summaryrefslogtreecommitdiffstats
path: root/arch/x86
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2017-02-23 03:22:53 +0100
committerLinus Torvalds <torvalds@linux-foundation.org>2017-02-23 03:22:53 +0100
commitfd7e9a88348472521d999434ee02f25735c7dadf (patch)
tree90e6249e58d90ba9d590cfed4481c29ca36a05dc /arch/x86
parentMerge tag 'iommu-fix-v4.11-rc0' of git://git.kernel.org/pub/scm/linux/kernel/... (diff)
parentx86/kvm: Provide optimized version of vcpu_is_preempted() for x86-64 (diff)
downloadlinux-fd7e9a88348472521d999434ee02f25735c7dadf.tar.xz
linux-fd7e9a88348472521d999434ee02f25735c7dadf.zip
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini: "4.11 is going to be a relatively large release for KVM, with a little over 200 commits and noteworthy changes for most architectures. ARM: - GICv3 save/restore - cache flushing fixes - working MSI injection for GICv3 ITS - physical timer emulation MIPS: - various improvements under the hood - support for SMP guests - a large rewrite of MMU emulation. KVM MIPS can now use MMU notifiers to support copy-on-write, KSM, idle page tracking, swapping, ballooning and everything else. KVM_CAP_READONLY_MEM is also supported, so that writes to some memory regions can be treated as MMIO. The new MMU also paves the way for hardware virtualization support. PPC: - support for POWER9 using the radix-tree MMU for host and guest - resizable hashed page table - bugfixes. s390: - expose more features to the guest - more SIMD extensions - instruction execution protection - ESOP2 x86: - improved hashing in the MMU - faster PageLRU tracking for Intel CPUs without EPT A/D bits - some refactoring of nested VMX entry/exit code, preparing for live migration support of nested hypervisors - expose yet another AVX512 CPUID bit - host-to-guest PTP support - refactoring of interrupt injection, with some optimizations thrown in and some duct tape removed. - remove lazy FPU handling - optimizations of user-mode exits - optimizations of vcpu_is_preempted() for KVM guests generic: - alternative signaling mechanism that doesn't pound on tsk->sighand->siglock" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (195 commits) x86/kvm: Provide optimized version of vcpu_is_preempted() for x86-64 x86/paravirt: Change vcp_is_preempted() arg type to long KVM: VMX: use correct vmcs_read/write for guest segment selector/base x86/kvm/vmx: Defer TR reload after VM exit x86/asm/64: Drop __cacheline_aligned from struct x86_hw_tss x86/kvm/vmx: Simplify segment_base() x86/kvm/vmx: Get rid of segment_base() on 64-bit kernels x86/kvm/vmx: Don't fetch the TSS base from the GDT x86/asm: Define the kernel TSS limit in a macro kvm: fix page struct leak in handle_vmon KVM: PPC: Book3S HV: Disable HPT resizing on POWER9 for now KVM: Return an error code only as a constant in kvm_get_dirty_log() KVM: Return an error code only as a constant in kvm_get_dirty_log_protect() KVM: Return directly after a failed copy_from_user() in kvm_vm_compat_ioctl() KVM: x86: remove code for lazy FPU handling KVM: race-free exit from KVM_RUN without POSIX signals KVM: PPC: Book3S HV: Turn "KVM guest htab" message into a debug message KVM: PPC: Book3S PR: Ratelimit copy data failure error messages KVM: Support vCPU-based gfn->hva cache KVM: use separate generations for each address space ...
Diffstat (limited to 'arch/x86')
-rw-r--r--arch/x86/include/asm/desc.h58
-rw-r--r--arch/x86/include/asm/kvm_emulate.h1
-rw-r--r--arch/x86/include/asm/kvm_host.h30
-rw-r--r--arch/x86/include/asm/kvmclock.h6
-rw-r--r--arch/x86/include/asm/paravirt.h2
-rw-r--r--arch/x86/include/asm/processor.h12
-rw-r--r--arch/x86/include/asm/qspinlock.h2
-rw-r--r--arch/x86/include/asm/vmx.h28
-rw-r--r--arch/x86/include/uapi/asm/kvm_para.h9
-rw-r--r--arch/x86/kernel/asm-offsets_64.c9
-rw-r--r--arch/x86/kernel/ioport.c5
-rw-r--r--arch/x86/kernel/kvm.c26
-rw-r--r--arch/x86/kernel/kvmclock.c5
-rw-r--r--arch/x86/kernel/paravirt-spinlocks.c2
-rw-r--r--arch/x86/kernel/process.c10
-rw-r--r--arch/x86/kvm/cpuid.c10
-rw-r--r--arch/x86/kvm/emulate.c20
-rw-r--r--arch/x86/kvm/hyperv.c4
-rw-r--r--arch/x86/kvm/i8259.c16
-rw-r--r--arch/x86/kvm/irq.h19
-rw-r--r--arch/x86/kvm/irq_comm.c29
-rw-r--r--arch/x86/kvm/lapic.c197
-rw-r--r--arch/x86/kvm/lapic.h16
-rw-r--r--arch/x86/kvm/mmu.c509
-rw-r--r--arch/x86/kvm/svm.c57
-rw-r--r--arch/x86/kvm/vmx.c909
-rw-r--r--arch/x86/kvm/x86.c274
27 files changed, 1359 insertions, 906 deletions
diff --git a/arch/x86/include/asm/desc.h b/arch/x86/include/asm/desc.h
index 12080d87da3b..cb8f9149f6c8 100644
--- a/arch/x86/include/asm/desc.h
+++ b/arch/x86/include/asm/desc.h
@@ -177,16 +177,8 @@ static inline void __set_tss_desc(unsigned cpu, unsigned int entry, void *addr)
struct desc_struct *d = get_cpu_gdt_table(cpu);
tss_desc tss;
- /*
- * sizeof(unsigned long) coming from an extra "long" at the end
- * of the iobitmap. See tss_struct definition in processor.h
- *
- * -1? seg base+limit should be pointing to the address of the
- * last valid byte
- */
set_tssldt_descriptor(&tss, (unsigned long)addr, DESC_TSS,
- IO_BITMAP_OFFSET + IO_BITMAP_BYTES +
- sizeof(unsigned long) - 1);
+ __KERNEL_TSS_LIMIT);
write_gdt_entry(d, entry, &tss, DESC_TSS);
}
@@ -213,6 +205,54 @@ static inline void native_load_tr_desc(void)
asm volatile("ltr %w0"::"q" (GDT_ENTRY_TSS*8));
}
+static inline void force_reload_TR(void)
+{
+ struct desc_struct *d = get_cpu_gdt_table(smp_processor_id());
+ tss_desc tss;
+
+ memcpy(&tss, &d[GDT_ENTRY_TSS], sizeof(tss_desc));
+
+ /*
+ * LTR requires an available TSS, and the TSS is currently
+ * busy. Make it be available so that LTR will work.
+ */
+ tss.type = DESC_TSS;
+ write_gdt_entry(d, GDT_ENTRY_TSS, &tss, DESC_TSS);
+
+ load_TR_desc();
+}
+
+DECLARE_PER_CPU(bool, need_tr_refresh);
+
+static inline void refresh_TR(void)
+{
+ DEBUG_LOCKS_WARN_ON(preemptible());
+
+ if (unlikely(this_cpu_read(need_tr_refresh))) {
+ force_reload_TR();
+ this_cpu_write(need_tr_refresh, false);
+ }
+}
+
+/*
+ * If you do something evil that corrupts the cached TSS limit (I'm looking
+ * at you, VMX exits), call this function.
+ *
+ * The optimization here is that the TSS limit only matters for Linux if the
+ * IO bitmap is in use. If the TSS limit gets forced to its minimum value,
+ * everything works except that IO bitmap will be ignored and all CPL 3 IO
+ * instructions will #GP, which is exactly what we want for normal tasks.
+ */
+static inline void invalidate_tss_limit(void)
+{
+ DEBUG_LOCKS_WARN_ON(preemptible());
+
+ if (unlikely(test_thread_flag(TIF_IO_BITMAP)))
+ force_reload_TR();
+ else
+ this_cpu_write(need_tr_refresh, true);
+}
+
static inline void native_load_gdt(const struct desc_ptr *dtr)
{
asm volatile("lgdt %0"::"m" (*dtr));
diff --git a/arch/x86/include/asm/kvm_emulate.h b/arch/x86/include/asm/kvm_emulate.h
index e9cd7befcb76..3e8c287090e4 100644
--- a/arch/x86/include/asm/kvm_emulate.h
+++ b/arch/x86/include/asm/kvm_emulate.h
@@ -441,5 +441,6 @@ int emulator_task_switch(struct x86_emulate_ctxt *ctxt,
int emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq);
void emulator_invalidate_register_cache(struct x86_emulate_ctxt *ctxt);
void emulator_writeback_register_cache(struct x86_emulate_ctxt *ctxt);
+bool emulator_can_use_gpa(struct x86_emulate_ctxt *ctxt);
#endif /* _ASM_X86_KVM_X86_EMULATE_H */
diff --git a/arch/x86/include/asm/kvm_host.h b/arch/x86/include/asm/kvm_host.h
index a7066dc1a7e9..74ef58c8ff53 100644
--- a/arch/x86/include/asm/kvm_host.h
+++ b/arch/x86/include/asm/kvm_host.h
@@ -55,7 +55,6 @@
#define KVM_REQ_TRIPLE_FAULT 10
#define KVM_REQ_MMU_SYNC 11
#define KVM_REQ_CLOCK_UPDATE 12
-#define KVM_REQ_DEACTIVATE_FPU 13
#define KVM_REQ_EVENT 14
#define KVM_REQ_APF_HALT 15
#define KVM_REQ_STEAL_UPDATE 16
@@ -115,7 +114,7 @@ static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level)
#define KVM_PERMILLE_MMU_PAGES 20
#define KVM_MIN_ALLOC_MMU_PAGES 64
-#define KVM_MMU_HASH_SHIFT 10
+#define KVM_MMU_HASH_SHIFT 12
#define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
#define KVM_MIN_FREE_MMU_PAGES 5
#define KVM_REFILL_PAGES 25
@@ -208,6 +207,13 @@ enum {
PFERR_WRITE_MASK | \
PFERR_PRESENT_MASK)
+/*
+ * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
+ * Access Tracking SPTEs. We use bit 62 instead of bit 63 to avoid conflicting
+ * with the SVE bit in EPT PTEs.
+ */
+#define SPTE_SPECIAL_MASK (1ULL << 62)
+
/* apic attention bits */
#define KVM_APIC_CHECK_VAPIC 0
/*
@@ -668,6 +674,9 @@ struct kvm_vcpu_arch {
int pending_ioapic_eoi;
int pending_external_vector;
+
+ /* GPA available (AMD only) */
+ bool gpa_available;
};
struct kvm_lpage_info {
@@ -716,6 +725,12 @@ struct kvm_hv {
HV_REFERENCE_TSC_PAGE tsc_ref;
};
+enum kvm_irqchip_mode {
+ KVM_IRQCHIP_NONE,
+ KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */
+ KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */
+};
+
struct kvm_arch {
unsigned int n_used_mmu_pages;
unsigned int n_requested_mmu_pages;
@@ -788,7 +803,7 @@ struct kvm_arch {
u64 disabled_quirks;
- bool irqchip_split;
+ enum kvm_irqchip_mode irqchip_mode;
u8 nr_reserved_ioapic_pins;
bool disabled_lapic_found;
@@ -815,6 +830,7 @@ struct kvm_vm_stat {
ulong mmu_unsync;
ulong remote_tlb_flush;
ulong lpages;
+ ulong max_mmu_page_hash_collisions;
};
struct kvm_vcpu_stat {
@@ -844,6 +860,7 @@ struct kvm_vcpu_stat {
u64 hypercalls;
u64 irq_injections;
u64 nmi_injections;
+ u64 req_event;
};
struct x86_instruction_info;
@@ -918,8 +935,6 @@ struct kvm_x86_ops {
unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
u32 (*get_pkru)(struct kvm_vcpu *vcpu);
- void (*fpu_activate)(struct kvm_vcpu *vcpu);
- void (*fpu_deactivate)(struct kvm_vcpu *vcpu);
void (*tlb_flush)(struct kvm_vcpu *vcpu);
@@ -951,7 +966,7 @@ struct kvm_x86_ops {
void (*set_virtual_x2apic_mode)(struct kvm_vcpu *vcpu, bool set);
void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu, hpa_t hpa);
void (*deliver_posted_interrupt)(struct kvm_vcpu *vcpu, int vector);
- void (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
+ int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
int (*get_tdp_level)(void);
u64 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
@@ -1050,7 +1065,8 @@ void kvm_mmu_setup(struct kvm_vcpu *vcpu);
void kvm_mmu_init_vm(struct kvm *kvm);
void kvm_mmu_uninit_vm(struct kvm *kvm);
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
- u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask);
+ u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
+ u64 acc_track_mask);
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
diff --git a/arch/x86/include/asm/kvmclock.h b/arch/x86/include/asm/kvmclock.h
new file mode 100644
index 000000000000..f260bef63591
--- /dev/null
+++ b/arch/x86/include/asm/kvmclock.h
@@ -0,0 +1,6 @@
+#ifndef _ASM_X86_KVM_CLOCK_H
+#define _ASM_X86_KVM_CLOCK_H
+
+extern struct clocksource kvm_clock;
+
+#endif /* _ASM_X86_KVM_CLOCK_H */
diff --git a/arch/x86/include/asm/paravirt.h b/arch/x86/include/asm/paravirt.h
index 1eea6ca40694..f75fbfe550f2 100644
--- a/arch/x86/include/asm/paravirt.h
+++ b/arch/x86/include/asm/paravirt.h
@@ -673,7 +673,7 @@ static __always_inline void pv_kick(int cpu)
PVOP_VCALL1(pv_lock_ops.kick, cpu);
}
-static __always_inline bool pv_vcpu_is_preempted(int cpu)
+static __always_inline bool pv_vcpu_is_preempted(long cpu)
{
return PVOP_CALLEE1(bool, pv_lock_ops.vcpu_is_preempted, cpu);
}
diff --git a/arch/x86/include/asm/processor.h b/arch/x86/include/asm/processor.h
index e6cfe7ba2d65..f385eca5407a 100644
--- a/arch/x86/include/asm/processor.h
+++ b/arch/x86/include/asm/processor.h
@@ -304,7 +304,7 @@ struct x86_hw_tss {
u16 reserved5;
u16 io_bitmap_base;
-} __attribute__((packed)) ____cacheline_aligned;
+} __attribute__((packed));
#endif
/*
@@ -342,6 +342,16 @@ struct tss_struct {
DECLARE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss);
+/*
+ * sizeof(unsigned long) coming from an extra "long" at the end
+ * of the iobitmap.
+ *
+ * -1? seg base+limit should be pointing to the address of the
+ * last valid byte
+ */
+#define __KERNEL_TSS_LIMIT \
+ (IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1)
+
#ifdef CONFIG_X86_32
DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
#endif
diff --git a/arch/x86/include/asm/qspinlock.h b/arch/x86/include/asm/qspinlock.h
index c343ab52579f..48a706f641f2 100644
--- a/arch/x86/include/asm/qspinlock.h
+++ b/arch/x86/include/asm/qspinlock.h
@@ -34,7 +34,7 @@ static inline void queued_spin_unlock(struct qspinlock *lock)
}
#define vcpu_is_preempted vcpu_is_preempted
-static inline bool vcpu_is_preempted(int cpu)
+static inline bool vcpu_is_preempted(long cpu)
{
return pv_vcpu_is_preempted(cpu);
}
diff --git a/arch/x86/include/asm/vmx.h b/arch/x86/include/asm/vmx.h
index 2b5b2d4b924e..cc54b7026567 100644
--- a/arch/x86/include/asm/vmx.h
+++ b/arch/x86/include/asm/vmx.h
@@ -467,8 +467,16 @@ enum vmcs_field {
#define VMX_EPT_WRITABLE_MASK 0x2ull
#define VMX_EPT_EXECUTABLE_MASK 0x4ull
#define VMX_EPT_IPAT_BIT (1ull << 6)
-#define VMX_EPT_ACCESS_BIT (1ull << 8)
-#define VMX_EPT_DIRTY_BIT (1ull << 9)
+#define VMX_EPT_ACCESS_BIT (1ull << 8)
+#define VMX_EPT_DIRTY_BIT (1ull << 9)
+#define VMX_EPT_RWX_MASK (VMX_EPT_READABLE_MASK | \
+ VMX_EPT_WRITABLE_MASK | \
+ VMX_EPT_EXECUTABLE_MASK)
+#define VMX_EPT_MT_MASK (7ull << VMX_EPT_MT_EPTE_SHIFT)
+
+/* The mask to use to trigger an EPT Misconfiguration in order to track MMIO */
+#define VMX_EPT_MISCONFIG_WX_VALUE (VMX_EPT_WRITABLE_MASK | \
+ VMX_EPT_EXECUTABLE_MASK)
#define VMX_EPT_IDENTITY_PAGETABLE_ADDR 0xfffbc000ul
@@ -500,6 +508,22 @@ struct vmx_msr_entry {
#define ENTRY_FAIL_VMCS_LINK_PTR 4
/*
+ * Exit Qualifications for EPT Violations
+ */
+#define EPT_VIOLATION_ACC_READ_BIT 0
+#define EPT_VIOLATION_ACC_WRITE_BIT 1
+#define EPT_VIOLATION_ACC_INSTR_BIT 2
+#define EPT_VIOLATION_READABLE_BIT 3
+#define EPT_VIOLATION_WRITABLE_BIT 4
+#define EPT_VIOLATION_EXECUTABLE_BIT 5
+#define EPT_VIOLATION_ACC_READ (1 << EPT_VIOLATION_ACC_READ_BIT)
+#define EPT_VIOLATION_ACC_WRITE (1 << EPT_VIOLATION_ACC_WRITE_BIT)
+#define EPT_VIOLATION_ACC_INSTR (1 << EPT_VIOLATION_ACC_INSTR_BIT)
+#define EPT_VIOLATION_READABLE (1 << EPT_VIOLATION_READABLE_BIT)
+#define EPT_VIOLATION_WRITABLE (1 << EPT_VIOLATION_WRITABLE_BIT)
+#define EPT_VIOLATION_EXECUTABLE (1 << EPT_VIOLATION_EXECUTABLE_BIT)
+
+/*
* VM-instruction error numbers
*/
enum vm_instruction_error_number {
diff --git a/arch/x86/include/uapi/asm/kvm_para.h b/arch/x86/include/uapi/asm/kvm_para.h
index 1421a6585126..cff0bb6556f8 100644
--- a/arch/x86/include/uapi/asm/kvm_para.h
+++ b/arch/x86/include/uapi/asm/kvm_para.h
@@ -50,6 +50,15 @@ struct kvm_steal_time {
__u32 pad[11];
};
+#define KVM_CLOCK_PAIRING_WALLCLOCK 0
+struct kvm_clock_pairing {
+ __s64 sec;
+ __s64 nsec;
+ __u64 tsc;
+ __u32 flags;
+ __u32 pad[9];
+};
+
#define KVM_STEAL_ALIGNMENT_BITS 5
#define KVM_STEAL_VALID_BITS ((-1ULL << (KVM_STEAL_ALIGNMENT_BITS + 1)))
#define KVM_STEAL_RESERVED_MASK (((1 << KVM_STEAL_ALIGNMENT_BITS) - 1 ) << 1)
diff --git a/arch/x86/kernel/asm-offsets_64.c b/arch/x86/kernel/asm-offsets_64.c
index 210927ee2e74..99332f550c48 100644
--- a/arch/x86/kernel/asm-offsets_64.c
+++ b/arch/x86/kernel/asm-offsets_64.c
@@ -13,6 +13,10 @@ static char syscalls_ia32[] = {
#include <asm/syscalls_32.h>
};
+#if defined(CONFIG_KVM_GUEST) && defined(CONFIG_PARAVIRT_SPINLOCKS)
+#include <asm/kvm_para.h>
+#endif
+
int main(void)
{
#ifdef CONFIG_PARAVIRT
@@ -22,6 +26,11 @@ int main(void)
BLANK();
#endif
+#if defined(CONFIG_KVM_GUEST) && defined(CONFIG_PARAVIRT_SPINLOCKS)
+ OFFSET(KVM_STEAL_TIME_preempted, kvm_steal_time, preempted);
+ BLANK();
+#endif
+
#define ENTRY(entry) OFFSET(pt_regs_ ## entry, pt_regs, entry)
ENTRY(bx);
ENTRY(cx);
diff --git a/arch/x86/kernel/ioport.c b/arch/x86/kernel/ioport.c
index 589b3193f102..b01bc8517450 100644
--- a/arch/x86/kernel/ioport.c
+++ b/arch/x86/kernel/ioport.c
@@ -16,6 +16,7 @@
#include <linux/syscalls.h>
#include <linux/bitmap.h>
#include <asm/syscalls.h>
+#include <asm/desc.h>
/*
* this changes the io permissions bitmap in the current task.
