summaryrefslogtreecommitdiffstats
path: root/arch/x86
diff options
context:
space:
mode:
authorDavid Matlack <dmatlack@google.com>2024-03-07 20:40:59 +0100
committerSean Christopherson <seanjc@google.com>2024-04-09 18:37:47 +0200
commitaca48556c592189fdcdc68b82bbae442bd08730f (patch)
treed06abbb41fd8ca49688fa18cb55b125c605a8026 /arch/x86
parentLinux 6.9-rc3 (diff)
downloadlinux-aca48556c592189fdcdc68b82bbae442bd08730f.tar.xz
linux-aca48556c592189fdcdc68b82bbae442bd08730f.zip
KVM: x86/mmu: Process atomically-zapped SPTEs after TLB flush
When zapping TDP MMU SPTEs under read-lock, processes zapped SPTEs *after* flushing TLBs and after replacing the special REMOVED_SPTE with '0'. When zapping an SPTE that points to a page table, processing SPTEs after flushing TLBs minimizes contention on the child SPTEs (e.g. vCPUs won't hit write-protection faults via stale, read-only child SPTEs), and processing after replacing REMOVED_SPTE with '0' minimizes the amount of time vCPUs will be blocked by the REMOVED_SPTE. Processing SPTEs after setting the SPTE to '0', i.e. in parallel with the SPTE potentially being replacing with a new SPTE, is safe because KVM does not depend on completing the processing before a new SPTE is installed, and the processing is done on a subset of the page tables that is disconnected from the root, and thus unreachable by other tasks (after the TLB flush). KVM already relies on similar logic, as kvm_mmu_zap_all_fast() can result in KVM processing all SPTEs in a given root after vCPUs create mappings in a new root. In VMs with a large (400+) number of vCPUs, it can take KVM multiple seconds to process a 1GiB region mapped with 4KiB entries, e.g. when disabling dirty logging in a VM backed by 1GiB HugeTLB. During those seconds, if a vCPU accesses the 1GiB region being zapped it will be stalled until KVM finishes processing the SPTE and replaces the REMOVED_SPTE with 0. Re-ordering the processing does speed up the atomic-zaps somewhat, but the main benefit is avoiding blocking vCPU threads. Before: $ ./dirty_log_perf_test -s anonymous_hugetlb_1gb -v 416 -b 1G -e ... Disabling dirty logging time: 509.765146313s $ ./funclatency -m tdp_mmu_zap_spte_atomic msec : count distribution 0 -> 1 : 0 | | 2 -> 3 : 0 | | 4 -> 7 : 0 | | 8 -> 15 : 0 | | 16 -> 31 : 0 | | 32 -> 63 : 0 | | 64 -> 127 : 0 | | 128 -> 255 : 8 |** | 256 -> 511 : 68 |****************** | 512 -> 1023 : 129 |********************************** | 1024 -> 2047 : 151 |****************************************| 2048 -> 4095 : 60 |*************** | After: $ ./dirty_log_perf_test -s anonymous_hugetlb_1gb -v 416 -b 1G -e ... Disabling dirty logging time: 336.516838548s $ ./funclatency -m tdp_mmu_zap_spte_atomic msec : count distribution 0 -> 1 : 0 | | 2 -> 3 : 0 | | 4 -> 7 : 0 | | 8 -> 15 : 0 | | 16 -> 31 : 0 | | 32 -> 63 : 0 | | 64 -> 127 : 0 | | 128 -> 255 : 12 |** | 256 -> 511 : 166 |****************************************| 512 -> 1023 : 101 |************************ | 1024 -> 2047 : 137 |********************************* | Note, KVM's processing of collapsible SPTEs is still extremely slow and can be improved. For example, a significant amount of time is spent calling kvm_set_pfn_{accessed,dirty}() for every last-level SPTE, even when processing SPTEs that all map the same folio. But avoiding blocking vCPUs and contending SPTEs is valuable regardless of how fast KVM can process collapsible SPTEs. Link: https://lore.kernel.org/all/20240320005024.3216282-1-seanjc@google.com Cc: Vipin Sharma <vipinsh@google.com> Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: David Matlack <dmatlack@google.com> Reviewed-by: Vipin Sharma <vipinsh@google.com> Link: https://lore.kernel.org/r/20240307194059.1357377-1-dmatlack@google.com [sean: massage changelog] Signed-off-by: Sean Christopherson <seanjc@google.com>
Diffstat (limited to 'arch/x86')
-rw-r--r--arch/x86/kvm/mmu/tdp_mmu.c75
1 files changed, 49 insertions, 26 deletions
diff --git a/arch/x86/kvm/mmu/tdp_mmu.c b/arch/x86/kvm/mmu/tdp_mmu.c
index d078157e62aa..afd00f79e741 100644
--- a/arch/x86/kvm/mmu/tdp_mmu.c
+++ b/arch/x86/kvm/mmu/tdp_mmu.c
@@ -530,6 +530,31 @@ static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
kvm_set_pfn_accessed(spte_to_pfn(old_spte));
}
+static inline int __tdp_mmu_set_spte_atomic(struct tdp_iter *iter, u64 new_spte)
+{
+ u64 *sptep = rcu_dereference(iter->sptep);
+
+ /*
+ * The caller is responsible for ensuring the old SPTE is not a REMOVED
+ * SPTE. KVM should never attempt to zap or manipulate a REMOVED SPTE,
+ * and pre-checking before inserting a new SPTE is advantageous as it
+ * avoids unnecessary work.
