diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2017-02-23 03:22:53 +0100 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2017-02-23 03:22:53 +0100 |
commit | fd7e9a88348472521d999434ee02f25735c7dadf (patch) | |
tree | 90e6249e58d90ba9d590cfed4481c29ca36a05dc /arch/x86/kvm | |
parent | Merge tag 'iommu-fix-v4.11-rc0' of git://git.kernel.org/pub/scm/linux/kernel/... (diff) | |
parent | x86/kvm: Provide optimized version of vcpu_is_preempted() for x86-64 (diff) | |
download | linux-fd7e9a88348472521d999434ee02f25735c7dadf.tar.xz linux-fd7e9a88348472521d999434ee02f25735c7dadf.zip |
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"4.11 is going to be a relatively large release for KVM, with a little
over 200 commits and noteworthy changes for most architectures.
ARM:
- GICv3 save/restore
- cache flushing fixes
- working MSI injection for GICv3 ITS
- physical timer emulation
MIPS:
- various improvements under the hood
- support for SMP guests
- a large rewrite of MMU emulation. KVM MIPS can now use MMU
notifiers to support copy-on-write, KSM, idle page tracking,
swapping, ballooning and everything else. KVM_CAP_READONLY_MEM is
also supported, so that writes to some memory regions can be
treated as MMIO. The new MMU also paves the way for hardware
virtualization support.
PPC:
- support for POWER9 using the radix-tree MMU for host and guest
- resizable hashed page table
- bugfixes.
s390:
- expose more features to the guest
- more SIMD extensions
- instruction execution protection
- ESOP2
x86:
- improved hashing in the MMU
- faster PageLRU tracking for Intel CPUs without EPT A/D bits
- some refactoring of nested VMX entry/exit code, preparing for live
migration support of nested hypervisors
- expose yet another AVX512 CPUID bit
- host-to-guest PTP support
- refactoring of interrupt injection, with some optimizations thrown
in and some duct tape removed.
- remove lazy FPU handling
- optimizations of user-mode exits
- optimizations of vcpu_is_preempted() for KVM guests
generic:
- alternative signaling mechanism that doesn't pound on
tsk->sighand->siglock"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (195 commits)
x86/kvm: Provide optimized version of vcpu_is_preempted() for x86-64
x86/paravirt: Change vcp_is_preempted() arg type to long
KVM: VMX: use correct vmcs_read/write for guest segment selector/base
x86/kvm/vmx: Defer TR reload after VM exit
x86/asm/64: Drop __cacheline_aligned from struct x86_hw_tss
x86/kvm/vmx: Simplify segment_base()
x86/kvm/vmx: Get rid of segment_base() on 64-bit kernels
x86/kvm/vmx: Don't fetch the TSS base from the GDT
x86/asm: Define the kernel TSS limit in a macro
kvm: fix page struct leak in handle_vmon
KVM: PPC: Book3S HV: Disable HPT resizing on POWER9 for now
KVM: Return an error code only as a constant in kvm_get_dirty_log()
KVM: Return an error code only as a constant in kvm_get_dirty_log_protect()
KVM: Return directly after a failed copy_from_user() in kvm_vm_compat_ioctl()
KVM: x86: remove code for lazy FPU handling
KVM: race-free exit from KVM_RUN without POSIX signals
KVM: PPC: Book3S HV: Turn "KVM guest htab" message into a debug message
KVM: PPC: Book3S PR: Ratelimit copy data failure error messages
KVM: Support vCPU-based gfn->hva cache
KVM: use separate generations for each address space
...
Diffstat (limited to 'arch/x86/kvm')
-rw-r--r-- | arch/x86/kvm/cpuid.c | 10 | ||||
-rw-r--r-- | arch/x86/kvm/emulate.c | 20 | ||||
-rw-r--r-- | arch/x86/kvm/hyperv.c | 4 | ||||
-rw-r--r-- | arch/x86/kvm/i8259.c | 16 | ||||
-rw-r--r-- | arch/x86/kvm/irq.h | 19 | ||||
-rw-r--r-- | arch/x86/kvm/irq_comm.c | 29 | ||||
-rw-r--r-- | arch/x86/kvm/lapic.c | 197 | ||||
-rw-r--r-- | arch/x86/kvm/lapic.h | 16 | ||||
-rw-r--r-- | arch/x86/kvm/mmu.c | 509 | ||||
-rw-r--r-- | arch/x86/kvm/svm.c | 57 | ||||
-rw-r--r-- | arch/x86/kvm/vmx.c | 909 | ||||
-rw-r--r-- | arch/x86/kvm/x86.c | 274 |
12 files changed, 1178 insertions, 882 deletions
diff --git a/arch/x86/kvm/cpuid.c b/arch/x86/kvm/cpuid.c index e85f6bd7b9d5..1d155cc56629 100644 --- a/arch/x86/kvm/cpuid.c +++ b/arch/x86/kvm/cpuid.c @@ -123,8 +123,6 @@ int kvm_update_cpuid(struct kvm_vcpu *vcpu) if (best && (best->eax & (F(XSAVES) | F(XSAVEC)))) best->ebx = xstate_required_size(vcpu->arch.xcr0, true); - kvm_x86_ops->fpu_activate(vcpu); - /* * The existing code assumes virtual address is 48-bit in the canonical * address checks; exit if it is ever changed. @@ -383,7 +381,7 @@ static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function, /* cpuid 7.0.ecx*/ const u32 kvm_cpuid_7_0_ecx_x86_features = - F(AVX512VBMI) | F(PKU) | 0 /*OSPKE*/; + F(AVX512VBMI) | F(PKU) | 0 /*OSPKE*/ | F(AVX512_VPOPCNTDQ); /* cpuid 7.0.edx*/ const u32 kvm_cpuid_7_0_edx_x86_features = @@ -861,12 +859,6 @@ void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx) if (!best) best = check_cpuid_limit(vcpu, function, index); - /* - * Perfmon not yet supported for L2 guest. - */ - if (is_guest_mode(vcpu) && function == 0xa) - best = NULL; - if (best) { *eax = best->eax; *ebx = best->ebx; diff --git a/arch/x86/kvm/emulate.c b/arch/x86/kvm/emulate.c index cedbba0f3402..45c7306c8780 100644 --- a/arch/x86/kvm/emulate.c +++ b/arch/x86/kvm/emulate.c @@ -173,6 +173,7 @@ #define NearBranch ((u64)1 << 52) /* Near branches */ #define No16 ((u64)1 << 53) /* No 16 bit operand */ #define IncSP ((u64)1 << 54) /* SP is incremented before ModRM calc */ +#define TwoMemOp ((u64)1 << 55) /* Instruction has two memory operand */ #define DstXacc (DstAccLo | SrcAccHi | SrcWrite) @@ -4298,7 +4299,7 @@ static const struct opcode group1[] = { }; static const struct opcode group1A[] = { - I(DstMem | SrcNone | Mov | Stack | IncSP, em_pop), N, N, N, N, N, N, N, + I(DstMem | SrcNone | Mov | Stack | IncSP | TwoMemOp, em_pop), N, N, N, N, N, N, N, }; static const struct opcode group2[] = { @@ -4336,7 +4337,7 @@ static const struct opcode group5[] = { I(SrcMemFAddr | ImplicitOps, em_call_far), I(SrcMem | NearBranch, em_jmp_abs), I(SrcMemFAddr | ImplicitOps, em_jmp_far), - I(SrcMem | Stack, em_push), D(Undefined), + I(SrcMem | Stack | TwoMemOp, em_push), D(Undefined), }; static const struct opcode group6[] = { @@ -4556,8 +4557,8 @@ static const struct opcode opcode_table[256] = { /* 0xA0 - 0xA7 */ I2bv(DstAcc | SrcMem | Mov | MemAbs, em_mov), I2bv(DstMem | SrcAcc | Mov | MemAbs | PageTable, em_mov), - I2bv(SrcSI | DstDI | Mov | String, em_mov), - F2bv(SrcSI | DstDI | String | NoWrite, em_cmp_r), + I2bv(SrcSI | DstDI | Mov | String | TwoMemOp, em_mov), + F2bv(SrcSI | DstDI | String | NoWrite | TwoMemOp, em_cmp_r), /* 0xA8 - 0xAF */ F2bv(DstAcc | SrcImm | NoWrite, em_test), I2bv(SrcAcc | DstDI | Mov | String, em_mov), @@ -5671,3 +5672,14 @@ void emulator_writeback_register_cache(struct x86_emulate_ctxt *ctxt) { writeback_registers(ctxt); } + +bool emulator_can_use_gpa(struct x86_emulate_ctxt *ctxt) +{ + if (ctxt->rep_prefix && (ctxt->d & String)) + return false; + + if (ctxt->d & TwoMemOp) + return false; + + return true; +} diff --git a/arch/x86/kvm/hyperv.c b/arch/x86/kvm/hyperv.c index 2ecd7dab4631..f701d4430727 100644 --- a/arch/x86/kvm/hyperv.c +++ b/arch/x86/kvm/hyperv.c @@ -305,13 +305,13 @@ static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint) return -ENOENT; memset(&irq, 0, sizeof(irq)); - irq.dest_id = kvm_apic_id(vcpu->arch.apic); + irq.shorthand = APIC_DEST_SELF; irq.dest_mode = APIC_DEST_PHYSICAL; irq.delivery_mode = APIC_DM_FIXED; irq.vector = vector; irq.level = 1; - ret = kvm_irq_delivery_to_apic(vcpu->kvm, NULL, &irq, NULL); + ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL); trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret); return ret; } diff --git a/arch/x86/kvm/i8259.c b/arch/x86/kvm/i8259.c index 7cc2360f1848..73ea24d4f119 100644 --- a/arch/x86/kvm/i8259.c +++ b/arch/x86/kvm/i8259.c @@ -598,14 +598,14 @@ static const struct kvm_io_device_ops picdev_eclr_ops = { .write = picdev_eclr_write, }; -struct kvm_pic *kvm_create_pic(struct kvm *kvm) +int kvm_pic_init(struct kvm *kvm) { struct kvm_pic *s; int ret; s = kzalloc(sizeof(struct kvm_pic), GFP_KERNEL); if (!s) - return NULL; + return -ENOMEM; spin_lock_init(&s->lock); s->kvm = kvm; s->pics[0].elcr_mask = 0xf8; @@ -635,7 +635,9 @@ struct kvm_pic *kvm_create_pic(struct kvm *kvm) mutex_unlock(&kvm->slots_lock); - return s; + kvm->arch.vpic = s; + + return 0; fail_unreg_1: kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &s->dev_slave); @@ -648,13 +650,17 @@ fail_unlock: kfree(s); - return NULL; + return ret; } -void kvm_destroy_pic(struct kvm_pic *vpic) +void kvm_pic_destroy(struct kvm *kvm) { + struct kvm_pic *vpic = kvm->arch.vpic; + kvm_io_bus_unregister_dev(vpic->kvm, KVM_PIO_BUS, &vpic->dev_master); kvm_io_bus_unregister_dev(vpic->kvm, KVM_PIO_BUS, &vpic->dev_slave); kvm_io_bus_unregister_dev(vpic->kvm, KVM_PIO_BUS, &vpic->dev_eclr); + + kvm->arch.vpic = NULL; kfree(vpic); } diff --git a/arch/x86/kvm/irq.h b/arch/x86/kvm/irq.h index 035731eb3897..40d5b2cf6061 100644 --- a/arch/x86/kvm/irq.h +++ b/arch/x86/kvm/irq.h @@ -73,8 +73,8 @@ struct kvm_pic { unsigned long irq_states[PIC_NUM_PINS]; }; -struct kvm_pic *kvm_create_pic(struct kvm *kvm); -void kvm_destroy_pic(struct kvm_pic *vpic); +int kvm_pic_init(struct kvm *kvm); +void kvm_pic_destroy(struct kvm *kvm); int kvm_pic_read_irq(struct kvm *kvm); void kvm_pic_update_irq(struct kvm_pic *s); @@ -93,18 +93,19 @@ static inline int pic_in_kernel(struct kvm *kvm) static inline int irqchip_split(struct kvm *kvm) { - return kvm->arch.irqchip_split; + return kvm->arch.irqchip_mode == KVM_IRQCHIP_SPLIT; } -static inline int irqchip_in_kernel(struct kvm *kvm) +static inline int irqchip_kernel(struct kvm *kvm) { - struct kvm_pic *vpic = pic_irqchip(kvm); - bool ret; + return kvm->arch.irqchip_mode == KVM_IRQCHIP_KERNEL; +} - ret = (vpic != NULL); - ret |= irqchip_split(kvm); +static inline int irqchip_in_kernel(struct kvm *kvm) +{ + bool ret = kvm->arch.irqchip_mode != KVM_IRQCHIP_NONE; - /* Read vpic before kvm->irq_routing. */ + /* Matches with wmb after initializing kvm->irq_routing. */ smp_rmb(); return ret; } diff --git a/arch/x86/kvm/irq_comm.c b/arch/x86/kvm/irq_comm.c index 6c0191615f23..b96d3893f121 100644 --- a/arch/x86/kvm/irq_comm.c +++ b/arch/x86/kvm/irq_comm.c @@ -41,15 +41,6 @@ static int kvm_set_pic_irq(struct kvm_kernel_irq_routing_entry *e, bool line_status) { struct kvm_pic *pic = pic_irqchip(kvm); - - /* - * XXX: rejecting pic routes when pic isn't in use would be better, - * but the default routing table is installed while kvm->arch.vpic is - * NULL and KVM_CREATE_IRQCHIP can race with KVM_IRQ_LINE. - */ - if (!pic) - return -1; - return kvm_pic_set_irq(pic, e->irqchip.pin, irq_source_id, level); } @@ -58,10 +49,6 @@ static int kvm_set_ioapic_irq(struct kvm_kernel_irq_routing_entry *e, bool line_status) { struct kvm_ioapic *ioapic = kvm->arch.vioapic; - - if (!ioapic) - return -1; - return kvm_ioapic_set_irq(ioapic, e->irqchip.pin, irq_source_id, level, line_status); } @@ -297,16 +284,20 @@ int kvm_set_routing_entry(struct kvm *kvm, case KVM_IRQ_ROUTING_IRQCHIP: delta = 0; switch (ue->u.irqchip.irqchip) { - case KVM_IRQCHIP_PIC_MASTER: - e->set = kvm_set_pic_irq; - max_pin = PIC_NUM_PINS; - break; case KVM_IRQCHIP_PIC_SLAVE: + delta = 8; + /* fall through */ + case KVM_IRQCHIP_PIC_MASTER: + if (!pic_in_kernel(kvm)) + goto out; + e->set = kvm_set_pic_irq; max_pin = PIC_NUM_PINS; - delta = 8; break; case KVM_IRQCHIP_IOAPIC: + if (!ioapic_in_kernel(kvm)) + goto out; + max_pin = KVM_IOAPIC_NUM_PINS; e->set = kvm_set_ioapic_irq; break; @@ -409,7 +400,7 @@ int kvm_setup_empty_irq_routing(struct kvm *kvm) void kvm_arch_post_irq_routing_update(struct kvm *kvm) { - if (ioapic_in_kernel(kvm) || !irqchip_in_kernel(kvm)) + if (!irqchip_split(kvm)) return; kvm_make_scan_ioapic_request(kvm); } diff --git a/arch/x86/kvm/lapic.c b/arch/x86/kvm/lapic.c index 2f6ef5121a4c..bad6a25067bc 100644 --- a/arch/x86/kvm/lapic.c +++ b/arch/x86/kvm/lapic.c @@ -115,6 +115,16 @@ static inline int apic_enabled(struct kvm_lapic *apic) (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \ APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER) +static inline u8 kvm_xapic_id(struct kvm_lapic *apic) +{ + return kvm_lapic_get_reg(apic, APIC_ID) >> 24; +} + +static inline u32 kvm_x2apic_id(struct kvm_lapic *apic) +{ + return apic->vcpu->vcpu_id; +} + static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map, u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) { switch (map->mode) { @@ -159,13 +169,13 @@ static void recalculate_apic_map(struct kvm *kvm) struct kvm_apic_map *new, *old = NULL; struct kvm_vcpu *vcpu; int i; - u32 max_id = 255; + u32 max_id = 255; /* enough space for any xAPIC ID */ mutex_lock(&kvm->arch.apic_map_lock); kvm_for_each_vcpu(i, vcpu, kvm) if (kvm_apic_present(vcpu)) - max_id = max(max_id, kvm_apic_id(vcpu->arch.apic)); + max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic)); new = kvm_kvzalloc(sizeof(struct kvm_apic_map) + sizeof(struct kvm_lapic *) * ((u64)max_id + 1)); @@ -179,16 +189,28 @@ static void recalculate_apic_map(struct kvm *kvm) struct kvm_lapic *apic = vcpu->arch.apic; struct kvm_lapic **cluster; u16 mask; - u32 ldr, aid; + u32 ldr; + u8 xapic_id; + u32 x2apic_id; if (!kvm_apic_present(vcpu)) continue; - aid = kvm_apic_id(apic); - ldr = kvm_lapic_get_reg(apic, APIC_LDR); + xapic_id = kvm_xapic_id(apic); + x2apic_id = kvm_x2apic_id(apic); - if (aid <= new->max_apic_id) - new->phys_map[aid] = apic; + /* Hotplug hack: see kvm_apic_match_physical_addr(), ... */ + if ((apic_x2apic_mode(apic) || x2apic_id > 0xff) && + x2apic_id <= new->max_apic_id) + new->phys_map[x2apic_id] = apic; + /* + * ... xAPIC ID of VCPUs with APIC ID > 0xff will wrap-around, + * prevent them from masking VCPUs with APIC ID <= 0xff. + */ + if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id]) + new->phys_map[xapic_id] = apic; + + ldr = kvm_lapic_get_reg(apic, APIC_LDR); if (apic_x2apic_mode(apic)) { new->mode |= KVM_APIC_MODE_X2APIC; @@ -250,6 +272,8 @@ static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id) { u32 ldr = ((id >> 4) << 16) | (1 << (id & 0xf)); + WARN_ON_ONCE(id != apic->vcpu->vcpu_id); + kvm_lapic_set_reg(apic, APIC_ID, id); kvm_lapic_set_reg(apic, APIC_LDR, ldr); recalculate_apic_map(apic->vcpu->kvm); @@ -317,7 +341,7 @@ static int find_highest_vector(void *bitmap) vec >= 0; vec -= APIC_VECTORS_PER_REG) { reg = bitmap + REG_POS(vec); if (*reg) - return fls(*reg) - 1 + vec; + return __fls(*reg) + vec; } return -1; @@ -337,27 +361,32 @@ static u8 count_vectors(void *bitmap) return count; } -void __kvm_apic_update_irr(u32 *pir, void *regs) +int __kvm_apic_update_irr(u32 *pir, void *regs) { - u32 i, pir_val; + u32 i, vec; + u32 pir_val, irr_val; + int max_irr = -1; - for (i = 0; i <= 7; i++) { + for (i = vec = 0; i <= 7; i++, vec += 32) { pir_val = READ_ONCE(pir[i]); + irr_val = *((u32 *)(regs + APIC_IRR + i * 0x10)); if (pir_val) { - pir_val = xchg(&pir[i], 0); - *((u32 *)(regs + APIC_IRR + i * 0x10)) |= pir_val; + irr_val |= xchg(&pir[i], 0); + *((u32 *)(regs + APIC_IRR + i * 0x10)) = irr_val; } + if (irr_val) + max_irr = __fls(irr_val) + vec; } + + return max_irr; } EXPORT_SYMBOL_GPL(__kvm_apic_update_irr); -void kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir) +int kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir) { struct kvm_lapic *apic = vcpu->arch.apic; - __kvm_apic_update_irr(pir, apic->regs); - - kvm_make_request(KVM_REQ_EVENT, vcpu); + return __kvm_apic_update_irr(pir, apic->regs); } EXPORT_SYMBOL_GPL(kvm_apic_update_irr); @@ -377,8 +406,6 @@ static inline int apic_find_highest_irr(struct kvm_lapic *apic) if (!apic->irr_pending) return -1; - if (apic->vcpu->arch.apicv_active) - kvm_x86_ops->sync_pir_to_irr(apic->vcpu); result = apic_search_irr(apic); ASSERT(result == -1 || result >= 16); @@ -392,9 +419,10 @@ static inline void apic_clear_irr(int vec, struct kvm_lapic *apic) vcpu = apic->vcpu; if (unlikely(vcpu->arch.apicv_active)) { - /* try to update RVI */ + /* need to update RVI */ apic_clear_vector(vec, apic->regs + APIC_IRR); - kvm_make_request(KVM_REQ_EVENT, vcpu); + kvm_x86_ops->hwapic_irr_update(vcpu, + apic_find_highest_irr(apic)); } else { apic->irr_pending = false; apic_clear_vector(vec, apic->regs + APIC_IRR); @@ -484,6 +512,7 @@ int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu) */ return apic_find_highest_irr(vcpu->arch.apic); } +EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr); static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, int vector, int level, int trig_mode, @@ -500,16 +529,14 @@ int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq, static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val) { - - return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val, - sizeof(val)); + return kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.pv_eoi.data, &val, + sizeof(val)); } static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val) { - - return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val, - sizeof(*val)); + return kvm_vcpu_read_guest_cached(vcpu, &vcpu->arch.pv_eoi.data, val, + sizeof(*val)); } static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu) @@ -546,7 +573,19 @@ static void pv_eoi_clr_pending(struct kvm_vcpu *vcpu) __clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention); } -static void apic_update_ppr(struct kvm_lapic *apic) +static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr) +{ + int highest_irr; + if (kvm_x86_ops->sync_pir_to_irr && apic->vcpu->arch.apicv_active) + highest_irr = kvm_x86_ops->sync_pir_to_irr(apic->vcpu); + else + highest_irr = apic_find_highest_irr(apic); + if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr) + return -1; + return highest_irr; +} + +static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr) { u32 tpr, isrv, ppr, old_ppr; int isr; @@ -564,13 +603,28 @@ static void apic_update_ppr(struct kvm_lapic *apic) apic_debug("vlapic %p, ppr 0x%x, isr 0x%x, isrv 0x%x", apic, ppr, isr, isrv); - if (old_ppr != ppr) { + *new_ppr = ppr; + if (old_ppr != ppr) kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr); - if (ppr < old_ppr) - kvm_make_request(KVM_REQ_EVENT, apic->vcpu); - } + + return ppr < old_ppr; +} + +static void apic_update_ppr(struct kvm_lapic *apic) +{ + u32 ppr; + + if (__apic_update_ppr(apic, &ppr) && + apic_has_interrupt_for_ppr(apic, ppr) != -1) + kvm_make_request(KVM_REQ_EVENT, apic->vcpu); } +void kvm_apic_update_ppr(struct kvm_vcpu *vcpu) +{ + apic_update_ppr(vcpu->arch.apic); +} +EXPORT_SYMBOL_GPL(kvm_apic_update_ppr); + static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr) { kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr); @@ -579,10 +633,8 @@ static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr) static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda) { - if (apic_x2apic_mode(apic)) - return mda == X2APIC_BROADCAST; - - return GET_APIC_DEST_FIELD(mda) == APIC_BROADCAST; + return mda == (apic_x2apic_mode(apic) ? + X2APIC_BROADCAST : APIC_BROADCAST); } static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda) @@ -591,9 +643,18 @@ static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda) return true; if (apic_x2apic_mode(apic)) - return mda == kvm_apic_id(apic); + return mda == kvm_x2apic_id(apic); - return mda == SET_APIC_DEST_FIELD(kvm_apic_id(apic)); + /* + * Hotplug hack: Make LAPIC in xAPIC mode also accept interrupts as if + * it were in x2APIC mode. Hotplugged VCPUs start in xAPIC mode and + * this allows unique addressing of VCPUs with APIC ID over 0xff. + * The 0xff condition is needed because writeable xAPIC ID. + */ + if (kvm_x2apic_id(apic) > 0xff && mda == kvm_x2apic_id(apic)) + return true; + + return mda == kvm_xapic_id(apic); } static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda) @@ -610,7 +671,6 @@ static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda) && (logical_id & mda & 0xffff) != 0; logical_id = GET_APIC_LOGICAL_ID(logical_id); - mda = GET_APIC_DEST_FIELD(mda); switch (kvm_lapic_get_reg(apic, APIC_DFR)) { case APIC_DFR_FLAT: @@ -627,9 +687,9 @@ static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda) /* The KVM local APIC implementation has two quirks: * - * - the xAPIC MDA stores the destination at bits 24-31, while this - * is not true of struct kvm_lapic_irq's dest_id field. This is - * just a quirk in the API and is not problematic. + * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs + * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID. + * KVM doesn't do that aliasing. * * - in-kernel IOAPIC messages have to be delivered directly to * x2APIC, because the kernel does not support interrupt remapping. @@ -645,13 +705,12 @@ static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id, struct kvm_lapic *source, struct kvm_lapic *target) { bool ipi = source != NULL; - bool x2apic_mda = apic_x2apic_mode(ipi ? source : target); if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled && - !ipi && dest_id == APIC_BROADCAST && x2apic_mda) + !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target)) return X2APIC_BROADCAST; - return x2apic_mda ? dest_id : SET_APIC_DEST_FIELD(dest_id); + return dest_id; } bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, @@ -1907,9 +1966,9 @@ void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event) vcpu->arch.apic_arb_prio = 0; vcpu->arch.apic_attention = 0; - apic_debug("%s: vcpu=%p, id=%d, base_msr=" + apic_debug("%s: vcpu=%p, id=0x%x, base_msr=" "0x%016" PRIx64 ", base_address=0x%0lx.\n", __func__, - vcpu, kvm_apic_id(apic), + vcpu, kvm_lapic_get_reg(apic, APIC_ID), vcpu->arch.apic_base, apic->base_address); } @@ -2021,17 +2080,13 @@ nomem: int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu) { struct kvm_lapic *apic = vcpu->arch.apic; - int highest_irr; + u32 ppr; if (!apic_enabled(apic)) return -1; - apic_update_ppr(apic); - highest_irr = apic_find_highest_irr(apic); - if ((highest_irr == -1) || - ((highest_irr & 0xF0) <= kvm_lapic_get_reg(apic, APIC_PROCPRI))) - return -1; - return highest_irr; + __apic_update_ppr(apic, &ppr); + return apic_has_interrupt_for_ppr(apic, ppr); } int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu) @@ -2067,6 +2122,7 @@ int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu) { int vector = kvm_apic_has_interrupt(vcpu); struct kvm_lapic *apic = vcpu->arch.apic; + u32 ppr; if (vector == -1) return -1; @@ -2078,13 +2134,23 @@ int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu) * because the process would deliver it through the IDT. */ - apic_set_isr(vector, apic); - apic_update_ppr(apic); apic_clear_irr(vector, apic); - if (test_bit(vector, vcpu_to_synic(vcpu)->auto_eoi_bitmap)) { - apic_clear_isr(vector, apic); + /* + * For auto-EOI interrupts, there might be another pending + * interrupt above PPR, so check whether to raise another + * KVM_REQ_EVENT. + */ apic_update_ppr(apic); + } else { + /* + * For normal interrupts, PPR has been raised and there cannot + * be a higher-priority pending interrupt---except if there was + * a concurrent interrupt injection, but that would have + * triggered KVM_REQ_EVENT already. + */ + apic_set_isr(vector, apic); + __apic_update_ppr(apic, &ppr); } return vector; @@ -2145,8 +2211,7 @@ int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) 1 : count_vectors(apic->regs + APIC_ISR); apic->highest_isr_cache = -1; if (vcpu->arch.apicv_active) { - if (kvm_x86_ops->apicv_post_state_restore) - kvm_x86_ops->apicv_post_state_restore(vcpu); + kvm_x86_ops->apicv_post_state_restore(vcpu); kvm_x86_ops->hwapic_irr_update(vcpu, apic_find_highest_irr(apic)); kvm_x86_ops->hwapic_isr_update(vcpu, @@ -2220,8 +2285,8 @@ void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu) if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention)) return; - if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, - sizeof(u32))) + if (kvm_vcpu_read_guest_cached(vcpu, &vcpu->arch.apic->vapic_cache, &data, + sizeof(u32))) return; apic_set_tpr(vcpu->arch.apic, data & 0xff); @@ -2273,14 +2338,14 @@ void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu) max_isr = 0; data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24); - kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data, - sizeof(u32)); + kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.apic->vapic_cache, &data, + sizeof(u32)); } int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr) { if (vapic_addr) { - if (kvm_gfn_to_hva_cache_init(vcpu->kvm, + if (kvm_vcpu_gfn_to_hva_cache_init(vcpu, &vcpu->arch.apic->vapic_cache, vapic_addr, sizeof(u32))) return -EINVAL; @@ -2374,7 +2439,7 @@ int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data) vcpu->arch.pv_eoi.msr_val = data; if (!pv_eoi_enabled(vcpu)) return 0; - return kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.pv_eoi.data, + return kvm_vcpu_gfn_to_hva_cache_init(vcpu, &vcpu->arch.pv_eoi.data, addr, sizeof(u8)); } diff --git a/arch/x86/kvm/lapic.h b/arch/x86/kvm/lapic.h index ff8039d61672..bcbe811f3b97 100644 --- a/arch/x86/kvm/lapic.h +++ b/arch/x86/kvm/lapic.h @@ -71,8 +71,9 @@ int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len, bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, int short_hand, unsigned int dest, int dest_mode); -void __kvm_apic_update_irr(u32 *pir, void *regs); -void kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir); +int __kvm_apic_update_irr(u32 *pir, void *regs); +int kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir); +void kvm_apic_update_ppr(struct kvm_vcpu *vcpu); int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq, struct dest_map *dest_map); int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type); @@ -203,17 +204,6 @@ static inline int kvm_lapic_latched_init(struct kvm_vcpu *vcpu) return lapic_in_kernel(vcpu) && test_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); } -static inline u32 kvm_apic_id(struct kvm_lapic *apic) -{ - /* To avoid a race between apic_base and following APIC_ID update when - * switching to x2apic_mode, the x2apic mode returns initial x2apic id. - */ - if (apic_x2apic_mode(apic)) - return apic->vcpu->vcpu_id; - - return kvm_lapic_get_reg(apic, APIC_ID) >> 24; -} - bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector); void wait_lapic_expire(struct kvm_vcpu *vcpu); diff --git a/arch/x86/kvm/mmu.c b/arch/x86/kvm/mmu.c index 7012de4a1fed..2fd7586aad4d 100644 --- a/arch/x86/kvm/mmu.c +++ b/arch/x86/kvm/mmu.c @@ -37,6 +37,8 @@ #include <linux/srcu.h> #include <linux/slab.h> #include <linux/uaccess.h> +#include <linux/hash.h> +#include <linux/kern_levels.h> #include <asm/page.h> #include <asm/cmpxchg.h> @@ -129,6 +131,10 @@ module_param(dbg, bool, 0644); #define ACC_USER_MASK PT_USER_MASK #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK) +/* The mask for the R/X bits in EPT PTEs */ +#define PT64_EPT_READABLE_MASK 0x1ull +#define PT64_EPT_EXECUTABLE_MASK 0x4ull + #include <trace/events/kvm.h> #define CREATE_TRACE_POINTS @@ -178,15 +184,40 @@ static u64 __read_mostly shadow_dirty_mask; static u64 __read_mostly shadow_mmio_mask; static u64 __read_mostly shadow_present_mask; +/* + * The mask/value to distinguish a PTE that has been marked not-present for + * access tracking purposes. + * The mask would be either 0 if access tracking is disabled, or + * SPTE_SPECIAL_MASK|VMX_EPT_RWX_MASK if access tracking is enabled. + */ +static u64 __read_mostly shadow_acc_track_mask; +static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK; + +/* + * The mask/shift to use for saving the original R/X bits when marking the PTE + * as not-present for access tracking purposes. We do not save the W bit as the + * PTEs being access tracked also need to be dirty tracked, so the W bit will be + * restored only when a write is attempted to the page. + */ +static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK | + PT64_EPT_EXECUTABLE_MASK; +static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT; + static void mmu_spte_set(u64 *sptep, u64 spte); static void mmu_free_roots(struct kvm_vcpu *vcpu); void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask) { - shadow_mmio_mask = mmio_mask; + shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK; } EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask); +static inline bool is_access_track_spte(u64 spte) +{ + /* Always false if shadow_acc_track_mask is zero. */ + return (spte & shadow_acc_track_mask) == shadow_acc_track_value; +} + /* * the low bit of the generation number is always presumed to be zero. * This disables mmio caching during memslot updates. The concept is @@ -284,17 +315,35 @@ static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) } void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask, - u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask) + u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask, + u64 acc_track_mask) { + if (acc_track_mask != 0) + acc_track_mask |= SPTE_SPECIAL_MASK; + shadow_user_mask = user_mask; shadow_accessed_mask = accessed_mask; shadow_dirty_mask = dirty_mask; shadow_nx_mask = nx_mask; shadow_x_mask = x_mask; shadow_present_mask = p_mask; + shadow_acc_track_mask = acc_track_mask; + WARN_ON(shadow_accessed_mask != 0 && shadow_acc_track_mask != 0); } EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes); +void kvm_mmu_clear_all_pte_masks(void) +{ + shadow_user_mask = 0; + shadow_accessed_mask = 0; + shadow_dirty_mask = 0; + shadow_nx_mask = 0; + shadow_x_mask = 0; + shadow_mmio_mask = 0; + shadow_present_mask = 0; + shadow_acc_track_mask = 0; +} + static int is_cpuid_PSE36(void) { return 1; @@ -307,7 +356,7 @@ static int is_nx(struct kvm_vcpu *vcpu) static int is_shadow_present_pte(u64 pte) { - return (pte & 0xFFFFFFFFull) && !is_mmio_spte(pte); + return (pte != 0) && !is_mmio_spte(pte); } static int is_large_pte(u64 pte) @@ -324,6 +373,11 @@ static int is_last_spte(u64 pte, int level) return 0; } +static bool is_executable_pte(u64 spte) +{ + return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask; +} + static kvm_pfn_t spte_to_pfn(u64 pte) { return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT; @@ -473,7 +527,7 @@ retry: } #endif -static bool spte_is_locklessly_modifiable(u64 spte) +static bool spte_can_locklessly_be_made_writable(u64 spte) { return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) == (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE); @@ -481,36 +535,38 @@ static bool spte_is_locklessly_modifiable(u64 spte) static bool spte_has_volatile_bits(u64 spte) { + if (!is_shadow_present_pte(spte)) + return false; + /* * Always atomically update spte if it can be updated * out of mmu-lock, it can ensure dirty bit is not lost, * also, it can help us to get a stable is_writable_pte() * to ensure tlb flush is not missed. */ - if (spte_is_locklessly_modifiable(spte)) + if (spte_can_locklessly_be_made_writable(spte) || + is_access_track_spte(spte)) return true; - if (!shadow_accessed_mask) - return false; - - if (!is_shadow_present_pte(spte)) - return false; - - if ((spte & shadow_accessed_mask) && - (!is_writable_pte(spte) || (spte & shadow_dirty_mask))) - return false; + if (shadow_accessed_mask) { + if ((spte & shadow_accessed_mask) == 0 || + (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0)) + return true; + } - return true; + return false; } -static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask) +static bool is_accessed_spte(u64 spte) { - return (old_spte & bit_mask) && !