@@ -45,6 +46,10 @@ asmlinkage long sys_ioperm(unsigned long from, unsigned long num, int turn_on)
memset(bitmap, 0xff, IO_BITMAP_BYTES);
t->io_bitmap_ptr = bitmap;
set_thread_flag(TIF_IO_BITMAP);
+
+ preempt_disable();
+ refresh_TR();
+ preempt_enable();
}
/*
diff --git a/arch/x86/kernel/kvm.c b/arch/x86/kernel/kvm.c
index 099fcba4981d..14f65a5f938e 100644
--- a/arch/x86/kernel/kvm.c
+++ b/arch/x86/kernel/kvm.c
@@ -589,7 +589,8 @@ out:
local_irq_restore(flags);
}
-__visible bool __kvm_vcpu_is_preempted(int cpu)
+#ifdef CONFIG_X86_32
+__visible bool __kvm_vcpu_is_preempted(long cpu)
{
struct kvm_steal_time *src = &per_cpu(steal_time, cpu);
@@ -597,6 +598,29 @@ __visible bool __kvm_vcpu_is_preempted(int cpu)
}
PV_CALLEE_SAVE_REGS_THUNK(__kvm_vcpu_is_preempted);
+#else
+
+#include <asm/asm-offsets.h>
+
+extern bool __raw_callee_save___kvm_vcpu_is_preempted(long);
+
+/*
+ * Hand-optimize version for x86-64 to avoid 8 64-bit register saving and
+ * restoring to/from the stack.
+ */
+asm(
+".pushsection .text;"
+".global __raw_callee_save___kvm_vcpu_is_preempted;"
+".type __raw_callee_save___kvm_vcpu_is_preempted, @function;"
+"__raw_callee_save___kvm_vcpu_is_preempted:"
+"movq __per_cpu_offset(,%rdi,8), %rax;"
+"cmpb $0, " __stringify(KVM_STEAL_TIME_preempted) "+steal_time(%rax);"
+"setne %al;"
+"ret;"
+".popsection");
+
+#endif
+
/*
* Setup pv_lock_ops to exploit KVM_FEATURE_PV_UNHALT if present.
*/
diff --git a/arch/x86/kernel/kvmclock.c b/arch/x86/kernel/kvmclock.c
index 542710b99f52..bae6ea6cfb94 100644
--- a/arch/x86/kernel/kvmclock.c
+++ b/arch/x86/kernel/kvmclock.c
@@ -28,6 +28,7 @@
#include <asm/x86_init.h>
#include <asm/reboot.h>
+#include <asm/kvmclock.h>
static int kvmclock __ro_after_init = 1;
static int msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
@@ -49,6 +50,7 @@ struct pvclock_vsyscall_time_info *pvclock_pvti_cpu0_va(void)
{
return hv_clock;
}
+EXPORT_SYMBOL_GPL(pvclock_pvti_cpu0_va);
/*
* The wallclock is the time of day when we booted. Since then, some time may
@@ -174,13 +176,14 @@ bool kvm_check_and_clear_guest_paused(void)
return ret;
}
-static struct clocksource kvm_clock = {
+struct clocksource kvm_clock = {
.name = "kvm-clock",
.read = kvm_clock_get_cycles,
.rating = 400,
.mask = CLOCKSOURCE_MASK(64),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
+EXPORT_SYMBOL_GPL(kvm_clock);
int kvm_register_clock(char *txt)
{
diff --git a/arch/x86/kernel/paravirt-spinlocks.c b/arch/x86/kernel/paravirt-spinlocks.c
index 6259327f3454..8f2d1c9d43a8 100644
--- a/arch/x86/kernel/paravirt-spinlocks.c
+++ b/arch/x86/kernel/paravirt-spinlocks.c
@@ -20,7 +20,7 @@ bool pv_is_native_spin_unlock(void)
__raw_callee_save___native_queued_spin_unlock;
}
-__visible bool __native_vcpu_is_preempted(int cpu)
+__visible bool __native_vcpu_is_preempted(long cpu)
{
return false;
}
diff --git a/arch/x86/kernel/process.c b/arch/x86/kernel/process.c
index b615a1113f58..7780efa635b9 100644
--- a/arch/x86/kernel/process.c
+++ b/arch/x86/kernel/process.c
@@ -32,6 +32,7 @@
#include <asm/mce.h>
#include <asm/vm86.h>
#include <asm/switch_to.h>
+#include <asm/desc.h>
/*
* per-CPU TSS segments. Threads are completely 'soft' on Linux,
@@ -64,6 +65,9 @@ __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
};
EXPORT_PER_CPU_SYMBOL(cpu_tss);
+DEFINE_PER_CPU(bool, need_tr_refresh);
+EXPORT_PER_CPU_SYMBOL_GPL(need_tr_refresh);
+
/*
* this gets called so that we can store lazy state into memory and copy the
* current task into the new thread.
@@ -209,6 +213,12 @@ void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
*/
memcpy(tss->io_bitmap, next->io_bitmap_ptr,
max(prev->io_bitmap_max, next->io_bitmap_max));
+
+ /*
+ * Make sure that the TSS limit is correct for the CPU
+ * to notice the IO bitmap.
+ */
+ refresh_TR();
} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
/*
* Clear any possible leftover bits:
diff --git a/arch/x86/kvm/cpuid.c b/arch/x86/kvm/cpuid.c
index e85f6bd7b9d5..1d155cc56629 100644
--- a/arch/x86/kvm/cpuid.c
+++ b/arch/x86/kvm/cpuid.c
@@ -123,8 +123,6 @@ int kvm_update_cpuid(struct kvm_vcpu *vcpu)
if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
- kvm_x86_ops->fpu_activate(vcpu);
-
/*
* The existing code assumes virtual address is 48-bit in the canonical
* address checks; exit if it is ever changed.
@@ -383,7 +381,7 @@ static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
/* cpuid 7.0.ecx*/
const u32 kvm_cpuid_7_0_ecx_x86_features =
- F(AVX512VBMI) | F(PKU) | 0 /*OSPKE*/;
+ F(AVX512VBMI) | F(PKU) | 0 /*OSPKE*/ | F(AVX512_VPOPCNTDQ);
/* cpuid 7.0.edx*/
const u32 kvm_cpuid_7_0_edx_x86_features =
@@ -861,12 +859,6 @@ void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
if (!best)
best = check_cpuid_limit(vcpu, function, index);
- /*
- * Perfmon not yet supported for L2 guest.
- */
- if (is_guest_mode(vcpu) && function == 0xa)
- best = NULL;
-
if (best) {
*eax = best->eax;
*ebx = best->ebx;
diff --git a/arch/x86/kvm/emulate.c b/arch/x86/kvm/emulate.c
index cedbba0f3402..45c7306c8780 100644
--- a/arch/x86/kvm/emulate.c
+++ b/arch/x86/kvm/emulate.c
@@ -173,6 +173,7 @@
#define NearBranch ((u64)1 << 52) /* Near branches */
#define No16 ((u64)1 << 53) /* No 16 bit operand */
#define IncSP ((u64)1 << 54) /* SP is incremented before ModRM calc */
+#define TwoMemOp ((u64)1 << 55) /* Instruction has two memory operand */
#define DstXacc (DstAccLo | SrcAccHi | SrcWrite)
@@ -4298,7 +4299,7 @@ static const struct opcode group1[] = {
};
static const struct opcode group1A[] = {
- I(DstMem | SrcNone | Mov | Stack | IncSP, em_pop), N, N, N, N, N, N, N,
+ I(DstMem | SrcNone | Mov | Stack | IncSP | TwoMemOp, em_pop), N, N, N, N, N, N, N,
};
static const struct opcode group2[] = {
@@ -4336,7 +4337,7 @@ static const struct opcode group5[] = {
I(SrcMemFAddr | ImplicitOps, em_call_far),
I(SrcMem | NearBranch, em_jmp_abs),
I(SrcMemFAddr | ImplicitOps, em_jmp_far),
- I(SrcMem | Stack, em_push), D(Undefined),
+ I(SrcMem | Stack | TwoMemOp, em_push), D(Undefined),
};
static const struct opcode group6[] = {
@@ -4556,8 +4557,8 @@ static const struct opcode opcode_table[256] = {
/* 0xA0 - 0xA7 */
I2bv(DstAcc | SrcMem | Mov | MemAbs, em_mov),
I2bv(DstMem | SrcAcc | Mov | MemAbs | PageTable, em_mov),
- I2bv(SrcSI | DstDI | Mov | String, em_mov),
- F2bv(SrcSI | DstDI | String | NoWrite, em_cmp_r),
+ I2bv(SrcSI | DstDI | Mov | String | TwoMemOp, em_mov),
+ F2bv(SrcSI | DstDI | String | NoWrite | TwoMemOp, em_cmp_r),
/* 0xA8 - 0xAF */
F2bv(DstAcc | SrcImm | NoWrite, em_test),
I2bv(SrcAcc | DstDI | Mov | String, em_mov),
@@ -5671,3 +5672,14 @@ void emulator_writeback_register_cache(struct x86_emulate_ctxt *ctxt)
{
writeback_registers(ctxt);
}
+
+bool emulator_can_use_gpa(struct x86_emulate_ctxt *ctxt)
+{
+ if (ctxt->rep_prefix && (ctxt->d & String))
+ return false;
+
+ if (ctxt->d & TwoMemOp)
+ return false;
+
+ return true;
+}
diff --git a/arch/x86/kvm/hyperv.c b/arch/x86/kvm/hyperv.c
index 2ecd7dab4631..f701d4430727 100644
--- a/arch/x86/kvm/hyperv.c
+++ b/arch/x86/kvm/hyperv.c
@@ -305,13 +305,13 @@ static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
return -ENOENT;
memset(&irq, 0, sizeof(irq));
- irq.dest_id = kvm_apic_id(vcpu->arch.apic);
+ irq.shorthand = APIC_DEST_SELF;
irq.dest_mode = APIC_DEST_PHYSICAL;
irq.delivery_mode = APIC_DM_FIXED;
irq.vector = vector;
irq.level = 1;
- ret = kvm_irq_delivery_to_apic(vcpu->kvm, NULL, &irq, NULL);
+ ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
return ret;
}
diff --git a/arch/x86/kvm/i8259.c b/arch/x86/kvm/i8259.c
index 7cc2360f1848..73ea24d4f119 100644
--- a/arch/x86/kvm/i8259.c
+++ b/arch/x86/kvm/i8259.c
@@ -598,14 +598,14 @@ static const struct kvm_io_device_ops picdev_eclr_ops = {
.write = picdev_eclr_write,
};
-struct kvm_pic *kvm_create_pic(struct kvm *kvm)
+int kvm_pic_init(struct kvm *kvm)
{
struct kvm_pic *s;
int ret;
s = kzalloc(sizeof(struct kvm_pic), GFP_KERNEL);
if (!s)
- return NULL;
+ return -ENOMEM;
spin_lock_init(&s->lock);
s->kvm = kvm;
s->pics[0].elcr_mask = 0xf8;
@@ -635,7 +635,9 @@ struct kvm_pic *kvm_create_pic(struct kvm *kvm)
mutex_unlock(&kvm->slots_lock);
- return s;
+ kvm->arch.vpic = s;
+
+ return 0;
fail_unreg_1:
kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &s->dev_slave);
@@ -648,13 +650,17 @@ fail_unlock:
kfree(s);
- return NULL;
+ return ret;
}
-void kvm_destroy_pic(struct kvm_pic *vpic)
+void kvm_pic_destroy(struct kvm *kvm)
{
+ struct kvm_pic *vpic = kvm->arch.vpic;
+
kvm_io_bus_unregister_dev(vpic->kvm, KVM_PIO_BUS, &vpic->dev_master);
kvm_io_bus_unregister_dev(vpic->kvm, KVM_PIO_BUS, &vpic->dev_slave);
kvm_io_bus_unregister_dev(vpic->kvm, KVM_PIO_BUS, &vpic->dev_eclr);
+
+ kvm->arch.vpic = NULL;
kfree(vpic);
}
diff --git a/arch/x86/kvm/irq.h b/arch/x86/kvm/irq.h
index 035731eb3897..40d5b2cf6061 100644
--- a/arch/x86/kvm/irq.h
+++ b/arch/x86/kvm/irq.h
@@ -73,8 +73,8 @@ struct kvm_pic {
unsigned long irq_states[PIC_NUM_PINS];
};
-struct kvm_pic *kvm_create_pic(struct kvm *kvm);
-void kvm_destroy_pic(struct kvm_pic *vpic);
+int kvm_pic_init(struct kvm *kvm);
+void kvm_pic_destroy(struct kvm *kvm);
int kvm_pic_read_irq(struct kvm *kvm);
void kvm_pic_update_irq(struct kvm_pic *s);
@@ -93,18 +93,19 @@ static inline int pic_in_kernel(struct kvm *kvm)
static inline int irqchip_split(struct kvm *kvm)
{
- return kvm->arch.irqchip_split;
+ return kvm->arch.irqchip_mode == KVM_IRQCHIP_SPLIT;
}
-static inline int irqchip_in_kernel(struct kvm *kvm)
+static inline int irqchip_kernel(struct kvm *kvm)
{
- struct kvm_pic *vpic = pic_irqchip(kvm);
- bool ret;
+ return kvm->arch.irqchip_mode == KVM_IRQCHIP_KERNEL;
+}
- ret = (vpic != NULL);
- ret |= irqchip_split(kvm);
+static inline int irqchip_in_kernel(struct kvm *kvm)
+{
+ bool ret = kvm->arch.irqchip_mode != KVM_IRQCHIP_NONE;
- /* Read vpic before kvm->irq_routing. */
+ /* Matches with wmb after initializing kvm->irq_routing. */
smp_rmb();
return ret;
}
diff --git a/arch/x86/kvm/irq_comm.c b/arch/x86/kvm/irq_comm.c
index 6c0191615f23..b96d3893f121 100644
--- a/arch/x86/kvm/irq_comm.c
+++ b/arch/x86/kvm/irq_comm.c
@@ -41,15 +41,6 @@ static int kvm_set_pic_irq(struct kvm_kernel_irq_routing_entry *e,
bool line_status)
{
struct kvm_pic *pic = pic_irqchip(kvm);
-
- /*
- * XXX: rejecting pic routes when pic isn't in use would be better,
- * but the default routing table is installed while kvm->arch.vpic is
- * NULL and KVM_CREATE_IRQCHIP can race with KVM_IRQ_LINE.
