounted_page,
+ r == RET_PF_RETRY, fault->map_writable);
+}
+
+static int kvm_mmu_faultin_pfn_private(struct kvm_vcpu *vcpu,
+ struct kvm_page_fault *fault)
{
int max_order, r;
@@ -4387,7 +4329,7 @@ static int kvm_faultin_pfn_private(struct kvm_vcpu *vcpu,
}
r = kvm_gmem_get_pfn(vcpu->kvm, fault->slot, fault->gfn, &fault->pfn,
- &max_order);
+ &fault->refcounted_page, &max_order);
if (r) {
kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
return r;
@@ -4400,19 +4342,26 @@ static int kvm_faultin_pfn_private(struct kvm_vcpu *vcpu,
return RET_PF_CONTINUE;
}
-static int __kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
+static int __kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu,
+ struct kvm_page_fault *fault)
{
- bool async;
+ unsigned int foll = fault->write ? FOLL_WRITE : 0;
if (fault->is_private)
- return kvm_faultin_pfn_private(vcpu, fault);
+ return kvm_mmu_faultin_pfn_private(vcpu, fault);
- async = false;
- fault->pfn = __gfn_to_pfn_memslot(fault->slot, fault->gfn, false, false,
- &async, fault->write,
- &fault->map_writable, &fault->hva);
- if (!async)
- return RET_PF_CONTINUE; /* *pfn has correct page already */
+ foll |= FOLL_NOWAIT;
+ fault->pfn = __kvm_faultin_pfn(fault->slot, fault->gfn, foll,
+ &fault->map_writable, &fault->refcounted_page);
+
+ /*
+ * If resolving the page failed because I/O is needed to fault-in the
+ * page, then either set up an asynchronous #PF to do the I/O, or if
+ * doing an async #PF isn't possible, retry with I/O allowed. All
+ * other failures are terminal, i.e. retrying won't help.
+ */
+ if (fault->pfn != KVM_PFN_ERR_NEEDS_IO)
+ return RET_PF_CONTINUE;
if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
trace_kvm_try_async_get_page(fault->addr, fault->gfn);
@@ -4430,14 +4379,16 @@ static int __kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault
* to wait for IO. Note, gup always bails if it is unable to quickly
* get a page and a fatal signal, i.e. SIGKILL, is pending.
*/
- fault->pfn = __gfn_to_pfn_memslot(fault->slot, fault->gfn, false, true,
- NULL, fault->write,
- &fault->map_writable, &fault->hva);
+ foll |= FOLL_INTERRUPTIBLE;
+ foll &= ~FOLL_NOWAIT;
+ fault->pfn = __kvm_faultin_pfn(fault->slot, fault->gfn, foll,
+ &fault->map_writable, &fault->refcounted_page);
+
return RET_PF_CONTINUE;
}
-static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
- unsigned int access)
+static int kvm_mmu_faultin_pfn(struct kvm_vcpu *vcpu,
+ struct kvm_page_fault *fault, unsigned int access)
{
struct kvm_memory_slot *slot = fault->slot;
int ret;
@@ -4520,7 +4471,7 @@ static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
if (mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn))
return RET_PF_RETRY;
- ret = __kvm_faultin_pfn(vcpu, fault);
+ ret = __kvm_mmu_faultin_pfn(vcpu, fault);
if (ret != RET_PF_CONTINUE)
return ret;
@@ -4538,7 +4489,7 @@ static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
* mmu_lock is acquired.