(new_spte & bit_mask); + return shadow_accessed_mask ? spte & shadow_accessed_mask + : !is_access_track_spte(spte); } -static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask) +static bool is_dirty_spte(u64 spte) { - return (old_spte & bit_mask) != (new_spte & bit_mask); + return shadow_dirty_mask ? spte & shadow_dirty_mask + : spte & PT_WRITABLE_MASK; } /* Rules for using mmu_spte_set: @@ -525,25 +581,19 @@ static void mmu_spte_set(u64 *sptep, u64 new_spte) __set_spte(sptep, new_spte); } -/* Rules for using mmu_spte_update: - * Update the state bits, it means the mapped pfn is not changed. - * - * Whenever we overwrite a writable spte with a read-only one we - * should flush remote TLBs. Otherwise rmap_write_protect - * will find a read-only spte, even though the writable spte - * might be cached on a CPU's TLB, the return value indicates this - * case. +/* + * Update the SPTE (excluding the PFN), but do not track changes in its + * accessed/dirty status. */ -static bool mmu_spte_update(u64 *sptep, u64 new_spte) +static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) { u64 old_spte = *sptep; - bool ret = false; WARN_ON(!is_shadow_present_pte(new_spte)); if (!is_shadow_present_pte(old_spte)) { mmu_spte_set(sptep, new_spte); - return ret; + return old_spte; } if (!spte_has_volatile_bits(old_spte)) @@ -551,45 +601,62 @@ static bool mmu_spte_update(u64 *sptep, u64 new_spte) else old_spte = __update_clear_spte_slow(sptep, new_spte); + WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); + + return old_spte; +} + +/* Rules for using mmu_spte_update: + * Update the state bits, it means the mapped pfn is not changed. + * + * Whenever we overwrite a writable spte with a read-only one we + * should flush remote TLBs. Otherwise rmap_write_protect + * will find a read-only spte, even though the writable spte + * might be cached on a CPU's TLB, the return value indicates this + * case. + * + * Returns true if the TLB needs to be flushed + */ +static bool mmu_spte_update(u64 *sptep, u64 new_spte) +{ + bool flush = false; + u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); + + if (!is_shadow_present_pte(old_spte)) + return false; + /* * For the spte updated out of mmu-lock is safe, since * we always atomically update it, see the comments in * spte_has_volatile_bits(). */ - if (spte_is_locklessly_modifiable(old_spte) && + if (spte_can_locklessly_be_made_writable(old_spte) && !is_writable_pte(new_spte)) - ret = true; - - if (!shadow_accessed_mask) { - /* - * We don't set page dirty when dropping non-writable spte. - * So do it now if the new spte is becoming non-writable. - */ - if (ret) - kvm_set_pfn_dirty(spte_to_pfn(old_spte)); - return ret; - } + flush = true; /* - * Flush TLB when accessed/dirty bits are changed in the page tables, + * Flush TLB when accessed/dirty states are changed in the page tables, * to guarantee consistency between TLB and page tables. */ - if (spte_is_bit_changed(old_spte, new_spte, - shadow_accessed_mask | shadow_dirty_mask)) - ret = true; - if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask)) + if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { + flush = true; kvm_set_pfn_accessed(spte_to_pfn(old_spte)); - if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask)) + } + + if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { + flush = true; kvm_set_pfn_dirty(spte_to_pfn(old_spte)); + } - return ret; + return flush; } /* * Rules for using mmu_spte_clear_track_bits: * It sets the sptep from present to nonpresent, and track the * state bits, it is used to clear the last level sptep. + * Returns non-zero if the PTE was previously valid. */ static int mmu_spte_clear_track_bits(u64 *sptep) { @@ -613,11 +680,12 @@ static int mmu_spte_clear_track_bits(u64 *sptep) */ WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn))); - if (!shadow_accessed_mask || old_spte & shadow_accessed_mask) + if (is_accessed_spte(old_spte)) kvm_set_pfn_accessed(pfn); - if (old_spte & (shadow_dirty_mask ? shadow_dirty_mask : - PT_WRITABLE_MASK)) + + if (is_dirty_spte(old_spte)) kvm_set_pfn_dirty(pfn); + return 1; } @@ -636,6 +704,78 @@ static u64 mmu_spte_get_lockless(u64 *sptep) return __get_spte_lockless(sptep); } +static u64 mark_spte_for_access_track(u64 spte) +{ + if (shadow_accessed_mask != 0) + return spte & ~shadow_accessed_mask; + + if (shadow_acc_track_mask == 0 || is_access_track_spte(spte)) + return spte; + + /* + * Making an Access Tracking PTE will result in removal of write access + * from the PTE. So, verify that we will be able to restore the write + * access in the fast page fault path later on. + */ + WARN_ONCE((spte & PT_WRITABLE_MASK) && + !spte_can_locklessly_be_made_writable(spte), + "kvm: Writable SPTE is not locklessly dirty-trackable\n"); + + WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask << + shadow_acc_track_saved_bits_shift), + "kvm: Access Tracking saved bit locations are not zero\n"); + + spte |= (spte & shadow_acc_track_saved_bits_mask) << + shadow_acc_track_saved_bits_shift; + spte &= ~shadow_acc_track_mask; + spte |= shadow_acc_track_value; + + return spte; +} + +/* Restore an acc-track PTE back to a regular PTE */ +static u64 restore_acc_track_spte(u64 spte) +{ + u64 new_spte = spte; + u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift) + & shadow_acc_track_saved_bits_mask; + + WARN_ON_ONCE(!is_access_track_spte(spte)); + + new_spte &= ~shadow_acc_track_mask; + new_spte &= ~(shadow_acc_track_saved_bits_mask << + shadow_acc_track_saved_bits_shift); + new_spte |= saved_bits; + + return new_spte; +} + +/* Returns the Accessed status of the PTE and resets it at the same time. */ +static bool mmu_spte_age(u64 *sptep) +{ + u64 spte = mmu_spte_get_lockless(sptep); + + if (!is_accessed_spte(spte)) + return false; + + if (shadow_accessed_mask) { + clear_bit((ffs(shadow_accessed_mask) - 1), + (unsigned long *)sptep); + } else { + /* + * Capture the dirty status of the page, so that it doesn't get + * lost when the SPTE is marked for access tracking. + */ + if (is_writable_pte(spte)) + kvm_set_pfn_dirty(spte_to_pfn(spte)); + + spte = mark_spte_for_access_track(spte); + mmu_spte_update_no_track(sptep, spte); + } + + return true; +} + static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) { /* @@ -1212,7 +1352,7 @@ static bool spte_write_protect(u64 *sptep, bool pt_protect) u64 spte = *sptep; if (!is_writable_pte(spte) && - !(pt_protect && spte_is_locklessly_modifiable(spte))) + !(pt_protect && spte_can_locklessly_be_made_writable(spte))) return false; rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep); @@ -1420,7 +1560,7 @@ static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, restart: for_each_rmap_spte(rmap_head, &iter, sptep) { rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n", - sptep, *sptep, gfn, level); + sptep, *sptep, gfn, level); need_flush = 1; @@ -1433,7 +1573,8 @@ restart: new_spte &= ~PT_WRITABLE_MASK; new_spte &= ~SPTE_HOST_WRITEABLE; - new_spte &= ~shadow_accessed_mask; + + new_spte = mark_spte_for_access_track(new_spte); mmu_spte_clear_track_bits(sptep); mmu_spte_set(sptep, new_spte); @@ -1595,15 +1736,8 @@ static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, struct rmap_iterator uninitialized_var(iter); int young = 0; - BUG_ON(!shadow_accessed_mask); - - for_each_rmap_spte(rmap_head, &iter, sptep) { - if (*sptep & shadow_accessed_mask) { - young = 1; - clear_bit((ffs(shadow_accessed_mask) - 1), - (unsigned long *)sptep); - } - } + for_each_rmap_spte(rmap_head, &iter, sptep) + young |= mmu_spte_age(sptep); trace_kvm_age_page(gfn, level, slot, young); return young; @@ -1615,24 +1749,20 @@ static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, { u64 *sptep; struct rmap_iterator iter; - int young = 0; /* - * If there's no access bit in the secondary pte set by the - * hardware it's up to gup-fast/gup to set the access bit in - * the primary pte or in the page structure. + * If there's no access bit in the secondary pte set by the hardware and + * fast access tracking is also not enabled, it's up to gup-fast/gup to + * set the access bit in the primary pte or in the page structure. */ - if (!shadow_accessed_mask) + if (!shadow_accessed_mask && !shadow_acc_track_mask) goto out; - for_each_rmap_spte(rmap_head, &iter, sptep) { - if (*sptep & shadow_accessed_mask) { - young = 1; - break; - } - } + for_each_rmap_spte(rmap_head, &iter, sptep) + if (is_accessed_spte(*sptep)) + return 1; out: - return young; + return 0; } #define RMAP_RECYCLE_THRESHOLD 1000 @@ -1660,7 +1790,7 @@ int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) * This has some overhead, but not as much as the cost of swapping * out actively used pages or breaking up actively used hugepages. */ - if (!shadow_accessed_mask) + if (!shadow_accessed_mask && !shadow_acc_track_mask) return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp); @@ -1713,7 +1843,7 @@ static void kvm_mmu_free_page(struct kvm_mmu_page *sp) static unsigned kvm_page_table_hashfn(gfn_t gfn) { - return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1); + return hash_64(gfn, KVM_MMU_HASH_SHIFT); } static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, @@ -1904,17 +2034,17 @@ static void kvm_mmu_commit_zap_page(struct kvm *kvm, * since it has been deleted from active_mmu_pages but still can be found * at hast list. * - * for_each_gfn_valid_sp() has skipped that kind of pages. + * for_each_valid_sp() has skipped that kind of pages. */ -#define for_each_gfn_valid_sp(_kvm, _sp, _gfn) \ +#define for_each_valid_sp(_kvm, _sp, _gfn) \ hlist_for_each_entry(_sp, \ &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \ - if ((_sp)->gfn != (_gfn) || is_obsolete_sp((_kvm), (_sp)) \ - || (_sp)->role.invalid) {} else + if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) { \ + } else #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \ - for_each_gfn_valid_sp(_kvm, _sp, _gfn) \ - if ((_sp)->role.direct) {} else + for_each_valid_sp(_kvm, _sp, _gfn) \ + if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else /* @sp->gfn should be write-protected at the call site */ static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, @@ -2116,6 +2246,7 @@ static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp; bool need_sync = false; bool flush = false; + int collisions = 0; LIST_HEAD(invalid_list); role = vcpu->arch.mmu.base_role; @@ -2130,7 +2261,12 @@ static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; role.quadrant = quadrant; } - for_each_gfn_valid_sp(vcpu->kvm, sp, gfn) { + for_each_valid_sp(vcpu->kvm, sp, gfn) { + if (sp->gfn != gfn) { + collisions++; + continue; + } + if (!need_sync && sp->unsync) need_sync = true; @@ -2153,7 +2289,7 @@ static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, __clear_sp_write_flooding_count(sp); trace_kvm_mmu_get_page(sp, false); - return sp; + goto out; } ++vcpu->kvm->stat.mmu_cache_miss; @@ -2183,6 +2319,9 @@ static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, trace_kvm_mmu_get_page(sp, true); kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); +out: + if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions) + vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions; return sp; } @@ -2583,6 +2722,9 @@ static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep, spte |= shadow_dirty_mask; } + if (speculative) + spte = mark_spte_for_access_track(spte); + set_pte: if (mmu_spte_update(sptep, spte)) kvm_flush_remote_tlbs(vcpu->kvm); @@ -2636,7 +2778,7 @@ static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access, pgprintk("%s: setting spte %llx\n", __func__, *sptep); pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n", is_large_pte(*sptep)? "2MB" : "4kB", - *sptep & PT_PRESENT_MASK ?"RW":"R", gfn, + *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn, *sptep, sptep); if (!was_rmapped && is_large_pte(*sptep)) ++vcpu->kvm->stat.lpages; @@ -2869,33 +3011,43 @@ static bool page_fault_can_be_fast(u32 error_code) if (unlikely(error_code & PFERR_RSVD_MASK)) return false; + /* See if the page fault is due to an NX violation */ + if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)) + == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)))) + return false; + /* - * #PF can be fast only if the shadow page table is present and it - * is caused by write-protect, that means we just need change the - * W bit of the spte which can be done out of mmu-lock. + * #PF can be fast if: + * 1. The shadow page table entry is not present, which could mean that + * the fault is potentially caused by access tracking (if enabled). + * 2. The shadow page table entry is present and the fault + * is caused by write-protect, that means we just need change the W + * bit of the spte which can be done out of mmu-lock. + * + * However, if access tracking is disabled we know that a non-present + * page must be a genuine page fault where we have to create a new SPTE. + * So, if access tracking is disabled, we return true only for write + * accesses to a present page. */ - if (!(error_code & PFERR_PRESENT_MASK) || - !