- */
- if (!pic)
- return -1;
-
return kvm_pic_set_irq(pic, e->irqchip.pin, irq_source_id, level);
}
@@ -58,10 +49,6 @@ static int kvm_set_ioapic_irq(struct kvm_kernel_irq_routing_entry *e,
bool line_status)
{
struct kvm_ioapic *ioapic = kvm->arch.vioapic;
-
- if (!ioapic)
- return -1;
-
return kvm_ioapic_set_irq(ioapic, e->irqchip.pin, irq_source_id, level,
line_status);
}
@@ -297,16 +284,20 @@ int kvm_set_routing_entry(struct kvm *kvm,
case KVM_IRQ_ROUTING_IRQCHIP:
delta = 0;
switch (ue->u.irqchip.irqchip) {
- case KVM_IRQCHIP_PIC_MASTER:
- e->set = kvm_set_pic_irq;
- max_pin = PIC_NUM_PINS;
- break;
case KVM_IRQCHIP_PIC_SLAVE:
+ delta = 8;
+ /* fall through */
+ case KVM_IRQCHIP_PIC_MASTER:
+ if (!pic_in_kernel(kvm))
+ goto out;
+
e->set = kvm_set_pic_irq;
max_pin = PIC_NUM_PINS;
- delta = 8;
break;
case KVM_IRQCHIP_IOAPIC:
+ if (!ioapic_in_kernel(kvm))
+ goto out;
+
max_pin = KVM_IOAPIC_NUM_PINS;
e->set = kvm_set_ioapic_irq;
break;
@@ -409,7 +400,7 @@ int kvm_setup_empty_irq_routing(struct kvm *kvm)
void kvm_arch_post_irq_routing_update(struct kvm *kvm)
{
- if (ioapic_in_kernel(kvm) || !irqchip_in_kernel(kvm))
+ if (!irqchip_split(kvm))
return;
kvm_make_scan_ioapic_request(kvm);
}
diff --git a/arch/x86/kvm/lapic.c b/arch/x86/kvm/lapic.c
index 2f6ef5121a4c..bad6a25067bc 100644
--- a/arch/x86/kvm/lapic.c
+++ b/arch/x86/kvm/lapic.c
@@ -115,6 +115,16 @@ static inline int apic_enabled(struct kvm_lapic *apic)
(LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \
APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER)
+static inline u8 kvm_xapic_id(struct kvm_lapic *apic)
+{
+ return kvm_lapic_get_reg(apic, APIC_ID) >> 24;
+}
+
+static inline u32 kvm_x2apic_id(struct kvm_lapic *apic)
+{
+ return apic->vcpu->vcpu_id;
+}
+
static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map *map,
u32 dest_id, struct kvm_lapic ***cluster, u16 *mask) {
switch (map->mode) {
@@ -159,13 +169,13 @@ static void recalculate_apic_map(struct kvm *kvm)
struct kvm_apic_map *new, *old = NULL;
struct kvm_vcpu *vcpu;
int i;
- u32 max_id = 255;
+ u32 max_id = 255; /* enough space for any xAPIC ID */
mutex_lock(&kvm->arch.apic_map_lock);
kvm_for_each_vcpu(i, vcpu, kvm)
if (kvm_apic_present(vcpu))
- max_id = max(max_id, kvm_apic_id(vcpu->arch.apic));
+ max_id = max(max_id, kvm_x2apic_id(vcpu->arch.apic));
new = kvm_kvzalloc(sizeof(struct kvm_apic_map) +
sizeof(struct kvm_lapic *) * ((u64)max_id + 1));
@@ -179,16 +189,28 @@ static void recalculate_apic_map(struct kvm *kvm)
struct kvm_lapic *apic = vcpu->arch.apic;
struct kvm_lapic **cluster;
u16 mask;
- u32 ldr, aid;
+ u32 ldr;
+ u8 xapic_id;
+ u32 x2apic_id;
if (!kvm_apic_present(vcpu))
continue;
- aid = kvm_apic_id(apic);
- ldr = kvm_lapic_get_reg(apic, APIC_LDR);
+ xapic_id = kvm_xapic_id(apic);
+ x2apic_id = kvm_x2apic_id(apic);
- if (aid <= new->max_apic_id)
- new->phys_map[aid] = apic;
+ /* Hotplug hack: see kvm_apic_match_physical_addr(), ... */
+ if ((apic_x2apic_mode(apic) || x2apic_id > 0xff) &&
+ x2apic_id <= new->max_apic_id)
+ new->phys_map[x2apic_id] = apic;
+ /*
+ * ... xAPIC ID of VCPUs with APIC ID > 0xff will wrap-around,
+ * prevent them from masking VCPUs with APIC ID <= 0xff.
+ */
+ if (!apic_x2apic_mode(apic) && !new->phys_map[xapic_id])
+ new->phys_map[xapic_id] = apic;
+
+ ldr = kvm_lapic_get_reg(apic, APIC_LDR);
if (apic_x2apic_mode(apic)) {
new->mode |= KVM_APIC_MODE_X2APIC;
@@ -250,6 +272,8 @@ static inline void kvm_apic_set_x2apic_id(struct kvm_lapic *apic, u32 id)
{
u32 ldr = ((id >> 4) << 16) | (1 << (id & 0xf));
+ WARN_ON_ONCE(id != apic->vcpu->vcpu_id);
+
kvm_lapic_set_reg(apic, APIC_ID, id);
kvm_lapic_set_reg(apic, APIC_LDR, ldr);
recalculate_apic_map(apic->vcpu->kvm);
@@ -317,7 +341,7 @@ static int find_highest_vector(void *bitmap)
vec >= 0; vec -= APIC_VECTORS_PER_REG) {
reg = bitmap + REG_POS(vec);
if (*reg)
- return fls(*reg) - 1 + vec;
+ return __fls(*reg) + vec;
}
return -1;
@@ -337,27 +361,32 @@ static u8 count_vectors(void *bitmap)
return count;
}
-void __kvm_apic_update_irr(u32 *pir, void *regs)
+int __kvm_apic_update_irr(u32 *pir, void *regs)
{
- u32 i, pir_val;
+ u32 i, vec;
+ u32 pir_val, irr_val;
+ int max_irr = -1;
- for (i = 0; i <= 7; i++) {
+ for (i = vec = 0; i <= 7; i++, vec += 32) {
pir_val = READ_ONCE(pir[i]);
+ irr_val = *((u32 *)(regs + APIC_IRR + i * 0x10));
if (pir_val) {
- pir_val = xchg(&pir[i], 0);
- *((u32 *)(regs + APIC_IRR + i * 0x10)) |= pir_val;
+ irr_val |= xchg(&pir[i], 0);
+ *((u32 *)(regs + APIC_IRR + i * 0x10)) = irr_val;
}
+ if (irr_val)
+ max_irr = __fls(irr_val) + vec;
}
+
+ return max_irr;
}
EXPORT_SYMBOL_GPL(__kvm_apic_update_irr);
-void kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir)
+int kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir)
{
struct kvm_lapic *apic = vcpu->arch.apic;
- __kvm_apic_update_irr(pir, apic->regs);
-
- kvm_make_request(KVM_REQ_EVENT, vcpu);
+ return __kvm_apic_update_irr(pir, apic->regs);
}
EXPORT_SYMBOL_GPL(kvm_apic_update_irr);
@@ -377,8 +406,6 @@ static inline int apic_find_highest_irr(struct kvm_lapic *apic)
if (!apic->irr_pending)
return -1;
- if (apic->vcpu->arch.apicv_active)
- kvm_x86_ops->sync_pir_to_irr(apic->vcpu);
result = apic_search_irr(apic);
ASSERT(result == -1 || result >= 16);
@@ -392,9 +419,10 @@ static inline void apic_clear_irr(int vec, struct kvm_lapic *apic)
vcpu = apic->vcpu;
if (unlikely(vcpu->arch.apicv_active)) {
- /* try to update RVI */
+ /* need to update RVI */
apic_clear_vector(vec, apic->regs + APIC_IRR);
- kvm_make_request(KVM_REQ_EVENT, vcpu);
+ kvm_x86_ops->hwapic_irr_update(vcpu,
+ apic_find_highest_irr(apic));
} else {
apic->irr_pending = false;
apic_clear_vector(vec, apic->regs + APIC_IRR);
@@ -484,6 +512,7 @@ int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu)
*/
return apic_find_highest_irr(vcpu->arch.apic);
}
+EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr);
static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode,
int vector, int level, int trig_mode,
@@ -500,16 +529,14 @@ int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq,
static int pv_eoi_put_user(struct kvm_vcpu *vcpu, u8 val)
{
-
- return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, &val,
- sizeof(val));
+ return kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.pv_eoi.data, &val,
+ sizeof(val));
}
static int pv_eoi_get_user(struct kvm_vcpu *vcpu, u8 *val)
{
-
- return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data, val,
- sizeof(*val));
+ return kvm_vcpu_read_guest_cached(vcpu, &vcpu->arch.pv_eoi.data, val,
+ sizeof(*val));
}
static inline bool pv_eoi_enabled(struct kvm_vcpu *vcpu)
@@ -546,7 +573,19 @@ static void pv_eoi_clr_pending(struct kvm_vcpu *vcpu)
__clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
}
-static void apic_update_ppr(struct kvm_lapic *apic)
+static int apic_has_interrupt_for_ppr(struct kvm_lapic *apic, u32 ppr)
+{
+ int highest_irr;
+ if (kvm_x86_ops->sync_pir_to_irr && apic->vcpu->arch.apicv_active)
+ highest_irr = kvm_x86_ops->sync_pir_to_irr(apic->vcpu);
+ else
+ highest_irr = apic_find_highest_irr(apic);
+ if (highest_irr == -1 || (highest_irr & 0xF0) <= ppr)
+ return -1;
+ return highest_irr;
+}
+
+static bool __apic_update_ppr(struct kvm_lapic *apic, u32 *new_ppr)
{
u32 tpr, isrv, ppr, old_ppr;
int isr;
@@ -564,13 +603,28 @@ static void apic_update_ppr(struct kvm_lapic *apic)
apic_debug("vlapic %p, ppr 0x%x, isr 0x%x, isrv 0x%x",
apic, ppr, isr, isrv);
- if (old_ppr != ppr) {
+ *new_ppr = ppr;
+ if (old_ppr != ppr)
kvm_lapic_set_reg(apic, APIC_PROCPRI, ppr);
- if (ppr < old_ppr)
- kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
- }
+
+ return ppr < old_ppr;
+}
+
+static void apic_update_ppr(struct kvm_lapic *apic)
+{
+ u32 ppr;
+
+ if (__apic_update_ppr(apic, &ppr) &&
+ apic_has_interrupt_for_ppr(apic, ppr) != -1)
+ kvm_make_request(KVM_REQ_EVENT, apic->vcpu);
}
+void kvm_apic_update_ppr(struct kvm_vcpu *vcpu)
+{
+ apic_update_ppr(vcpu->arch.apic);
+}
+EXPORT_SYMBOL_GPL(kvm_apic_update_ppr);
+
static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr)
{
kvm_lapic_set_reg(apic, APIC_TASKPRI, tpr);
@@ -579,10 +633,8 @@ static void apic_set_tpr(struct kvm_lapic *apic, u32 tpr)
static bool kvm_apic_broadcast(struct kvm_lapic *apic, u32 mda)
{
- if (apic_x2apic_mode(apic))
- return mda == X2APIC_BROADCAST;
-
- return GET_APIC_DEST_FIELD(mda) == APIC_BROADCAST;
+ return mda == (apic_x2apic_mode(apic) ?
+ X2APIC_BROADCAST : APIC_BROADCAST);
}
static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda)
@@ -591,9 +643,18 @@ static bool kvm_apic_match_physical_addr(struct kvm_lapic *apic, u32 mda)
return true;
if (apic_x2apic_mode(apic))
- return mda == kvm_apic_id(apic);
+ return mda == kvm_x2apic_id(apic);
- return mda == SET_APIC_DEST_FIELD(kvm_apic_id(apic));
+ /*
+ * Hotplug hack: Make LAPIC in xAPIC mode also accept interrupts as if
+ * it were in x2APIC mode. Hotplugged VCPUs start in xAPIC mode and
+ * this allows unique addressing of VCPUs with APIC ID over 0xff.
+ * The 0xff condition is needed because writeable xAPIC ID.
+ */
+ if (kvm_x2apic_id(apic) > 0xff && mda == kvm_x2apic_id(apic))
+ return true;
+
+ return mda == kvm_xapic_id(apic);
}
static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda)
@@ -610,7 +671,6 @@ static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda)
&& (logical_id & mda & 0xffff) != 0;
logical_id = GET_APIC_LOGICAL_ID(logical_id);
- mda = GET_APIC_DEST_FIELD(mda);
switch (kvm_lapic_get_reg(apic, APIC_DFR)) {
case APIC_DFR_FLAT:
@@ -627,9 +687,9 @@ static bool kvm_apic_match_logical_addr(struct kvm_lapic *apic, u32 mda)
/* The KVM local APIC implementation has two quirks:
*
- * - the xAPIC MDA stores the destination at bits 24-31, while this
- * is not true of struct kvm_lapic_irq's dest_id field. This is
- * just a quirk in the API and is not problematic.
+ * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs
+ * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID.
+ * KVM doesn't do that aliasing.
*
* - in-kernel IOAPIC messages have to be delivered directly to
* x2APIC, because the kernel does not support interrupt remapping.
@@ -645,13 +705,12 @@ static u32 kvm_apic_mda(struct kvm_vcpu *vcpu, unsigned int dest_id,
struct kvm_lapic *source, struct kvm_lapic *target)
{
bool ipi = source != NULL;
- bool x2apic_mda = apic_x2apic_mode(ipi ? source : target);
if (!vcpu->kvm->arch.x2apic_broadcast_quirk_disabled &&
- !ipi && dest_id == APIC_BROADCAST && x2apic_mda)
+ !ipi && dest_id == APIC_BROADCAST && apic_x2apic_mode(target))
return X2APIC_BROADCAST;
- return x2apic_mda ? dest_id : SET_APIC_DEST_FIELD(dest_id);
+ return dest_id;
}
bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
@@ -1907,9 +1966,9 @@ void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event)
vcpu->arch.apic_arb_prio = 0;
vcpu->arch.apic_attention = 0;
- apic_debug("%s: vcpu=%p, id=%d, base_msr="
+ apic_debug("%s: vcpu=%p, id=0x%x, base_msr="
"0x%016" PRIx64 ", base_address=0x%0lx.\n", __func__,
- vcpu, kvm_apic_id(apic),
+ vcpu, kvm_lapic_get_reg(apic, APIC_ID),
vcpu->arch.apic_base, apic->base_address);
}
@@ -2021,17 +2080,13 @@ nomem:
int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu)
{
struct kvm_lapic *apic = vcpu->arch.apic;
- int highest_irr;
+ u32 ppr;
if (!apic_enabled(apic))
return -1;
- apic_update_ppr(apic);
- highest_irr = apic_find_highest_irr(apic);
- if ((highest_irr == -1) ||
- ((highest_irr & 0xF0) <= kvm_lapic_get_reg(apic, APIC_PROCPRI)))
- return -1;
- return highest_irr;
+ __apic_update_ppr(apic, &ppr);
+ return apic_has_interrupt_for_ppr(apic, ppr);
}
int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu)
@@ -2067,6 +2122,7 @@ int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu)
{
int vector = kvm_apic_has_interrupt(vcpu);
struct kvm_lapic *apic = vcpu->arch.apic;
+ u32 ppr;
if (vector == -1)
return -1;
@@ -2078,13 +2134,23 @@ int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu)
* because the process would deliver it through the IDT.
*/
- apic_set_isr(vector, apic);
- apic_update_ppr(apic);
apic_clear_irr(vector, apic);
-
if (test_bit(vector, vcpu_to_synic(vcpu)->auto_eoi_bitmap)) {
- apic_clear_isr(vector, apic);
+ /*
+ * For auto-EOI interrupts, there might be another pending
+ * interrupt above PPR, so check whether to raise another
+ * KVM_REQ_EVENT.
+ */
apic_update_ppr(apic);
+ } else {
+ /*
+ * For normal interrupts, PPR has been raised and there cannot
+ * be a higher-priority pending interrupt---except if there was
+ * a concurrent interrupt injection, but that would have
+ * triggered KVM_REQ_EVENT already.
+ */
+ apic_set_isr(vector, apic);
+ __apic_update_ppr(apic, &ppr);
}
return vector;
@@ -2145,8 +2211,7 @@ int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s)
1 : count_vectors(apic->regs + APIC_ISR);
apic->highest_isr_cache = -1;
if (vcpu->arch.apicv_active) {
- if (kvm_x86_ops->apicv_post_state_restore)
- kvm_x86_ops->apicv_post_state_restore(vcpu);
+ kvm_x86_ops->apicv_post_state_restore(vcpu);
kvm_x86_ops->hwapic_irr_update(vcpu,
apic_find_highest_irr(apic));
kvm_x86_ops->hwapic_isr_update(vcpu,
@@ -2220,8 +2285,8 @@ void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu)
if (!test_bit(KVM_APIC_CHECK_VAPIC, &vcpu->arch.apic_attention))
return;
- if (kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
- sizeof(u32)))
+ if (kvm_vcpu_read_guest_cached(vcpu, &vcpu->arch.apic->vapic_cache, &data,
+ sizeof(u32)))
return;
apic_set_tpr(vcpu->arch.apic, data & 0xff);
@@ -2273,14 +2338,14 @@ void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu)
max_isr = 0;
data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24);
- kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apic->vapic_cache, &data,
- sizeof(u32));
+ kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.apic->vapic_cache, &data,
+ sizeof(u32));
}
int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, gpa_t vapic_addr)
{
if (vapic_addr) {
- if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
+ if (kvm_vcpu_gfn_to_hva_cache_init(vcpu,
&vcpu->arch.apic->vapic_cache,
vapic_addr, sizeof(u32)))
return -EINVAL;
@@ -2374,7 +2439,7 @@ int kvm_lapic_enable_pv_eoi(struct kvm_vcpu *vcpu, u64 data)
vcpu->arch.pv_eoi.msr_val = data;
if (!pv_eoi_enabled(vcpu))
return 0;
- return kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.pv_eoi.data,
+ return kvm_vcpu_gfn_to_hva_cache_init(vcpu, &vcpu->arch.pv_eoi.data,
addr, sizeof(u8));
}
diff --git a/arch/x86/kvm/lapic.h b/arch/x86/kvm/lapic.h
index ff8039d61672..bcbe811f3b97 100644
--- a/arch/x86/kvm/lapic.h
+++ b/arch/x86/kvm/lapic.h
@@ -71,8 +71,9 @@ int kvm_lapic_reg_read(struct kvm_lapic *apic, u32 offset, int len,
bool kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
int short_hand, unsigned int dest, int dest_mode);
-void __kvm_apic_update_irr(u32 *pir, void *regs);
-void kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir);
+int __kvm_apic_update_irr(u32 *pir, void *regs);
+int kvm_apic_update_irr(struct kvm_vcpu *vcpu, u32 *pir);
+void kvm_apic_update_ppr(struct kvm_vcpu *vcpu);
int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq,
struct dest_map *dest_map);
int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type);
@@ -203,17 +204,6 @@ static inline int kvm_lapic_latched_init(struct kvm_vcpu *vcpu)
return lapic_in_kernel(vcpu) && test_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
}
-static inline u32 kvm_apic_id(struct kvm_lapic *apic)
-{
- /* To avoid a race between apic_base and following APIC_ID update when
- * switching to x2apic_mode, the x2apic mode returns initial x2apic id.