*/
if (mmu_invalidate_retry_gfn_unsafe(vcpu->kvm, fault->mmu_seq, fault->gfn)) {
- kvm_release_pfn_clean(fault->pfn);
+ kvm_mmu_finish_page_fault(vcpu, fault, RET_PF_RETRY);
return RET_PF_RETRY;
}
@@ -4597,7 +4548,7 @@ static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault
if (r)
return r;
- r = kvm_faultin_pfn(vcpu, fault, ACC_ALL);
+ r = kvm_mmu_faultin_pfn(vcpu, fault, ACC_ALL);
if (r != RET_PF_CONTINUE)
return r;
@@ -4614,8 +4565,8 @@ static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault
r = direct_map(vcpu, fault);
out_unlock:
+ kvm_mmu_finish_page_fault(vcpu, fault, r);
write_unlock(&vcpu->kvm->mmu_lock);
- kvm_release_pfn_clean(fault->pfn);
return r;
}
@@ -4688,7 +4639,7 @@ static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu,
if (r)
return r;
- r = kvm_faultin_pfn(vcpu, fault, ACC_ALL);
+ r = kvm_mmu_faultin_pfn(vcpu, fault, ACC_ALL);
if (r != RET_PF_CONTINUE)
return r;
@@ -4701,8 +4652,8 @@ static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu,
r = kvm_tdp_mmu_map(vcpu, fault);
out_unlock:
+ kvm_mmu_finish_page_fault(vcpu, fault, r);
read_unlock(&vcpu->kvm->mmu_lock);
- kvm_release_pfn_clean(fault->pfn);
return r;
}
#endif
@@ -5488,7 +5439,7 @@ kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
role.efer_nx = true;
role.smm = cpu_role.base.smm;
role.guest_mode = cpu_role.base.guest_mode;
- role.ad_disabled = !kvm_ad_enabled();
+ role.ad_disabled = !kvm_ad_enabled;
role.level = kvm_mmu_get_tdp_level(vcpu);
role.direct = true;
role.has_4_byte_gpte = false;
@@ -6228,7 +6179,7 @@ void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
/* It's actually a GPA for vcpu->arch.guest_mmu. */
if (mmu != &vcpu->arch.guest_mmu) {
/* INVLPG on a non-canonical address is a NOP according to the SDM. */
- if (is_noncanonical_address(addr, vcpu))
+ if (is_noncanonical_invlpg_address(addr, vcpu))
return;
kvm_x86_call(flush_tlb_gva)(vcpu, addr);
@@ -6416,8 +6367,11 @@ static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
struct kvm_mmu_page *sp, *node;
int nr_zapped, batch = 0;
+ LIST_HEAD(invalid_list);
bool unstable;
+ lockdep_assert_held(&kvm->slots_lock);
+
restart:
list_for_each_entry_safe_reverse(sp, node,
&kvm->arch.active_mmu_pages, link) {
@@ -6449,7 +6403,7 @@ restart:
}
unstable = __kvm_mmu_prepare_zap_page(kvm, sp,
- &kvm->arch.zapped_obsolete_pages, &nr_zapped);
+ &invalid_list, &nr_zapped);
batch += nr_zapped;
if (unstable)
@@ -6465,7 +6419,7 @@ restart:
* kvm_mmu_load()), and the reload in the caller ensure no vCPUs are
* running with an obsolete MMU.
*/
- kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
+ kvm_mmu_commit_zap_page(kvm, &invalid_list);
}
/*
@@ -6528,16 +6482,10 @@ static void kvm_mmu_zap_all_fast(struct kvm *kvm)
kvm_tdp_mmu_zap_invalidated_roots(kvm);
}
-static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
-{
- return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
-}
-
void kvm_mmu_init_vm(struct kvm *kvm)
{
kvm->arch.shadow_mmio_value = shadow_mmio_value;
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
- INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages);
spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);
@@ -6771,7 +6719,7 @@ static void shadow_mmu_split_huge_page(struct kvm *kvm,
continue;
}
- spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index);
+ spte = make_small_spte(kvm, huge_spte, sp->role, index);
mmu_spte_set(sptep, spte);
__rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access);
}
@@ -6954,8 +6902,7 @@ restart:
* mapping if the indirect sp has level = 1.