(error_code & PFERR_WRITE_MASK)) - return false; - return true; + return shadow_acc_track_mask != 0 || + ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)) + == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)); } +/* + * Returns true if the SPTE was fixed successfully. Otherwise, + * someone else modified the SPTE from its original value. + */ static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, - u64 *sptep, u64 spte) + u64 *sptep, u64 old_spte, u64 new_spte) { gfn_t gfn; WARN_ON(!sp->role.direct); /* - * The gfn of direct spte is stable since it is calculated - * by sp->gfn. - */ - gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt); - - /* * Theoretically we could also set dirty bit (and flush TLB) here in * order to eliminate unnecessary PML logging. See comments in * set_spte. But fast_page_fault is very unlikely to happen with PML @@ -2907,12 +3059,33 @@ fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, * * Compare with set_spte where instead shadow_dirty_mask is set. */ - if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte) + if (cmpxchg64(sptep, old_spte, new_spte) != old_spte) + return false; + + if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) { + /* + * The gfn of direct spte is stable since it is + * calculated by sp->gfn. + */ + gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt); kvm_vcpu_mark_page_dirty(vcpu, gfn); + } return true; } +static bool is_access_allowed(u32 fault_err_code, u64 spte) +{ + if (fault_err_code & PFERR_FETCH_MASK) + return is_executable_pte(spte); + + if (fault_err_code & PFERR_WRITE_MASK) + return is_writable_pte(spte); + + /* Fault was on Read access */ + return spte & PT_PRESENT_MASK; +} + /* * Return value: * - true: let the vcpu to access on the same address again. @@ -2923,8 +3096,9 @@ static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level, { struct kvm_shadow_walk_iterator iterator; struct kvm_mmu_page *sp; - bool ret = false; + bool fault_handled = false; u64 spte = 0ull; + uint retry_count = 0; if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) return false; @@ -2933,66 +3107,93 @@ static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level, return false; walk_shadow_page_lockless_begin(vcpu); - for_each_shadow_entry_lockless(vcpu, gva, iterator, spte) - if (!is_shadow_present_pte(spte) || iterator.level < level) + + do { + u64 new_spte; + + for_each_shadow_entry_lockless(vcpu, gva, iterator, spte) + if (!is_shadow_present_pte(spte) || + iterator.level < level) + break; + + sp = page_header(__pa(iterator.sptep)); + if (!is_last_spte(spte, sp->role.level)) break; - /* - * If the mapping has been changed, let the vcpu fault on the - * same address again. - */ - if (!is_shadow_present_pte(spte)) { - ret = true; - goto exit; - } + /* + * Check whether the memory access that caused the fault would + * still cause it if it were to be performed right now. If not, + * then this is a spurious fault caused by TLB lazily flushed, + * or some other CPU has already fixed the PTE after the + * current CPU took the fault. + * + * Need not check the access of upper level table entries since + * they are always ACC_ALL. + */ + if (is_access_allowed(error_code, spte)) { + fault_handled = true; + break; + } - sp = page_header(__pa(iterator.sptep)); - if (!is_last_spte(spte, sp->role.level)) - goto exit; + new_spte = spte; - /* - * Check if it is a spurious fault caused by TLB lazily flushed. - * - * Need not check the access of upper level table entries since - * they are always ACC_ALL. - */ - if (is_writable_pte(spte)) { - ret = true; - goto exit; - } + if (is_access_track_spte(spte)) + new_spte = restore_acc_track_spte(new_spte); - /* - * Currently, to simplify the code, only the spte write-protected - * by dirty-log can be fast fixed. - */ - if (!spte_is_locklessly_modifiable(spte)) - goto exit; + /* + * Currently, to simplify the code, write-protection can + * be removed in the fast path only if the SPTE was + * write-protected for dirty-logging or access tracking. + */ + if ((error_code & PFERR_WRITE_MASK) && + spte_can_locklessly_be_made_writable(spte)) + { + new_spte |= PT_WRITABLE_MASK; - /* - * Do not fix write-permission on the large spte since we only dirty - * the first page into the dirty-bitmap in fast_pf_fix_direct_spte() - * that means other pages are missed if its slot is dirty-logged. - * - * Instead, we let the slow page fault path create a normal spte to - * fix the access. - * - * See the comments in kvm_arch_commit_memory_region(). - */ - if (sp->role.level > PT_PAGE_TABLE_LEVEL) - goto exit; + /* + * Do not fix write-permission on the large spte. Since + * we only dirty the first page into the dirty-bitmap in + * fast_pf_fix_direct_spte(), other pages are missed + * if its slot has dirty logging enabled. + * + * Instead, we let the slow page fault path create a + * normal spte to fix the access. + * + * See the comments in kvm_arch_commit_memory_region(). + */ + if (sp->role.level > PT_PAGE_TABLE_LEVEL) + break; + } + + /* Verify that the fault can be handled in the fast path */ + if (new_spte == spte || + !is_access_allowed(error_code, new_spte)) + break; + + /* + * Currently, fast page fault only works for direct mapping + * since the gfn is not stable for indirect shadow page. See + * Documentation/virtual/kvm/locking.txt to get more detail. + */ + fault_handled = fast_pf_fix_direct_spte(vcpu, sp, + iterator.sptep, spte, + new_spte); + if (fault_handled) + break; + + if (++retry_count > 4) { + printk_once(KERN_WARNING + "kvm: Fast #PF retrying more than 4 times.\n"); + break; + } + + } while (true); - /* - * Currently, fast page fault only works for direct mapping since - * the gfn is not stable for indirect shadow page. - * See Documentation/virtual/kvm/locking.txt to get more detail. - */ - ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte); -exit: trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep, - spte, ret); + spte, fault_handled); walk_shadow_page_lockless_end(vcpu); - return ret; + return fault_handled; } static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn, @@ -5063,6 +5264,8 @@ static void mmu_destroy_caches(void) int kvm_mmu_module_init(void) { + kvm_mmu_clear_all_pte_masks(); + pte_list_desc_cache = kmem_cache_create("pte_list_desc", sizeof(struct pte_list_desc), 0, 0, NULL); diff --git a/arch/x86/kvm/svm.c b/arch/x86/kvm/svm.c index 08a4d3ab3455..d1efe2c62b3f 100644 --- a/arch/x86/kvm/svm.c +++ b/arch/x86/kvm/svm.c @@ -971,8 +971,8 @@ static void svm_disable_lbrv(struct vcpu_svm *svm) * a particular vCPU. */ #define SVM_VM_DATA_HASH_BITS 8 -DECLARE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS); -static spinlock_t svm_vm_data_hash_lock; +static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS); +static DEFINE_SPINLOCK(svm_vm_data_hash_lock); /* Note: * This function is called from IOMMU driver to notify @@ -1077,8 +1077,6 @@ static __init int svm_hardware_setup(void) } else { pr_info("AVIC enabled\n"); - hash_init(svm_vm_data_hash); - spin_lock_init(&svm_vm_data_hash_lock); amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier); } } @@ -1159,7 +1157,6 @@ static void init_vmcb(struct vcpu_svm *svm) struct vmcb_control_area *control = &svm->vmcb->control; struct vmcb_save_area *save = &svm->vmcb->save; - svm->vcpu.fpu_active = 1; svm->vcpu.arch.hflags = 0; set_cr_intercept(svm, INTERCEPT_CR0_READ); @@ -1901,15 +1898,12 @@ static void update_cr0_intercept(struct vcpu_svm *svm) ulong gcr0 = svm->vcpu.arch.cr0; u64 *hcr0 = &svm->vmcb->save.cr0; - if (!svm->vcpu.fpu_active) - *hcr0 |= SVM_CR0_SELECTIVE_MASK; - else - *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK) - | (gcr0 & SVM_CR0_SELECTIVE_MASK); + *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK) + | (gcr0 & SVM_CR0_SELECTIVE_MASK); mark_dirty(svm->vmcb, VMCB_CR); - if (gcr0 == *hcr0 && svm->vcpu.fpu_active) { + if (gcr0 == *hcr0) { clr_cr_intercept(svm, INTERCEPT_CR0_READ); clr_cr_intercept(svm, INTERCEPT_CR0_WRITE); } else { @@ -1940,8 +1934,6 @@ static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) if (!npt_enabled) cr0 |= X86_CR0_PG | X86_CR0_WP; - if (!vcpu->fpu_active) - cr0 |= X86_CR0_TS; /* * re-enable caching here because the QEMU bios * does not do it - this results in some delay at @@ -2160,22 +2152,6 @@ static int ac_interception(struct vcpu_svm *svm) return 1; } -static void svm_fpu_activate(struct kvm_vcpu *vcpu) -{ - struct vcpu_svm *svm = to_svm(vcpu); - - clr_exception_intercept(svm, NM_VECTOR); - - svm->vcpu.fpu_active = 1; - update_cr0_intercept(svm); -} - -static int nm_interception(struct vcpu_svm *svm) -{ - svm_fpu_activate(&svm->vcpu); - return 1; -} - static bool is_erratum_383(void) { int err, i; @@ -2573,9 +2549,6 @@ static int nested_svm_exit_special(struct vcpu_svm *svm) if (!npt_enabled && svm->apf_reason == 0) return NESTED_EXIT_HOST; break; - case SVM_EXIT_EXCP_BASE + NM_VECTOR: - nm_interception(svm); - break; default: break; } @@ -4020,7 +3993,6 @@ static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = { [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, - [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception, [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, [SVM_EXIT_INTR] = intr_interception, @@ -4182,6 +4154,8 @@ static int handle_exit(struct kvm_vcpu *vcpu) trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM); + vcpu->arch.gpa_available = (exit_code == SVM_EXIT_NPF); + if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE)) vcpu->arch.cr0 = svm->vmcb->save.cr0; if (npt_enabled) @@ -4357,11 +4331,6 @@ static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) return; } -static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu) -{ - return; -} - static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec) { kvm_lapic_set_irr(vec, vcpu->arch.apic); @@ -5077,14 +5046,6 @@ static bool svm_has_wbinvd_exit(void) return true; } -static void svm_fpu_deactivate(struct kvm_vcpu *vcpu) -{ - struct vcpu_svm *svm = to_svm(vcpu); - - set_exception_intercept(svm, NM_VECTOR); - update_cr0_intercept(svm); -} - #define PRE_EX(exit) { .exit_code = (exit), \ .stage = X86_ICPT_PRE_EXCEPT, } #define POST_EX(exit) { .exit_code = (exit), \ @@ -5345,9 +5306,6 @@ static struct kvm_x86_ops svm_x86_ops __ro_after_init = { .get_pkru = svm_get_pkru, - .fpu_activate = svm_fpu_activate, - .fpu_deactivate = svm_fpu_deactivate, - .tlb_flush = svm_flush_tlb, .run = svm_vcpu_run, @@ -5371,7 +5329,6 @@ static struct kvm_x86_ops svm_x86_ops __ro_after_init = { .get_enable_apicv = svm_get_enable_apicv, .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl, .load_eoi_exitmap = svm_load_eoi_exitmap, - .sync_pir_to_irr = svm_sync_pir_to_irr, .hwapic_irr_update = svm_hwapic_irr_update, .hwapic_isr_update = svm_hwapic_isr_update, .apicv_post_state_restore = avic_post_state_restore, diff --git a/arch/x86/kvm/vmx.c b/arch/x86/kvm/vmx.c index a236decb81e4..ef4ba71dbb66 100644 --- a/arch/x86/kvm/vmx.c +++ b/arch/x86/kvm/vmx.c @@ -1856,7 +1856,7 @@ static void update_exception_bitmap(struct kvm_vcpu *vcpu) u32 eb; eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | - (1u << NM_VECTOR) | (1u << DB_VECTOR) | (1u << AC_VECTOR); + (1u << DB_VECTOR) | (1u << AC_VECTOR); if ((vcpu->guest_debug & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) @@ -1865,8 +1865,6 @@ static void update_exception_bitmap(struct kvm_vcpu *vcpu) eb = ~0; if (enable_ept) eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */ - if (vcpu->fpu_active) - eb &= ~(1u << NM_VECTOR); /* When we are running a nested L2 guest and L1 specified for it a * certain exception bitmap, we must trap the same exceptions and pass @@ -1992,19 +1990,6 @@ static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, m->host[i].value = host_val; } -static void reload_tss(void) -{ - /* - * VT restores TR but not its size. Useless. - */ - struct desc_ptr *gdt = this_cpu_ptr(&host_gdt); - struct desc_struct *descs; - - descs = (void *)gdt->address; - descs[GDT_ENTRY_TSS].type = 9; /* available TSS */ - load_TR_desc(); -} - static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset) { u64 guest_efer = vmx->vcpu.arch.efer; @@ -2059,41 +2044,36 @@ static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset) } } +#ifdef CONFIG_X86_32 +/* + * On 32-bit kernels, VM exits still load the FS and GS bases from the + * VMCS rather than the segment table. KVM uses this helper to figure + * out the current bases to poke them into the VMCS before entry. + */ static unsigned long segment_base(u16 selector) { struct desc_ptr *gdt = this_cpu_ptr(&host_gdt); struct desc_struct *d; - unsigned long table_base; + struct desc_struct *table; unsigned long v; - if (!(selector & ~3)) + if (!(selector & ~SEGMENT_RPL_MASK)) return 0; - table_base = gdt->address; + table = (struct desc_struct *)gdt->address; - if (selector & 4) { /* from ldt */ + if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { u16 ldt_selector = kvm_read_ldt(); - if (!(ldt_selector & ~3)) + if (!(ldt_selector & ~SEGMENT_RPL_MASK)) return 0; - table_base = segment_base(ldt_selector); + table = (struct desc_struct *)segment_base(ldt_selector); } - d = (struct desc_struct *)(table_base + (selector & ~7)); - v = get_desc_base(d); -#ifdef CONFIG_X86_64 - if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11)) - v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32; -#endif + v = get_desc_base(&table[selector >> 3]); return v; } - -static inline unsigned long kvm_read_tr_base(void) -{ - u16 tr; - asm("str %0" : "=g"(tr)); - return segment_base(tr); -} +#endif static void vmx_save_host_state(struct kvm_vcpu *vcpu) { @@ -2179,7 +2159,7 @@ static void __vmx_load_host_state(struct vcpu_vmx *vmx) loadsegment(es, vmx->host_state.es_sel); } #endif - reload_tss(); + invalidate_tss_limit(); #ifdef CONFIG_X86_64 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); #endif @@ -2294,10 +2274,19 @@ static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) /* * Linux uses per-cpu TSS and GDT, so set these when switching - * processors. + * processors. See 22.2.4. */ - vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */ - vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */ + vmcs_writel(HOST_TR_BASE, + (unsigned long)this_cpu_ptr(&cpu_tss)); + vmcs_writel(HOST_GDTR_BASE, gdt->address); + + /* + * VM exits change the host TR limit to 0x67 after a VM + * exit. This is okay, since 0x67 covers everything except + * the IO bitmap and have have code to handle the IO bitmap + * being lost after a VM exit. + */ + BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67); rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ @@ -2340,25 +2329,6 @@ static void vmx_vcpu_put(struct kvm_vcpu *vcpu) } } -static void vmx_fpu_activate(struct kvm_vcpu *vcpu) -{ - ulong cr0; - - if (vcpu->fpu_active) - return; - vcpu->fpu_active = 1; - cr0 = vmcs_readl(GUEST_CR0); - cr0 &= ~(X86_CR0_TS | X86_CR0_MP); - cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP); - vmcs_writel(GUEST_CR0, cr0); - update_exception_bitmap(vcpu); - vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS; - if (is_guest_mode(vcpu)) - vcpu->arch.cr0_guest_owned_bits &= - ~get_vmcs12(vcpu)->cr0_guest_host_mask; - vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits); -} - static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu); /* @@ -2377,33 +2347,6 @@ static inline unsigned long nested_read_cr4(struct vmcs12 *fields) (fields->cr4_read_shadow & fields->cr4_guest_host_mask); } -static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu) -{ - /* Note that there is no vcpu->fpu_active = 0 here. The caller must - * set this *before* calling this function. - */ - vmx_decache_cr0_guest_bits(vcpu); - vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP); - update_exception_bitmap(vcpu); - vcpu->arch.cr0_guest_owned_bits = 0; - vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits); - if (is_guest_mode(vcpu)) { - /* - * L1's specified read shadow might not contain the TS bit, - * so now that we turned on shadowing of this bit, we need to - * set this bit of the shadow. Like in nested_vmx_run we need - * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet - * up-to-date here because we just decached cr0.TS (and we'll - * only update vmcs12->guest_cr0 on nested exit). - */ - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) | - (vcpu->arch.cr0 & X86_CR0_TS); - vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12)); - } else - vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0); -} - static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) { unsigned long rflags, save_rflags; @@ -3962,7 +3905,7 @@ static void fix_rmode_seg(int seg, struct kvm_segment *save) } vmcs_write16(sf->selector, var.selector); - vmcs_write32(sf->base, var.base); + vmcs_writel(sf->base, var.base); vmcs_write32(sf->limit, var.limit); vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); } @@ -4232,9 +4175,6 @@ static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) if (enable_ept) ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu); - if (!vcpu->fpu_active) - hw_cr0 |= X86_CR0_TS | X86_CR0_MP; - vmcs_writel(CR0_READ_SHADOW, cr0); vmcs_writel(GUEST_CR0, hw_cr0); vcpu->arch.cr0 = cr0; @@ -4953,7 +4893,7 @@ static bool vmx_get_enable_apicv(void) return enable_apicv; } -static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu) +static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); int max_irr; @@ -4964,19 +4904,15 @@ static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu) vmx->nested.pi_pending) { vmx->nested.pi_pending = false; if (!pi_test_and_clear_on(vmx->nested.pi_desc)) - return 0; + return; max_irr = find_last_bit( (unsigned long *)vmx->nested.pi_desc->pir, 256); if (max_irr == 256) - return 0; + return; vapic_page = kmap(vmx->nested.virtual_apic_page); - if (!vapic_page) { - WARN_ON(1); - return -ENOMEM; - } __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page); kunmap(vmx->nested.virtual_apic_page); @@ -4987,7 +4923,6 @@ static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu) vmcs_write16(GUEST_INTR_STATUS, status); } } - return 0; } static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu) @@ -5056,26 +4991,12 @@ static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) if (pi_test_and_set_pir(vector, &vmx->pi_desc)) return; - r = pi_test_and_set_on(&vmx->pi_desc); - kvm_make_request(KVM_REQ_EVENT, vcpu); - if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu)) - kvm_vcpu_kick(vcpu); -} - -static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - if (!pi_test_on(&vmx->pi_desc)) + /* If a previous notification has sent the IPI, nothing to do. */ + if (pi_test_and_set_on(&vmx->pi_desc)) return; - pi_clear_on(&vmx->pi_desc); - /* - * IOMMU can write to PIR.ON, so the barrier matters even on UP. - * But on x86 this is just a compiler barrier anyway. - */ - smp_mb__after_atomic(); - kvm_apic_update_irr(vcpu, vmx->pi_desc.pir); + if (!kvm_vcpu_trigger_posted_interrupt(vcpu)) + kvm_vcpu_kick(vcpu); } /* @@ -5236,10 +5157,8 @@ static void ept_set_mmio_spte_mask(void) /* * EPT Misconfigurations can be generated if the value of bits 2:0 * of an EPT paging-structure entry is 110b (write/execute). - * Also, magic bits (0x3ull << 62) is set to quickly identify mmio - * spte. */ - kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull); + kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE); } #define VMX_XSS_EXIT_BITMAP 0 @@ -5342,7 +5261,9 @@ static int vmx_vcpu_setup(struct vcpu_vmx *vmx) /* 22.2.1, 20.8.1 */ vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl); - vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL); + vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS; + vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS); + set_cr4_guest_host_mask(vmx); if (vmx_xsaves_supported()) @@ -5446,7 +5367,7 @@ static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) vmx_set_cr0(vcpu, cr0); /* enter rmode */ vmx_set_cr4(vcpu, 0); vmx_set_efer(vcpu, 0); - vmx_fpu_activate(vcpu); + update_exception_bitmap(vcpu); vpid_sync_context(vmx->vpid); @@ -5480,26 +5401,20 @@ static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu) static void enable_irq_window(struct kvm_vcpu *vcpu) { - u32 cpu_based_vm_exec_control; - - cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); - cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING; - vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); + vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, + CPU_BASED_VIRTUAL_INTR_PENDING); } static void enable_nmi_window(struct kvm_vcpu *vcpu) { - u32 cpu_based_vm_exec_control; - if (!cpu_has_virtual_nmis() || vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { enable_irq_window(vcpu); return; } - cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); - cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING; - vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); + vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, + CPU_BASED_VIRTUAL_NMI_PENDING); } static void vmx_inject_irq(struct kvm_vcpu *vcpu) @@ -5725,11 +5640,6 @@ static int handle_exception(struct kvm_vcpu *vcpu) if (is_nmi(intr_info)) return 1; /* already handled by vmx_vcpu_run() */ - if (is_no_device(intr_info)) { - vmx_fpu_activate(vcpu); - return 1; - } - if (is_invalid_opcode(intr_info)) { if (is_guest_mode(vcpu)) { kvm_queue_exception(vcpu, UD_VECTOR); @@ -5919,22 +5829,6 @@ static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) return kvm_set_cr4(vcpu, val); } -/* called to set cr0 as appropriate for clts instruction exit. */ -static void handle_clts(struct kvm_vcpu *vcpu) -{ - if (is_guest_mode(vcpu)) { - /* - * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS - * but we did (!fpu_active). We need to keep GUEST_CR0.TS on, - * just pretend it's off (also in arch.cr0 for fpu_activate). - */ - vmcs_writel(CR0_READ_SHADOW, - vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS); - vcpu->arch.cr0 &= ~X86_CR0_TS; - } else - vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS)); -} - static int handle_cr(struct kvm_vcpu *vcpu) { unsigned long exit_qualification, val; @@ -5980,9 +5874,9 @@ static int handle_cr(struct kvm_vcpu *vcpu) } break; case 2: /* clts */ - handle_clts(vcpu); + WARN_ONCE(1, "Guest should always own CR0.TS"); + vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS)); trace_kvm_cr_write(0, kvm_read_cr0(vcpu)); - vmx_fpu_activate(vcpu); return kvm_skip_emulated_instruction(vcpu); case 1: /*mov from cr*/ switch (cr) { @@ -6152,18 +6046,14 @@ static int handle_wrmsr(struct kvm_vcpu *vcpu) static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) { - kvm_make_request(KVM_REQ_EVENT, vcpu); + kvm_apic_update_ppr(vcpu); return 1; } static int handle_interrupt_window(struct kvm_vcpu *vcpu) { - u32 cpu_based_vm_exec_control; - - /* clear pending irq */ - cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); - cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING; - vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); + vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, + CPU_BASED_VIRTUAL_INTR_PENDING); kvm_make_request(KVM_REQ_EVENT, vcpu); @@ -6374,15 +6264,22 @@ static int handle_ept_violation(struct kvm_vcpu *vcpu) gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); trace_kvm_page_fault(gpa, exit_qualification); - /* it is a read fault? */ - error_code = (exit_qualification << 2) & PFERR_USER_MASK; - /* it is a write fault? */ - error_code |= exit_qualification & PFERR_WRITE_MASK; - /* It is a fetch fault? */ - error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK; - /* ept page table is present? */ - error_code |= (exit_qualification & 0x38) != 0; - + /* Is it a read fault? */ + error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) + ? PFERR_USER_MASK : 0; + /* Is it a write fault? */ + error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) + ? PFERR_WRITE_MASK : 0; + /* Is it a fetch fault? */ + error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) + ? PFERR_FETCH_MASK : 0; + /* ept page table entry is present? */ + error_code |= (exit_qualification & + (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE | + EPT_VIOLATION_EXECUTABLE)) + ? PFERR_PRESENT_MASK : 0; + + vcpu->arch.gpa_available = true; vcpu->arch.exit_qualification = exit_qualification; return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); @@ -6400,6 +6297,7 @@ static int handle_ept_misconfig(struct kvm_vcpu *vcpu) } ret = handle_mmio_page_fault(vcpu, gpa, true); + vcpu->arch.gpa_available = true; if (likely(ret == RET_MMIO_PF_EMULATE)) return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) == EMULATE_DONE; @@ -6421,12 +6319,8 @@ static int handle_ept_misconfig(struct kvm_vcpu *vcpu) static int handle_nmi_window(struct kvm_vcpu *vcpu) { - u32 cpu_based_vm_exec_control; - - /* clear pending NMI */ - cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); - cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING; - vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); + vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, + CPU_BASED_VIRTUAL_NMI_PENDING); ++vcpu->stat.nmi_window_exits; kvm_make_request(KVM_REQ_EVENT, vcpu); @@ -6572,6 +6466,19 @@ static void wakeup_handler(void) spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); } +void vmx_enable_tdp(void) +{ + kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK, + enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull, + enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull, + 0ull, VMX_EPT_EXECUTABLE_MASK, + cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK, + enable_ept_ad_bits ? 0ull : VMX_EPT_RWX_MASK); + + ept_set_mmio_spte_mask(); + kvm_enable_tdp(); +} + static __init int hardware_setup(void) { int r = -ENOMEM, i, msr; @@ -6651,8 +6558,10 @@ static __init int hardware_setup(void) if (!cpu_has_vmx_ple()) ple_gap = 0; - if (!cpu_has_vmx_apicv()) + if (!cpu_has_vmx_apicv()) { enable_apicv = 0; + kvm_x86_ops->sync_pir_to_irr = NULL; + } if (cpu_has_vmx_tsc_scaling()) { kvm_has_tsc_control = true; @@ -6697,16 +6606,9 @@ static __init int hardware_setup(void) /* SELF-IPI */ vmx_disable_intercept_msr_x2apic(0x83f, MSR_TYPE_W, true); - if (enable_ept) { - kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK, - (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull, - (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull, - 0ull, VMX_EPT_EXECUTABLE_MASK, - cpu_has_vmx_ept_execute_only() ? - 0ull : VMX_EPT_READABLE_MASK); - ept_set_mmio_spte_mask(); - kvm_enable_tdp(); - } else + if (enable_ept) + vmx_enable_tdp(); + else kvm_disable_tdp(); update_ple_window_actual_max(); @@ -7085,13 +6987,18 @@ static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason, } page = nested_get_page(vcpu, vmptr); - if (page == NULL || - *(u32 *)kmap(page) != VMCS12_REVISION) { + if (page == NULL) { nested_vmx_failInvalid(vcpu); + return kvm_skip_emulated_instruction(vcpu); + } + if (*(u32 *)kmap(page) != VMCS12_REVISION) { kunmap(page); + nested_release_page_clean(page); + nested_vmx_failInvalid(vcpu); return kvm_skip_emulated_instruction(vcpu); } kunmap(page); + nested_release_page_clean(page); vmx->nested.vmxon_ptr = vmptr; break; case EXIT_REASON_VMCLEAR: @@ -7129,6 +7036,53 @@ static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason, return 0; } +static int enter_vmx_operation(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct vmcs *shadow_vmcs; + + if (cpu_has_vmx_msr_bitmap()) { + vmx->nested.msr_bitmap = + (unsigned long *)__get_free_page(GFP_KERNEL); + if (!vmx->nested.msr_bitmap) + goto out_msr_bitmap; + } + + vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL); + if (!vmx->nested.cached_vmcs12) + goto out_cached_vmcs12; + + if (enable_shadow_vmcs) { + shadow_vmcs = alloc_vmcs(); + if (!shadow_vmcs) + goto out_shadow_vmcs; + /* mark vmcs as shadow */ + shadow_vmcs->revision_id |= (1u << 31); + /* init shadow vmcs */ + vmcs_clear(shadow_vmcs); + vmx->vmcs01.shadow_vmcs = shadow_vmcs; + } + + INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool)); + vmx->nested.vmcs02_num = 0; + + hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC, + HRTIMER_MODE_REL_PINNED); + vmx->nested.preemption_timer.function = vmx_preemption_timer_fn; + + vmx->nested.vmxon = true; + return 0; + +out_shadow_vmcs: + kfree(vmx->nested.cached_vmcs12); + +out_cached_vmcs12: + free_page((unsigned long)vmx->nested.msr_bitmap); + +out_msr_bitmap: + return -ENOMEM; +} + /* * Emulate the VMXON instruction. * Currently, we just remember that VMX is active, and do not save or even @@ -7139,9 +7093,9 @@ static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason, */ static int handle_vmon(struct kvm_vcpu *vcpu) { + int ret; struct kvm_segment cs; struct vcpu_vmx *vmx = to_vmx(vcpu); - struct vmcs *shadow_vmcs; const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; @@ -7168,9 +7122,6 @@ static int handle_vmon(struct kvm_vcpu *vcpu) return 1; } - if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL)) - return 1; - if (vmx->nested.vmxon) { nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION); return kvm_skip_emulated_instruction(vcpu); @@ -7182,48 +7133,15 @@ static int handle_vmon(struct kvm_vcpu *vcpu) return 1; } - if (cpu_has_vmx_msr_bitmap()) { - vmx->nested.msr_bitmap = - (unsigned long *)__get_free_page(GFP_KERNEL); - if (!vmx->nested.msr_bitmap) - goto out_msr_bitmap; - } - - vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL); - if (!vmx->nested.cached_vmcs12) - goto out_cached_vmcs12; - - if (enable_shadow_vmcs) { - shadow_vmcs = alloc_vmcs(); - if (!shadow_vmcs) - goto out_shadow_vmcs; - /* mark vmcs as shadow */ - shadow_vmcs->revision_id |= (1u << 31); - /* init shadow vmcs */ - vmcs_clear(shadow_vmcs); - vmx->vmcs01.shadow_vmcs = shadow_vmcs; - } - - INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool)); - vmx->nested.vmcs02_num = 0; - - hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC, - HRTIMER_MODE_REL_PINNED); - vmx->nested.preemption_timer.function = vmx_preemption_timer_fn; - - vmx->nested.vmxon = true; + if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL)) + return 1; + + ret = enter_vmx_operation(vcpu); + if (ret) + return ret; nested_vmx_succeed(vcpu); return kvm_skip_emulated_instruction(vcpu); - -out_shadow_vmcs: - kfree(vmx->nested.cached_vmcs12); - -out_cached_vmcs12: - free_page((unsigned long)vmx->nested.msr_bitmap); - -out_msr_bitmap: - return -ENOMEM; } /* @@ -7672,6 +7590,18 @@ static int handle_vmwrite(struct kvm_vcpu *vcpu) return kvm_skip_emulated_instruction(vcpu); } +static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr) +{ + vmx->nested.current_vmptr = vmptr; + if (enable_shadow_vmcs) { + vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL, + SECONDARY_EXEC_SHADOW_VMCS); + vmcs_write64(VMCS_LINK_POINTER, + __pa(vmx->vmcs01.shadow_vmcs)); + vmx->nested.sync_shadow_vmcs = true; + } +} + /* Emulate the VMPTRLD instruction */ static int handle_vmptrld(struct kvm_vcpu *vcpu) { @@ -7702,7 +7632,6 @@ static int handle_vmptrld(struct kvm_vcpu *vcpu) } nested_release_vmcs12(vmx); - vmx->nested.current_vmptr = vmptr; vmx->nested.current_vmcs12 = new_vmcs12; vmx->nested.current_vmcs12_page = page; /* @@ -7711,14 +7640,7 @@ static int handle_vmptrld(struct kvm_vcpu *vcpu) */ memcpy(vmx->nested.cached_vmcs12, vmx->nested.current_vmcs12, VMCS12_SIZE); - - if (enable_shadow_vmcs) { - vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL, - SECONDARY_EXEC_SHADOW_VMCS); - vmcs_write64(VMCS_LINK_POINTER, - __pa(vmx->vmcs01.shadow_vmcs)); - vmx->nested.sync_shadow_vmcs = true; - } + set_current_vmptr(vmx, vmptr); } nested_vmx_succeed(vcpu); @@ -8191,8 +8113,6 @@ static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu) case EXIT_REASON_TASK_SWITCH: return true; case EXIT_REASON_CPUID: - if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa) - return false; return true; case EXIT_REASON_HLT: return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING); @@ -8350,7 +8270,7 @@ static void kvm_flush_pml_buffers(struct kvm *kvm) static void vmx_dump_sel(char *name, uint32_t sel) { pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", - name, vmcs_read32(sel), + name, vmcs_read16(sel), vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); @@ -8514,6 +8434,7 @@ static int vmx_handle_exit(struct kvm_vcpu *vcpu) u32 vectoring_info = vmx->idt_vectoring_info; trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX); + vcpu->arch.gpa_available = false; /* * Flush logged GPAs PML buffer, this will make dirty_bitmap more @@ -8732,6 +8653,27 @@ static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) } } +static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + int max_irr; + + WARN_ON(!vcpu->arch.apicv_active); + if (pi_test_on(&vmx->pi_desc)) { + pi_clear_on(&vmx->pi_desc); + /* + * IOMMU can write to PIR.ON, so the barrier matters even on UP. + * But on x86 this is just a compiler barrier anyway. + */ + smp_mb__after_atomic(); + max_irr = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir); + } else { + max_irr = kvm_lapic_find_highest_irr(vcpu); + } + vmx_hwapic_irr_update(vcpu, max_irr); + return max_irr; +} + static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) { if (!kvm_vcpu_apicv_active(vcpu)) @@ -8743,6 +8685,14 @@ static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); } +static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + pi_clear_on(&vmx->pi_desc); + memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); +} + static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx) { u32 exit_intr_info; @@ -9588,17 +9538,16 @@ static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu, kvm_inject_page_fault(vcpu, fault); } -static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu, +static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12); + +static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { struct vcpu_vmx *vmx = to_vmx(vcpu); - int maxphyaddr = cpuid_maxphyaddr(vcpu); + u64 hpa; if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) { - if (!PAGE_ALIGNED(vmcs12->apic_access_addr) || - vmcs12->apic_access_addr >> maxphyaddr) - return false; - /* * Translate L1 physical address to host physical * address for vmcs02. Keep the page pinned, so this @@ -9609,59 +9558,80 @@ static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu, nested_release_page(vmx->nested.apic_access_page); vmx->nested.apic_access_page = nested_get_page(vcpu, vmcs12->apic_access_addr); + /* + * If translation failed, no matter: This feature asks + * to exit when accessing the given address, and if it + * can never be accessed, this feature won't do + * anything anyway. + */ + if (vmx->nested.apic_access_page) { + hpa = page_to_phys(vmx->nested.apic_access_page); + vmcs_write64(APIC_ACCESS_ADDR, hpa); + } else { + vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, + SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES); + } + } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) && + cpu_need_virtualize_apic_accesses(&vmx->vcpu)) { + vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL, + SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES); + kvm_vcpu_reload_apic_access_page(vcpu); } if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) { - if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) || - vmcs12->virtual_apic_page_addr >> maxphyaddr) - return false; - if (vmx->nested.virtual_apic_page) /* shouldn't happen */ nested_release_page(vmx->nested.virtual_apic_page); vmx->nested.virtual_apic_page = nested_get_page(vcpu, vmcs12->virtual_apic_page_addr); /* - * Failing the vm entry is _not_ what the processor does - * but it's basically the only possibility we have. - * We could still enter the guest if CR8 load exits are - * enabled, CR8 store exits are enabled, and virtualize APIC - * access is disabled; in this case the processor would never - * use the TPR shadow and we could simply clear the bit from - * the execution control. But such a configuration is useless, - * so let's keep the code simple. + * If translation failed, VM entry will fail because + * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull. + * Failing the vm entry is _not_ what the processor + * does but it's basically the only possibility we + * have. We could still enter the guest if CR8 load + * exits are enabled, CR8 store exits are enabled, and + * virtualize APIC access is disabled; in this case + * the processor would never use the TPR shadow and we + * could simply clear the bit from the execution + * control. But such a configuration is useless, so + * let's keep the code simple. */ - if (!vmx->nested.virtual_apic_page) - return false; + if (vmx->nested.virtual_apic_page) { + hpa = page_to_phys(vmx->nested.virtual_apic_page); + vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa); + } } if (nested_cpu_has_posted_intr(vmcs12)) { - if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) || - vmcs12->posted_intr_desc_addr >> maxphyaddr) - return false; - if (vmx->nested.pi_desc_page) { /* shouldn't happen */ kunmap(vmx->nested.pi_desc_page); nested_release_page(vmx->nested.pi_desc_page); } vmx->nested.pi_desc_page = nested_get_page(vcpu, vmcs12->posted_intr_desc_addr); - if (!vmx->nested.pi_desc_page) - return false; - vmx->nested.pi_desc = (struct pi_desc *)kmap(vmx->nested.pi_desc_page); if (!vmx->nested.pi_desc) { nested_release_page_clean(vmx->nested.pi_desc_page); - return false; + return; } vmx->nested.pi_desc = (struct pi_desc *)((void *)vmx->nested.pi_desc + (unsigned long)(vmcs12->posted_intr_desc_addr & (PAGE_SIZE - 1))); + vmcs_write64(POSTED_INTR_DESC_ADDR, + page_to_phys(vmx->nested.pi_desc_page) + + (unsigned long)(vmcs12->posted_intr_desc_addr & + (PAGE_SIZE - 1))); } - - return true; + if (cpu_has_vmx_msr_bitmap() && + nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS) && + nested_vmx_merge_msr_bitmap(vcpu, vmcs12)) + ; + else + vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, + CPU_BASED_USE_MSR_BITMAPS); } static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu) @@ -9730,11 +9700,6 @@ static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu, return false; } msr_bitmap_l1 = (unsigned long *)kmap(page); - if (!msr_bitmap_l1) { - nested_release_page_clean(page); - WARN_ON(1); - return false; - } memset(msr_bitmap_l0, 0xff, PAGE_SIZE); @@ -9982,7 +9947,7 @@ static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val) * is assigned to entry_failure_code on failure. */ static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept, - unsigned long *entry_failure_code) + u32 *entry_failure_code) { if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) { if (!nested_cr3_valid(vcpu, cr3)) { @@ -10022,7 +9987,7 @@ static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool ne * is assigned to entry_failure_code on failure. */ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, - unsigned long *entry_failure_code) + bool from_vmentry, u32 *entry_failure_code) { struct vcpu_vmx *vmx = to_vmx(vcpu); u32 exec_control; @@ -10065,21 +10030,26 @@ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base); vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base); - if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) { + if (from_vmentry && + (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) { kvm_set_dr(vcpu, 7, vmcs12->guest_dr7); vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl); } else { kvm_set_dr(vcpu, 7, vcpu->arch.dr7); vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl); } - vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, - vmcs12->vm_entry_intr_info_field); - vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, - vmcs12->vm_entry_exception_error_code); - vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, - vmcs12->vm_entry_instruction_len); - vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, - vmcs12->guest_interruptibility_info); + if (from_vmentry) { + vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, + vmcs12->vm_entry_intr_info_field); + vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, + vmcs12->vm_entry_exception_error_code); + vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, + vmcs12->vm_entry_instruction_len); + vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, + vmcs12->guest_interruptibility_info); + } else { + vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); + } vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs); vmx_set_rflags(vcpu, vmcs12->guest_rflags); vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, @@ -10108,12 +10078,9 @@ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv; vmx->nested.pi_pending = false; vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); - vmcs_write64(POSTED_INTR_DESC_ADDR, - page_to_phys(vmx->nested.pi_desc_page) + - (unsigned long)(vmcs12->posted_intr_desc_addr & - (PAGE_SIZE - 1))); - } else + } else { exec_control &= ~PIN_BASED_POSTED_INTR; + } vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control); @@ -10158,26 +10125,6 @@ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) exec_control |= vmcs12->secondary_vm_exec_control; - if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) { - /* - * If translation failed, no matter: This feature asks - * to exit when accessing the given address, and if it - * can never be accessed, this feature won't do - * anything anyway. - */ - if (!vmx->nested.apic_access_page) - exec_control &= - ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; - else - vmcs_write64(APIC_ACCESS_ADDR, - page_to_phys(vmx->nested.apic_access_page)); - } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) && - cpu_need_virtualize_apic_accesses(&vmx->vcpu)) { - exec_control |= - SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; - kvm_vcpu_reload_apic_access_page(vcpu); - } - if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0); @@ -10192,6 +10139,15 @@ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, } nested_ept_enabled = (exec_control & SECONDARY_EXEC_ENABLE_EPT) != 0; + + /* + * Write an illegal value to APIC_ACCESS_ADDR. Later, + * nested_get_vmcs12_pages will either fix it up or + * remove the VM execution control. + */ + if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) + vmcs_write64(APIC_ACCESS_ADDR, -1ull); + vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control); } @@ -10228,19 +10184,16 @@ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, exec_control &= ~CPU_BASED_TPR_SHADOW; exec_control |= vmcs12->cpu_based_vm_exec_control; + /* + * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if + * nested_get_vmcs12_pages can't fix it up, the illegal value + * will result in a VM entry failure. + */ if (exec_control & CPU_BASED_TPR_SHADOW) { - vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, - page_to_phys(vmx->nested.virtual_apic_page)); + vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull); vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold); } - if (cpu_has_vmx_msr_bitmap() && - exec_control & CPU_BASED_USE_MSR_BITMAPS && - nested_vmx_merge_msr_bitmap(vcpu, vmcs12)) - ; /* MSR_BITMAP will be set by following vmx_set_efer. */ - else - exec_control &= ~CPU_BASED_USE_MSR_BITMAPS; - /* * Merging of IO bitmap not currently supported. * Rather, exit every time. @@ -10272,16 +10225,18 @@ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, ~VM_ENTRY_IA32E_MODE) | (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE)); - if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) { + if (from_vmentry && + (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) { vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat); vcpu->arch.pat = vmcs12->guest_ia32_pat; - } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) + } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); - + } set_cr4_guest_host_mask(vmx); - if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) + if (from_vmentry && + vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs); if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING) @@ -10320,8 +10275,8 @@ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, } /* - * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified - * TS bit (for lazy fpu) and bits which we consider mandatory enabled. + * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those + * bits which we consider mandatory enabled. * The CR0_READ_SHADOW is what L2 should have expected to read given * the specifications by L1; It's not enough to take * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we @@ -10333,7 +10288,8 @@ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, vmx_set_cr4(vcpu, vmcs12->guest_cr4); vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12)); - if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) + if (from_vmentry && + (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) vcpu->arch.efer = vmcs12->guest_ia32_efer; else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) vcpu->arch.efer |= (EFER_LMA | EFER_LME); @@ -10367,73 +10323,22 @@ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, return 0; } -/* - * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1 - * for running an L2 nested guest. - */ -static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch) +static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { - struct vmcs12 *vmcs12; struct vcpu_vmx *vmx = to_vmx(vcpu); - int cpu; - struct loaded_vmcs *vmcs02; - bool ia32e; - u32 msr_entry_idx; - unsigned long exit_qualification; - - if (!nested_vmx_check_permission(vcpu)) - return 1; - - if (!nested_vmx_check_vmcs12(vcpu)) - goto out; - - vmcs12 = get_vmcs12(vcpu); - - if (enable_shadow_vmcs) - copy_shadow_to_vmcs12(vmx); - - /* - * The nested entry process starts with enforcing various prerequisites - * on vmcs12 as required by the Intel SDM, and act appropriately when - * they fail: As the SDM explains, some conditions should cause the - * instruction to fail, while others will cause the instruction to seem - * to succeed, but return an EXIT_REASON_INVALID_STATE. - * To speed up the normal (success) code path, we should avoid checking - * for misconfigurations which will anyway be caught by the processor - * when using the merged vmcs02. - */ - if (vmcs12->launch_state == launch) { - nested_vmx_failValid(vcpu, - launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS - : VMXERR_VMRESUME_NONLAUNCHED_VMCS); - goto out; - } if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE && - vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) { - nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); - goto out; - } + vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) + return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - if (!nested_get_vmcs12_pages(vcpu, vmcs12)) { - nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); - goto out; - } + if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) + return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) { - nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); - goto out; - } + if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) + return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) { - nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); - goto out; - } - - if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) { - nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); - goto out; - } + if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) + return VMXERR_ENTRY_INVALID_CONTROL_FIELD; if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control, vmx->nested.nested_vmx_procbased_ctls_low, @@ -10450,28 +10355,30 @@ static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch) !vmx_control_verify(vmcs12->vm_entry_controls, vmx->nested.nested_vmx_entry_ctls_low, vmx->nested.nested_vmx_entry_ctls_high)) - { - nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); - goto out; - } + return VMXERR_ENTRY_INVALID_CONTROL_FIELD; if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) || !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) || - !nested_cr3_valid(vcpu, vmcs12->host_cr3)) { - nested_vmx_failValid(vcpu, - VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); - goto out; - } + !nested_cr3_valid(vcpu, vmcs12->host_cr3)) + return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD; + + return 0; +} + +static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, + u32 *exit_qual) +{ + bool ia32e; + + *exit_qual = ENTRY_FAIL_DEFAULT; if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) || - !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)) { - nested_vmx_entry_failure(vcpu, vmcs12, - EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT); + !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)) return 1; - } - if (vmcs12->vmcs_link_pointer != -1ull) { - nested_vmx_entry_failure(vcpu, vmcs12, - EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR); + + if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) && + vmcs12->vmcs_link_pointer != -1ull) { + *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR; return 1; } @@ -10484,16 +10391,14 @@ static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch) * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to * CR0.PG) is 1. */ - if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) { + if (to_vmx(vcpu)->nested.nested_run_pending && + (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) { ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0; if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) || ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) || ((vmcs12->guest_cr0 & X86_CR0_PG) && - ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) { - nested_vmx_entry_failure(vcpu, vmcs12, - EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT); + ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) return 1; - } } /* @@ -10507,28 +10412,26 @@ static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch) VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0; if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) || ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) || - ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) { - nested_vmx_entry_failure(vcpu, vmcs12, - EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT); + ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) return 1; - } } - /* - * We're finally done with prerequisite checking, and can start with - * the nested entry. - */ + return 0; +} + +static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + struct loaded_vmcs *vmcs02; + int cpu; + u32 msr_entry_idx; + u32 exit_qual; vmcs02 = nested_get_current_vmcs02(vmx); if (!vmcs02) return -ENOMEM; - /* - * After this point, the trap flag no longer triggers a singlestep trap - * on the vm entry instructions. Don't call - * kvm_skip_emulated_instruction. - */ - skip_emulated_instruction(vcpu); enter_guest_mode(vcpu); if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) @@ -10543,14 +10446,16 @@ static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch) vmx_segment_cache_clear(vmx); - if (prepare_vmcs02(vcpu, vmcs12, &exit_qualification)) { + if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual)) { leave_guest_mode(vcpu); vmx_load_vmcs01(vcpu); nested_vmx_entry_failure(vcpu, vmcs12, - EXIT_REASON_INVALID_STATE, exit_qualification); + EXIT_REASON_INVALID_STATE, exit_qual); return 1; } + nested_get_vmcs12_pages(vcpu, vmcs12); + msr_entry_idx = nested_vmx_load_msr(vcpu, vmcs12->vm_entry_msr_load_addr, vmcs12->vm_entry_msr_load_count); @@ -10564,17 +10469,90 @@ static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch) vmcs12->launch_state = 1; - if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) - return kvm_vcpu_halt(vcpu); - - vmx->nested.nested_run_pending = 1; - /* * Note no nested_vmx_succeed or nested_vmx_fail here. At this point * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet * returned as far as L1 is concerned. It will only return (and set * the success flag) when L2 exits (see nested_vmx_vmexit()). */ + return 0; +} + +/* + * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1 + * for running an L2 nested guest. + */ +static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch) +{ + struct vmcs12 *vmcs12; + struct vcpu_vmx *vmx = to_vmx(vcpu); + u32 exit_qual; + int ret; + + if (!nested_vmx_check_permission(vcpu)) + return 1; + + if (!nested_vmx_check_vmcs12(vcpu)) + goto out; + + vmcs12 = get_vmcs12(vcpu); + + if (enable_shadow_vmcs) + copy_shadow_to_vmcs12(vmx); + + /* + * The nested entry process starts with enforcing various prerequisites + * on vmcs12 as required by the Intel SDM, and act appropriately when + * they fail: As the SDM explains, some conditions should cause the + * instruction to fail, while others will cause the instruction to seem + * to succeed, but return an EXIT_REASON_INVALID_STATE. + * To speed up the normal (success) code path, we should avoid checking + * for misconfigurations which will anyway be caught by the processor + * when using the merged vmcs02. + */ + if (vmcs12->launch_state == launch) { + nested_vmx_failValid(vcpu, + launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS + : VMXERR_VMRESUME_NONLAUNCHED_VMCS); + goto out; + } + + ret = check_vmentry_prereqs(vcpu, vmcs12); + if (ret) { + nested_vmx_failValid(vcpu, ret); + goto out; + } + + /* + * After this point, the trap flag no longer triggers a singlestep trap + * on the vm entry instructions; don't call kvm_skip_emulated_instruction. + * This is not 100% correct; for performance reasons, we delegate most + * of the checks on host state to the processor. If those fail, + * the singlestep trap is missed. + */ + skip_emulated_instruction(vcpu); + + ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual); + if (ret) { + nested_vmx_entry_failure(vcpu, vmcs12, + EXIT_REASON_INVALID_STATE, exit_qual); + return 1; + } + + /* + * We're finally done with prerequisite checking, and can start with + * the nested entry. + */ + + ret = enter_vmx_non_root_mode(vcpu, true); + if (ret) + return ret; + + if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) + return kvm_vcpu_halt(vcpu); + + vmx->nested.nested_run_pending = 1; + return 1; out: @@ -10696,7 +10674,8 @@ static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr) return 0; } - return vmx_complete_nested_posted_interrupt(vcpu); + vmx_complete_nested_posted_interrupt(vcpu); + return 0; } static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu) @@ -10714,21 +10693,13 @@ static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu) } /* - * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits - * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12), - * and this function updates it to reflect the changes to the guest state while - * L2 was running (and perhaps made some exits which were handled directly by L0 - * without going back to L1), and to reflect the exit reason. - * Note that we do not have to copy here all VMCS fields, just those that - * could have changed by the L2 guest or the exit - i.e., the guest-state and - * exit-information fields only. Other fields are modified by L1 with VMWRITE, - * which already writes to vmcs12 directly. + * Update the guest state fields of vmcs12 to reflect changes that + * occurred while L2 was running. (The "IA-32e mode guest" bit of the + * VM-entry controls is also updated, since this is really a guest + * state bit.) */ -static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, - u32 exit_reason, u32 exit_intr_info, - unsigned long exit_qualification) +static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { - /* update guest state fields: */ vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12); vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12); @@ -10834,6 +10805,25 @@ static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS); if (nested_cpu_has_xsaves(vmcs12)) vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP); +} + +/* + * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits + * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12), + * and this function updates it to reflect the changes to the guest state while + * L2 was running (and perhaps made some exits which were handled directly by L0 + * without going back to L1), and to reflect the exit reason. + * Note that we do not have to copy here all VMCS fields, just those that + * could have changed by the L2 guest or the exit - i.e., the guest-state and + * exit-information fields only. Other fields are modified by L1 with VMWRITE, + * which already writes to vmcs12 directly. + */ +static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, + u32 exit_reason, u32 exit_intr_info, + unsigned long exit_qualification) +{ + /* update guest state fields: */ + sync_vmcs12(vcpu, vmcs12); /* update exit information fields: */ @@ -10884,7 +10874,7 @@ static void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { struct kvm_segment seg; - unsigned long entry_failure_code; + u32 entry_failure_code; if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) vcpu->arch.efer = vmcs12->host_ia32_efer; @@ -10899,24 +10889,15 @@ static void load_vmcs12_host_state(struct kvm_vcpu *vcpu, vmx_set_rflags(vcpu, X86_EFLAGS_FIXED); /* * Note that calling vmx_set_cr0 is important, even if cr0 hasn't - * actually changed, because it depends on the current state of - * fpu_active (which may have changed). - * Note that vmx_set_cr0 refers to efer set above. + * actually changed, because vmx_set_cr0 refers to efer set above. + * + * CR0_GUEST_HOST_MASK is already set in the original vmcs01 + * (KVM doesn't change it); */ + vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS; vmx_set_cr0(vcpu, vmcs12->host_cr0); - /* - * If we did fpu_activate()/fpu_deactivate() during L2's run, we need - * to apply the same changes to L1's vmcs. We just set cr0 correctly, - * but we also need to update cr0_guest_host_mask and exception_bitmap. - */ - update_exception_bitmap(vcpu); - vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0); - vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits); - /* - * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01 - * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask(); - */ + /* Same as above - no reason to call set_cr4_guest_host_mask(). */ vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK); kvm_set_cr4(vcpu, vmcs12->host_cr4); @@ -11545,9 +11526,6 @@ static struct kvm_x86_ops vmx_x86_ops __ro_after_init = { .get_pkru = vmx_get_pkru, - .fpu_activate = vmx_fpu_activate, - .fpu_deactivate = vmx_fpu_deactivate, - .tlb_flush = vmx_flush_tlb, .run = vmx_vcpu_run, @@ -11572,6 +11550,7 @@ static struct kvm_x86_ops vmx_x86_ops __ro_after_init = { .get_enable_apicv = vmx_get_enable_apicv, .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, .load_eoi_exitmap = vmx_load_eoi_exitmap, + .apicv_post_state_restore = vmx_apicv_post_state_restore, .hwapic_irr_update = vmx_hwapic_irr_update, .hwapic_isr_update = vmx_hwapic_isr_update, .sync_pir_to_irr = vmx_sync_pir_to_irr, diff --git a/arch/x86/kvm/x86.c b/arch/x86/kvm/x86.c index e52c9088660f..b2a4b11274b0 100644 --- a/arch/x86/kvm/x86.c +++ b/arch/x86/kvm/x86.c @@ -180,6 +180,7 @@ struct kvm_stats_debugfs_item debugfs_entries[] = { { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, { "irq_injections", VCPU_STAT(irq_injections) }, { "nmi_injections", VCPU_STAT(nmi_injections) }, + { "req_event", VCPU_STAT(req_event) }, { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, { "mmu_pte_write", VM_STAT(mmu_pte_write) }, { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, @@ -190,6 +191,8 @@ struct kvm_stats_debugfs_item debugfs_entries[] = { { "mmu_unsync", VM_STAT(mmu_unsync) }, { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, { "largepages", VM_STAT(lpages) }, + { "max_mmu_page_hash_collisions", + VM_STAT(max_mmu_page_hash_collisions) }, { NULL } }; @@ -1139,6 +1142,7 @@ struct pvclock_gtod_data { u64 boot_ns; u64 nsec_base; + u64 wall_time_sec; }; static struct pvclock_gtod_data pvclock_gtod_data; @@ -1162,6 +1166,8 @@ static void update_pvclock_gtod(struct timekeeper *tk) vdata->boot_ns = boot_ns; vdata->nsec_base = tk->tkr_mono.xtime_nsec; + vdata->wall_time_sec = tk->xtime_sec; + write_seqcount_end(&vdata->seq); } #endif @@ -1623,6 +1629,28 @@ static int do_monotonic_boot(s64 *t, u64 *cycle_now) return mode; } +static int do_realtime(struct timespec *ts, u64 *cycle_now) +{ + struct pvclock_gtod_data *gtod = &pvclock_gtod_data; + unsigned long seq; + int mode; + u64 ns; + + do { + seq = read_seqcount_begin(>od->seq); + mode = gtod->clock.vclock_mode; + ts->tv_sec = gtod->wall_time_sec; + ns = gtod->nsec_base; + ns += vgettsc(cycle_now); + ns >>= gtod->clock.shift; + } while (unlikely(read_seqcount_retry(>od->seq, seq))); + + ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); + ts->tv_nsec = ns; + + return mode; +} + /* returns true if host is using tsc clocksource */ static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now) { @@ -1632,6 +1660,17 @@ static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now) return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC; } + +/* returns true if host is using tsc clocksource */ +static bool kvm_get_walltime_and_clockread(struct timespec *ts, + u64 *cycle_now) +{ + /* checked again under seqlock below */ + if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC) + return false; + + return do_realtime(ts, cycle_now) == VCLOCK_TSC; +} #endif /* @@ -1772,7 +1811,7 @@ static void kvm_setup_pvclock_page(struct kvm_vcpu *v) struct kvm_vcpu_arch *vcpu = &v->arch; struct pvclock_vcpu_time_info guest_hv_clock; - if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, + if (unlikely(kvm_vcpu_read_guest_cached(v, &vcpu->pv_time, &guest_hv_clock, sizeof(guest_hv_clock)))) return; @@ -1793,9 +1832,9 @@ static void kvm_setup_pvclock_page(struct kvm_vcpu *v) BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); vcpu->hv_clock.version = guest_hv_clock.version + 1; - kvm_write_guest_cached(v->kvm, &vcpu->pv_time, - &vcpu->hv_clock, - sizeof(vcpu->hv_clock.version)); + kvm_vcpu_write_guest_cached(v, &vcpu->pv_time, + &vcpu->hv_clock, + sizeof(vcpu->hv_clock.version)); smp_wmb(); @@ -1809,16 +1848,16 @@ static void kvm_setup_pvclock_page(struct kvm_vcpu *v) trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); - kvm_write_guest_cached(v->kvm, &vcpu->pv_time, - &vcpu->hv_clock, - sizeof(vcpu->hv_clock)); + kvm_vcpu_write_guest_cached(v, &vcpu->pv_time, + &vcpu->hv_clock, + sizeof(vcpu->hv_clock)); smp_wmb(); vcpu->hv_clock.version++; - kvm_write_guest_cached(v->kvm, &vcpu->pv_time, - &vcpu->hv_clock, - sizeof(vcpu->hv_clock.version)); + kvm_vcpu_write_guest_cached(v, &vcpu->pv_time, + &vcpu->hv_clock, + sizeof(vcpu->hv_clock.version)); } static int kvm_guest_time_update(struct kvm_vcpu *v) @@ -2051,7 +2090,7 @@ static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) return 0; } - if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, + if (kvm_vcpu_gfn_to_hva_cache_init(vcpu, &vcpu->arch.apf.data, gpa, sizeof(u32))) return 1; @@ -2070,7 +2109,7 @@ static void record_steal_time(struct kvm_vcpu *vcpu) if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) return; - if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, + if (unlikely(kvm_vcpu_read_guest_cached(vcpu, &vcpu->arch.st.stime, &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) return; @@ -2081,7 +2120,7 @@ static void record_steal_time(struct kvm_vcpu *vcpu) vcpu->arch.st.steal.version += 1; - kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, + kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.st.stime, &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); smp_wmb(); @@ -2090,14 +2129,14 @@ static void record_steal_time(struct kvm_vcpu *vcpu) vcpu->arch.st.last_steal; vcpu->arch.st.last_steal = current->sched_info.run_delay; - kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, + kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.st.stime, &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); smp_wmb(); vcpu->arch.st.steal.version += 1; - kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, + kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.st.stime, &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); } @@ -2202,7 +2241,7 @@ int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) if (!(data & 1)) break; - if (kvm_gfn_to_hva_cache_init(vcpu->kvm, + if (kvm_vcpu_gfn_to_hva_cache_init(vcpu, &vcpu->arch.pv_time, data & ~1ULL, sizeof(struct pvclock_vcpu_time_info))) vcpu->arch.pv_time_enabled = false; @@ -2223,7 +2262,7 @@ int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) if (data & KVM_STEAL_RESERVED_MASK) return 1; - if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, + if (kvm_vcpu_gfn_to_hva_cache_init(vcpu, &vcpu->arch.st.stime, data & KVM_STEAL_VALID_BITS, sizeof(struct kvm_steal_time))) return 1; @@ -2633,6 +2672,7 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) case KVM_CAP_DISABLE_QUIRKS: case KVM_CAP_SET_BOOT_CPU_ID: case KVM_CAP_SPLIT_IRQCHIP: + case KVM_CAP_IMMEDIATE_EXIT: #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT case KVM_CAP_ASSIGN_DEV_IRQ: case KVM_CAP_PCI_2_3: @@ -2836,7 +2876,7 @@ static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) vcpu->arch.st.steal.preempted = 1; - kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime, + kvm_vcpu_write_guest_offset_cached(vcpu, &vcpu->arch.st.stime, &vcpu->arch.st.steal.preempted, offsetof(struct kvm_steal_time, preempted), sizeof(vcpu->arch.st.steal.preempted)); @@ -2870,7 +2910,7 @@ void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) { - if (vcpu->arch.apicv_active) + if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active) kvm_x86_ops->sync_pir_to_irr(vcpu); return kvm_apic_get_state(vcpu, s); @@ -3897,7 +3937,7 @@ static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, goto split_irqchip_unlock; /* Pairs with irqchip_in_kernel. */ smp_wmb(); - kvm->arch.irqchip_split = true; + kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; r = 0; split_irqchip_unlock: @@ -3960,40 +4000,41 @@ long kvm_arch_vm_ioctl(struct file *filp, r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); break; case KVM_CREATE_IRQCHIP: { - struct kvm_pic *vpic; - mutex_lock(&kvm->lock); + r = -EEXIST; - if (kvm->arch.vpic) + if (irqchip_in_kernel(kvm)) goto create_irqchip_unlock; + r = -EINVAL; if (kvm->created_vcpus) goto create_irqchip_unlock; - r = -ENOMEM; - vpic = kvm_create_pic(kvm); - if (vpic) { - r = kvm_ioapic_init(kvm); - if (r) { - mutex_lock(&kvm->slots_lock); - kvm_destroy_pic(vpic); - mutex_unlock(&kvm->slots_lock); - goto create_irqchip_unlock; - } - } else + + r = kvm_pic_init(kvm); + if (r) + goto create_irqchip_unlock; + + r = kvm_ioapic_init(kvm); + if (r) { + mutex_lock(&kvm->slots_lock); + kvm_pic_destroy(kvm); + mutex_unlock(&kvm->slots_lock); goto create_irqchip_unlock; + } + r = kvm_setup_default_irq_routing(kvm); if (r) { mutex_lock(&kvm->slots_lock); mutex_lock(&kvm->irq_lock); kvm_ioapic_destroy(kvm); - kvm_destroy_pic(vpic); + kvm_pic_destroy(kvm); mutex_unlock(&kvm->irq_lock); mutex_unlock(&kvm->slots_lock); goto create_irqchip_unlock; } - /* Write kvm->irq_routing before kvm->arch.vpic. */ + /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ smp_wmb(); - kvm->arch.vpic = vpic; + kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; create_irqchip_unlock: mutex_unlock(&kvm->lock); break; @@ -4029,7 +4070,7 @@ long kvm_arch_vm_ioctl(struct file *filp, } r = -ENXIO; - if (!irqchip_in_kernel(kvm) || irqchip_split(kvm)) + if (!irqchip_kernel(kvm)) goto get_irqchip_out; r = kvm_vm_ioctl_get_irqchip(kvm, chip); if (r) @@ -4053,7 +4094,7 @@ long kvm_arch_vm_ioctl(struct file *filp, } r = -ENXIO; - if (!irqchip_in_kernel(kvm) || irqchip_split(kvm)) + if (!irqchip_kernel(kvm)) goto set_irqchip_out; r = kvm_vm_ioctl_set_irqchip(kvm, chip); if (r) @@ -4462,6 +4503,21 @@ out: } EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); +static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, + gpa_t gpa, bool write) +{ + /* For APIC access vmexit */ + if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) + return 1; + + if (vcpu_match_mmio_gpa(vcpu, gpa)) { + trace_vcpu_match_mmio(gva, gpa, write, true); + return 1; + } + + return 0; +} + static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, gpa_t *gpa, struct x86_exception *exception, bool write) @@ -4488,16 +4544,7 @@ static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, if (*gpa == UNMAPPED_GVA) return -1; - /* For APIC access vmexit */ - if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) - return 1; - - if (vcpu_match_mmio_gpa(vcpu, *gpa)) { - trace_vcpu_match_mmio(gva, *gpa, write, true); - return 1; - } - - return 0; + return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); } int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, @@ -4594,6 +4641,22 @@ static int emulator_read_write_onepage(unsigned long addr, void *val, int handled, ret; bool write = ops->write; struct kvm_mmio_fragment *frag; + struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; + + /* + * If the exit was due to a NPF we may already have a GPA. + * If the GPA is present, use it to avoid the GVA to GPA table walk. + * Note, this cannot be used on string operations since string + * operation using rep will only have the initial GPA from the NPF + * occurred. + */ + if (vcpu->arch.gpa_available && + emulator_can_use_gpa(ctxt) && + vcpu_is_mmio_gpa(vcpu, addr, exception->address, write) && + (addr & ~PAGE_MASK) == (exception->address & ~PAGE_MASK)) { + gpa = exception->address; + goto mmio; + } ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); @@ -5610,6 +5673,9 @@ int x86_emulate_instruction(struct kvm_vcpu *vcpu, } restart: + /* Save the faulting GPA (cr2) in the address field */ + ctxt->exception.address = cr2; + r = x86_emulate_insn(ctxt); if (r == EMULATION_INTERCEPTED) @@ -5924,9 +5990,6 @@ static void kvm_set_mmio_spte_mask(void) /* Mask the reserved physical address bits. */ mask = rsvd_bits(maxphyaddr, 51); - /* Bit 62 is always reserved for 32bit host. */ - mask |= 0x3ull << 62; - /* Set the present bit. */ mask |= 1ull; @@ -6025,7 +6088,7 @@ int kvm_arch_init(void *opaque) kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, PT_DIRTY_MASK, PT64_NX_MASK, 0, - PT_PRESENT_MASK); + PT_PRESENT_MASK, 0); kvm_timer_init(); perf_register_guest_info_callbacks(&kvm_guest_cbs); @@ -6087,6 +6150,35 @@ int kvm_emulate_halt(struct kvm_vcpu *vcpu) } EXPORT_SYMBOL_GPL(kvm_emulate_halt); +#ifdef CONFIG_X86_64 +static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, + unsigned long clock_type) +{ + struct kvm_clock_pairing clock_pairing; + struct timespec ts; + u64 cycle; + int ret; + + if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) + return -KVM_EOPNOTSUPP; + + if (kvm_get_walltime_and_clockread(&ts, &cycle) == false) + return -KVM_EOPNOTSUPP; + + clock_pairing.sec = ts.tv_sec; + clock_pairing.nsec = ts.tv_nsec; + clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); + clock_pairing.flags = 0; + + ret = 0; + if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, + sizeof(struct kvm_clock_pairing))) + ret = -KVM_EFAULT; + + return ret; +} +#endif + /* * kvm_pv_kick_cpu_op: Kick a vcpu. * @@ -6151,6 +6243,11 @@ int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1); ret = 0; break; +#ifdef CONFIG_X86_64 + case KVM_HC_CLOCK_PAIRING: + ret = kvm_pv_clock_pairing(vcpu, a0, a1); + break; +#endif default: ret = -KVM_ENOSYS; break; @@ -6564,7 +6661,7 @@ static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) if (irqchip_split(vcpu->kvm)) kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); else { - if (vcpu->arch.apicv_active) + if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active) kvm_x86_ops->sync_pir_to_irr(vcpu); kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); } @@ -6655,10 +6752,6 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu) r = 0; goto out; } - if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) { - vcpu->fpu_active = 0; - kvm_x86_ops->fpu_deactivate(vcpu); - } if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { /* Page is swapped out. Do synthetic halt */ vcpu->arch.apf.halted = true; @@ -6718,21 +6811,8 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu) kvm_hv_process_stimers(vcpu); } - /* - * KVM_REQ_EVENT is not set when posted interrupts are set by - * VT-d hardware, so we have to update RVI unconditionally. - */ - if (kvm_lapic_enabled(vcpu)) { - /* - * Update architecture specific hints for APIC - * virtual interrupt delivery. - */ - if (vcpu->arch.apicv_active) - kvm_x86_ops->hwapic_irr_update(vcpu, - kvm_lapic_find_highest_irr(vcpu)); - } - if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { + ++vcpu->stat.req_event; kvm_apic_accept_events(vcpu); if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { r = 1; @@ -6773,22 +6853,40 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu) preempt_disable(); kvm_x86_ops->prepare_guest_switch(vcpu); - if (vcpu->fpu_active) - kvm_load_guest_fpu(vcpu); + kvm_load_guest_fpu(vcpu); + + /* + * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt + * IPI are then delayed after guest entry, which ensures that they + * result in virtual interrupt delivery. + */ + local_irq_disable(); vcpu->mode = IN_GUEST_MODE; srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); /* - * We should set ->mode before check ->requests, - * Please see the comment in kvm_make_all_cpus_request. - * This also orders the write to mode from any reads - * to the page tables done while the VCPU is running. - * Please see the comment in kvm_flush_remote_tlbs. + * 1) We should set ->mode before checking ->requests. Please see + * the comment in kvm_make_all_cpus_request. + * + * 2) For APICv, we should set ->mode before checking PIR.ON. This + * pairs with the memory barrier implicit in pi_test_and_set_on + * (see vmx_deliver_posted_interrupt). + * + * 3) This also orders the write to mode from any reads to the page + * tables done while the VCPU is running. Please see the comment + * in kvm_flush_remote_tlbs. */ smp_mb__after_srcu_read_unlock(); - local_irq_disable(); + /* + * This handles the case where a posted interrupt was + * notified with kvm_vcpu_kick. + */ + if (kvm_lapic_enabled(vcpu)) { + if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active) + kvm_x86_ops->sync_pir_to_irr(vcpu); + } if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests || need_resched() || signal_pending(current)) { @@ -6927,6 +7025,9 @@ static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu) static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) { + if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) + kvm_x86_ops->check_nested_events(vcpu, false); + return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && !vcpu->arch.apf.halted); } @@ -7098,7 +7199,10 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) } else WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); - r = vcpu_run(vcpu); + if (kvm_run->immediate_exit) + r = -EINTR; + else + r = vcpu_run(vcpu); out: post_kvm_run_save(vcpu); @@ -8293,9 +8397,6 @@ static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) { - if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) - kvm_x86_ops->check_nested_events(vcpu, false); - return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); } @@ -8432,9 +8533,8 @@ static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) { - - return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, - sizeof(val)); + return kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.apf.data, &val, + sizeof(val)); } void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, |