- */
- if (apic_x2apic_mode(apic))
- return apic->vcpu->vcpu_id;
-
- return kvm_lapic_get_reg(apic, APIC_ID) >> 24;
-}
-
bool kvm_apic_pending_eoi(struct kvm_vcpu *vcpu, int vector);
void wait_lapic_expire(struct kvm_vcpu *vcpu);
diff --git a/arch/x86/kvm/mmu.c b/arch/x86/kvm/mmu.c
index 7012de4a1fed..2fd7586aad4d 100644
--- a/arch/x86/kvm/mmu.c
+++ b/arch/x86/kvm/mmu.c
@@ -37,6 +37,8 @@
#include <linux/srcu.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
+#include <linux/hash.h>
+#include <linux/kern_levels.h>
#include <asm/page.h>
#include <asm/cmpxchg.h>
@@ -129,6 +131,10 @@ module_param(dbg, bool, 0644);
#define ACC_USER_MASK PT_USER_MASK
#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
+/* The mask for the R/X bits in EPT PTEs */
+#define PT64_EPT_READABLE_MASK 0x1ull
+#define PT64_EPT_EXECUTABLE_MASK 0x4ull
+
#include <trace/events/kvm.h>
#define CREATE_TRACE_POINTS
@@ -178,15 +184,40 @@ static u64 __read_mostly shadow_dirty_mask;
static u64 __read_mostly shadow_mmio_mask;
static u64 __read_mostly shadow_present_mask;
+/*
+ * The mask/value to distinguish a PTE that has been marked not-present for
+ * access tracking purposes.
+ * The mask would be either 0 if access tracking is disabled, or
+ * SPTE_SPECIAL_MASK|VMX_EPT_RWX_MASK if access tracking is enabled.
+ */
+static u64 __read_mostly shadow_acc_track_mask;
+static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
+
+/*
+ * The mask/shift to use for saving the original R/X bits when marking the PTE
+ * as not-present for access tracking purposes. We do not save the W bit as the
+ * PTEs being access tracked also need to be dirty tracked, so the W bit will be
+ * restored only when a write is attempted to the page.
+ */
+static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
+ PT64_EPT_EXECUTABLE_MASK;
+static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
+
static void mmu_spte_set(u64 *sptep, u64 spte);
static void mmu_free_roots(struct kvm_vcpu *vcpu);
void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
{
- shadow_mmio_mask = mmio_mask;
+ shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
+static inline bool is_access_track_spte(u64 spte)
+{
+ /* Always false if shadow_acc_track_mask is zero. */
+ return (spte & shadow_acc_track_mask) == shadow_acc_track_value;
+}
+
/*
* the low bit of the generation number is always presumed to be zero.
* This disables mmio caching during memslot updates. The concept is
@@ -284,17 +315,35 @@ static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
}
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
- u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask)
+ u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
+ u64 acc_track_mask)
{
+ if (acc_track_mask != 0)
+ acc_track_mask |= SPTE_SPECIAL_MASK;
+
shadow_user_mask = user_mask;
shadow_accessed_mask = accessed_mask;
shadow_dirty_mask = dirty_mask;
shadow_nx_mask = nx_mask;
shadow_x_mask = x_mask;
shadow_present_mask = p_mask;
+ shadow_acc_track_mask = acc_track_mask;
+ WARN_ON(shadow_accessed_mask != 0 && shadow_acc_track_mask != 0);
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
+void kvm_mmu_clear_all_pte_masks(void)
+{
+ shadow_user_mask = 0;
+ shadow_accessed_mask = 0;
+ shadow_dirty_mask = 0;
+ shadow_nx_mask = 0;
+ shadow_x_mask = 0;
+ shadow_mmio_mask = 0;
+ shadow_present_mask = 0;
+ shadow_acc_track_mask = 0;
+}
+
static int is_cpuid_PSE36(void)
{
return 1;
@@ -307,7 +356,7 @@ static int is_nx(struct kvm_vcpu *vcpu)
static int is_shadow_present_pte(u64 pte)
{
- return (pte & 0xFFFFFFFFull) && !is_mmio_spte(pte);
+ return (pte != 0) && !is_mmio_spte(pte);
}
static int is_large_pte(u64 pte)
@@ -324,6 +373,11 @@ static int is_last_spte(u64 pte, int level)
return 0;
}
+static bool is_executable_pte(u64 spte)
+{
+ return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
+}
+
static kvm_pfn_t spte_to_pfn(u64 pte)
{
return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
@@ -473,7 +527,7 @@ retry:
}
#endif
-static bool spte_is_locklessly_modifiable(u64 spte)
+static bool spte_can_locklessly_be_made_writable(u64 spte)
{
return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
@@ -481,36 +535,38 @@ static bool spte_is_locklessly_modifiable(u64 spte)
static bool spte_has_volatile_bits(u64 spte)
{
+ if (!is_shadow_present_pte(spte))
+ return false;
+
/*
* Always atomically update spte if it can be updated
* out of mmu-lock, it can ensure dirty bit is not lost,
* also, it can help us to get a stable is_writable_pte()
* to ensure tlb flush is not missed.
*/
- if (spte_is_locklessly_modifiable(spte))
+ if (spte_can_locklessly_be_made_writable(spte) ||
+ is_access_track_spte(spte))
return true;
- if (!shadow_accessed_mask)
- return false;
-
- if (!is_shadow_present_pte(spte))
- return false;
-
- if ((spte & shadow_accessed_mask) &&
- (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
- return false;
+ if (shadow_accessed_mask) {
+ if ((spte & shadow_accessed_mask) == 0 ||
+ (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
+ return true;
+ }
- return true;
+ return false;
}
-static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
+static bool is_accessed_spte(u64 spte)
{
- return (old_spte & bit_mask) && !(new_spte & bit_mask);
+ return shadow_accessed_mask ? spte & shadow_accessed_mask
+ : !is_access_track_spte(spte);
}
-static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
+static bool is_dirty_spte(u64 spte)
{
- return (old_spte & bit_mask) != (new_spte & bit_mask);
+ return shadow_dirty_mask ? spte & shadow_dirty_mask
+ : spte & PT_WRITABLE_MASK;
}
/* Rules for using mmu_spte_set:
@@ -525,25 +581,19 @@ static void mmu_spte_set(u64 *sptep, u64 new_spte)
__set_spte(sptep, new_spte);
}
-/* Rules for using mmu_spte_update:
- * Update the state bits, it means the mapped pfn is not changed.
- *
- * Whenever we overwrite a writable spte with a read-only one we
- * should flush remote TLBs. Otherwise rmap_write_protect
- * will find a read-only spte, even though the writable spte
- * might be cached on a CPU's TLB, the return value indicates this
- * case.
+/*
+ * Update the SPTE (excluding the PFN), but do not track changes in its
+ * accessed/dirty status.
*/
-static bool mmu_spte_update(u64 *sptep, u64 new_spte)
+static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
{
u64 old_spte = *sptep;
- bool ret = false;
WARN_ON(!is_shadow_present_pte(new_spte));
if (!is_shadow_present_pte(old_spte)) {
mmu_spte_set(sptep, new_spte);
- return ret;
+ return old_spte;
}
if (!spte_has_volatile_bits(old_spte))
@@ -551,45 +601,62 @@ static bool mmu_spte_update(u64 *sptep, u64 new_spte)
else
old_spte = __update_clear_spte_slow(sptep, new_spte);
+ WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
+
+ return old_spte;
+}
+
+/* Rules for using mmu_spte_update:
+ * Update the state bits, it means the mapped pfn is not changed.
+ *
+ * Whenever we overwrite a writable spte with a read-only one we
+ * should flush remote TLBs. Otherwise rmap_write_protect
+ * will find a read-only spte, even though the writable spte
+ * might be cached on a CPU's TLB, the return value indicates this
+ * case.
+ *
+ * Returns true if the TLB needs to be flushed
+ */
+static bool mmu_spte_update(u64 *sptep, u64 new_spte)
+{
+ bool flush = false;
+ u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
+
+ if (!is_shadow_present_pte(old_spte))
+ return false;
+
/*
* For the spte updated out of mmu-lock is safe, since
* we always atomically update it, see the comments in
* spte_has_volatile_bits().
*/
- if (spte_is_locklessly_modifiable(old_spte) &&
+ if (spte_can_locklessly_be_made_writable(old_spte) &&
!is_writable_pte(new_spte))
- ret = true;
-
- if (!shadow_accessed_mask) {
- /*
- * We don't set page dirty when dropping non-writable spte.
- * So do it now if the new spte is becoming non-writable.
- */
- if (ret)
- kvm_set_pfn_dirty(spte_to_pfn(old_spte));
- return ret;
- }
+ flush = true;
/*
- * Flush TLB when accessed/dirty bits are changed in the page tables,
+ * Flush TLB when accessed/dirty states are changed in the page tables,
* to guarantee consistency between TLB and page tables.
*/
- if (spte_is_bit_changed(old_spte, new_spte,
- shadow_accessed_mask | shadow_dirty_mask))
- ret = true;
- if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
+ if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
+ flush = true;
kvm_set_pfn_accessed(spte_to_pfn(old_spte));
- if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
+ }
+
+ if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
+ flush = true;
kvm_set_pfn_dirty(spte_to_pfn(old_spte));
+ }
- return ret;
+ return flush;
}
/*
* Rules for using mmu_spte_clear_track_bits:
* It sets the sptep from present to nonpresent, and track the
* state bits, it is used to clear the last level sptep.
+ * Returns non-zero if the PTE was previously valid.
*/
static int mmu_spte_clear_track_bits(u64 *sptep)
{
@@ -613,11 +680,12 @@ static int mmu_spte_clear_track_bits(u64 *sptep)
*/
WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
- if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
+ if (is_accessed_spte(old_spte))
kvm_set_pfn_accessed(pfn);
- if (old_spte & (shadow_dirty_mask ? shadow_dirty_mask :
- PT_WRITABLE_MASK))
+
+ if (is_dirty_spte(old_spte))
kvm_set_pfn_dirty(pfn);
+
return 1;
}
@@ -636,6 +704,78 @@ static u64 mmu_spte_get_lockless(u64 *sptep)
return __get_spte_lockless(sptep);
}
+static u64 mark_spte_for_access_track(u64 spte)
+{
+ if (shadow_accessed_mask != 0)
+ return spte & ~shadow_accessed_mask;
+
+ if (shadow_acc_track_mask == 0 || is_access_track_spte(spte))
+ return spte;
+
+ /*
+ * Making an Access Tracking PTE will result in removal of write access
+ * from the PTE. So, verify that we will be able to restore the write
+ * access in the fast page fault path later on.
+ */
+ WARN_ONCE((spte & PT_WRITABLE_MASK) &&
+ !spte_can_locklessly_be_made_writable(spte),
+ "kvm: Writable SPTE is not locklessly dirty-trackable\n");
+
+ WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
+ shadow_acc_track_saved_bits_shift),
+ "kvm: Access Tracking saved bit locations are not zero\n");
+
+ spte |= (spte & shadow_acc_track_saved_bits_mask) <<
+ shadow_acc_track_saved_bits_shift;
+ spte &= ~shadow_acc_track_mask;
+ spte |= shadow_acc_track_value;
+
+ return spte;
+}
+
+/* Restore an acc-track PTE back to a regular PTE */
+static u64 restore_acc_track_spte(u64 spte)
+{
+ u64 new_spte = spte;
+ u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
+ & shadow_acc_track_saved_bits_mask;
+
+ WARN_ON_ONCE(!is_access_track_spte(spte));
+
+ new_spte &= ~shadow_acc_track_mask;
+ new_spte &= ~(shadow_acc_track_saved_bits_mask <<
+ shadow_acc_track_saved_bits_shift);
+ new_spte |= saved_bits;
+
+ return new_spte;
+}
+
+/* Returns the Accessed status of the PTE and resets it at the same time. */
+static bool mmu_spte_age(u64 *sptep)
+{
+ u64 spte = mmu_spte_get_lockless(sptep);
+
+ if (!is_accessed_spte(spte))
+ return false;
+
+ if (shadow_accessed_mask) {
+ clear_bit((ffs(shadow_accessed_mask) - 1),
+ (unsigned long *)sptep);
+ } else {
+ /*
+ * Capture the dirty status of the page, so that it doesn't get
+ * lost when the SPTE is marked for access tracking.
+ */
+ if (is_writable_pte(spte))
+ kvm_set_pfn_dirty(spte_to_pfn(spte));
+
+ spte = mark_spte_for_access_track(spte);
+ mmu_spte_update_no_track(sptep, spte);
+ }
+
+ return true;
+}
+
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
/*
@@ -1212,7 +1352,7 @@ static bool spte_write_protect(u64 *sptep, bool pt_protect)
u64 spte = *sptep;
if (!is_writable_pte(spte) &&
- !(pt_protect && spte_is_locklessly_modifiable(spte)))
+ !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
return false;
rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
@@ -1420,7 +1560,7 @@ static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
restart:
for_each_rmap_spte(rmap_head, &iter, sptep) {
rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
- sptep, *sptep, gfn, level);
+ sptep, *sptep, gfn, level);
need_flush = 1;
@@ -1433,7 +1573,8 @@ restart:
new_spte &= ~PT_WRITABLE_MASK;
new_spte &= ~SPTE_HOST_WRITEABLE;
- new_spte &= ~shadow_accessed_mask;
+
+ new_spte = mark_spte_for_access_track(new_spte);
mmu_spte_clear_track_bits(sptep);
mmu_spte_set(sptep, new_spte);
@@ -1595,15 +1736,8 @@ static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
struct rmap_iterator uninitialized_var(iter);
int young = 0;
- BUG_ON(!shadow_accessed_mask);
-
- for_each_rmap_spte(rmap_head, &iter, sptep) {
- if (*sptep & shadow_accessed_mask) {
- young = 1;
- clear_bit((ffs(shadow_accessed_mask) - 1),
- (unsigned long *)sptep);
- }
- }
+ for_each_rmap_spte(rmap_head, &iter, sptep)
+ young |= mmu_spte_age(sptep);
trace_kvm_age_page(gfn, level, slot, young);
return young;
@@ -1615,24 +1749,20 @@ static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
{
u64 *sptep;
struct rmap_iterator iter;
- int young = 0;
/*
- * If there's no access bit in the secondary pte set by the
- * hardware it's up to gup-fast/gup to set the access bit in
- * the primary pte or in the page structure.
+ * If there's no access bit in the secondary pte set by the hardware and
+ * fast access tracking is also not enabled, it's up to gup-fast/gup to
+ * set the access bit in the primary pte or in the page structure.
*/
- if (!shadow_accessed_mask)
+ if (!shadow_accessed_mask && !shadow_acc_track_mask)
goto out;
- for_each_rmap_spte(rmap_head, &iter, sptep) {
- if (*sptep & shadow_accessed_mask) {
- young = 1;
- break;
- }
- }
+ for_each_rmap_spte(rmap_head, &iter, sptep)
+ if (is_accessed_spte(*sptep))
+ return 1;
out:
- return young;
+ return 0;
}
#define RMAP_RECYCLE_THRESHOLD 1000
@@ -1660,7 +1790,7 @@ int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
* This has some overhead, but not as much as the cost of swapping
* out actively used pages or breaking up actively used hugepages.
*/
- if (!shadow_accessed_mask)
+ if (!shadow_accessed_mask && !shadow_acc_track_mask)
return kvm_handle_hva_range(kvm, start, end, 0,
kvm_unmap_rmapp);
@@ -1713,7 +1843,7 @@ static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
- return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
+ return hash_64(gfn, KVM_MMU_HASH_SHIFT);
}
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
@@ -1904,17 +2034,17 @@ static void kvm_mmu_commit_zap_page(struct kvm *kvm,
* since it has been deleted from active_mmu_pages but still can be found
* at hast list.
*
- * for_each_gfn_valid_sp() has skipped that kind of pages.
+ * for_each_valid_sp() has skipped that kind of pages.
*/
-#define for_each_gfn_valid_sp(_kvm, _sp, _gfn) \
+#define for_each_valid_sp(_kvm, _sp, _gfn) \
hlist_for_each_entry(_sp, \
&(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
- if ((_sp)->gfn != (_gfn) || is_obsolete_sp((_kvm), (_sp)) \
- || (_sp)->role.invalid) {} else
+ if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) { \
+ } else
#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
- for_each_gfn_valid_sp(_kvm, _sp, _gfn) \
- if ((_sp)->role.direct) {} else
+ for_each_valid_sp(_kvm, _sp, _gfn) \
+ if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
/* @sp->gfn should be write-protected at the call site */
static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
@@ -2116,6 +2246,7 @@ static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
struct kvm_mmu_page *sp;
bool need_sync = false;
bool flush = false;
+ int collisions = 0;
LIST_HEAD(invalid_list);
role = vcpu->arch.mmu.base_role;
@@ -2130,7 +2261,12 @@ static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
role.quadrant = quadrant;
}
- for_each_gfn_valid_sp(vcpu->kvm, sp, gfn) {
+ for_each_valid_sp(vcpu->kvm, sp, gfn) {
+ if (sp->gfn != gfn) {
+ collisions++;
+ continue;
+ }
+
if (!need_sync && sp->unsync)
need_sync = true;
@@ -2153,7 +2289,7 @@ static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
__clear_sp_write_flooding_count(sp);
trace_kvm_mmu_get_page(sp, false);
- return sp;
+ goto out;
}
++vcpu->kvm->stat.mmu_cache_miss;
@@ -2183,6 +2319,9 @@ static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
trace_kvm_mmu_get_page(sp, true);
kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
+out:
+ if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
+ vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
return sp;
}
@@ -2583,6 +2722,9 @@ static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
spte |= shadow_dirty_mask;
}
+ if (speculative)
+ spte = mark_spte_for_access_track(spte);
+
set_pte:
if (mmu_spte_update(sptep, spte))
kvm_flush_remote_tlbs(vcpu->kvm);
@@ -2636,7 +2778,7 @@ static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
pgprintk("%s: setting spte %llx\n", __func__, *sptep);
pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
is_large_pte(*sptep)? "2MB" : "4kB",
- *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
+ *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
*sptep, sptep);
if (!was_rmapped && is_large_pte(*sptep))
++vcpu->kvm->stat.lpages;
@@ -2869,33 +3011,43 @@ static bool page_fault_can_be_fast(u32 error_code)
if (unlikely(error_code & PFERR_RSVD_MASK))
return false;
+ /* See if the page fault is due to an NX violation */
+ if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
+ == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
+ return false;
+
/*
- * #PF can be fast only if the shadow page table is present and it
- * is caused by write-protect, that means we just need change the
- * W bit of the spte which can be done out of mmu-lock.