*/
if (sp->role.direct &&
- sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
- PG_LEVEL_NUM)) {
+ sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn)) {
kvm_zap_one_rmap_spte(kvm, rmap_head, sptep);
if (kvm_available_flush_remote_tlbs_range())
@@ -6983,8 +6930,8 @@ static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm,
kvm_flush_remote_tlbs_memslot(kvm, slot);
}
-void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
- const struct kvm_memory_slot *slot)
+void kvm_mmu_recover_huge_pages(struct kvm *kvm,
+ const struct kvm_memory_slot *slot)
{
if (kvm_memslots_have_rmaps(kvm)) {
write_lock(&kvm->mmu_lock);
@@ -6994,7 +6941,7 @@ void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
if (tdp_mmu_enabled) {
read_lock(&kvm->mmu_lock);
- kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
+ kvm_tdp_mmu_recover_huge_pages(kvm, slot);
read_unlock(&kvm->mmu_lock);
}
}
@@ -7149,72 +7096,6 @@ void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
}
}
-static unsigned long mmu_shrink_scan(struct shrinker *shrink,
- struct shrink_control *sc)
-{
- struct kvm *kvm;
- int nr_to_scan = sc->nr_to_scan;
- unsigned long freed = 0;
-
- mutex_lock(&kvm_lock);
-
- list_for_each_entry(kvm, &vm_list, vm_list) {
- int idx;
-
- /*
- * Never scan more than sc->nr_to_scan VM instances.
- * Will not hit this condition practically since we do not try
- * to shrink more than one VM and it is very unlikely to see
- * !n_used_mmu_pages so many times.
- */
- if (!nr_to_scan--)
- break;
- /*
- * n_used_mmu_pages is accessed without holding kvm->mmu_lock
- * here. We may skip a VM instance errorneosly, but we do not
- * want to shrink a VM that only started to populate its MMU
- * anyway.
- */
- if (!kvm->arch.n_used_mmu_pages &&
- !kvm_has_zapped_obsolete_pages(kvm))
- continue;
-
- idx = srcu_read_lock(&kvm->srcu);
- write_lock(&kvm->mmu_lock);
-
- if (kvm_has_zapped_obsolete_pages(kvm)) {
- kvm_mmu_commit_zap_page(kvm,
- &kvm->arch.zapped_obsolete_pages);
- goto unlock;
- }
-
- freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
-
-unlock:
- write_unlock(&kvm->mmu_lock);
- srcu_read_unlock(&kvm->srcu, idx);
-
- /*
- * unfair on small ones
- * per-vm shrinkers cry out
- * sadness comes quickly
- */
- list_move_tail(&kvm->vm_list, &vm_list);
- break;
- }
-
- mutex_unlock(&kvm_lock);
- return freed;
-}
-
-static unsigned long mmu_shrink_count(struct shrinker *shrink,
- struct shrink_control *sc)
-{
- return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
-}
-
-static struct shrinker *mmu_shrinker;
-
static void mmu_destroy_caches(void)
{
kmem_cache_destroy(pte_list_desc_cache);
@@ -7281,7 +7162,7 @@ static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
kvm_mmu_zap_all_fast(kvm);
mutex_unlock(&kvm->slots_lock);
- wake_up_process(kvm->arch.nx_huge_page_recovery_thread);
+ vhost_task_wake(kvm->arch.nx_huge_page_recovery_thread);
}
mutex_unlock(&kvm_lock);
}
@@ -7341,23 +7222,8 @@ int kvm_mmu_vendor_module_init(void)
if (!mmu_page_header_cache)
goto out;
- if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
- goto out;
-
- mmu_shrinker = shrinker_alloc(0, "x86-mmu");
- if (!mmu_shrinker)
- goto out_shrinker;
-
- mmu_shrinker->count_objects = mmu_shrink_count;
- mmu_shrinker->scan_objects = mmu_shrink_scan;