+ */
+ WARN_ON_ONCE(iter->yielded || is_removed_spte(iter->old_spte));
+
+ /*
+ * Note, fast_pf_fix_direct_spte() can also modify TDP MMU SPTEs and
+ * does not hold the mmu_lock. On failure, i.e. if a different logical
+ * CPU modified the SPTE, try_cmpxchg64() updates iter->old_spte with
+ * the current value, so the caller operates on fresh data, e.g. if it
+ * retries tdp_mmu_set_spte_atomic()
+ */
+ if (!try_cmpxchg64(sptep, &iter->old_spte, new_spte))
+ return -EBUSY;
+
+ return 0;
+}
+
/*
* tdp_mmu_set_spte_atomic - Set a TDP MMU SPTE atomically
* and handle the associated bookkeeping. Do not mark the page dirty
@@ -551,27 +576,13 @@ static inline int tdp_mmu_set_spte_atomic(struct kvm *kvm,
struct tdp_iter *iter,
u64 new_spte)
{
- u64 *sptep = rcu_dereference(iter->sptep);
-
- /*
- * The caller is responsible for ensuring the old SPTE is not a REMOVED
- * SPTE. KVM should never attempt to zap or manipulate a REMOVED SPTE,
- * and pre-checking before inserting a new SPTE is advantageous as it
- * avoids unnecessary work.
- */
- WARN_ON_ONCE(iter->yielded || is_removed_spte(iter->old_spte));
+ int ret;
lockdep_assert_held_read(&kvm->mmu_lock);
- /*
- * Note, fast_pf_fix_direct_spte() can also modify TDP MMU SPTEs and
- * does not hold the mmu_lock. On failure, i.e. if a different logical
- * CPU modified the SPTE, try_cmpxchg64() updates iter->old_spte with
- * the current value, so the caller operates on fresh data, e.g. if it
- * retries tdp_mmu_set_spte_atomic()
- */
- if (!try_cmpxchg64(sptep, &iter->old_spte, new_spte))
- return -EBUSY;
+ ret = __tdp_mmu_set_spte_atomic(iter, new_spte);
+ if (ret)
+ return ret;
handle_changed_spte(kvm, iter->as_id, iter->gfn, iter->old_spte,
new_spte, iter->level, true);
@@ -584,13 +595,17 @@ static inline int tdp_mmu_zap_spte_atomic(struct kvm *kvm,
{
int ret;
+ lockdep_assert_held_read(&kvm->mmu_lock);
+
/*
- * Freeze the SPTE by setting it to a special,
- * non-present value. This will stop other threads from
- * immediately installing a present entry in its place
- * before the TLBs are flushed.
+ * Freeze the SPTE by setting it to a special, non-present value. This
+ * will stop other threads from immediately installing a present entry
+ * in its place before the TLBs are flushed.
+ *
+ * Delay processing of the zapped SPTE until after TLBs are flushed and
+ * the REMOVED_SPTE is replaced (see below).
*/
- ret = tdp_mmu_set_spte_atomic(kvm, iter, REMOVED_SPTE);
+ ret = __tdp_mmu_set_spte_atomic(iter, REMOVED_SPTE);
if (ret)
return ret;
@@ -599,12 +614,20 @@ static inline int tdp_mmu_zap_spte_atomic(struct kvm *kvm,
/*
* No other thread can overwrite the removed SPTE as they must either
* wait on the MMU lock or use tdp_mmu_set_spte_atomic() which will not
- * overwrite the special removed SPTE value. No bookkeeping is needed
- * here since the SPTE is going from non-present to non-present. Use
- * the raw write helper to avoid an unnecessary check on volatile bits.
+ * overwrite the special removed SPTE value. Use the raw write helper to
+ * avoid an unnecessary check on volatile bits.
*/
__kvm_tdp_mmu_write_spte(iter->sptep, 0);
+ /*
+ * Process the zapped SPTE after flushing TLBs, and after replacing
+ * REMOVED_SPTE with 0. This minimizes the amount of time vCPUs are
+ * blocked by the REMOVED_SPTE and reduces contention on the child
+ * SPTEs.
+ */
+ handle_changed_spte(kvm, iter->as_id, iter->gfn, iter->old_spte,
+ 0, iter->level, true);
+
return 0;
}