+ * #PF can be fast if:
+ * 1. The shadow page table entry is not present, which could mean that
+ * the fault is potentially caused by access tracking (if enabled).
+ * 2. The shadow page table entry is present and the fault
+ * is caused by write-protect, that means we just need change the W
+ * bit of the spte which can be done out of mmu-lock.
+ *
+ * However, if access tracking is disabled we know that a non-present
+ * page must be a genuine page fault where we have to create a new SPTE.
+ * So, if access tracking is disabled, we return true only for write
+ * accesses to a present page.
*/
- if (!(error_code & PFERR_PRESENT_MASK) ||
- !(error_code & PFERR_WRITE_MASK))
- return false;
- return true;
+ return shadow_acc_track_mask != 0 ||
+ ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
+ == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
}
+/*
+ * Returns true if the SPTE was fixed successfully. Otherwise,
+ * someone else modified the SPTE from its original value.
+ */
static bool
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
- u64 *sptep, u64 spte)
+ u64 *sptep, u64 old_spte, u64 new_spte)
{
gfn_t gfn;
WARN_ON(!sp->role.direct);
/*
- * The gfn of direct spte is stable since it is calculated
- * by sp->gfn.
- */
- gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
-
- /*
* Theoretically we could also set dirty bit (and flush TLB) here in
* order to eliminate unnecessary PML logging. See comments in
* set_spte. But fast_page_fault is very unlikely to happen with PML
@@ -2907,12 +3059,33 @@ fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
*
* Compare with set_spte where instead shadow_dirty_mask is set.
*/
- if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
+ if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
+ return false;
+
+ if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
+ /*
+ * The gfn of direct spte is stable since it is
+ * calculated by sp->gfn.
+ */
+ gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
kvm_vcpu_mark_page_dirty(vcpu, gfn);
+ }
return true;
}
+static bool is_access_allowed(u32 fault_err_code, u64 spte)
+{
+ if (fault_err_code & PFERR_FETCH_MASK)
+ return is_executable_pte(spte);
+
+ if (fault_err_code & PFERR_WRITE_MASK)
+ return is_writable_pte(spte);
+
+ /* Fault was on Read access */
+ return spte & PT_PRESENT_MASK;
+}
+
/*
* Return value:
* - true: let the vcpu to access on the same address again.
@@ -2923,8 +3096,9 @@ static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
{
struct kvm_shadow_walk_iterator iterator;
struct kvm_mmu_page *sp;
- bool ret = false;
+ bool fault_handled = false;
u64 spte = 0ull;
+ uint retry_count = 0;
if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
return false;
@@ -2933,66 +3107,93 @@ static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
return false;
walk_shadow_page_lockless_begin(vcpu);
- for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
- if (!is_shadow_present_pte(spte) || iterator.level < level)
+
+ do {
+ u64 new_spte;
+
+ for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
+ if (!is_shadow_present_pte(spte) ||
+ iterator.level < level)
+ break;
+
+ sp = page_header(__pa(iterator.sptep));
+ if (!is_last_spte(spte, sp->role.level))
break;
- /*
- * If the mapping has been changed, let the vcpu fault on the
- * same address again.
- */
- if (!is_shadow_present_pte(spte)) {
- ret = true;
- goto exit;
- }
+ /*
+ * Check whether the memory access that caused the fault would
+ * still cause it if it were to be performed right now. If not,
+ * then this is a spurious fault caused by TLB lazily flushed,
+ * or some other CPU has already fixed the PTE after the
+ * current CPU took the fault.
+ *
+ * Need not check the access of upper level table entries since
+ * they are always ACC_ALL.
+ */
+ if (is_access_allowed(error_code, spte)) {
+ fault_handled = true;
+ break;
+ }
- sp = page_header(__pa(iterator.sptep));
- if (!is_last_spte(spte, sp->role.level))
- goto exit;
+ new_spte = spte;
- /*
- * Check if it is a spurious fault caused by TLB lazily flushed.
- *
- * Need not check the access of upper level table entries since
- * they are always ACC_ALL.
- */
- if (is_writable_pte(spte)) {
- ret = true;
- goto exit;
- }
+ if (is_access_track_spte(spte))
+ new_spte = restore_acc_track_spte(new_spte);
- /*
- * Currently, to simplify the code, only the spte write-protected
- * by dirty-log can be fast fixed.
- */
- if (!spte_is_locklessly_modifiable(spte))
- goto exit;
+ /*
+ * Currently, to simplify the code, write-protection can
+ * be removed in the fast path only if the SPTE was
+ * write-protected for dirty-logging or access tracking.
+ */
+ if ((error_code & PFERR_WRITE_MASK) &&
+ spte_can_locklessly_be_made_writable(spte))
+ {
+ new_spte |= PT_WRITABLE_MASK;
- /*
- * Do not fix write-permission on the large spte since we only dirty
- * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
- * that means other pages are missed if its slot is dirty-logged.
- *
- * Instead, we let the slow page fault path create a normal spte to
- * fix the access.
- *
- * See the comments in kvm_arch_commit_memory_region().
- */
- if (sp->role.level > PT_PAGE_TABLE_LEVEL)
- goto exit;
+ /*
+ * Do not fix write-permission on the large spte. Since
+ * we only dirty the first page into the dirty-bitmap in
+ * fast_pf_fix_direct_spte(), other pages are missed
+ * if its slot has dirty logging enabled.
+ *
+ * Instead, we let the slow page fault path create a
+ * normal spte to fix the access.
+ *
+ * See the comments in kvm_arch_commit_memory_region().
+ */
+ if (sp->role.level > PT_PAGE_TABLE_LEVEL)
+ break;
+ }
+
+ /* Verify that the fault can be handled in the fast path */
+ if (new_spte == spte ||
+ !is_access_allowed(error_code, new_spte))
+ break;
+
+ /*
+ * Currently, fast page fault only works for direct mapping
+ * since the gfn is not stable for indirect shadow page. See
+ * Documentation/virtual/kvm/locking.txt to get more detail.
+ */
+ fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
+ iterator.sptep, spte,
+ new_spte);
+ if (fault_handled)
+ break;
+
+ if (++retry_count > 4) {
+ printk_once(KERN_WARNING
+ "kvm: Fast #PF retrying more than 4 times.\n");
+ break;
+ }
+
+ } while (true);
- /*
- * Currently, fast page fault only works for direct mapping since
- * the gfn is not stable for indirect shadow page.
- * See Documentation/virtual/kvm/locking.txt to get more detail.
- */
- ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
-exit:
trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
- spte, ret);
+ spte, fault_handled);
walk_shadow_page_lockless_end(vcpu);
- return ret;
+ return fault_handled;
}
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
@@ -5063,6 +5264,8 @@ static void mmu_destroy_caches(void)
int kvm_mmu_module_init(void)
{
+ kvm_mmu_clear_all_pte_masks();
+
pte_list_desc_cache = kmem_cache_create("pte_list_desc",
sizeof(struct pte_list_desc),
0, 0, NULL);
diff --git a/arch/x86/kvm/svm.c b/arch/x86/kvm/svm.c
index 08a4d3ab3455..d1efe2c62b3f 100644
--- a/arch/x86/kvm/svm.c
+++ b/arch/x86/kvm/svm.c
@@ -971,8 +971,8 @@ static void svm_disable_lbrv(struct vcpu_svm *svm)
* a particular vCPU.
*/
#define SVM_VM_DATA_HASH_BITS 8
-DECLARE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
-static spinlock_t svm_vm_data_hash_lock;
+static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
+static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
/* Note:
* This function is called from IOMMU driver to notify
@@ -1077,8 +1077,6 @@ static __init int svm_hardware_setup(void)
} else {
pr_info("AVIC enabled\n");
- hash_init(svm_vm_data_hash);
- spin_lock_init(&svm_vm_data_hash_lock);
amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
}
}
@@ -1159,7 +1157,6 @@ static void init_vmcb(struct vcpu_svm *svm)
struct vmcb_control_area *control = &svm->vmcb->control;
struct vmcb_save_area *save = &svm->vmcb->save;
- svm->vcpu.fpu_active = 1;
svm->vcpu.arch.hflags = 0;
set_cr_intercept(svm, INTERCEPT_CR0_READ);
@@ -1901,15 +1898,12 @@ static void update_cr0_intercept(struct vcpu_svm *svm)
ulong gcr0 = svm->vcpu.arch.cr0;
u64 *hcr0 = &svm->vmcb->save.cr0;
- if (!svm->vcpu.fpu_active)
- *hcr0 |= SVM_CR0_SELECTIVE_MASK;
- else
- *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
- | (gcr0 & SVM_CR0_SELECTIVE_MASK);
+ *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
+ | (gcr0 & SVM_CR0_SELECTIVE_MASK);
mark_dirty(svm->vmcb, VMCB_CR);
- if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
+ if (gcr0 == *hcr0) {
clr_cr_intercept(svm, INTERCEPT_CR0_READ);
clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
} else {
@@ -1940,8 +1934,6 @@ static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
if (!npt_enabled)
cr0 |= X86_CR0_PG | X86_CR0_WP;
- if (!vcpu->fpu_active)
- cr0 |= X86_CR0_TS;
/*
* re-enable caching here because the QEMU bios
* does not do it - this results in some delay at
@@ -2160,22 +2152,6 @@ static int ac_interception(struct vcpu_svm *svm)
return 1;
}
-static void svm_fpu_activate(struct kvm_vcpu *vcpu)
-{
- struct vcpu_svm *svm = to_svm(vcpu);
-
- clr_exception_intercept(svm, NM_VECTOR);
-
- svm->vcpu.fpu_active = 1;
- update_cr0_intercept(svm);
-}
-
-static int nm_interception(struct vcpu_svm *svm)
-{
- svm_fpu_activate(&svm->vcpu);
- return 1;
-}
-
static bool is_erratum_383(void)
{
int err, i;
@@ -2573,9 +2549,6 @@ static int nested_svm_exit_special(struct vcpu_svm *svm)
if (!npt_enabled && svm->apf_reason == 0)
return NESTED_EXIT_HOST;
break;
- case SVM_EXIT_EXCP_BASE + NM_VECTOR:
- nm_interception(svm);
- break;
default:
break;
}
@@ -4020,7 +3993,6 @@ static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
[SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
[SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
[SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
- [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
[SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
[SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
[SVM_EXIT_INTR] = intr_interception,
@@ -4182,6 +4154,8 @@ static int handle_exit(struct kvm_vcpu *vcpu)
trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
+ vcpu->arch.gpa_available = (exit_code == SVM_EXIT_NPF);
+
if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
vcpu->arch.cr0 = svm->vmcb->save.cr0;
if (npt_enabled)
@@ -4357,11 +4331,6 @@ static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
return;
}
-static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
-{
- return;
-}
-
static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
{
kvm_lapic_set_irr(vec, vcpu->arch.apic);
@@ -5077,14 +5046,6 @@ static bool svm_has_wbinvd_exit(void)
return true;
}
-static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
-{
- struct vcpu_svm *svm = to_svm(vcpu);
-
- set_exception_intercept(svm, NM_VECTOR);
- update_cr0_intercept(svm);
-}
-
#define PRE_EX(exit) { .exit_code = (exit), \
.stage = X86_ICPT_PRE_EXCEPT, }
#define POST_EX(exit) { .exit_code = (exit), \
@@ -5345,9 +5306,6 @@ static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
.get_pkru = svm_get_pkru,
- .fpu_activate = svm_fpu_activate,
- .fpu_deactivate = svm_fpu_deactivate,
-
.tlb_flush = svm_flush_tlb,
.run = svm_vcpu_run,
@@ -5371,7 +5329,6 @@ static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
.get_enable_apicv = svm_get_enable_apicv,
.refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
.load_eoi_exitmap = svm_load_eoi_exitmap,
- .sync_pir_to_irr = svm_sync_pir_to_irr,
.hwapic_irr_update = svm_hwapic_irr_update,
.hwapic_isr_update = svm_hwapic_isr_update,
.apicv_post_state_restore = avic_post_state_restore,
diff --git a/arch/x86/kvm/vmx.c b/arch/x86/kvm/vmx.c
index a236decb81e4..ef4ba71dbb66 100644
--- a/arch/x86/kvm/vmx.c
+++ b/arch/x86/kvm/vmx.c
@@ -1856,7 +1856,7 @@ static void update_exception_bitmap(struct kvm_vcpu *vcpu)
u32 eb;
eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
- (1u << NM_VECTOR) | (1u << DB_VECTOR) | (1u << AC_VECTOR);
+ (1u << DB_VECTOR) | (1u << AC_VECTOR);
if ((vcpu->guest_debug &
(KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
(KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
@@ -1865,8 +1865,6 @@ static void update_exception_bitmap(struct kvm_vcpu *vcpu)
eb = ~0;
if (enable_ept)
eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
- if (vcpu->fpu_active)
- eb &= ~(1u << NM_VECTOR);
/* When we are running a nested L2 guest and L1 specified for it a
* certain exception bitmap, we must trap the same exceptions and pass
@@ -1992,19 +1990,6 @@ static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
m->host[i].value = host_val;
}
-static void reload_tss(void)
-{
- /*
- * VT restores TR but not its size. Useless.
- */
- struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
- struct desc_struct *descs;
-
- descs = (void *)gdt->address;
- descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
- load_TR_desc();
-}
-
static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
{
u64 guest_efer = vmx->vcpu.arch.efer;
@@ -2059,41 +2044,36 @@ static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
}
}
+#ifdef CONFIG_X86_32
+/*
+ * On 32-bit kernels, VM exits still load the FS and GS bases from the
+ * VMCS rather than the segment table. KVM uses this helper to figure
+ * out the current bases to poke them into the VMCS before entry.
+ */
static unsigned long segment_base(u16 selector)
{
struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
struct desc_struct *d;
- unsigned long table_base;
+ struct desc_struct *table;
unsigned long v;
- if (!(selector & ~3))
+ if (!(selector & ~SEGMENT_RPL_MASK))
return 0;
- table_base = gdt->address;
+ table = (struct desc_struct *)gdt->address;
- if (selector & 4) { /* from ldt */
+ if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
u16 ldt_selector = kvm_read_ldt();
- if (!(ldt_selector & ~3))
+ if (!(ldt_selector & ~SEGMENT_RPL_MASK))
return 0;
- table_base = segment_base(ldt_selector);
+ table = (struct desc_struct *)segment_base(ldt_selector);
}
- d = (struct desc_struct *)(table_base + (selector & ~7));
- v = get_desc_base(d);
-#ifdef CONFIG_X86_64
- if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
- v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
-#endif
+ v = get_desc_base(&table[selector >> 3]);
return v;
}
-
-static inline unsigned long kvm_read_tr_base(void)
-{
- u16 tr;
- asm("str %0" : "=g"(tr));
- return segment_base(tr);
-}
+#endif
static void vmx_save_host_state(struct kvm_vcpu *vcpu)
{
@@ -2179,7 +2159,7 @@ static void __vmx_load_host_state(struct vcpu_vmx *vmx)
loadsegment(es, vmx->host_state.es_sel);
}
#endif
- reload_tss();
+ invalidate_tss_limit();
#ifdef CONFIG_X86_64
wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
#endif
@@ -2294,10 +2274,19 @@ static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
/*
* Linux uses per-cpu TSS and GDT, so set these when switching
- * processors.
+ * processors. See 22.2.4.
*/
- vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
- vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
+ vmcs_writel(HOST_TR_BASE,
+ (unsigned long)this_cpu_ptr(&cpu_tss));
+ vmcs_writel(HOST_GDTR_BASE, gdt->address);
+
+ /*
+ * VM exits change the host TR limit to 0x67 after a VM
+ * exit. This is okay, since 0x67 covers everything except
+ * the IO bitmap and have have code to handle the IO bitmap
+ * being lost after a VM exit.
+ */
+ BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
@@ -2340,25 +2329,6 @@ static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
}
}
-static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
-{
- ulong cr0;
-
- if (vcpu->fpu_active)
- return;
- vcpu->fpu_active = 1;
- cr0 = vmcs_readl(GUEST_CR0);
- cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
- cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
- vmcs_writel(GUEST_CR0, cr0);
- update_exception_bitmap(vcpu);
- vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
- if (is_guest_mode(vcpu))
- vcpu->arch.cr0_guest_owned_bits &=
- ~get_vmcs12(vcpu)->cr0_guest_host_mask;
- vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
-}
-
static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
/*
@@ -2377,33 +2347,6 @@ static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
(fields->cr4_read_shadow & fields->cr4_guest_host_mask);
}
-static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
-{
- /* Note that there is no vcpu->fpu_active = 0 here. The caller must
- * set this *before* calling this function.
- */
- vmx_decache_cr0_guest_bits(vcpu);
- vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
- update_exception_bitmap(vcpu);
- vcpu->arch.cr0_guest_owned_bits = 0;
- vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
- if (is_guest_mode(vcpu)) {
- /*
- * L1's specified read shadow might not contain the TS bit,
- * so now that we turned on shadowing of this bit, we need to
- * set this bit of the shadow. Like in nested_vmx_run we need
- * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
- * up-to-date here because we just decached cr0.TS (and we'll
- * only update vmcs12->guest_cr0 on nested exit).
- */
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
- vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
- (vcpu->arch.cr0 & X86_CR0_TS);
- vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
- } else
- vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
-}
-
static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
{
unsigned long rflags, save_rflags;
@@ -3962,7 +3905,7 @@ static void fix_rmode_seg(int seg, struct kvm_segment *save)
}
vmcs_write16(sf->selector, var.selector);
- vmcs_write32(sf->base, var.base);
+ vmcs_writel(sf->base, var.base);
vmcs_write32(sf->limit, var.limit);
vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
}
@@ -4232,9 +4175,6 @@ static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
if (enable_ept)
ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
- if (!vcpu->fpu_active)
- hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
-
vmcs_writel(CR0_READ_SHADOW, cr0);
vmcs_writel(GUEST_CR0, hw_cr0);
vcpu->arch.cr0 = cr0;
@@ -4953,7 +4893,7 @@ static bool vmx_get_enable_apicv(void)
return enable_apicv;
}
-static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
+static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int max_irr;
@@ -4964,19 +4904,15 @@ static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
vmx->nested.pi_pending) {
vmx->nested.pi_pending = false;
if (!pi_test_and_clear_on(vmx->nested.pi_desc))
- return 0;
+ return;
max_irr = find_last_bit(
(unsigned long *)vmx->nested.pi_desc->pir, 256);
if (max_irr == 256)
- return 0;
+ return;
vapic_page = kmap(vmx->nested.virtual_apic_page);
- if (!vapic_page) {
- WARN_ON(1);
- return -ENOMEM;
- }
__kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
kunmap(vmx->nested.virtual_apic_page);
@@ -4987,7 +4923,6 @@ static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
vmcs_write16(GUEST_INTR_STATUS, status);
}
}
- return 0;
}
static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
@@ -5056,26 +4991,12 @@ static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
if (pi_test_and_set_pir(vector, &vmx->pi_desc))
return;
- r = pi_test_and_set_on(&vmx->pi_desc);
- kvm_make_request(KVM_REQ_EVENT, vcpu);
- if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
- kvm_vcpu_kick(vcpu);
-}
-
-static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
-
- if (!pi_test_on(&vmx->pi_desc))
+ /* If a previous notification has sent the IPI, nothing to do. */
+ if (pi_test_and_set_on(&vmx->pi_desc))
return;
- pi_clear_on(&vmx->pi_desc);
- /*
- * IOMMU can write to PIR.ON, so the barrier matters even on UP.
- * But on x86 this is just a compiler barrier anyway.
- */
- smp_mb__after_atomic();
- kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
+ if (!kvm_vcpu_trigger_posted_interrupt(vcpu))
+ kvm_vcpu_kick(vcpu);
}
/*
@@ -5236,10 +5157,8 @@ static void ept_set_mmio_spte_mask(void)
/*
* EPT Misconfigurations can be generated if the value of bits 2:0
* of an EPT paging-structure entry is 110b (write/execute).
- * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
- * spte.
*/
- kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
+ kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE);
}
#define VMX_XSS_EXIT_BITMAP 0
@@ -5342,7 +5261,9 @@ static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
/* 22.2.1, 20.8.1 */
vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
- vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
+ vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
+ vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
+
set_cr4_guest_host_mask(vmx);
if (vmx_xsaves_supported())
@@ -5446,7 +5367,7 @@ static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
vmx_set_cr0(vcpu, cr0); /* enter rmode */
vmx_set_cr4(vcpu, 0);
vmx_set_efer(vcpu, 0);
- vmx_fpu_activate(vcpu);
+
update_exception_bitmap(vcpu);
vpid_sync_context(vmx->vpid);
@@ -5480,26 +5401,20 @@ static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
static void enable_irq_window(struct kvm_vcpu *vcpu)
{
- u32 cpu_based_vm_exec_control;
-
- cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
- cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
- vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
+ vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
+ CPU_BASED_VIRTUAL_INTR_PENDING);
}
static void enable_nmi_window(struct kvm_vcpu *vcpu)
{
- u32 cpu_based_vm_exec_control;
-
if (!cpu_has_virtual_nmis() ||
vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
enable_irq_window(vcpu);
return;
}
- cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
- cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
- vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
+ vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
+ CPU_BASED_VIRTUAL_NMI_PENDING);
}
static void vmx_inject_irq(struct kvm_vcpu *vcpu)
@@ -5725,11 +5640,6 @@ static int handle_exception(struct kvm_vcpu *vcpu)
if (is_nmi(intr_info))
return 1; /* already handled by vmx_vcpu_run() */
- if (is_no_device(intr_info)) {
- vmx_fpu_activate(vcpu);
- return 1;
- }
-
if (is_invalid_opcode(intr_info)) {
if (is_guest_mode(vcpu)) {
kvm_queue_exception(vcpu, UD_VECTOR);
@@ -5919,22 +5829,6 @@ static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
return kvm_set_cr4(vcpu, val);
}
-/* called to set cr0 as appropriate for clts instruction exit. */
-static void handle_clts(struct kvm_vcpu *vcpu)
-{
- if (is_guest_mode(vcpu)) {
- /*
- * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
- * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
- * just pretend it's off (also in arch.cr0 for fpu_activate).
- */
- vmcs_writel(CR0_READ_SHADOW,
- vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
- vcpu->arch.cr0 &= ~X86_CR0_TS;
- } else
- vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
-}
-
static int handle_cr(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification, val;
@@ -5980,9 +5874,9 @@ static int handle_cr(struct kvm_vcpu *vcpu)
}
break;
case 2: /* clts */
- handle_clts(vcpu);
+ WARN_ONCE(1, "Guest should always own CR0.TS");
+ vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
- vmx_fpu_activate(vcpu);
return kvm_skip_emulated_instruction(vcpu);
case 1: /*mov from cr*/
switch (cr) {
@@ -6152,18 +6046,14 @@ static int handle_wrmsr(struct kvm_vcpu *vcpu)
static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
{
- kvm_make_request(KVM_REQ_EVENT, vcpu);
+ kvm_apic_update_ppr(vcpu);
return 1;
}
static int handle_interrupt_window(struct kvm_vcpu *vcpu)
{
- u32 cpu_based_vm_exec_control;
-
- /* clear pending irq */
- cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
- cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
- vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
+ vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
+ CPU_BASED_VIRTUAL_INTR_PENDING);
kvm_make_request(KVM_REQ_EVENT, vcpu);
@@ -6374,15 +6264,22 @@ static int handle_ept_violation(struct kvm_vcpu *vcpu)
gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
trace_kvm_page_fault(gpa, exit_qualification);
- /* it is a read fault? */
- error_code = (exit_qualification << 2) & PFERR_USER_MASK;
- /* it is a write fault? */
- error_code |= exit_qualification & PFERR_WRITE_MASK;
- /* It is a fetch fault? */
- error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
- /* ept page table is present? */
- error_code |= (exit_qualification & 0x38) != 0;
-
+ /* Is it a read fault? */
+ error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
+ ? PFERR_USER_MASK : 0;
+ /* Is it a write fault? */
+ error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
+ ? PFERR_WRITE_MASK : 0;
+ /* Is it a fetch fault? */
+ error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
+ ? PFERR_FETCH_MASK : 0;
+ /* ept page table entry is present? */
+ error_code |= (exit_qualification &
+ (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
+ EPT_VIOLATION_EXECUTABLE))
+ ? PFERR_PRESENT_MASK : 0;
+
+ vcpu->arch.gpa_available = true;
vcpu->arch.exit_qualification = exit_qualification;
return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
@@ -6400,6 +6297,7 @@ static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
}
ret = handle_mmio_page_fault(vcpu, gpa, true);
+ vcpu->arch.gpa_available = true;
if (likely(ret == RET_MMIO_PF_EMULATE))
return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
EMULATE_DONE;
@@ -6421,12 +6319,8 @@ static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
static int handle_nmi_window(struct kvm_vcpu *vcpu)
{
- u32 cpu_based_vm_exec_control;
-
- /* clear pending NMI */
- cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
- cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
- vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
+ vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
+ CPU_BASED_VIRTUAL_NMI_PENDING);
++vcpu->stat.nmi_window_exits;
kvm_make_request(KVM_REQ_EVENT, vcpu);
@@ -6572,6 +6466,19 @@ static void wakeup_handler(void)
spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
}
+void vmx_enable_tdp(void)
+{
+ kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
+ enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
+ enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
+ 0ull, VMX_EPT_EXECUTABLE_MASK,
+ cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
+ enable_ept_ad_bits ? 0ull : VMX_EPT_RWX_MASK);
+
+ ept_set_mmio_spte_mask();
+ kvm_enable_tdp();
+}
+
static __init int hardware_setup(void)
{
int r = -ENOMEM, i, msr;
@@ -6651,8 +6558,10 @@ static __init int hardware_setup(void)
if (!cpu_has_vmx_ple())
ple_gap = 0;
- if (!cpu_has_vmx_apicv())
+ if (!cpu_has_vmx_apicv()) {
enable_apicv = 0;
+ kvm_x86_ops->sync_pir_to_irr = NULL;
+ }
if (cpu_has_vmx_tsc_scaling()) {
kvm_has_tsc_control = true;
@@ -6697,16 +6606,9 @@ static __init int hardware_setup(void)
/* SELF-IPI */
vmx_disable_intercept_msr_x2apic(0x83f, MSR_TYPE_W, true);
- if (enable_ept) {
- kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
- (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
- (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
- 0ull, VMX_EPT_EXECUTABLE_MASK,
- cpu_has_vmx_ept_execute_only() ?
- 0ull : VMX_EPT_READABLE_MASK);
- ept_set_mmio_spte_mask();
- kvm_enable_tdp();
- } else
+ if (enable_ept)
+ vmx_enable_tdp();
+ else
kvm_disable_tdp();
update_ple_window_actual_max();
@@ -7085,13 +6987,18 @@ static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
}
page = nested_get_page(vcpu, vmptr);
- if (page == NULL ||
- *(u32 *)kmap(page) != VMCS12_REVISION) {
+ if (page == NULL) {
nested_vmx_failInvalid(vcpu);
+ return kvm_skip_emulated_instruction(vcpu);
+ }
+ if (*(u32 *)kmap(page) != VMCS12_REVISION) {
kunmap(page);
+ nested_release_page_clean(page);
+ nested_vmx_failInvalid(vcpu);
return kvm_skip_emulated_instruction(vcpu);
}
kunmap(page);
+ nested_release_page_clean(page);
vmx->nested.vmxon_ptr = vmptr;
break;
case EXIT_REASON_VMCLEAR:
@@ -7129,6 +7036,53 @@ static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
return 0;
}
+static int enter_vmx_operation(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct vmcs *shadow_vmcs;
+
+ if (cpu_has_vmx_msr_bitmap()) {
+ vmx->nested.msr_bitmap =
+ (unsigned long *)__get_free_page(GFP_KERNEL);
+ if (!vmx->nested.msr_bitmap)
+ goto out_msr_bitmap;
+ }
+
+ vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
+ if (!vmx->nested.cached_vmcs12)
+ goto out_cached_vmcs12;
+
+ if (enable_shadow_vmcs) {
+ shadow_vmcs = alloc_vmcs();
+ if (!shadow_vmcs)
+ goto out_shadow_vmcs;
+ /* mark vmcs as shadow */
+ shadow_vmcs->revision_id |= (1u << 31);
+ /* init shadow vmcs */
+ vmcs_clear(shadow_vmcs);
+ vmx->vmcs01.shadow_vmcs = shadow_vmcs;
+ }
+
+ INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
+ vmx->nested.vmcs02_num = 0;
+
+ hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
+ HRTIMER_MODE_REL_PINNED);
+ vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
+
+ vmx->nested.vmxon = true;
+ return 0;
+
+out_shadow_vmcs:
+ kfree(vmx->nested.cached_vmcs12);
+
+out_cached_vmcs12:
+ free_page((unsigned long)vmx->nested.msr_bitmap);
+
+out_msr_bitmap:
+ return -ENOMEM;
+}
+
/*
* Emulate the VMXON instruction.
* Currently, we just remember that VMX is active, and do not save or even
@@ -7139,9 +7093,9 @@ static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
*/
static int handle_vmon(struct kvm_vcpu *vcpu)
{
+ int ret;
struct kvm_segment cs;
struct vcpu_vmx *vmx = to_vmx(vcpu);
- struct vmcs *shadow_vmcs;
const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
| FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
@@ -7168,9 +7122,6 @@ static int handle_vmon(struct kvm_vcpu *vcpu)
return 1;
}
- if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
- return 1;
-
if (vmx->nested.vmxon) {
nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
return kvm_skip_emulated_instruction(vcpu);
@@ -7182,48 +7133,15 @@ static int handle_vmon(struct kvm_vcpu *vcpu)
return 1;
}
- if (cpu_has_vmx_msr_bitmap()) {
- vmx->nested.msr_bitmap =
- (unsigned long *)__get_free_page(GFP_KERNEL);
- if (!vmx->nested.msr_bitmap)
- goto out_msr_bitmap;
- }
-
- vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
- if (!vmx->nested.cached_vmcs12)
- goto out_cached_vmcs12;
-
- if (enable_shadow_vmcs) {
- shadow_vmcs = alloc_vmcs();
- if (!shadow_vmcs)
- goto out_shadow_vmcs;
- /* mark vmcs as shadow */
- shadow_vmcs->revision_id |= (1u << 31);
- /* init shadow vmcs */
- vmcs_clear(shadow_vmcs);
- vmx->vmcs01.shadow_vmcs = shadow_vmcs;
- }
-
- INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
- vmx->nested.vmcs02_num = 0;
-
- hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
- HRTIMER_MODE_REL_PINNED);
- vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
-
- vmx->nested.vmxon = true;
+ if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
+ return 1;
+
+ ret = enter_vmx_operation(vcpu);
+ if (ret)
+ return ret;
nested_vmx_succeed(vcpu);
return kvm_skip_emulated_instruction(vcpu);
-
-out_shadow_vmcs:
- kfree(vmx->nested.cached_vmcs12);
-
-out_cached_vmcs12:
- free_page((unsigned long)vmx->nested.msr_bitmap);
-
-out_msr_bitmap:
- return -ENOMEM;
}
/*
@@ -7672,6 +7590,18 @@ static int handle_vmwrite(struct kvm_vcpu *vcpu)
return kvm_skip_emulated_instruction(vcpu);
}
+static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
+{
+ vmx->nested.current_vmptr = vmptr;
+ if (enable_shadow_vmcs) {
+ vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
+ SECONDARY_EXEC_SHADOW_VMCS);
+ vmcs_write64(VMCS_LINK_POINTER,
+ __pa(vmx->vmcs01.shadow_vmcs));
+ vmx->nested.sync_shadow_vmcs = true;
+ }
+}
+
/* Emulate the VMPTRLD instruction */
static int handle_vmptrld(struct kvm_vcpu *vcpu)
{
@@ -7702,7 +7632,6 @@ static int handle_vmptrld(struct kvm_vcpu *vcpu)
}
nested_release_vmcs12(vmx);
- vmx->nested.current_vmptr = vmptr;
vmx->nested.current_vmcs12 = new_vmcs12;
vmx->nested.current_vmcs12_page = page;
/*
@@ -7711,14 +7640,7 @@ static int handle_vmptrld(struct kvm_vcpu *vcpu)
*/
memcpy(vmx->nested.cached_vmcs12,
vmx->nested.current_vmcs12, VMCS12_SIZE);
-
- if (enable_shadow_vmcs) {
- vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
- SECONDARY_EXEC_SHADOW_VMCS);
- vmcs_write64(VMCS_LINK_POINTER,
- __pa(vmx->vmcs01.shadow_vmcs));
- vmx->nested.sync_shadow_vmcs = true;
- }
+ set_current_vmptr(vmx, vmptr);
}
nested_vmx_succeed(vcpu);
@@ -8191,8 +8113,6 @@ static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
case EXIT_REASON_TASK_SWITCH:
return true;
case EXIT_REASON_CPUID:
- if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
- return false;
return true;
case EXIT_REASON_HLT:
return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
@@ -8350,7 +8270,7 @@ static void kvm_flush_pml_buffers(struct kvm *kvm)
static void vmx_dump_sel(char *name, uint32_t sel)
{
pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
- name, vmcs_read32(sel),
+ name, vmcs_read16(sel),
vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
@@ -8514,6 +8434,7 @@ static int vmx_handle_exit(struct kvm_vcpu *vcpu)
u32 vectoring_info = vmx->idt_vectoring_info;
trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
+ vcpu->arch.gpa_available = false;
/*
* Flush logged GPAs PML buffer, this will make dirty_bitmap more
@@ -8732,6 +8653,27 @@ static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
}
}
+static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ int max_irr;
+
+ WARN_ON(!vcpu->arch.apicv_active);
+ if (pi_test_on(&vmx->pi_desc)) {
+ pi_clear_on(&vmx->pi_desc);
+ /*
+ * IOMMU can write to PIR.ON, so the barrier matters even on UP.
+ * But on x86 this is just a compiler barrier anyway.
+ */
+ smp_mb__after_atomic();
+ max_irr = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
+ } else {
+ max_irr = kvm_lapic_find_highest_irr(vcpu);
+ }
+ vmx_hwapic_irr_update(vcpu, max_irr);
+ return max_irr;
+}
+
static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
{
if (!kvm_vcpu_apicv_active(vcpu))
@@ -8743,6 +8685,14 @@ static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
}
+static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ pi_clear_on(&vmx->pi_desc);
+ memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
+}
+
static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
{
u32 exit_intr_info;
@@ -9588,17 +9538,16 @@ static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
kvm_inject_page_fault(vcpu, fault);
}
-static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
+static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12);
+
+static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
- int maxphyaddr = cpuid_maxphyaddr(vcpu);
+ u64 hpa;
if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
- if (!PAGE_ALIGNED(vmcs12->apic_access_addr) ||
- vmcs12->apic_access_addr >> maxphyaddr)
- return false;
-
/*
* Translate L1 physical address to host physical
* address for vmcs02. Keep the page pinned, so this
@@ -9609,59 +9558,80 @@ static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
nested_release_page(vmx->nested.apic_access_page);
vmx->nested.apic_access_page =
nested_get_page(vcpu, vmcs12->apic_access_addr);
+ /*
+ * If translation failed, no matter: This feature asks
+ * to exit when accessing the given address, and if it
+ * can never be accessed, this feature won't do
+ * anything anyway.
+ */
+ if (vmx->nested.apic_access_page) {
+ hpa = page_to_phys(vmx->nested.apic_access_page);
+ vmcs_write64(APIC_ACCESS_ADDR, hpa);
+ } else {
+ vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
+ SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
+ }
+ } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
+ cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
+ vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
+ SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
+ kvm_vcpu_reload_apic_access_page(vcpu);
}
if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
- if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) ||
- vmcs12->virtual_apic_page_addr >> maxphyaddr)
- return false;
-
if (vmx->nested.virtual_apic_page) /* shouldn't happen */
nested_release_page(vmx->nested.virtual_apic_page);
vmx->nested.virtual_apic_page =
nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
/*
- * Failing the vm entry is _not_ what the processor does
- * but it's basically the only possibility we have.
- * We could still enter the guest if CR8 load exits are
- * enabled, CR8 store exits are enabled, and virtualize APIC
- * access is disabled; in this case the processor would never
- * use the TPR shadow and we could simply clear the bit from
- * the execution control. But such a configuration is useless,
- * so let's keep the code simple.
+ * If translation failed, VM entry will fail because
+ * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
+ * Failing the vm entry is _not_ what the processor
+ * does but it's basically the only possibility we
+ * have. We could still enter the guest if CR8 load
+ * exits are enabled, CR8 store exits are enabled, and
+ * virtualize APIC access is disabled; in this case
+ * the processor would never use the TPR shadow and we
+ * could simply clear the bit from the execution
+ * control. But such a configuration is useless, so
+ * let's keep the code simple.
*/
- if (!vmx->nested.virtual_apic_page)
- return false;
+ if (vmx->nested.virtual_apic_page) {
+ hpa = page_to_phys(vmx->nested.virtual_apic_page);
+ vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
+ }
}
if (nested_cpu_has_posted_intr(vmcs12)) {
- if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) ||
- vmcs12->posted_intr_desc_addr >> maxphyaddr)
- return false;
-
if (vmx->nested.pi_desc_page) { /* shouldn't happen */
kunmap(vmx->nested.pi_desc_page);
nested_release_page(vmx->nested.pi_desc_page);
}
vmx->nested.pi_desc_page =
nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
- if (!vmx->nested.pi_desc_page)
- return false;
-
vmx->nested.pi_desc =
(struct pi_desc *)kmap(vmx->nested.pi_desc_page);
if (!vmx->nested.pi_desc) {
nested_release_page_clean(vmx->nested.pi_desc_page);
- return false;
+ return;
}
vmx->nested.pi_desc =
(struct pi_desc *)((void *)vmx->nested.pi_desc +
(unsigned long)(vmcs12->posted_intr_desc_addr &
(PAGE_SIZE - 1)));
+ vmcs_write64(POSTED_INTR_DESC_ADDR,
+ page_to_phys(vmx->nested.pi_desc_page) +
+ (unsigned long)(vmcs12->posted_intr_desc_addr &
+ (PAGE_SIZE - 1)));
}
-
- return true;
+ if (cpu_has_vmx_msr_bitmap() &&
+ nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS) &&
+ nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
+ ;
+ else
+ vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
+ CPU_BASED_USE_MSR_BITMAPS);
}
static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
@@ -9730,11 +9700,6 @@ static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
return false;
}
msr_bitmap_l1 = (unsigned long *)kmap(page);
- if (!msr_bitmap_l1) {
- nested_release_page_clean(page);
- WARN_ON(1);
- return false;
- }
memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
@@ -9982,7 +9947,7 @@ static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
* is assigned to entry_failure_code on failure.
*/
static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
- unsigned long *entry_failure_code)
+ u32 *entry_failure_code)
{
if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
if (!nested_cr3_valid(vcpu, cr3)) {
@@ -10022,7 +9987,7 @@ static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool ne
* is assigned to entry_failure_code on failure.
*/
static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
- unsigned long *entry_failure_code)
+ bool from_vmentry, u32 *entry_failure_code)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 exec_control;
@@ -10065,21 +10030,26 @@ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
- if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
+ if (from_vmentry &&
+ (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
} else {
kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
}
- vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
- vmcs12->vm_entry_intr_info_field);
- vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
- vmcs12->vm_entry_exception_error_code);
- vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
- vmcs12->vm_entry_instruction_len);
- vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
- vmcs12->guest_interruptibility_info);
+ if (from_vmentry) {
+ vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
+ vmcs12->vm_entry_intr_info_field);
+ vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
+ vmcs12->vm_entry_exception_error_code);
+ vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
+ vmcs12->vm_entry_instruction_len);
+ vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
+ vmcs12->guest_interruptibility_info);
+ } else {
+ vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
+ }
vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
vmx_set_rflags(vcpu, vmcs12->guest_rflags);
vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
@@ -10108,12 +10078,9 @@ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
vmx->nested.pi_pending = false;
vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
- vmcs_write64(POSTED_INTR_DESC_ADDR,
- page_to_phys(vmx->nested.pi_desc_page) +
- (unsigned long)(vmcs12->posted_intr_desc_addr &
- (PAGE_SIZE - 1)));
- } else
+ } else {
exec_control &= ~PIN_BASED_POSTED_INTR;
+ }
vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
@@ -10158,26 +10125,6 @@ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
exec_control |= vmcs12->secondary_vm_exec_control;
- if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
- /*
- * If translation failed, no matter: This feature asks
- * to exit when accessing the given address, and if it
- * can never be accessed, this feature won't do
- * anything anyway.
- */
- if (!vmx->nested.apic_access_page)
- exec_control &=
- ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
- else
- vmcs_write64(APIC_ACCESS_ADDR,
- page_to_phys(vmx->nested.apic_access_page));
- } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
- cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
- exec_control |=
- SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
- kvm_vcpu_reload_apic_access_page(vcpu);
- }
-
if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
vmcs_write64(EOI_EXIT_BITMAP0,
vmcs12->eoi_exit_bitmap0);
@@ -10192,6 +10139,15 @@ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
}
nested_ept_enabled = (exec_control & SECONDARY_EXEC_ENABLE_EPT) != 0;
+
+ /*
+ * Write an illegal value to APIC_ACCESS_ADDR. Later,
+ * nested_get_vmcs12_pages will either fix it up or
+ * remove the VM execution control.
+ */
+ if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
+ vmcs_write64(APIC_ACCESS_ADDR, -1ull);
+
vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
}
@@ -10228,19 +10184,16 @@ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
exec_control &= ~CPU_BASED_TPR_SHADOW;
exec_control |= vmcs12->cpu_based_vm_exec_control;
+ /*
+ * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
+ * nested_get_vmcs12_pages can't fix it up, the illegal value
+ * will result in a VM entry failure.
+ */
if (exec_control & CPU_BASED_TPR_SHADOW) {
- vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
- page_to_phys(vmx->nested.virtual_apic_page));
+ vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
}
- if (cpu_has_vmx_msr_bitmap() &&
- exec_control & CPU_BASED_USE_MSR_BITMAPS &&
- nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
- ; /* MSR_BITMAP will be set by following vmx_set_efer. */
- else
- exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
-
/*
* Merging of IO bitmap not currently supported.
* Rather, exit every time.
@@ -10272,16 +10225,18 @@ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
~VM_ENTRY_IA32E_MODE) |
(vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
- if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
+ if (from_vmentry &&
+ (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
vcpu->arch.pat = vmcs12->guest_ia32_pat;
- } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
+ } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
-
+ }
set_cr4_guest_host_mask(vmx);
- if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
+ if (from_vmentry &&
+ vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
@@ -10320,8 +10275,8 @@ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
}
/*
- * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
- * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
+ * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
+ * bits which we consider mandatory enabled.
* The CR0_READ_SHADOW is what L2 should have expected to read given
* the specifications by L1; It's not enough to take
* vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
@@ -10333,7 +10288,8 @@ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
vmx_set_cr4(vcpu, vmcs12->guest_cr4);
vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
- if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
+ if (from_vmentry &&
+ (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
vcpu->arch.efer = vmcs12->guest_ia32_efer;
else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
vcpu->arch.efer |= (EFER_LMA | EFER_LME);
@@ -10367,73 +10323,22 @@ static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
return 0;
}
-/*
- * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
- * for running an L2 nested guest.
- */
-static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
+static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
- struct vmcs12 *vmcs12;
struct vcpu_vmx *vmx = to_vmx(vcpu);
- int cpu;
- struct loaded_vmcs *vmcs02;
- bool ia32e;
- u32 msr_entry_idx;
- unsigned long exit_qualification;
-
- if (!nested_vmx_check_permission(vcpu))
- return 1;
-
- if (!nested_vmx_check_vmcs12(vcpu))
- goto out;
-
- vmcs12 = get_vmcs12(vcpu);
-
- if (enable_shadow_vmcs)
- copy_shadow_to_vmcs12(vmx);
-
- /*
- * The nested entry process starts with enforcing various prerequisites
- * on vmcs12 as required by the Intel SDM, and act appropriately when
- * they fail: As the SDM explains, some conditions should cause the
- * instruction to fail, while others will cause the instruction to seem
- * to succeed, but return an EXIT_REASON_INVALID_STATE.
- * To speed up the normal (success) code path, we should avoid checking
- * for misconfigurations which will anyway be caught by the processor
- * when using the merged vmcs02.
- */
- if (vmcs12->launch_state == launch) {
- nested_vmx_failValid(vcpu,
- launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
- : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
- goto out;
- }
if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
- vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
- nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
- goto out;
- }
+ vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
+ return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
- if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
- nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
- goto out;
- }
+ if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
+ return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
- if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
- nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
- goto out;
- }
+ if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
+ return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
- if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
- nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
- goto out;
- }
-
- if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
- nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
- goto out;
- }
+ if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
+ return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
vmx->nested.nested_vmx_procbased_ctls_low,
@@ -10450,28 +10355,30 @@ static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
!vmx_control_verify(vmcs12->vm_entry_controls,
vmx->nested.nested_vmx_entry_ctls_low,
vmx->nested.nested_vmx_entry_ctls_high))
- {
- nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
- goto out;
- }
+ return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
!nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
- !nested_cr3_valid(vcpu, vmcs12->host_cr3)) {
- nested_vmx_failValid(vcpu,
- VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
- goto out;
- }
+ !nested_cr3_valid(vcpu, vmcs12->host_cr3))
+ return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
+
+ return 0;
+}
+
+static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
+ u32 *exit_qual)
+{
+ bool ia32e;
+
+ *exit_qual = ENTRY_FAIL_DEFAULT;
if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
- !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)) {
- nested_vmx_entry_failure(vcpu, vmcs12,
- EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
+ !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
return 1;
- }
- if (vmcs12->vmcs_link_pointer != -1ull) {
- nested_vmx_entry_failure(vcpu, vmcs12,
- EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
+
+ if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
+ vmcs12->vmcs_link_pointer != -1ull) {
+ *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
return 1;
}
@@ -10484,16 +10391,14 @@ static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
* to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
* CR0.PG) is 1.
*/
- if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
+ if (to_vmx(vcpu)->nested.nested_run_pending &&
+ (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
((vmcs12->guest_cr0 & X86_CR0_PG) &&
- ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
- nested_vmx_entry_failure(vcpu, vmcs12,
- EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
+ ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
return 1;
- }
}
/*
@@ -10507,28 +10412,26 @@ static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
- ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
- nested_vmx_entry_failure(vcpu, vmcs12,
- EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
+ ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
return 1;
- }
}
- /*
- * We're finally done with prerequisite checking, and can start with
- * the nested entry.
- */
+ return 0;
+}
+
+static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ struct loaded_vmcs *vmcs02;
+ int cpu;
+ u32 msr_entry_idx;
+ u32 exit_qual;
vmcs02 = nested_get_current_vmcs02(vmx);
if (!vmcs02)
return -ENOMEM;
- /*
- * After this point, the trap flag no longer triggers a singlestep trap
- * on the vm entry instructions. Don't call
- * kvm_skip_emulated_instruction.
- */
- skip_emulated_instruction(vcpu);
enter_guest_mode(vcpu);
if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
@@ -10543,14 +10446,16 @@ static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
vmx_segment_cache_clear(vmx);
- if (prepare_vmcs02(vcpu, vmcs12, &exit_qualification)) {
+ if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual)) {
leave_guest_mode(vcpu);
vmx_load_vmcs01(vcpu);
nested_vmx_entry_failure(vcpu, vmcs12,
- EXIT_REASON_INVALID_STATE, exit_qualification);
+ EXIT_REASON_INVALID_STATE, exit_qual);
return 1;
}
+ nested_get_vmcs12_pages(vcpu, vmcs12);
+
msr_entry_idx = nested_vmx_load_msr(vcpu,
vmcs12->vm_entry_msr_load_addr,
vmcs12->vm_entry_msr_load_count);
@@ -10564,17 +10469,90 @@ static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
vmcs12->launch_state = 1;
- if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
- return kvm_vcpu_halt(vcpu);
-
- vmx->nested.nested_run_pending = 1;
-
/*
* Note no nested_vmx_succeed or nested_vmx_fail here. At this point
* we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
* returned as far as L1 is concerned. It will only return (and set
* the success flag) when L2 exits (see nested_vmx_vmexit()).
*/
+ return 0;
+}
+
+/*
+ * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
+ * for running an L2 nested guest.
+ */
+static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
+{
+ struct vmcs12 *vmcs12;
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ u32 exit_qual;
+ int ret;
+
+ if (!nested_vmx_check_permission(vcpu))
+ return 1;
+
+ if (!nested_vmx_check_vmcs12(vcpu))
+ goto out;
+
+ vmcs12 = get_vmcs12(vcpu);
+
+ if (enable_shadow_vmcs)
+ copy_shadow_to_vmcs12(vmx);
+
+ /*
+ * The nested entry process starts with enforcing various prerequisites
+ * on vmcs12 as required by the Intel SDM, and act appropriately when
+ * they fail: As the SDM explains, some conditions should cause the
+ * instruction to fail, while others will cause the instruction to seem
+ * to succeed, but return an EXIT_REASON_INVALID_STATE.
+ * To speed up the normal (success) code path, we should avoid checking
+ * for misconfigurations which will anyway be caught by the processor
+ * when using the merged vmcs02.
+ */
+ if (vmcs12->launch_state == launch) {
+ nested_vmx_failValid(vcpu,
+ launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
+ : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
+ goto out;
+ }
+
+ ret = check_vmentry_prereqs(vcpu, vmcs12);
+ if (ret) {
+ nested_vmx_failValid(vcpu, ret);
+ goto out;
+ }
+
+ /*
+ * After this point, the trap flag no longer triggers a singlestep trap
+ * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
+ * This is not 100% correct; for performance reasons, we delegate most
+ * of the checks on host state to the processor. If those fail,
+ * the singlestep trap is missed.
+ */
+ skip_emulated_instruction(vcpu);
+
+ ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
+ if (ret) {
+ nested_vmx_entry_failure(vcpu, vmcs12,
+ EXIT_REASON_INVALID_STATE, exit_qual);
+ return 1;
+ }
+
+ /*
+ * We're finally done with prerequisite checking, and can start with
+ * the nested entry.
+ */
+
+ ret = enter_vmx_non_root_mode(vcpu, true);
+ if (ret)
+ return ret;
+
+ if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
+ return kvm_vcpu_halt(vcpu);
+
+ vmx->nested.nested_run_pending = 1;
+
return 1;
out:
@@ -10696,7 +10674,8 @@ static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
return 0;
}
- return vmx_complete_nested_posted_interrupt(vcpu);
+ vmx_complete_nested_posted_interrupt(vcpu);
+ return 0;
}
static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
@@ -10714,21 +10693,13 @@ static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
}
/*
- * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
- * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
- * and this function updates it to reflect the changes to the guest state while
- * L2 was running (and perhaps made some exits which were handled directly by L0
- * without going back to L1), and to reflect the exit reason.
- * Note that we do not have to copy here all VMCS fields, just those that
- * could have changed by the L2 guest or the exit - i.e., the guest-state and
- * exit-information fields only. Other fields are modified by L1 with VMWRITE,
- * which already writes to vmcs12 directly.
+ * Update the guest state fields of vmcs12 to reflect changes that
+ * occurred while L2 was running. (The "IA-32e mode guest" bit of the
+ * VM-entry controls is also updated, since this is really a guest
+ * state bit.)
*/
-static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
- u32 exit_reason, u32 exit_intr_info,
- unsigned long exit_qualification)
+static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
- /* update guest state fields: */
vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
@@ -10834,6 +10805,25 @@ static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
if (nested_cpu_has_xsaves(vmcs12))
vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
+}
+
+/*
+ * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
+ * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
+ * and this function updates it to reflect the changes to the guest state while
+ * L2 was running (and perhaps made some exits which were handled directly by L0
+ * without going back to L1), and to reflect the exit reason.
+ * Note that we do not have to copy here all VMCS fields, just those that
+ * could have changed by the L2 guest or the exit - i.e., the guest-state and
+ * exit-information fields only. Other fields are modified by L1 with VMWRITE,
+ * which already writes to vmcs12 directly.
+ */
+static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
+ u32 exit_reason, u32 exit_intr_info,
+ unsigned long exit_qualification)
+{
+ /* update guest state fields: */
+ sync_vmcs12(vcpu, vmcs12);
/* update exit information fields: */
@@ -10884,7 +10874,7 @@ static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
struct kvm_segment seg;
- unsigned long entry_failure_code;
+ u32 entry_failure_code;
if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
vcpu->arch.efer = vmcs12->host_ia32_efer;
@@ -10899,24 +10889,15 @@ static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
/*
* Note that calling vmx_set_cr0 is important, even if cr0 hasn't
- * actually changed, because it depends on the current state of
- * fpu_active (which may have changed).
- * Note that vmx_set_cr0 refers to efer set above.
+ * actually changed, because vmx_set_cr0 refers to efer set above.
+ *
+ * CR0_GUEST_HOST_MASK is already set in the original vmcs01
+ * (KVM doesn't change it);
*/
+ vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
vmx_set_cr0(vcpu, vmcs12->host_cr0);
- /*
- * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
- * to apply the same changes to L1's vmcs. We just set cr0 correctly,
- * but we also need to update cr0_guest_host_mask and exception_bitmap.
- */
- update_exception_bitmap(vcpu);
- vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
- vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
- /*
- * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
- * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
- */
+ /* Same as above - no reason to call set_cr4_guest_host_mask(). */
vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
kvm_set_cr4(vcpu, vmcs12->host_cr4);
@@ -11545,9 +11526,6 @@ static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
.get_pkru = vmx_get_pkru,
- .fpu_activate = vmx_fpu_activate,
- .fpu_deactivate = vmx_fpu_deactivate,
-
.tlb_flush = vmx_flush_tlb,
.run = vmx_vcpu_run,
@@ -11572,6 +11550,7 @@ static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
.get_enable_apicv = vmx_get_enable_apicv,
.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
.load_eoi_exitmap = vmx_load_eoi_exitmap,
+ .apicv_post_state_restore = vmx_apicv_post_state_restore,
.hwapic_irr_update = vmx_hwapic_irr_update,
.hwapic_isr_update = vmx_hwapic_isr_update,
.sync_pir_to_irr = vmx_sync_pir_to_irr,
diff --git a/arch/x86/kvm/x86.c b/arch/x86/kvm/x86.c
index e52c9088660f..b2a4b11274b0 100644
--- a/arch/x86/kvm/x86.c
+++ b/arch/x86/kvm/x86.c
@@ -180,6 +180,7 @@ struct kvm_stats_debugfs_item debugfs_entries[] = {
{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
{ "irq_injections", VCPU_STAT(irq_injections) },
{ "nmi_injections", VCPU_STAT(nmi_injections) },
+ { "req_event", VCPU_STAT(req_event) },
{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
@@ -190,6 +191,8 @@ struct kvm_stats_debugfs_item debugfs_entries[] = {
{ "mmu_unsync", VM_STAT(mmu_unsync) },
{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
{ "largepages", VM_STAT(lpages) },
+ { "max_mmu_page_hash_collisions",
+ VM_STAT(max_mmu_page_hash_collisions) },
{ NULL }
};
@@ -1139,6 +1142,7 @@ struct pvclock_gtod_data {
u64 boot_ns;
u64 nsec_base;
+ u64 wall_time_sec;
};
static struct pvclock_gtod_data pvclock_gtod_data;
@@ -1162,6 +1166,8 @@ static void update_pvclock_gtod(struct timekeeper *tk)
vdata->boot_ns = boot_ns;
vdata->nsec_base = tk->tkr_mono.xtime_nsec;
+ vdata->wall_time_sec = tk->xtime_sec;
+
write_seqcount_end(&vdata->seq);
}
#endif
@@ -1623,6 +1629,28 @@ static int do_monotonic_boot(s64 *t, u64 *cycle_now)
return mode;
}
+static int do_realtime(struct timespec *ts, u64 *cycle_now)
+{
+ struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
+ unsigned long seq;
+ int mode;
+ u64 ns;
+
+ do {
+ seq = read_seqcount_begin(&gtod->seq);
+ mode = gtod->clock.vclock_mode;
+ ts->tv_sec = gtod->wall_time_sec;
+ ns = gtod->nsec_base;
+ ns += vgettsc(cycle_now);
+ ns >>= gtod->clock.shift;
+ } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
+
+ ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
+ ts->tv_nsec = ns;
+
+ return mode;
+}
+
/* returns true if host is using tsc clocksource */
static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
{
@@ -1632,6 +1660,17 @@ static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
}
+
+/* returns true if host is using tsc clocksource */
+static bool kvm_get_walltime_and_clockread(struct timespec *ts,
+ u64 *cycle_now)
+{
+ /* checked again under seqlock below */
+ if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
+ return false;
+
+ return do_realtime(ts, cycle_now) == VCLOCK_TSC;
+}
#endif
/*
@@ -1772,7 +1811,7 @@ static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
struct kvm_vcpu_arch *vcpu = &v->arch;
struct pvclock_vcpu_time_info guest_hv_clock;
- if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
+ if (unlikely(kvm_vcpu_read_guest_cached(v, &vcpu->pv_time,
&guest_hv_clock, sizeof(guest_hv_clock))))
return;
@@ -1793,9 +1832,9 @@ static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
vcpu->hv_clock.version = guest_hv_clock.version + 1;
- kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
- &vcpu->hv_clock,
- sizeof(vcpu->hv_clock.version));
+ kvm_vcpu_write_guest_cached(v, &vcpu->pv_time,
+ &vcpu->hv_clock,
+ sizeof(vcpu->hv_clock.version));
smp_wmb();
@@ -1809,16 +1848,16 @@ static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
- kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
- &vcpu->hv_clock,
- sizeof(vcpu->hv_clock));
+ kvm_vcpu_write_guest_cached(v, &vcpu->pv_time,
+ &vcpu->hv_clock,
+ sizeof(vcpu->hv_clock));
smp_wmb();
vcpu->hv_clock.version++;
- kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
- &vcpu->hv_clock,
- sizeof(vcpu->hv_clock.version));
+ kvm_vcpu_write_guest_cached(v, &vcpu->pv_time,
+ &vcpu->hv_clock,
+ sizeof(vcpu->hv_clock.version));
}
static int kvm_guest_time_update(struct kvm_vcpu *v)
@@ -2051,7 +2090,7 @@ static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
return 0;
}
- if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
+ if (kvm_vcpu_gfn_to_hva_cache_init(vcpu, &vcpu->arch.apf.data, gpa,
sizeof(u32)))
return 1;
@@ -2070,7 +2109,7 @@ static void record_steal_time(struct kvm_vcpu *vcpu)
if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
return;
- if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
+ if (unlikely(kvm_vcpu_read_guest_cached(vcpu, &vcpu->arch.st.stime,
&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
return;
@@ -2081,7 +2120,7 @@ static void record_steal_time(struct kvm_vcpu *vcpu)
vcpu->arch.st.steal.version += 1;
- kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
+ kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.st.stime,
&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
smp_wmb();
@@ -2090,14 +2129,14 @@ static void record_steal_time(struct kvm_vcpu *vcpu)
vcpu->arch.st.last_steal;
vcpu->arch.st.last_steal = current->sched_info.run_delay;
- kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
+ kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.st.stime,
&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
smp_wmb();
vcpu->arch.st.steal.version += 1;
- kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
+ kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.st.stime,
&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
}
@@ -2202,7 +2241,7 @@ int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
if (!(data & 1))
break;
- if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
+ if (kvm_vcpu_gfn_to_hva_cache_init(vcpu,
&vcpu->arch.pv_time, data & ~1ULL,
sizeof(struct pvclock_vcpu_time_info)))
vcpu->arch.pv_time_enabled = false;
@@ -2223,7 +2262,7 @@ int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
if (data & KVM_STEAL_RESERVED_MASK)
return 1;
- if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
+ if (kvm_vcpu_gfn_to_hva_cache_init(vcpu, &vcpu->arch.st.stime,
data & KVM_STEAL_VALID_BITS,
sizeof(struct kvm_steal_time)))
return 1;
@@ -2633,6 +2672,7 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
case KVM_CAP_DISABLE_QUIRKS:
case KVM_CAP_SET_BOOT_CPU_ID:
case KVM_CAP_SPLIT_IRQCHIP:
+ case KVM_CAP_IMMEDIATE_EXIT:
#ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
case KVM_CAP_ASSIGN_DEV_IRQ:
case KVM_CAP_PCI_2_3:
@@ -2836,7 +2876,7 @@ static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
vcpu->arch.st.steal.preempted = 1;
- kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
+ kvm_vcpu_write_guest_offset_cached(vcpu, &vcpu->arch.st.stime,
&vcpu->arch.st.steal.preempted,
offsetof(struct kvm_steal_time, preempted),
sizeof(vcpu->arch.st.steal.preempted));
@@ -2870,7 +2910,7 @@ void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
struct kvm_lapic_state *s)
{
- if (vcpu->arch.apicv_active)
+ if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
kvm_x86_ops->sync_pir_to_irr(vcpu);
return kvm_apic_get_state(vcpu, s);
@@ -3897,7 +3937,7 @@ static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
goto split_irqchip_unlock;
/* Pairs with irqchip_in_kernel. */
smp_wmb();
- kvm->arch.irqchip_split = true;
+ kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
r = 0;
split_irqchip_unlock:
@@ -3960,40 +4000,41 @@ long kvm_arch_vm_ioctl(struct file *filp,
r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
break;
case KVM_CREATE_IRQCHIP: {
- struct kvm_pic *vpic;
-
mutex_lock(&kvm->lock);
+
r = -EEXIST;
- if (kvm->arch.vpic)
+ if (irqchip_in_kernel(kvm))
goto create_irqchip_unlock;
+
r = -EINVAL;
if (kvm->created_vcpus)
goto create_irqchip_unlock;
- r = -ENOMEM;
- vpic = kvm_create_pic(kvm);
- if (vpic) {
- r = kvm_ioapic_init(kvm);
- if (r) {
- mutex_lock(&kvm->slots_lock);
- kvm_destroy_pic(vpic);
- mutex_unlock(&kvm->slots_lock);
- goto create_irqchip_unlock;
- }
- } else
+
+ r = kvm_pic_init(kvm);
+ if (r)
+ goto create_irqchip_unlock;
+
+ r = kvm_ioapic_init(kvm);
+ if (r) {
+ mutex_lock(&kvm->slots_lock);
+ kvm_pic_destroy(kvm);
+ mutex_unlock(&kvm->slots_lock);
goto create_irqchip_unlock;
+ }
+
r = kvm_setup_default_irq_routing(kvm);
if (r) {
mutex_lock(&kvm->slots_lock);
mutex_lock(&kvm->irq_lock);
kvm_ioapic_destroy(kvm);
- kvm_destroy_pic(vpic);
+ kvm_pic_destroy(kvm);
mutex_unlock(&kvm->irq_lock);
mutex_unlock(&kvm->slots_lock);
goto create_irqchip_unlock;
}
- /* Write kvm->irq_routing before kvm->arch.vpic. */
+ /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
smp_wmb();
- kvm->arch.vpic = vpic;
+ kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
create_irqchip_unlock:
mutex_unlock(&kvm->lock);
break;
@@ -4029,7 +4070,7 @@ long kvm_arch_vm_ioctl(struct file *filp,
}
r = -ENXIO;
- if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
+ if (!irqchip_kernel(kvm))
goto get_irqchip_out;
r = kvm_vm_ioctl_get_irqchip(kvm, chip);
if (r)
@@ -4053,7 +4094,7 @@ long kvm_arch_vm_ioctl(struct file *filp,
}
r = -ENXIO;
- if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
+ if (!irqchip_kernel(kvm))
goto set_irqchip_out;
r = kvm_vm_ioctl_set_irqchip(kvm, chip);
if (r)
@@ -4462,6 +4503,21 @@ out:
}
EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
+static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
+ gpa_t gpa, bool write)
+{
+ /* For APIC access vmexit */
+ if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
+ return 1;
+
+ if (vcpu_match_mmio_gpa(vcpu, gpa)) {
+ trace_vcpu_match_mmio(gva, gpa, write, true);
+ return 1;
+ }
+
+ return 0;
+}
+
static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
gpa_t *gpa, struct x86_exception *exception,
bool write)
@@ -4488,16 +4544,7 @@ static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
if (*gpa == UNMAPPED_GVA)
return -1;
- /* For APIC access vmexit */
- if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
- return 1;
-
- if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
- trace_vcpu_match_mmio(gva, *gpa, write, true);
- return 1;
- }
-
- return 0;
+ return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
}
int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
@@ -4594,6 +4641,22 @@ static int emulator_read_write_onepage(unsigned long addr, void *val,
int handled, ret;
bool write = ops->write;
struct kvm_mmio_fragment *frag;
+ struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
+
+ /*
+ * If the exit was due to a NPF we may already have a GPA.
+ * If the GPA is present, use it to avoid the GVA to GPA table walk.
+ * Note, this cannot be used on string operations since string
+ * operation using rep will only have the initial GPA from the NPF
+ * occurred.
+ */
+ if (vcpu->arch.gpa_available &&
+ emulator_can_use_gpa(ctxt) &&
+ vcpu_is_mmio_gpa(vcpu, addr, exception->address, write) &&
+ (addr & ~PAGE_MASK) == (exception->address & ~PAGE_MASK)) {
+ gpa = exception->address;
+ goto mmio;
+ }
ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
@@ -5610,6 +5673,9 @@ int x86_emulate_instruction(struct kvm_vcpu *vcpu,
}
restart:
+ /* Save the faulting GPA (cr2) in the address field */
+ ctxt->exception.address = cr2;
+
r = x86_emulate_insn(ctxt);
if (r == EMULATION_INTERCEPTED)
@@ -5924,9 +5990,6 @@ static void kvm_set_mmio_spte_mask(void)
/* Mask the reserved physical address bits. */
mask = rsvd_bits(maxphyaddr, 51);
- /* Bit 62 is always reserved for 32bit host. */
- mask |= 0x3ull << 62;
-
/* Set the present bit. */
mask |= 1ull;
@@ -6025,7 +6088,7 @@ int kvm_arch_init(void *opaque)
kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
PT_DIRTY_MASK, PT64_NX_MASK, 0,
- PT_PRESENT_MASK);
+ PT_PRESENT_MASK, 0);
kvm_timer_init();
perf_register_guest_info_callbacks(&kvm_guest_cbs);
@@ -6087,6 +6150,35 @@ int kvm_emulate_halt(struct kvm_vcpu *vcpu)
}
EXPORT_SYMBOL_GPL(kvm_emulate_halt);
+#ifdef CONFIG_X86_64
+static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
+ unsigned long clock_type)
+{
+ struct kvm_clock_pairing clock_pairing;
+ struct timespec ts;
+ u64 cycle;
+ int ret;
+
+ if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
+ return -KVM_EOPNOTSUPP;
+
+ if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
+ return -KVM_EOPNOTSUPP;
+
+ clock_pairing.sec = ts.tv_sec;
+ clock_pairing.nsec = ts.tv_nsec;
+ clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
+ clock_pairing.flags = 0;
+
+ ret = 0;
+ if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
+ sizeof(struct kvm_clock_pairing)))
+ ret = -KVM_EFAULT;
+
+ return ret;
+}
+#endif
+
/*
* kvm_pv_kick_cpu_op: Kick a vcpu.
*
@@ -6151,6 +6243,11 @@ int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
ret = 0;
break;
+#ifdef CONFIG_X86_64
+ case KVM_HC_CLOCK_PAIRING:
+ ret = kvm_pv_clock_pairing(vcpu, a0, a1);
+ break;
+#endif
default:
ret = -KVM_ENOSYS;
break;
@@ -6564,7 +6661,7 @@ static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
if (irqchip_split(vcpu->kvm))
kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
else {
- if (vcpu->arch.apicv_active)
+ if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
kvm_x86_ops->sync_pir_to_irr(vcpu);
kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
}
@@ -6655,10 +6752,6 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
r = 0;
goto out;
}
- if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
- vcpu->fpu_active = 0;
- kvm_x86_ops->fpu_deactivate(vcpu);
- }
if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
/* Page is swapped out. Do synthetic halt */
vcpu->arch.apf.halted = true;
@@ -6718,21 +6811,8 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
kvm_hv_process_stimers(vcpu);
}
- /*
- * KVM_REQ_EVENT is not set when posted interrupts are set by
- * VT-d hardware, so we have to update RVI unconditionally.
- */
- if (kvm_lapic_enabled(vcpu)) {
- /*
- * Update architecture specific hints for APIC
- * virtual interrupt delivery.
- */
- if (vcpu->arch.apicv_active)
- kvm_x86_ops->hwapic_irr_update(vcpu,
- kvm_lapic_find_highest_irr(vcpu));
- }
-
if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
+ ++vcpu->stat.req_event;
kvm_apic_accept_events(vcpu);
if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
r = 1;
@@ -6773,22 +6853,40 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
preempt_disable();
kvm_x86_ops->prepare_guest_switch(vcpu);
- if (vcpu->fpu_active)
- kvm_load_guest_fpu(vcpu);
+ kvm_load_guest_fpu(vcpu);
+
+ /*
+ * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
+ * IPI are then delayed after guest entry, which ensures that they
+ * result in virtual interrupt delivery.
+ */
+ local_irq_disable();
vcpu->mode = IN_GUEST_MODE;
srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
/*
- * We should set ->mode before check ->requests,
- * Please see the comment in kvm_make_all_cpus_request.
- * This also orders the write to mode from any reads
- * to the page tables done while the VCPU is running.
- * Please see the comment in kvm_flush_remote_tlbs.
+ * 1) We should set ->mode before checking ->requests. Please see
+ * the comment in kvm_make_all_cpus_request.
+ *
+ * 2) For APICv, we should set ->mode before checking PIR.ON. This
+ * pairs with the memory barrier implicit in pi_test_and_set_on
+ * (see vmx_deliver_posted_interrupt).
+ *
+ * 3) This also orders the write to mode from any reads to the page
+ * tables done while the VCPU is running. Please see the comment
+ * in kvm_flush_remote_tlbs.
*/
smp_mb__after_srcu_read_unlock();
- local_irq_disable();
+ /*
+ * This handles the case where a posted interrupt was
+ * notified with kvm_vcpu_kick.
+ */
+ if (kvm_lapic_enabled(vcpu)) {
+ if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
+ kvm_x86_ops->sync_pir_to_irr(vcpu);
+ }
if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
|| need_resched() || signal_pending(current)) {
@@ -6927,6 +7025,9 @@ static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
{
+ if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
+ kvm_x86_ops->check_nested_events(vcpu, false);
+
return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
!vcpu->arch.apf.halted);
}
@@ -7098,7 +7199,10 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
} else
WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
- r = vcpu_run(vcpu);
+ if (kvm_run->immediate_exit)
+ r = -EINTR;
+ else
+ r = vcpu_run(vcpu);
out:
post_kvm_run_save(vcpu);
@@ -8293,9 +8397,6 @@ static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
- if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
- kvm_x86_ops->check_nested_events(vcpu, false);
-
return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
}
@@ -8432,9 +8533,8 @@ static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
{
-
- return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
- sizeof(val));
+ return kvm_vcpu_write_guest_cached(vcpu, &vcpu->arch.apf.data, &val,
+ sizeof(val));
}
void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,