- mmu_shrinker->seeks = DEFAULT_SEEKS * 10;
-
- shrinker_register(mmu_shrinker);
-
return 0;
-out_shrinker:
- percpu_counter_destroy(&kvm_total_used_mmu_pages);
out:
mmu_destroy_caches();
return ret;
@@ -7374,8 +7240,6 @@ void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
void kvm_mmu_vendor_module_exit(void)
{
mmu_destroy_caches();
- percpu_counter_destroy(&kvm_total_used_mmu_pages);
- shrinker_free(mmu_shrinker);
}
/*
@@ -7427,7 +7291,7 @@ static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel
mutex_lock(&kvm_lock);
list_for_each_entry(kvm, &vm_list, vm_list)
- wake_up_process(kvm->arch.nx_huge_page_recovery_thread);
+ vhost_task_wake(kvm->arch.nx_huge_page_recovery_thread);
mutex_unlock(&kvm_lock);
}
@@ -7530,62 +7394,56 @@ static void kvm_recover_nx_huge_pages(struct kvm *kvm)
srcu_read_unlock(&kvm->srcu, rcu_idx);
}
-static long get_nx_huge_page_recovery_timeout(u64 start_time)
+static void kvm_nx_huge_page_recovery_worker_kill(void *data)
{
- bool enabled;
- uint period;
-
- enabled = calc_nx_huge_pages_recovery_period(&period);
-
- return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64()
- : MAX_SCHEDULE_TIMEOUT;
}
-static int kvm_nx_huge_page_recovery_worker(struct kvm *kvm, uintptr_t data)
+static bool kvm_nx_huge_page_recovery_worker(void *data)
{
- u64 start_time;
+ struct kvm *kvm = data;
+ bool enabled;
+ uint period;
long remaining_time;
- while (true) {
- start_time = get_jiffies_64();
- remaining_time = get_nx_huge_page_recovery_timeout(start_time);
-
- set_current_state(TASK_INTERRUPTIBLE);
- while (!kthread_should_stop() && remaining_time > 0) {
- schedule_timeout(remaining_time);
- remaining_time = get_nx_huge_page_recovery_timeout(start_time);
- set_current_state(TASK_INTERRUPTIBLE);
- }
-
- set_current_state(TASK_RUNNING);
-
- if (kthread_should_stop())
- return 0;
+ enabled = calc_nx_huge_pages_recovery_period(&period);
+ if (!enabled)
+ return false;
- kvm_recover_nx_huge_pages(kvm);
+ remaining_time = kvm->arch.nx_huge_page_last + msecs_to_jiffies(period)
+ - get_jiffies_64();
+ if (remaining_time > 0) {
+ schedule_timeout(remaining_time);
+ /* check for signals and come back */
+ return true;
}
+
+ __set_current_state(TASK_RUNNING);
+ kvm_recover_nx_huge_pages(kvm);
+ kvm->arch.nx_huge_page_last = get_jiffies_64();
+ return true;
}
int kvm_mmu_post_init_vm(struct kvm *kvm)
{
- int err;
-
if (nx_hugepage_mitigation_hard_disabled)
return 0;
- err = kvm_vm_create_worker_thread(kvm, kvm_nx_huge_page_recovery_worker, 0,
- "kvm-nx-lpage-recovery",
- &kvm->arch.nx_huge_page_recovery_thread);
- if (!err)
- kthread_unpark(kvm->arch.nx_huge_page_recovery_thread);
+ kvm->arch.nx_huge_page_last = get_jiffies_64();
+ kvm->arch.nx_huge_page_recovery_thread = vhost_task_create(
+ kvm_nx_huge_page_recovery_worker, kvm_nx_huge_page_recovery_worker_kill,
+ kvm, "kvm-nx-lpage-recovery");
- return err;
+ if (!kvm->arch.nx_huge_page_recovery_thread)
+ return -ENOMEM;
+
+ vhost_task_start(kvm->arch.nx_huge_page_recovery_thread);
+ return 0;
}
void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
if (kvm->arch.nx_huge_page_recovery_thread)
- kthread_stop(kvm->arch.nx_huge_page_recovery_thread);
+ vhost_task_stop(kvm->arch.nx_huge_page_recovery_thread);
}
#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES