diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2018-12-26 20:46:28 +0100 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2018-12-26 20:46:28 +0100 |
commit | 42b00f122cfbfed79fc29b0b3610f3abbb1e3864 (patch) | |
tree | c110a18c03e9ada45b6f3593843f0a06b36773dc /arch | |
parent | Merge tag 'for-linus-4.21-rc1-tag' of git://git.kernel.org/pub/scm/linux/kern... (diff) | |
parent | KVM: x86: Add CPUID support for new instruction WBNOINVD (diff) | |
download | linux-42b00f122cfbfed79fc29b0b3610f3abbb1e3864.tar.xz linux-42b00f122cfbfed79fc29b0b3610f3abbb1e3864.zip |
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- selftests improvements
- large PUD support for HugeTLB
- single-stepping fixes
- improved tracing
- various timer and vGIC fixes
x86:
- Processor Tracing virtualization
- STIBP support
- some correctness fixes
- refactorings and splitting of vmx.c
- use the Hyper-V range TLB flush hypercall
- reduce order of vcpu struct
- WBNOINVD support
- do not use -ftrace for __noclone functions
- nested guest support for PAUSE filtering on AMD
- more Hyper-V enlightenments (direct mode for synthetic timers)
PPC:
- nested VFIO
s390:
- bugfixes only this time"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (171 commits)
KVM: x86: Add CPUID support for new instruction WBNOINVD
kvm: selftests: ucall: fix exit mmio address guessing
Revert "compiler-gcc: disable -ftracer for __noclone functions"
KVM: VMX: Move VM-Enter + VM-Exit handling to non-inline sub-routines
KVM: VMX: Explicitly reference RCX as the vmx_vcpu pointer in asm blobs
KVM: x86: Use jmp to invoke kvm_spurious_fault() from .fixup
MAINTAINERS: Add arch/x86/kvm sub-directories to existing KVM/x86 entry
KVM/x86: Use SVM assembly instruction mnemonics instead of .byte streams
KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range()
KVM/MMU: Flush tlb directly in kvm_set_pte_rmapp()
KVM/MMU: Move tlb flush in kvm_set_pte_rmapp() to kvm_mmu_notifier_change_pte()
KVM: Make kvm_set_spte_hva() return int
KVM: Replace old tlb flush function with new one to flush a specified range.
KVM/MMU: Add tlb flush with range helper function
KVM/VMX: Add hv tlb range flush support
x86/hyper-v: Add HvFlushGuestAddressList hypercall support
KVM: Add tlb_remote_flush_with_range callback in kvm_x86_ops
KVM: x86: Disable Intel PT when VMXON in L1 guest
KVM: x86: Set intercept for Intel PT MSRs read/write
KVM: x86: Implement Intel PT MSRs read/write emulation
...
Diffstat (limited to 'arch')
82 files changed, 17924 insertions, 15915 deletions
diff --git a/arch/arm/include/asm/kvm_asm.h b/arch/arm/include/asm/kvm_asm.h index 231e87ad45d5..35491af87985 100644 --- a/arch/arm/include/asm/kvm_asm.h +++ b/arch/arm/include/asm/kvm_asm.h @@ -23,6 +23,10 @@ #define ARM_EXIT_WITH_ABORT_BIT 31 #define ARM_EXCEPTION_CODE(x) ((x) & ~(1U << ARM_EXIT_WITH_ABORT_BIT)) +#define ARM_EXCEPTION_IS_TRAP(x) \ + (ARM_EXCEPTION_CODE((x)) == ARM_EXCEPTION_PREF_ABORT || \ + ARM_EXCEPTION_CODE((x)) == ARM_EXCEPTION_DATA_ABORT || \ + ARM_EXCEPTION_CODE((x)) == ARM_EXCEPTION_HVC) #define ARM_ABORT_PENDING(x) !!((x) & (1U << ARM_EXIT_WITH_ABORT_BIT)) #define ARM_EXCEPTION_RESET 0 diff --git a/arch/arm/include/asm/kvm_host.h b/arch/arm/include/asm/kvm_host.h index 2184d9ddb418..ca56537b61bc 100644 --- a/arch/arm/include/asm/kvm_host.h +++ b/arch/arm/include/asm/kvm_host.h @@ -225,7 +225,7 @@ int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, #define KVM_ARCH_WANT_MMU_NOTIFIER int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end); -void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte); +int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte); unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu); int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices); @@ -296,11 +296,6 @@ static inline void kvm_arm_init_debug(void) {} static inline void kvm_arm_setup_debug(struct kvm_vcpu *vcpu) {} static inline void kvm_arm_clear_debug(struct kvm_vcpu *vcpu) {} static inline void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu) {} -static inline bool kvm_arm_handle_step_debug(struct kvm_vcpu *vcpu, - struct kvm_run *run) -{ - return false; -} int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr); diff --git a/arch/arm/include/asm/kvm_mmu.h b/arch/arm/include/asm/kvm_mmu.h index 1098ffc3d54b..3a875fc1b63c 100644 --- a/arch/arm/include/asm/kvm_mmu.h +++ b/arch/arm/include/asm/kvm_mmu.h @@ -82,6 +82,67 @@ void kvm_clear_hyp_idmap(void); #define kvm_mk_pud(pmdp) __pud(__pa(pmdp) | PMD_TYPE_TABLE) #define kvm_mk_pgd(pudp) ({ BUILD_BUG(); 0; }) +#define kvm_pfn_pte(pfn, prot) pfn_pte(pfn, prot) +#define kvm_pfn_pmd(pfn, prot) pfn_pmd(pfn, prot) +#define kvm_pfn_pud(pfn, prot) (__pud(0)) + +#define kvm_pud_pfn(pud) ({ WARN_ON(1); 0; }) + + +#define kvm_pmd_mkhuge(pmd) pmd_mkhuge(pmd) +/* No support for pud hugepages */ +#define kvm_pud_mkhuge(pud) ( {WARN_ON(1); pud; }) + +/* + * The following kvm_*pud*() functions are provided strictly to allow + * sharing code with arm64. They should never be called in practice. + */ +static inline void kvm_set_s2pud_readonly(pud_t *pud) +{ + WARN_ON(1); +} + +static inline bool kvm_s2pud_readonly(pud_t *pud) +{ + WARN_ON(1); + return false; +} + +static inline void kvm_set_pud(pud_t *pud, pud_t new_pud) +{ + WARN_ON(1); +} + +static inline pud_t kvm_s2pud_mkwrite(pud_t pud) +{ + WARN_ON(1); + return pud; +} + +static inline pud_t kvm_s2pud_mkexec(pud_t pud) +{ + WARN_ON(1); + return pud; +} + +static inline bool kvm_s2pud_exec(pud_t *pud) +{ + WARN_ON(1); + return false; +} + +static inline pud_t kvm_s2pud_mkyoung(pud_t pud) +{ + BUG(); + return pud; +} + +static inline bool kvm_s2pud_young(pud_t pud) +{ + WARN_ON(1); + return false; +} + static inline pte_t kvm_s2pte_mkwrite(pte_t pte) { pte_val(pte) |= L_PTE_S2_RDWR; diff --git a/arch/arm/include/asm/stage2_pgtable.h b/arch/arm/include/asm/stage2_pgtable.h index f6a7ea805232..c4b1d4fb1797 100644 --- a/arch/arm/include/asm/stage2_pgtable.h +++ b/arch/arm/include/asm/stage2_pgtable.h @@ -68,4 +68,12 @@ stage2_pmd_addr_end(struct kvm *kvm, phys_addr_t addr, phys_addr_t end) #define stage2_pmd_table_empty(kvm, pmdp) kvm_page_empty(pmdp) #define stage2_pud_table_empty(kvm, pudp) false +static inline bool kvm_stage2_has_pud(struct kvm *kvm) +{ + return false; +} + +#define S2_PMD_MASK PMD_MASK +#define S2_PMD_SIZE PMD_SIZE + #endif /* __ARM_S2_PGTABLE_H_ */ diff --git a/arch/arm/kvm/coproc.c b/arch/arm/kvm/coproc.c index cb094e55dc5f..222c1635bc7a 100644 --- a/arch/arm/kvm/coproc.c +++ b/arch/arm/kvm/coproc.c @@ -602,8 +602,8 @@ static int emulate_cp15(struct kvm_vcpu *vcpu, } } else { /* If access function fails, it should complain. */ - kvm_err("Unsupported guest CP15 access at: %08lx\n", - *vcpu_pc(vcpu)); + kvm_err("Unsupported guest CP15 access at: %08lx [%08lx]\n", + *vcpu_pc(vcpu), *vcpu_cpsr(vcpu)); print_cp_instr(params); kvm_inject_undefined(vcpu); } diff --git a/arch/arm64/include/asm/kvm_arm.h b/arch/arm64/include/asm/kvm_arm.h index f9123fe8fcf3..7f9d2bfcf82e 100644 --- a/arch/arm64/include/asm/kvm_arm.h +++ b/arch/arm64/include/asm/kvm_arm.h @@ -107,7 +107,7 @@ TCR_EL2_ORGN0_MASK | TCR_EL2_IRGN0_MASK | TCR_EL2_T0SZ_MASK) /* VTCR_EL2 Registers bits */ -#define VTCR_EL2_RES1 (1 << 31) +#define VTCR_EL2_RES1 (1U << 31) #define VTCR_EL2_HD (1 << 22) #define VTCR_EL2_HA (1 << 21) #define VTCR_EL2_PS_SHIFT TCR_EL2_PS_SHIFT @@ -323,10 +323,6 @@ #define PAR_TO_HPFAR(par) \ (((par) & GENMASK_ULL(PHYS_MASK_SHIFT - 1, 12)) >> 8) -#define kvm_arm_exception_type \ - {0, "IRQ" }, \ - {1, "TRAP" } - #define ECN(x) { ESR_ELx_EC_##x, #x } #define kvm_arm_exception_class \ diff --git a/arch/arm64/include/asm/kvm_asm.h b/arch/arm64/include/asm/kvm_asm.h index aea01a09eb94..f5b79e995f40 100644 --- a/arch/arm64/include/asm/kvm_asm.h +++ b/arch/arm64/include/asm/kvm_asm.h @@ -25,6 +25,7 @@ #define ARM_EXIT_WITH_SERROR_BIT 31 #define ARM_EXCEPTION_CODE(x) ((x) & ~(1U << ARM_EXIT_WITH_SERROR_BIT)) +#define ARM_EXCEPTION_IS_TRAP(x) (ARM_EXCEPTION_CODE((x)) == ARM_EXCEPTION_TRAP) #define ARM_SERROR_PENDING(x) !!((x) & (1U << ARM_EXIT_WITH_SERROR_BIT)) #define ARM_EXCEPTION_IRQ 0 @@ -34,6 +35,12 @@ /* The hyp-stub will return this for any kvm_call_hyp() call */ #define ARM_EXCEPTION_HYP_GONE HVC_STUB_ERR +#define kvm_arm_exception_type \ + {ARM_EXCEPTION_IRQ, "IRQ" }, \ + {ARM_EXCEPTION_EL1_SERROR, "SERROR" }, \ + {ARM_EXCEPTION_TRAP, "TRAP" }, \ + {ARM_EXCEPTION_HYP_GONE, "HYP_GONE" } + #ifndef __ASSEMBLY__ #include <linux/mm.h> diff --git a/arch/arm64/include/asm/kvm_emulate.h b/arch/arm64/include/asm/kvm_emulate.h index 21247870def7..506386a3edde 100644 --- a/arch/arm64/include/asm/kvm_emulate.h +++ b/arch/arm64/include/asm/kvm_emulate.h @@ -24,6 +24,7 @@ #include <linux/kvm_host.h> +#include <asm/debug-monitors.h> #include <asm/esr.h> #include <asm/kvm_arm.h> #include <asm/kvm_hyp.h> @@ -147,14 +148,6 @@ static inline bool kvm_condition_valid(const struct kvm_vcpu *vcpu) return true; } -static inline void kvm_skip_instr(struct kvm_vcpu *vcpu, bool is_wide_instr) -{ - if (vcpu_mode_is_32bit(vcpu)) - kvm_skip_instr32(vcpu, is_wide_instr); - else - *vcpu_pc(vcpu) += 4; -} - static inline void vcpu_set_thumb(struct kvm_vcpu *vcpu) { *vcpu_cpsr(vcpu) |= PSR_AA32_T_BIT; @@ -424,4 +417,30 @@ static inline unsigned long vcpu_data_host_to_guest(struct kvm_vcpu *vcpu, return data; /* Leave LE untouched */ } +static inline void kvm_skip_instr(struct kvm_vcpu *vcpu, bool is_wide_instr) +{ + if (vcpu_mode_is_32bit(vcpu)) + kvm_skip_instr32(vcpu, is_wide_instr); + else + *vcpu_pc(vcpu) += 4; + + /* advance the singlestep state machine */ + *vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS; +} + +/* + * Skip an instruction which has been emulated at hyp while most guest sysregs + * are live. + */ +static inline void __hyp_text __kvm_skip_instr(struct kvm_vcpu *vcpu) +{ + *vcpu_pc(vcpu) = read_sysreg_el2(elr); + vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(spsr); + + kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); + + write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, spsr); + write_sysreg_el2(*vcpu_pc(vcpu), elr); +} + #endif /* __ARM64_KVM_EMULATE_H__ */ diff --git a/arch/arm64/include/asm/kvm_host.h b/arch/arm64/include/asm/kvm_host.h index 9217759afa6b..7732d0ba4e60 100644 --- a/arch/arm64/include/asm/kvm_host.h +++ b/arch/arm64/include/asm/kvm_host.h @@ -319,7 +319,7 @@ struct kvm_vcpu_arch { */ #define __vcpu_sys_reg(v,r) ((v)->arch.ctxt.sys_regs[(r)]) -u64 vcpu_read_sys_reg(struct kvm_vcpu *vcpu, int reg); +u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg); void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg); /* @@ -360,7 +360,7 @@ int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, #define KVM_ARCH_WANT_MMU_NOTIFIER int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end); -void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte); +int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte); int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end); int kvm_test_age_hva(struct kvm *kvm, unsigned long hva); @@ -449,7 +449,6 @@ void kvm_arm_init_debug(void); void kvm_arm_setup_debug(struct kvm_vcpu *vcpu); void kvm_arm_clear_debug(struct kvm_vcpu *vcpu); void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu); -bool kvm_arm_handle_step_debug(struct kvm_vcpu *vcpu, struct kvm_run *run); int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr); int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu, diff --git a/arch/arm64/include/asm/kvm_mmu.h b/arch/arm64/include/asm/kvm_mmu.h index 658657367f2f..8af4b1befa42 100644 --- a/arch/arm64/include/asm/kvm_mmu.h +++ b/arch/arm64/include/asm/kvm_mmu.h @@ -184,6 +184,17 @@ void kvm_clear_hyp_idmap(void); #define kvm_mk_pgd(pudp) \ __pgd(__phys_to_pgd_val(__pa(pudp)) | PUD_TYPE_TABLE) +#define kvm_set_pud(pudp, pud) set_pud(pudp, pud) + +#define kvm_pfn_pte(pfn, prot) pfn_pte(pfn, prot) +#define kvm_pfn_pmd(pfn, prot) pfn_pmd(pfn, prot) +#define kvm_pfn_pud(pfn, prot) pfn_pud(pfn, prot) + +#define kvm_pud_pfn(pud) pud_pfn(pud) + +#define kvm_pmd_mkhuge(pmd) pmd_mkhuge(pmd) +#define kvm_pud_mkhuge(pud) pud_mkhuge(pud) + static inline pte_t kvm_s2pte_mkwrite(pte_t pte) { pte_val(pte) |= PTE_S2_RDWR; @@ -196,6 +207,12 @@ static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd) return pmd; } +static inline pud_t kvm_s2pud_mkwrite(pud_t pud) +{ + pud_val(pud) |= PUD_S2_RDWR; + return pud; +} + static inline pte_t kvm_s2pte_mkexec(pte_t pte) { pte_val(pte) &= ~PTE_S2_XN; @@ -208,6 +225,12 @@ static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd) return pmd; } +static inline pud_t kvm_s2pud_mkexec(pud_t pud) +{ + pud_val(pud) &= ~PUD_S2_XN; + return pud; +} + static inline void kvm_set_s2pte_readonly(pte_t *ptep) { pteval_t old_pteval, pteval; @@ -246,6 +269,31 @@ static inline bool kvm_s2pmd_exec(pmd_t *pmdp) return !(READ_ONCE(pmd_val(*pmdp)) & PMD_S2_XN); } +static inline void kvm_set_s2pud_readonly(pud_t *pudp) +{ + kvm_set_s2pte_readonly((pte_t *)pudp); +} + +static inline bool kvm_s2pud_readonly(pud_t *pudp) +{ + return kvm_s2pte_readonly((pte_t *)pudp); +} + +static inline bool kvm_s2pud_exec(pud_t *pudp) +{ + return !(READ_ONCE(pud_val(*pudp)) & PUD_S2_XN); +} + +static inline pud_t kvm_s2pud_mkyoung(pud_t pud) +{ + return pud_mkyoung(pud); +} + +static inline bool kvm_s2pud_young(pud_t pud) +{ + return pud_young(pud); +} + #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep) #ifdef __PAGETABLE_PMD_FOLDED diff --git a/arch/arm64/include/asm/pgtable-hwdef.h b/arch/arm64/include/asm/pgtable-hwdef.h index 54a37660b8c9..22bb3ae514f5 100644 --- a/arch/arm64/include/asm/pgtable-hwdef.h +++ b/arch/arm64/include/asm/pgtable-hwdef.h @@ -193,6 +193,10 @@ #define PMD_S2_RDWR (_AT(pmdval_t, 3) << 6) /* HAP[2:1] */ #define PMD_S2_XN (_AT(pmdval_t, 2) << 53) /* XN[1:0] */ +#define PUD_S2_RDONLY (_AT(pudval_t, 1) << 6) /* HAP[2:1] */ +#define PUD_S2_RDWR (_AT(pudval_t, 3) << 6) /* HAP[2:1] */ +#define PUD_S2_XN (_AT(pudval_t, 2) << 53) /* XN[1:0] */ + /* * Memory Attribute override for Stage-2 (MemAttr[3:0]) */ diff --git a/arch/arm64/include/asm/pgtable.h b/arch/arm64/include/asm/pgtable.h index 5bbb59c81920..de70c1eabf33 100644 --- a/arch/arm64/include/asm/pgtable.h +++ b/arch/arm64/include/asm/pgtable.h @@ -315,6 +315,11 @@ static inline pte_t pud_pte(pud_t pud) return __pte(pud_val(pud)); } +static inline pud_t pte_pud(pte_t pte) +{ + return __pud(pte_val(pte)); +} + static inline pmd_t pud_pmd(pud_t pud) { return __pmd(pud_val(pud)); @@ -382,8 +387,12 @@ static inline int pmd_protnone(pmd_t pmd) #define pfn_pmd(pfn,prot) __pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) #define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot) +#define pud_young(pud) pte_young(pud_pte(pud)) +#define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud))) #define pud_write(pud) pte_write(pud_pte(pud)) +#define pud_mkhuge(pud) (__pud(pud_val(pud) & ~PUD_TABLE_BIT)) + #define __pud_to_phys(pud) __pte_to_phys(pud_pte(pud)) #define __phys_to_pud_val(phys) __phys_to_pte_val(phys) #define pud_pfn(pud) ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT) diff --git a/arch/arm64/include/asm/stage2_pgtable.h b/arch/arm64/include/asm/stage2_pgtable.h index d352f6df8d2c..5412fa40825e 100644 --- a/arch/arm64/include/asm/stage2_pgtable.h +++ b/arch/arm64/include/asm/stage2_pgtable.h @@ -30,16 +30,14 @@ #define pt_levels_pgdir_shift(lvls) ARM64_HW_PGTABLE_LEVEL_SHIFT(4 - (lvls)) /* - * The hardware supports concatenation of up to 16 tables at stage2 entry level - * and we use the feature whenever possible. + * The hardware supports concatenation of up to 16 tables at stage2 entry + * level and we use the feature whenever possible, which means we resolve 4 + * additional bits of address at the entry level. * - * Now, the minimum number of bits resolved at any level is (PAGE_SHIFT - 3). - * On arm64, the smallest PAGE_SIZE supported is 4k, which means - * (PAGE_SHIFT - 3) > 4 holds for all page sizes. - * This implies, the total number of page table levels at stage2 expected - * by the hardware is actually the number of levels required for (IPA_SHIFT - 4) - * in normal translations(e.g, stage1), since we cannot have another level in - * the range (IPA_SHIFT, IPA_SHIFT - 4). + * This implies, the total number of page table levels required for + * IPA_SHIFT at stage2 expected by the hardware can be calculated using + * the same logic used for the (non-collapsable) stage1 page tables but for + * (IPA_SHIFT - 4). */ #define stage2_pgtable_levels(ipa) ARM64_HW_PGTABLE_LEVELS((ipa) - 4) #define kvm_stage2_levels(kvm) VTCR_EL2_LVLS(kvm->arch.vtcr) diff --git a/arch/arm64/kvm/debug.c b/arch/arm64/kvm/debug.c index 00d422336a45..f39801e4136c 100644 --- a/arch/arm64/kvm/debug.c +++ b/arch/arm64/kvm/debug.c @@ -236,24 +236,3 @@ void kvm_arm_clear_debug(struct kvm_vcpu *vcpu) } } } - - -/* - * After successfully emulating an instruction, we might want to - * return to user space with a KVM_EXIT_DEBUG. We can only do this - * once the emulation is complete, though, so for userspace emulations - * we have to wait until we have re-entered KVM before calling this - * helper. - * - * Return true (and set exit_reason) to return to userspace or false - * if no further action is required. - */ -bool kvm_arm_handle_step_debug(struct kvm_vcpu *vcpu, struct kvm_run *run) -{ - if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { - run->exit_reason = KVM_EXIT_DEBUG; - run->debug.arch.hsr = ESR_ELx_EC_SOFTSTP_LOW << ESR_ELx_EC_SHIFT; - return true; - } - return false; -} diff --git a/arch/arm64/kvm/handle_exit.c b/arch/arm64/kvm/handle_exit.c index ab35929dcb3c..0b7983442071 100644 --- a/arch/arm64/kvm/handle_exit.c +++ b/arch/arm64/kvm/handle_exit.c @@ -247,13 +247,6 @@ static int handle_trap_exceptions(struct kvm_vcpu *vcpu, struct kvm_run *run) handled = exit_handler(vcpu, run); } - /* - * kvm_arm_handle_step_debug() sets the exit_reason on the kvm_run - * structure if we need to return to userspace. - */ - if (handled > 0 && kvm_arm_handle_step_debug(vcpu, run)) - handled = 0; - return handled; } @@ -287,12 +280,7 @@ int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run, case ARM_EXCEPTION_IRQ: return 1; case ARM_EXCEPTION_EL1_SERROR: - /* We may still need to return for single-step */ - if (!(*vcpu_cpsr(vcpu) & DBG_SPSR_SS) - && kvm_arm_handle_step_debug(vcpu, run)) - return 0; - else - return 1; + return 1; case ARM_EXCEPTION_TRAP: return handle_trap_exceptions(vcpu, run); case ARM_EXCEPTION_HYP_GONE: diff --git a/arch/arm64/kvm/hyp/switch.c b/arch/arm64/kvm/hyp/switch.c index 63ac10ead3a8..b0b1478094b4 100644 --- a/arch/arm64/kvm/hyp/switch.c +++ b/arch/arm64/kvm/hyp/switch.c @@ -313,33 +313,6 @@ static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu) return true; } -/* Skip an instruction which has been emulated. Returns true if - * execution can continue or false if we need to exit hyp mode because - * single-step was in effect. - */ -static bool __hyp_text __skip_instr(struct kvm_vcpu *vcpu) -{ - *vcpu_pc(vcpu) = read_sysreg_el2(elr); - - if (vcpu_mode_is_32bit(vcpu)) { - vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(spsr); - kvm_skip_instr32(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); - write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, spsr); - } else { - *vcpu_pc(vcpu) += 4; - } - - write_sysreg_el2(*vcpu_pc(vcpu), elr); - - if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { - vcpu->arch.fault.esr_el2 = - (ESR_ELx_EC_SOFTSTP_LOW << ESR_ELx_EC_SHIFT) | 0x22; - return false; - } else { - return true; - } -} - static bool __hyp_text __hyp_switch_fpsimd(struct kvm_vcpu *vcpu) { struct user_fpsimd_state *host_fpsimd = vcpu->arch.host_fpsimd_state; @@ -428,20 +401,12 @@ static bool __hyp_text fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code) if (valid) { int ret = __vgic_v2_perform_cpuif_access(vcpu); - if (ret == 1 && __skip_instr(vcpu)) + if (ret == 1) return true; - if (ret == -1) { - /* Promote an illegal access to an - * SError. If we would be returning - * due to single-step clear the SS - * bit so handle_exit knows what to - * do after dealing with the error. - */ - if (!__skip_instr(vcpu)) - *vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS; + /* Promote an illegal access to an SError.*/ + if (ret == -1) *exit_code = ARM_EXCEPTION_EL1_SERROR; - } goto exit; } @@ -452,7 +417,7 @@ static bool __hyp_text fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code) kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) { int ret = __vgic_v3_perform_cpuif_access(vcpu); - if (ret == 1 && __skip_instr(vcpu)) + if (ret == 1) return true; } diff --git a/arch/arm64/kvm/hyp/vgic-v2-cpuif-proxy.c b/arch/arm64/kvm/hyp/vgic-v2-cpuif-proxy.c index 215c7c0eb3b0..9cbdd034a563 100644 --- a/arch/arm64/kvm/hyp/vgic-v2-cpuif-proxy.c +++ b/arch/arm64/kvm/hyp/vgic-v2-cpuif-proxy.c @@ -41,7 +41,7 @@ static bool __hyp_text __is_be(struct kvm_vcpu *vcpu) * Returns: * 1: GICV access successfully performed * 0: Not a GICV access - * -1: Illegal GICV access + * -1: Illegal GICV access successfully performed */ int __hyp_text __vgic_v2_perform_cpuif_access(struct kvm_vcpu *vcpu) { @@ -61,12 +61,16 @@ int __hyp_text __vgic_v2_perform_cpuif_access(struct kvm_vcpu *vcpu) return 0; /* Reject anything but a 32bit access */ - if (kvm_vcpu_dabt_get_as(vcpu) != sizeof(u32)) + if (kvm_vcpu_dabt_get_as(vcpu) != sizeof(u32)) { + __kvm_skip_instr(vcpu); return -1; + } /* Not aligned? Don't bother */ - if (fault_ipa & 3) + if (fault_ipa & 3) { + __kvm_skip_instr(vcpu); return -1; + } rd = kvm_vcpu_dabt_get_rd(vcpu); addr = hyp_symbol_addr(kvm_vgic_global_state)->vcpu_hyp_va; @@ -88,5 +92,7 @@ int __hyp_text __vgic_v2_perform_cpuif_access(struct kvm_vcpu *vcpu) vcpu_set_reg(vcpu, rd, data); } + __kvm_skip_instr(vcpu); + return 1; } diff --git a/arch/arm64/kvm/sys_regs.c b/arch/arm64/kvm/sys_regs.c index 1ca592d38c3c..e3e37228ae4e 100644 --- a/arch/arm64/kvm/sys_regs.c +++ b/arch/arm64/kvm/sys_regs.c @@ -76,7 +76,7 @@ static bool write_to_read_only(struct kvm_vcpu *vcpu, return false; } -u64 vcpu_read_sys_reg(struct kvm_vcpu *vcpu, int reg) +u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg) { if (!vcpu->arch.sysregs_loaded_on_cpu) goto immediate_read; @@ -1858,6 +1858,8 @@ static void perform_access(struct kvm_vcpu *vcpu, struct sys_reg_params *params, const struct sys_reg_desc *r) { + trace_kvm_sys_access(*vcpu_pc(vcpu), params, r); + /* * Not having an accessor means that we have configured a trap * that we don't know how to handle. This certainly qualifies @@ -1920,8 +1922,8 @@ static void unhandled_cp_access(struct kvm_vcpu *vcpu, WARN_ON(1); } - kvm_err("Unsupported guest CP%d access at: %08lx\n", - cp, *vcpu_pc(vcpu)); + kvm_err("Unsupported guest CP%d access at: %08lx [%08lx]\n", + cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu)); print_sys_reg_instr(params); kvm_inject_undefined(vcpu); } @@ -2071,8 +2073,8 @@ static int emulate_sys_reg(struct kvm_vcpu *vcpu, if (likely(r)) { perform_access(vcpu, params, r); } else { - kvm_err("Unsupported guest sys_reg access at: %lx\n", - *vcpu_pc(vcpu)); + kvm_err("Unsupported guest sys_reg access at: %lx [%08lx]\n", + *vcpu_pc(vcpu), *vcpu_cpsr(vcpu)); print_sys_reg_instr(params); kvm_inject_undefined(vcpu); } diff --git a/arch/arm64/kvm/sys_regs.h b/arch/arm64/kvm/sys_regs.h index cd710f8b63e0..3b1bc7f01d0b 100644 --- a/arch/arm64/kvm/sys_regs.h +++ b/arch/arm64/kvm/sys_regs.h @@ -35,6 +35,9 @@ struct sys_reg_params { }; struct sys_reg_desc { + /* Sysreg string for debug */ + const char *name; + /* MRS/MSR instruction which accesses it. */ u8 Op0; u8 Op1; @@ -130,6 +133,7 @@ const struct sys_reg_desc *find_reg_by_id(u64 id, #define Op2(_x) .Op2 = _x #define SYS_DESC(reg) \ + .name = #reg, \ Op0(sys_reg_Op0(reg)), Op1(sys_reg_Op1(reg)), \ CRn(sys_reg_CRn(reg)), CRm(sys_reg_CRm(reg)), \ Op2(sys_reg_Op2(reg)) diff --git a/arch/arm64/kvm/trace.h b/arch/arm64/kvm/trace.h index 3b82fb1ddd09..eab91ad0effb 100644 --- a/arch/arm64/kvm/trace.h +++ b/arch/arm64/kvm/trace.h @@ -3,6 +3,7 @@ #define _TRACE_ARM64_KVM_H #include <linux/tracepoint.h> +#include "sys_regs.h" #undef TRACE_SYSTEM #define TRACE_SYSTEM kvm @@ -152,6 +153,40 @@ TRACE_EVENT(kvm_handle_sys_reg, TP_printk("HSR 0x%08lx", __entry->hsr) ); +TRACE_EVENT(kvm_sys_access, + TP_PROTO(unsigned long vcpu_pc, struct sys_reg_params *params, const struct sys_reg_desc *reg), + TP_ARGS(vcpu_pc, params, reg), + + TP_STRUCT__entry( + __field(unsigned long, vcpu_pc) + __field(bool, is_write) + __field(const char *, name) + __field(u8, Op0) + __field(u8, Op1) + __field(u8, CRn) + __field(u8, CRm) + __field(u8, Op2) + ), + + TP_fast_assign( + __entry->vcpu_pc = vcpu_pc; + __entry->is_write = params->is_write; + __entry->name = reg->name; + __entry->Op0 = reg->Op0; + __entry->Op0 = reg->Op0; + __entry->Op1 = reg->Op1; + __entry->CRn = reg->CRn; + __entry->CRm = reg->CRm; + __entry->Op2 = reg->Op2; + ), + + TP_printk("PC: %lx %s (%d,%d,%d,%d,%d) %s", + __entry->vcpu_pc, __entry->name ?: "UNKN", + __entry->Op0, __entry->Op1, __entry->CRn, + __entry->CRm, __entry->Op2, + __entry->is_write ? "write" : "read") +); + TRACE_EVENT(kvm_set_guest_debug, TP_PROTO(struct kvm_vcpu *vcpu, __u32 guest_debug), TP_ARGS(vcpu, guest_debug), diff --git a/arch/mips/include/asm/kvm_host.h b/arch/mips/include/asm/kvm_host.h index e445026858bc..d2abd98471e8 100644 --- a/arch/mips/include/asm/kvm_host.h +++ b/arch/mips/include/asm/kvm_host.h @@ -936,7 +936,7 @@ enum kvm_mips_fault_result kvm_trap_emul_gva_fault(struct kvm_vcpu *vcpu, #define KVM_ARCH_WANT_MMU_NOTIFIER int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end); -void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte); +int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte); int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end); int kvm_test_age_hva(struct kvm *kvm, unsigned long hva); diff --git a/arch/mips/kvm/mips.c b/arch/mips/kvm/mips.c index 1fcc4d149054..3734cd58895e 100644 --- a/arch/mips/kvm/mips.c +++ b/arch/mips/kvm/mips.c @@ -1004,14 +1004,37 @@ int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) { struct kvm_memslots *slots; struct kvm_memory_slot *memslot; - bool is_dirty = false; + bool flush = false; int r; mutex_lock(&kvm->slots_lock); - r = kvm_get_dirty_log_protect(kvm, log, &is_dirty); + r = kvm_get_dirty_log_protect(kvm, log, &flush); - if (is_dirty) { + if (flush) { + slots = kvm_memslots(kvm); + memslot = id_to_memslot(slots, log->slot); + + /* Let implementation handle TLB/GVA invalidation */ + kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot); + } + + mutex_unlock(&kvm->slots_lock); + return r; +} + +int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log) +{ + struct kvm_memslots *slots; + struct kvm_memory_slot *memslot; + bool flush = false; + int r; + + mutex_lock(&kvm->slots_lock); + + r = kvm_clear_dirty_log_protect(kvm, log, &flush); + + if (flush) { slots = kvm_memslots(kvm); memslot = id_to_memslot(slots, log->slot); diff --git a/arch/mips/kvm/mmu.c b/arch/mips/kvm/mmu.c index d8dcdb350405..97e538a8c1be 100644 --- a/arch/mips/kvm/mmu.c +++ b/arch/mips/kvm/mmu.c @@ -551,7 +551,7 @@ static int kvm_set_spte_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end, (pte_dirty(old_pte) && !pte_dirty(hva_pte)); } -void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) +int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) { unsigned long end = hva + PAGE_SIZE; int ret; @@ -559,6 +559,7 @@ void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) ret = handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pte); if (ret) kvm_mips_callbacks->flush_shadow_all(kvm); + return 0; } static int kvm_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end, diff --git a/arch/powerpc/include/asm/hvcall.h b/arch/powerpc/include/asm/hvcall.h index 33a4fc891947..463c63a9fcf1 100644 --- a/arch/powerpc/include/asm/hvcall.h +++ b/arch/powerpc/include/asm/hvcall.h @@ -335,6 +335,7 @@ #define H_SET_PARTITION_TABLE 0xF800 #define H_ENTER_NESTED 0xF804 #define H_TLB_INVALIDATE 0xF808 +#define H_COPY_TOFROM_GUEST 0xF80C /* Values for 2nd argument to H_SET_MODE */ #define H_SET_MODE_RESOURCE_SET_CIABR 1 diff --git a/arch/powerpc/include/asm/kvm_book3s.h b/arch/powerpc/include/asm/kvm_book3s.h index 09f8e9ba69bc..38f1b879f569 100644 --- a/arch/powerpc/include/asm/kvm_book3s.h +++ b/arch/powerpc/include/asm/kvm_book3s.h @@ -188,6 +188,13 @@ extern int kvmppc_book3s_hcall_implemented(struct kvm *kvm, unsigned long hc); extern int kvmppc_book3s_radix_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu, unsigned long ea, unsigned long dsisr); +extern unsigned long __kvmhv_copy_tofrom_guest_radix(int lpid, int pid, + gva_t eaddr, void *to, void *from, + unsigned long n); +extern long kvmhv_copy_from_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, + void *to, unsigned long n); +extern long kvmhv_copy_to_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, + void *from, unsigned long n); extern int kvmppc_mmu_walk_radix_tree(struct kvm_vcpu *vcpu, gva_t eaddr, struct kvmppc_pte *gpte, u64 root, u64 *pte_ret_p); @@ -196,8 +203,11 @@ extern int kvmppc_mmu_radix_translate_table(struct kvm_vcpu *vcpu, gva_t eaddr, int table_index, u64 *pte_ret_p); extern int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, struct kvmppc_pte *gpte, bool data, bool iswrite); +extern void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr, + unsigned int pshift, unsigned int lpid); extern void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte, unsigned long gpa, - unsigned int shift, struct kvm_memory_slot *memslot, + unsigned int shift, + const struct kvm_memory_slot *memslot, unsigned int lpid); extern bool kvmppc_hv_handle_set_rc(struct kvm *kvm, pgd_t *pgtable, bool writing, unsigned long gpa, @@ -215,16 +225,14 @@ extern int kvmppc_radix_init(void); extern void kvmppc_radix_exit(void); extern int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, unsigned long gfn); -extern void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte, - unsigned long gpa, unsigned int shift, - struct kvm_memory_slot *memslot, - unsigned int lpid); extern int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, unsigned long gfn); extern int kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, unsigned long gfn); extern long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, unsigned long *map); +extern void kvmppc_radix_flush_memslot(struct kvm *kvm, + const struct kvm_memory_slot *memslot); extern int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info); /* XXX remove this export when load_last_inst() is generic */ @@ -242,7 +250,7 @@ extern kvm_pfn_t kvmppc_gpa_to_pfn(struct kvm_vcpu *vcpu, gpa_t gpa, bool writing, bool *writable); extern void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev, unsigned long *rmap, long pte_index, int realmode); -extern void kvmppc_update_dirty_map(struct kvm_memory_slot *memslot, +extern void kvmppc_update_dirty_map(const struct kvm_memory_slot *memslot, unsigned long gfn, unsigned long psize); extern void kvmppc_invalidate_hpte(struct kvm *kvm, __be64 *hptep, unsigned long pte_index); @@ -298,6 +306,7 @@ long kvmhv_nested_init(void); void kvmhv_nested_exit(void); void kvmhv_vm_nested_init(struct kvm *kvm); long kvmhv_set_partition_table(struct kvm_vcpu *vcpu); +long kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu *vcpu); void kvmhv_set_ptbl_entry(unsigned int lpid, u64 dw0, u64 dw1); void kvmhv_release_all_nested(struct kvm *kvm); long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu); @@ -307,7 +316,7 @@ int kvmhv_run_single_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu, void kvmhv_save_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr); void kvmhv_restore_hv_return_state(struct kvm_vcpu *vcpu, struct hv_guest_state *hr); -long int kvmhv_nested_page_fault(struct kvm_vcpu *vcpu); +long int kvmhv_nested_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu); void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac); diff --git a/arch/powerpc/include/asm/kvm_book3s_64.h b/arch/powerpc/include/asm/kvm_book3s_64.h index 6d298145d564..21b1ed5df888 100644 --- a/arch/powerpc/include/asm/kvm_book3s_64.h +++ b/arch/powerpc/include/asm/kvm_book3s_64.h @@ -55,6 +55,7 @@ struct kvm_nested_guest { cpumask_t need_tlb_flush; cpumask_t cpu_in_guest; short prev_cpu[NR_CPUS]; + u8 radix; /* is this nested guest radix */ }; /* @@ -150,6 +151,18 @@ static inline bool kvm_is_radix(struct kvm *kvm) return kvm->arch.radix; } +static inline bool kvmhv_vcpu_is_radix(struct kvm_vcpu *vcpu) +{ + bool radix; + + if (vcpu->arch.nested) + radix = vcpu->arch.nested->radix; + else + radix = kvm_is_radix(vcpu->kvm); + + return radix; +} + #define KVM_DEFAULT_HPT_ORDER 24 /* 16MB HPT by default */ #endif @@ -624,8 +637,11 @@ extern int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte, unsigned long *rmapp, struct rmap_nested **n_rmap); extern void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp, struct rmap_nested **n_rmap); +extern void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp, + unsigned long clr, unsigned long set, + unsigned long hpa, unsigned long nbytes); extern void kvmhv_remove_nest_rmap_range(struct kvm *kvm, - struct kvm_memory_slot *memslot, + const struct kvm_memory_slot *memslot, unsigned long gpa, unsigned long hpa, unsigned long nbytes); diff --git a/arch/powerpc/include/asm/kvm_host.h b/arch/powerpc/include/asm/kvm_host.h index fac6f631ed29..0f98f00da2ea 100644 --- a/arch/powerpc/include/asm/kvm_host.h +++ b/arch/powerpc/include/asm/kvm_host.h @@ -72,7 +72,7 @@ extern int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end); extern int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end); extern int kvm_test_age_hva(struct kvm *kvm, unsigned long hva); -extern void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte); +extern int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte); #define HPTEG_CACHE_NUM (1 << 15) #define HPTEG_HASH_BITS_PTE 13 @@ -793,6 +793,7 @@ struct kvm_vcpu_arch { /* For support of nested guests */ struct kvm_nested_guest *nested; u32 nested_vcpu_id; + gpa_t nested_io_gpr; #endif #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING @@ -827,6 +828,8 @@ struct kvm_vcpu_arch { #define KVM_MMIO_REG_FQPR 0x00c0 #define KVM_MMIO_REG_VSX 0x0100 #define KVM_MMIO_REG_VMX 0x0180 +#define KVM_MMIO_REG_NESTED_GPR 0xffc0 + #define __KVM_HAVE_ARCH_WQP #define __KVM_HAVE_CREATE_DEVICE diff --git a/arch/powerpc/include/asm/kvm_ppc.h b/arch/powerpc/include/asm/kvm_ppc.h index 9b89b1918dfc..eb0d79f0ca45 100644 --- a/arch/powerpc/include/asm/kvm_ppc.h +++ b/arch/powerpc/include/asm/kvm_ppc.h @@ -224,7 +224,8 @@ extern int kvmppc_core_prepare_memory_region(struct kvm *kvm, extern void kvmppc_core_commit_memory_region(struct kvm *kvm, const struct kvm_userspace_memory_region *mem, const struct kvm_memory_slot *old, - const struct kvm_memory_slot *new); + const struct kvm_memory_slot *new, + enum kvm_mr_change change); extern int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info); extern void kvmppc_core_flush_memslot(struct kvm *kvm, @@ -294,7 +295,8 @@ struct kvmppc_ops { void (*commit_memory_region)(struct kvm *kvm, const struct kvm_userspace_memory_region *mem, const struct kvm_memory_slot *old, - const struct kvm_memory_slot *new); + const struct kvm_memory_slot *new, + enum kvm_mr_change change); int (*unmap_hva_range)(struct kvm *kvm, unsigned long start, unsigned long end); int (*age_hva)(struct kvm *kvm, unsigned long start, unsigned long end); @@ -326,6 +328,10 @@ struct kvmppc_ops { unsigned long flags); void (*giveup_ext)(struct kvm_vcpu *vcpu, ulong msr); int (*enable_nested)(struct kvm *kvm); + int (*load_from_eaddr)(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, + int size); + int (*store_to_eaddr)(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, + int size); }; extern struct kvmppc_ops *kvmppc_hv_ops; diff --git a/arch/powerpc/kernel/exceptions-64s.S b/arch/powerpc/kernel/exceptions-64s.S index 89d32bb79d5e..db2691ff4c0b 100644 --- a/arch/powerpc/kernel/exceptions-64s.S +++ b/arch/powerpc/kernel/exceptions-64s.S @@ -995,7 +995,16 @@ EXC_COMMON_BEGIN(h_data_storage_common) bl save_nvgprs RECONCILE_IRQ_STATE(r10, r11) addi r3,r1,STACK_FRAME_OVERHEAD +BEGIN_MMU_FTR_SECTION + ld r4,PACA_EXGEN+EX_DAR(r13) + lwz r5,PACA_EXGEN+EX_DSISR(r13) + std r4,_DAR(r1) + std r5,_DSISR(r1) + li r5,SIGSEGV + bl bad_page_fault +MMU_FTR_SECTION_ELSE bl unknown_exception +ALT_MMU_FTR_SECTION_END_IFSET(MMU_FTR_TYPE_RADIX) b ret_from_except diff --git a/arch/powerpc/kvm/book3s.c b/arch/powerpc/kvm/book3s.c index fd9893bc7aa1..bd1a677dd9e4 100644 --- a/arch/powerpc/kvm/book3s.c +++ b/arch/powerpc/kvm/book3s.c @@ -830,9 +830,10 @@ int kvmppc_core_prepare_memory_region(struct kvm *kvm, void kvmppc_core_commit_memory_region(struct kvm *kvm, const struct kvm_userspace_memory_region *mem, const struct kvm_memory_slot *old, - const struct kvm_memory_slot *new) + const struct kvm_memory_slot *new, + enum kvm_mr_change change) { - kvm->arch.kvm_ops->commit_memory_region(kvm, mem, old, new); + kvm->arch.kvm_ops->commit_memory_region(kvm, mem, old, new, change); } int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end) @@ -850,9 +851,10 @@ int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) return kvm->arch.kvm_ops->test_age_hva(kvm, hva); } -void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) +int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) { kvm->arch.kvm_ops->set_spte_hva(kvm, hva, pte); + return 0; } void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu) diff --git a/arch/powerpc/kvm/book3s_64_mmu_hv.c b/arch/powerpc/kvm/book3s_64_mmu_hv.c index c615617e78ac..6f2d2fb4e098 100644 --- a/arch/powerpc/kvm/book3s_64_mmu_hv.c +++ b/arch/powerpc/kvm/book3s_64_mmu_hv.c @@ -743,12 +743,15 @@ void kvmppc_rmap_reset(struct kvm *kvm) srcu_idx = srcu_read_lock(&kvm->srcu); slots = kvm_memslots(kvm); kvm_for_each_memslot(memslot, slots) { + /* Mutual exclusion with kvm_unmap_hva_range etc. */ + spin_lock(&kvm->mmu_lock); /* * This assumes it is acceptable to lose reference and * change bits across a reset. */ memset(memslot->arch.rmap, 0, memslot->npages * sizeof(*memslot->arch.rmap)); + spin_unlock(&kvm->mmu_lock); } srcu_read_unlock(&kvm->srcu, srcu_idx); } @@ -896,11 +899,12 @@ void kvmppc_core_flush_memslot_hv(struct kvm *kvm, gfn = memslot->base_gfn; rmapp = memslot->arch.rmap; + if (kvm_is_radix(kvm)) { + kvmppc_radix_flush_memslot(kvm, memslot); + return; + } + for (n = memslot->npages; n; --n, ++gfn) { - if (kvm_is_radix(kvm)) { - kvm_unmap_radix(kvm, memslot, gfn); - continue; - } /* * Testing the present bit without locking is OK because * the memslot has been marked invalid already, and hence diff --git a/arch/powerpc/kvm/book3s_64_mmu_radix.c b/arch/powerpc/kvm/book3s_64_mmu_radix.c index d68162ee159b..fb88167a402a 100644 --- a/arch/powerpc/kvm/book3s_64_mmu_radix.c +++ b/arch/powerpc/kvm/book3s_64_mmu_radix.c @@ -29,6 +29,103 @@ */ static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 }; +unsigned long __kvmhv_copy_tofrom_guest_radix(int lpid, int pid, + gva_t eaddr, void *to, void *from, + unsigned long n) +{ + unsigned long quadrant, ret = n; + int old_pid, old_lpid; + bool is_load = !!to; + + /* Can't access quadrants 1 or 2 in non-HV mode, call the HV to do it */ + if (kvmhv_on_pseries()) + return plpar_hcall_norets(H_COPY_TOFROM_GUEST, lpid, pid, eaddr, + __pa(to), __pa(from), n); + + quadrant = 1; + if (!pid) + quadrant = 2; + if (is_load) + from = (void *) (eaddr | (quadrant << 62)); + else + to = (void *) (eaddr | (quadrant << 62)); + + preempt_disable(); + + /* switch the lpid first to avoid running host with unallocated pid */ + old_lpid = mfspr(SPRN_LPID); + if (old_lpid != lpid) + mtspr(SPRN_LPID, lpid); + if (quadrant == 1) { + old_pid = mfspr(SPRN_PID); + if (old_pid != pid) + mtspr(SPRN_PID, pid); + } + isync(); + + pagefault_disable(); + if (is_load) + ret = raw_copy_from_user(to, from, n); + else + ret = raw_copy_to_user(to, from, n); + pagefault_enable(); + + /* switch the pid first to avoid running host with unallocated pid */ + if (quadrant == 1 && pid != old_pid) + mtspr(SPRN_PID, old_pid); + if (lpid != old_lpid) + mtspr(SPRN_LPID, old_lpid); + isync(); + + preempt_enable(); + + return ret; +} +EXPORT_SYMBOL_GPL(__kvmhv_copy_tofrom_guest_radix); + +static long kvmhv_copy_tofrom_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, + void *to, void *from, unsigned long n) +{ + int lpid = vcpu->kvm->arch.lpid; + int pid = vcpu->arch.pid; + + /* This would cause a data segment intr so don't allow the access */ + if (eaddr & (0x3FFUL << 52)) + return -EINVAL; + + /* Should we be using the nested lpid */ + if (vcpu->arch.nested) + lpid = vcpu->arch.nested->shadow_lpid; + + /* If accessing quadrant 3 then pid is expected to be 0 */ + if (((eaddr >> 62) & 0x3) == 0x3) + pid = 0; + + eaddr &= ~(0xFFFUL << 52); + + return __kvmhv_copy_tofrom_guest_radix(lpid, pid, eaddr, to, from, n); +} + +long kvmhv_copy_from_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *to, + unsigned long n) +{ + long ret; + + ret = kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, to, NULL, n); + if (ret > 0) + memset(to + (n - ret), 0, ret); + + return ret; +} +EXPORT_SYMBOL_GPL(kvmhv_copy_from_guest_radix); + +long kvmhv_copy_to_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *from, + unsigned long n) +{ + return kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, NULL, from, n); +} +EXPORT_SYMBOL_GPL(kvmhv_copy_to_guest_radix); + int kvmppc_mmu_walk_radix_tree(struct kvm_vcpu *vcpu, gva_t eaddr, struct kvmppc_pte *gpte, u64 root, u64 *pte_ret_p) @@ -197,8 +294,8 @@ int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, return 0; } -static void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr, - unsigned int pshift, unsigned int lpid) +void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr, + unsigned int pshift, unsigned int lpid) { unsigned long psize = PAGE_SIZE; int psi; @@ -284,7 +381,8 @@ static void kvmppc_pmd_free(pmd_t *pmdp) /* Called with kvm->mmu_lock held */ void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte, unsigned long gpa, - unsigned int shift, struct kvm_memory_slot *memslot, + unsigned int shift, + const struct kvm_memory_slot *memslot, unsigned int lpid) { @@ -683,6 +781,7 @@ int kvmppc_book3s_instantiate_page(struct kvm_vcpu *vcpu, pte_t pte, *ptep; unsigned int shift, level; int ret; + bool large_enable; /* used to check for invalidations in progress */ mmu_seq = kvm->mmu_notifier_seq; @@ -732,12 +831,15 @@ int kvmppc_book3s_instantiate_page(struct kvm_vcpu *vcpu, pte = *ptep; local_irq_enable(); + /* If we're logging dirty pages, always map single pages */ + large_enable = !(memslot->flags & KVM_MEM_LOG_DIRTY_PAGES); + /* Get pte level from shift/size */ - if (shift == PUD_SHIFT && + if (large_enable && shift == PUD_SHIFT && (gpa & (PUD_SIZE - PAGE_SIZE)) == (hva & (PUD_SIZE - PAGE_SIZE))) { level = 2; - } else if (shift == PMD_SHIFT && + } else if (large_enable && shift == PMD_SHIFT && (gpa & (PMD_SIZE - PAGE_SIZE)) == (hva & (PMD_SIZE - PAGE_SIZE))) { level = 1; @@ -857,7 +959,7 @@ int kvmppc_book3s_radix_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu, return ret; } -/* Called with kvm->lock held */ +/* Called with kvm->mmu_lock held */ int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, unsigned long gfn) { @@ -872,7 +974,7 @@ int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, return 0; } -/* Called with kvm->lock held */ +/* Called with kvm->mmu_lock held */ int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, unsigned long gfn) { @@ -880,18 +982,24 @@ int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, unsigned long gpa = gfn << PAGE_SHIFT; unsigned int shift; int ref = 0; + unsigned long old, *rmapp; ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); if (ptep && pte_present(*ptep) && pte_young(*ptep)) { - kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0, - gpa, shift); + old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0, + gpa, shift); /* XXX need to flush tlb here? */ + /* Also clear bit in ptes in shadow pgtable for nested guests */ + rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; + kvmhv_update_nest_rmap_rc_list(kvm, rmapp, _PAGE_ACCESSED, 0, + old & PTE_RPN_MASK, + 1UL << shift); ref = 1; } return ref; } -/* Called with kvm->lock held */ +/* Called with kvm->mmu_lock held */ int kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, unsigned long gfn) { @@ -915,15 +1023,23 @@ static int kvm_radix_test_clear_dirty(struct kvm *kvm, pte_t *ptep; unsigned int shift; int ret = 0; + unsigned long old, *rmapp; ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); if (ptep && pte_present(*ptep) && pte_dirty(*ptep)) { ret = 1; if (shift) ret = 1 << (shift - PAGE_SHIFT); - kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0, - gpa, shift); + spin_lock(&kvm->mmu_lock); + old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0, + gpa, shift); kvmppc_radix_tlbie_page(kvm, gpa, shift, kvm->arch.lpid); + /* Also clear bit in ptes in shadow pgtable for nested guests */ + rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; + kvmhv_update_nest_rmap_rc_list(kvm, rmapp, _PAGE_DIRTY, 0, + old & PTE_RPN_MASK, + 1UL << shift); + spin_unlock(&kvm->mmu_lock); } return ret; } @@ -953,6 +1069,26 @@ long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm, return 0; } +void kvmppc_radix_flush_memslot(struct kvm *kvm, + const struct kvm_memory_slot *memslot) +{ + unsigned long n; + pte_t *ptep; + unsigned long gpa; + unsigned int shift; + + gpa = memslot->base_gfn << PAGE_SHIFT; + spin_lock(&kvm->mmu_lock); + for (n = memslot->npages; n; --n) { + ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); + if (ptep && pte_present(*ptep)) + kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot, + kvm->arch.lpid); + gpa += PAGE_SIZE; + } + spin_unlock(&kvm->mmu_lock); +} + static void add_rmmu_ap_encoding(struct kvm_ppc_rmmu_info *info, int psize, int *indexp) { diff --git a/arch/powerpc/kvm/book3s_hv.c b/arch/powerpc/kvm/book3s_hv.c index a56f8413758a..5a066fc299e1 100644 --- a/arch/powerpc/kvm/book3s_hv.c +++ b/arch/powerpc/kvm/book3s_hv.c @@ -985,6 +985,10 @@ int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) kvmppc_set_gpr(vcpu, 3, 0); vcpu->arch.hcall_needed = 0; return -EINTR; + } else if (ret == H_TOO_HARD) { + kvmppc_set_gpr(vcpu, 3, 0); + vcpu->arch.hcall_needed = 0; + return RESUME_HOST; } break; case H_TLB_INVALIDATE: @@ -992,7 +996,11 @@ int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) if (nesting_enabled(vcpu->kvm)) ret = kvmhv_do_nested_tlbie(vcpu); break; - + case H_COPY_TOFROM_GUEST: + ret = H_FUNCTION; + if (nesting_enabled(vcpu->kvm)) + ret = kvmhv_copy_tofrom_guest_nested(vcpu); + break; default: return RESUME_HOST; } @@ -1336,7 +1344,7 @@ static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, return r; } -static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu) +static int kvmppc_handle_nested_exit(struct kvm_run *run, struct kvm_vcpu *vcpu) { int r; int srcu_idx; @@ -1394,7 +1402,7 @@ static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu) */ case BOOK3S_INTERRUPT_H_DATA_STORAGE: srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); - r = kvmhv_nested_page_fault(vcpu); + r = kvmhv_nested_page_fault(run, vcpu); srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); break; case BOOK3S_INTERRUPT_H_INST_STORAGE: @@ -1404,7 +1412,7 @@ static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu) if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) vcpu->arch.fault_dsisr |= DSISR_ISSTORE; srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); - r = kvmhv_nested_page_fault(vcpu); + r = kvmhv_nested_page_fault(run, vcpu); srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); break; @@ -4059,7 +4067,7 @@ int kvmhv_run_single_vcpu(struct kvm_run *kvm_run, if (!nested) r = kvmppc_handle_exit_hv(kvm_run, vcpu, current); else - r = kvmppc_handle_nested_exit(vcpu); + r = kvmppc_handle_nested_exit(kvm_run, vcpu); } vcpu->arch.ret = r; @@ -4371,7 +4379,8 @@ static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, const struct kvm_userspace_memory_region *mem, const struct kvm_memory_slot *old, - const struct kvm_memory_slot *new) + const struct kvm_memory_slot *new, + enum kvm_mr_change change) { unsigned long npages = mem->memory_size >> PAGE_SHIFT; @@ -4383,6 +4392,23 @@ static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, */ if (npages) atomic64_inc(&kvm->arch.mmio_update); + + /* + * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels + * have already called kvm_arch_flush_shadow_memslot() to + * flush shadow mappings. For KVM_MR_CREATE we have no + * previous mappings. So the only case to handle is + * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit + * has been changed. + * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES + * to get rid of any THP PTEs in the partition-scoped page tables + * so we can track dirtiness at the page level; we flush when + * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to + * using THP PTEs. + */ + if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) && + ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES)) + kvmppc_radix_flush_memslot(kvm, old); } /* @@ -4532,12 +4558,15 @@ int kvmppc_switch_mmu_to_hpt(struct kvm *kvm) { if (nesting_enabled(kvm)) kvmhv_release_all_nested(kvm); + kvmppc_rmap_reset(kvm); + kvm->arch.process_table = 0; + /* Mutual exclusion with kvm_unmap_hva_range etc. */ + spin_lock(&kvm->mmu_lock); + kvm->arch.radix = 0; + spin_unlock(&kvm->mmu_lock); kvmppc_free_radix(kvm); kvmppc_update_lpcr(kvm, LPCR_VPM1, LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); - kvmppc_rmap_reset(kvm); - kvm->arch.radix = 0; - kvm->arch.process_table = 0; return 0; } @@ -4549,12 +4578,14 @@ int kvmppc_switch_mmu_to_radix(struct kvm *kvm) err = kvmppc_init_vm_radix(kvm); if (err) return err; - + kvmppc_rmap_reset(kvm); + /* Mutual exclusion with kvm_unmap_hva_range etc. */ + spin_lock(&kvm->mmu_lock); + kvm->arch.radix = 1; + spin_unlock(&kvm->mmu_lock); kvmppc_free_hpt(&kvm->arch.hpt); kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR, LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); - kvmppc_rmap_reset(kvm); - kvm->arch.radix = 1; return 0; } @@ -5214,6 +5245,44 @@ static int kvmhv_enable_nested(struct kvm *kvm) return 0; } +static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, + int size) +{ + int rc = -EINVAL; + + if (kvmhv_vcpu_is_radix(vcpu)) { + rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size); + + if (rc > 0) + rc = -EINVAL; + } + + /* For now quadrants are the only way to access nested guest memory */ + if (rc && vcpu->arch.nested) + rc = -EAGAIN; + + return rc; +} + +static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, + int size) +{ + int rc = -EINVAL; + + if (kvmhv_vcpu_is_radix(vcpu)) { + rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size); + + if (rc > 0) + rc = -EINVAL; + } + + /* For now quadrants are the only way to access nested guest memory */ + if (rc && vcpu->arch.nested) + rc = -EAGAIN; + + return rc; +} + static struct kvmppc_ops kvm_ops_hv = { .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, @@ -5254,6 +5323,8 @@ static struct kvmppc_ops kvm_ops_hv = { .get_rmmu_info = kvmhv_get_rmmu_info, .set_smt_mode = kvmhv_set_smt_mode, .enable_nested = kvmhv_enable_nested, + .load_from_eaddr = kvmhv_load_from_eaddr, + .store_to_eaddr = kvmhv_store_to_eaddr, }; static int kvm_init_subcore_bitmap(void) diff --git a/arch/powerpc/kvm/book3s_hv_nested.c b/arch/powerpc/kvm/book3s_hv_nested.c index 401d2ecbebc5..735e0ac6f5b2 100644 --- a/arch/powerpc/kvm/book3s_hv_nested.c +++ b/arch/powerpc/kvm/book3s_hv_nested.c @@ -195,6 +195,26 @@ void kvmhv_restore_hv_return_state(struct kvm_vcpu *vcpu, vcpu->arch.ppr = hr->ppr; } +static void kvmhv_nested_mmio_needed(struct kvm_vcpu *vcpu, u64 regs_ptr) +{ + /* No need to reflect the page fault to L1, we've handled it */ + vcpu->arch.trap = 0; + + /* + * Since the L2 gprs have already been written back into L1 memory when + * we complete the mmio, store the L1 memory location of the L2 gpr + * being loaded into by the mmio so that the loaded value can be + * written there in kvmppc_complete_mmio_load() + */ + if (((vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) == KVM_MMIO_REG_GPR) + && (vcpu->mmio_is_write == 0)) { + vcpu->arch.nested_io_gpr = (gpa_t) regs_ptr + + offsetof(struct pt_regs, + gpr[vcpu->arch.io_gpr]); + vcpu->arch.io_gpr = KVM_MMIO_REG_NESTED_GPR; + } +} + long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu) { long int err, r; @@ -316,6 +336,11 @@ long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu) if (r == -EINTR) return H_INTERRUPT; + if (vcpu->mmio_needed) { + kvmhv_nested_mmio_needed(vcpu, regs_ptr); + return H_TOO_HARD; + } + return vcpu->arch.trap; } @@ -437,6 +462,81 @@ long kvmhv_set_partition_table(struct kvm_vcpu *vcpu) } /* + * Handle the H_COPY_TOFROM_GUEST hcall. + * r4 = L1 lpid of nested guest + * r5 = pid + * r6 = eaddr to access + * r7 = to buffer (L1 gpa) + * r8 = from buffer (L1 gpa) + * r9 = n bytes to copy + */ +long kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu *vcpu) +{ + struct kvm_nested_guest *gp; + int l1_lpid = kvmppc_get_gpr(vcpu, 4); + int pid = kvmppc_get_gpr(vcpu, 5); + gva_t eaddr = kvmppc_get_gpr(vcpu, 6); + gpa_t gp_to = (gpa_t) kvmppc_get_gpr(vcpu, 7); + gpa_t gp_from = (gpa_t) kvmppc_get_gpr(vcpu, 8); + void *buf; + unsigned long n = kvmppc_get_gpr(vcpu, 9); + bool is_load = !!gp_to; + long rc; + + if (gp_to && gp_from) /* One must be NULL to determine the direction */ + return H_PARAMETER; + + if (eaddr & (0xFFFUL << 52)) + return H_PARAMETER; + + buf = kzalloc(n, GFP_KERNEL); + if (!buf) + return H_NO_MEM; + + gp = kvmhv_get_nested(vcpu->kvm, l1_lpid, false); + if (!gp) { + rc = H_PARAMETER; + goto out_free; + } + + mutex_lock(&gp->tlb_lock); + + if (is_load) { + /* Load from the nested guest into our buffer */ + rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid, + eaddr, buf, NULL, n); + if (rc) + goto not_found; + + /* Write what was loaded into our buffer back to the L1 guest */ + rc = kvm_vcpu_write_guest(vcpu, gp_to, buf, n); + if (rc) + goto not_found; + } else { + /* Load the data to be stored from the L1 guest into our buf */ + rc = kvm_vcpu_read_guest(vcpu, gp_from, buf, n); + if (rc) + goto not_found; + + /* Store from our buffer into the nested guest */ + rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid, + eaddr, NULL, buf, n); + if (rc) + goto not_found; + } + +out_unlock: + mutex_unlock(&gp->tlb_lock); + kvmhv_put_nested(gp); +out_free: + kfree(buf); + return rc; +not_found: + rc = H_NOT_FOUND; + goto out_unlock; +} + +/* * Reload the partition table entry for a guest. * Caller must hold gp->tlb_lock. */ @@ -480,6 +580,7 @@ struct kvm_nested_guest *kvmhv_alloc_nested(struct kvm *kvm, unsigned int lpid) if (shadow_lpid < 0) goto out_free2; gp->shadow_lpid = shadow_lpid; + gp->radix = 1; memset(gp->prev_cpu, -1, sizeof(gp->prev_cpu)); @@ -687,6 +788,57 @@ void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp, *n_rmap = NULL; } +static void kvmhv_update_nest_rmap_rc(struct kvm *kvm, u64 n_rmap, + unsigned long clr, unsigned long set, + unsigned long hpa, unsigned long mask) +{ + struct kvm_nested_guest *gp; + unsigned long gpa; + unsigned int shift, lpid; + pte_t *ptep; + + gpa = n_rmap & RMAP_NESTED_GPA_MASK; + lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT; + gp = kvmhv_find_nested(kvm, lpid); + if (!gp) + return; + + /* Find the pte */ + ptep = __find_linux_pte(gp->shadow_pgtable, gpa, NULL, &shift); + /* + * If the pte is present and the pfn is still the same, update the pte. + * If the pfn has changed then this is a stale rmap entry, the nested + * gpa actually points somewhere else now, and there is nothing to do. + * XXX A future optimisation would be to remove the rmap entry here. + */ + if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa)) { + __radix_pte_update(ptep, clr, set); + kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid); + } +} + +/* + * For a given list of rmap entries, update the rc bits in all ptes in shadow + * page tables for nested guests which are referenced by the rmap list. + */ +void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp, + unsigned long clr, unsigned long set, + unsigned long hpa, unsigned long nbytes) +{ + struct llist_node *entry = ((struct llist_head *) rmapp)->first; + struct rmap_nested *cursor; + unsigned long rmap, mask; + + if ((clr | set) & ~(_PAGE_DIRTY | _PAGE_ACCESSED)) + return; + + mask = PTE_RPN_MASK & ~(nbytes - 1); + hpa &= mask; + + for_each_nest_rmap_safe(cursor, entry, &rmap) + kvmhv_update_nest_rmap_rc(kvm, rmap, clr, set, hpa, mask); +} + static void kvmhv_remove_nest_rmap(struct kvm *kvm, u64 n_rmap, unsigned long hpa, unsigned long mask) { @@ -723,7 +875,7 @@ static void kvmhv_remove_nest_rmap_list(struct kvm *kvm, unsigned long *rmapp, /* called with kvm->mmu_lock held */ void kvmhv_remove_nest_rmap_range(struct kvm *kvm, - struct kvm_memory_slot *memslot, + const struct kvm_memory_slot *memslot, unsigned long gpa, unsigned long hpa, unsigned long nbytes) { @@ -1049,7 +1201,7 @@ static long kvmhv_handle_nested_set_rc(struct kvm_vcpu *vcpu, struct kvm *kvm = vcpu->kvm; bool writing = !!(dsisr & DSISR_ISSTORE); u64 pgflags; - bool ret; + long ret; /* Are the rc bits set in the L1 partition scoped pte? */ pgflags = _PAGE_ACCESSED; @@ -1062,16 +1214,22 @@ static long kvmhv_handle_nested_set_rc(struct kvm_vcpu *vcpu, /* Set the rc bit in the pte of our (L0) pgtable for the L1 guest */ ret = kvmppc_hv_handle_set_rc(kvm, kvm->arch.pgtable, writing, gpte.raddr, kvm->arch.lpid); - spin_unlock(&kvm->mmu_lock); - if (!ret) - return -EINVAL; + if (!ret) { + ret = -EINVAL; + goto out_unlock; + } /* Set the rc bit in the pte of the shadow_pgtable for the nest guest */ ret = kvmppc_hv_handle_set_rc(kvm, gp->shadow_pgtable, writing, n_gpa, gp->shadow_lpid); if (!ret) - return -EINVAL; - return 0; + ret = -EINVAL; + else + ret = 0; + +out_unlock: + spin_unlock(&kvm->mmu_lock); + return ret; } static inline int kvmppc_radix_level_to_shift(int level) @@ -1099,7 +1257,8 @@ static inline int kvmppc_radix_shift_to_level(int shift) } /* called with gp->tlb_lock held */ -static long int __kvmhv_nested_page_fault(struct kvm_vcpu *vcpu, +static long int __kvmhv_nested_page_fault(struct kvm_run *run, + struct kvm_vcpu *vcpu, struct kvm_nested_guest *gp) { struct kvm *kvm = vcpu->kvm; @@ -1180,9 +1339,9 @@ static long int __kvmhv_nested_page_fault(struct kvm_vcpu *vcpu, kvmppc_core_queue_data_storage(vcpu, ea, dsisr); return RESUME_GUEST; } - /* passthrough of emulated MMIO case... */ - pr_err("emulated MMIO passthrough?\n"); - return -EINVAL; + + /* passthrough of emulated MMIO case */ + return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea, writing); } if (memslot->flags & KVM_MEM_READONLY) { if (writing) { @@ -1220,6 +1379,8 @@ static long int __kvmhv_nested_page_fault(struct kvm_vcpu *vcpu, return ret; shift = kvmppc_radix_level_to_shift(level); } + /* Align gfn to the start of the page */ + gfn = (gpa & ~((1UL << shift) - 1)) >> PAGE_SHIFT; /* 3. Compute the pte we need to insert for nest_gpa -> host r_addr */ @@ -1227,6 +1388,9 @@ static long int __kvmhv_nested_page_fault(struct kvm_vcpu *vcpu, perm |= gpte.may_read ? 0UL : _PAGE_READ; perm |= gpte.may_write ? 0UL : _PAGE_WRITE; perm |= gpte.may_execute ? 0UL : _PAGE_EXEC; + /* Only set accessed/dirty (rc) bits if set in host and l1 guest ptes */ + perm |= (gpte.rc & _PAGE_ACCESSED) ? 0UL : _PAGE_ACCESSED; + perm |= ((gpte.rc & _PAGE_DIRTY) && writing) ? 0UL : _PAGE_DIRTY; pte = __pte(pte_val(pte) & ~perm); /* What size pte can we insert? */ @@ -1264,13 +1428,13 @@ static long int __kvmhv_nested_page_fault(struct kvm_vcpu *vcpu, return RESUME_GUEST; } -long int kvmhv_nested_page_fault(struct kvm_vcpu *vcpu) +long int kvmhv_nested_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu) { struct kvm_nested_guest *gp = vcpu->arch.nested; long int ret; mutex_lock(&gp->tlb_lock); - ret = __kvmhv_nested_page_fault(vcpu, gp); + ret = __kvmhv_nested_page_fault(run, vcpu, gp); mutex_unlock(&gp->tlb_lock); return ret; } diff --git a/arch/powerpc/kvm/book3s_hv_rm_mmu.c b/arch/powerpc/kvm/book3s_hv_rm_mmu.c index a67cf1cdeda4..3b3791ed74a6 100644 --- a/arch/powerpc/kvm/book3s_hv_rm_mmu.c +++ b/arch/powerpc/kvm/book3s_hv_rm_mmu.c @@ -107,7 +107,7 @@ void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev, EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain); /* Update the dirty bitmap of a memslot */ -void kvmppc_update_dirty_map(struct kvm_memory_slot *memslot, +void kvmppc_update_dirty_map(const struct kvm_memory_slot *memslot, unsigned long gfn, unsigned long psize) { unsigned long npages; diff --git a/arch/powerpc/kvm/book3s_pr.c b/arch/powerpc/kvm/book3s_pr.c index 4efd65d9e828..811a3c2fb0e9 100644 --- a/arch/powerpc/kvm/book3s_pr.c +++ b/arch/powerpc/kvm/book3s_pr.c @@ -587,6 +587,7 @@ void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr) case PVR_POWER8: case PVR_POWER8E: case PVR_POWER8NVL: + case PVR_POWER9: vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE | BOOK3S_HFLAG_NEW_TLBIE; break; @@ -1913,7 +1914,8 @@ static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm, static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm, const struct kvm_userspace_memory_region *mem, const struct kvm_memory_slot *old, - const struct kvm_memory_slot *new) + const struct kvm_memory_slot *new, + enum kvm_mr_change change) { return; } diff --git a/arch/powerpc/kvm/book3s_xics.c b/arch/powerpc/kvm/book3s_xics.c index b0b2bfc2ff51..f27ee57ab46e 100644 --- a/arch/powerpc/kvm/book3s_xics.c +++ b/arch/powerpc/kvm/book3s_xics.c @@ -1015,17 +1015,7 @@ static int xics_debug_show(struct seq_file *m, void *private) return 0; } -static int xics_debug_open(struct inode *inode, struct file *file) -{ - return single_open(file, xics_debug_show, inode->i_private); -} - -static const struct file_operations xics_debug_fops = { - .open = xics_debug_open, - .read = seq_read, - .llseek = seq_lseek, - .release = single_release, -}; +DEFINE_SHOW_ATTRIBUTE(xics_debug); static void xics_debugfs_init(struct kvmppc_xics *xics) { diff --git a/arch/powerpc/kvm/book3s_xive.c b/arch/powerpc/kvm/book3s_xive.c index ad4a370703d3..f78d002f0fe0 100644 --- a/arch/powerpc/kvm/book3s_xive.c +++ b/arch/powerpc/kvm/book3s_xive.c @@ -1968,17 +1968,7 @@ static int xive_debug_show(struct seq_file *m, void *private) return 0; } -static int xive_debug_open(struct inode *inode, struct file *file) -{ - return single_open(file, xive_debug_show, inode->i_private); -} - -static const struct file_operations xive_debug_fops = { - .open = xive_debug_open, - .read = seq_read, - .llseek = seq_lseek, - .release = single_release, -}; +DEFINE_SHOW_ATTRIBUTE(xive_debug); static void xive_debugfs_init(struct kvmppc_xive *xive) { diff --git a/arch/powerpc/kvm/booke.c b/arch/powerpc/kvm/booke.c index a9ca016da670..dbec4128bb51 100644 --- a/arch/powerpc/kvm/booke.c +++ b/arch/powerpc/kvm/booke.c @@ -1833,7 +1833,8 @@ int kvmppc_core_prepare_memory_region(struct kvm *kvm, void kvmppc_core_commit_memory_region(struct kvm *kvm, const struct kvm_userspace_memory_region *mem, const struct kvm_memory_slot *old, - const struct kvm_memory_slot *new) + const struct kvm_memory_slot *new, + enum kvm_mr_change change) { } diff --git a/arch/powerpc/kvm/e500_mmu_host.c b/arch/powerpc/kvm/e500_mmu_host.c index 8f2985e46f6f..c3f312b2bcb3 100644 --- a/arch/powerpc/kvm/e500_mmu_host.c +++ b/arch/powerpc/kvm/e500_mmu_host.c @@ -757,10 +757,11 @@ int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) return 0; } -void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) +int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) { /* The page will get remapped properly on its next fault */ kvm_unmap_hva(kvm, hva); + return 0; } /*****************************************/ diff --git a/arch/powerpc/kvm/powerpc.c b/arch/powerpc/kvm/powerpc.c index 2869a299c4ed..b90a7d154180 100644 --- a/arch/powerpc/kvm/powerpc.c +++ b/arch/powerpc/kvm/powerpc.c @@ -331,10 +331,17 @@ int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, { ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; struct kvmppc_pte pte; - int r; + int r = -EINVAL; vcpu->stat.st++; + if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr) + r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr, + size); + + if ((!r) || (r == -EAGAIN)) + return r; + r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, XLATE_WRITE, &pte); if (r < 0) @@ -367,10 +374,17 @@ int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr, { ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK; struct kvmppc_pte pte; - int rc; + int rc = -EINVAL; vcpu->stat.ld++; + if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr) + rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr, + size); + + if ((!rc) || (rc == -EAGAIN)) + return rc; + rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST, XLATE_READ, &pte); if (rc) @@ -518,7 +532,6 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) case KVM_CAP_PPC_UNSET_IRQ: case KVM_CAP_PPC_IRQ_LEVEL: case KVM_CAP_ENABLE_CAP: - case KVM_CAP_ENABLE_CAP_VM: case KVM_CAP_ONE_REG: case KVM_CAP_IOEVENTFD: case KVM_CAP_DEVICE_CTRL: @@ -543,8 +556,11 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) #ifdef CONFIG_PPC_BOOK3S_64 case KVM_CAP_SPAPR_TCE: case KVM_CAP_SPAPR_TCE_64: - /* fallthrough */ + r = 1; + break; case KVM_CAP_SPAPR_TCE_VFIO: + r = !!cpu_has_feature(CPU_FTR_HVMODE); + break; case KVM_CAP_PPC_RTAS: case KVM_CAP_PPC_FIXUP_HCALL: case KVM_CAP_PPC_ENABLE_HCALL: @@ -696,7 +712,7 @@ void kvm_arch_commit_memory_region(struct kvm *kvm, const struct kvm_memory_slot *new, enum kvm_mr_change change) { - kvmppc_core_commit_memory_region(kvm, mem, old, new); + kvmppc_core_commit_memory_region(kvm, mem, old, new, change); } void kvm_arch_flush_shadow_memslot(struct kvm *kvm, @@ -1192,6 +1208,14 @@ static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu, kvmppc_set_vmx_byte(vcpu, gpr); break; #endif +#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE + case KVM_MMIO_REG_NESTED_GPR: + if (kvmppc_need_byteswap(vcpu)) + gpr = swab64(gpr); + kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr, + sizeof(gpr)); + break; +#endif default: BUG(); } @@ -2084,8 +2108,8 @@ int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, } -static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, - struct kvm_enable_cap *cap) +int kvm_vm_ioctl_enable_cap(struct kvm *kvm, + struct kvm_enable_cap *cap) { int r; @@ -2273,15 +2297,6 @@ long kvm_arch_vm_ioctl(struct file *filp, break; } - case KVM_ENABLE_CAP: - { - struct kvm_enable_cap cap; - r = -EFAULT; - if (copy_from_user(&cap, argp, sizeof(cap))) - goto out; - r = kvm_vm_ioctl_enable_cap(kvm, &cap); - break; - } #ifdef CONFIG_SPAPR_TCE_IOMMU case KVM_CREATE_SPAPR_TCE_64: { struct kvm_create_spapr_tce_64 create_tce_64; diff --git a/arch/powerpc/mm/fault.c b/arch/powerpc/mm/fault.c index 1697e903bbf2..2e6fb1d758c3 100644 --- a/arch/powerpc/mm/fault.c +++ b/arch/powerpc/mm/fault.c @@ -636,6 +636,7 @@ void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig) switch (TRAP(regs)) { case 0x300: case 0x380: + case 0xe00: printk(KERN_ALERT "Unable to handle kernel paging request for " "data at address 0x%08lx\n", regs->dar); break; diff --git a/arch/s390/kvm/kvm-s390.c b/arch/s390/kvm/kvm-s390.c index fe24150ff666..7f4bc58a53b9 100644 --- a/arch/s390/kvm/kvm-s390.c +++ b/arch/s390/kvm/kvm-s390.c @@ -11,6 +11,9 @@ * Jason J. Herne <jjherne@us.ibm.com> */ +#define KMSG_COMPONENT "kvm-s390" +#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt + #include <linux/compiler.h> #include <linux/err.h> #include <linux/fs.h> @@ -44,10 +47,6 @@ #include "kvm-s390.h" #include "gaccess.h" -#define KMSG_COMPONENT "kvm-s390" -#undef pr_fmt -#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt - #define CREATE_TRACE_POINTS #include "trace.h" #include "trace-s390.h" @@ -417,19 +416,30 @@ static void kvm_s390_cpu_feat_init(void) int kvm_arch_init(void *opaque) { + int rc; + kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long)); if (!kvm_s390_dbf) return -ENOMEM; if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) { - debug_unregister(kvm_s390_dbf); - return -ENOMEM; + rc = -ENOMEM; + goto out_debug_unreg; } kvm_s390_cpu_feat_init(); /* Register floating interrupt controller interface. */ - return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC); + rc = kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC); + if (rc) { + pr_err("Failed to register FLIC rc=%d\n", rc); + goto out_debug_unreg; + } + return 0; + +out_debug_unreg: + debug_unregister(kvm_s390_dbf); + return rc; } void kvm_arch_exit(void) @@ -464,7 +474,6 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) case KVM_CAP_S390_CSS_SUPPORT: case KVM_CAP_IOEVENTFD: case KVM_CAP_DEVICE_CTRL: - case KVM_CAP_ENABLE_CAP_VM: case KVM_CAP_S390_IRQCHIP: case KVM_CAP_VM_ATTRIBUTES: case KVM_CAP_MP_STATE: @@ -607,7 +616,7 @@ static void icpt_operexc_on_all_vcpus(struct kvm *kvm) } } -static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap) +int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap) { int r; @@ -1933,14 +1942,6 @@ long kvm_arch_vm_ioctl(struct file *filp, r = kvm_s390_inject_vm(kvm, &s390int); break; } - case KVM_ENABLE_CAP: { - struct kvm_enable_cap cap; - r = -EFAULT; - if (copy_from_user(&cap, argp, sizeof(cap))) - break; - r = kvm_vm_ioctl_enable_cap(kvm, &cap); - break; - } case KVM_CREATE_IRQCHIP: { struct kvm_irq_routing_entry routing; diff --git a/arch/x86/events/intel/pt.c b/arch/x86/events/intel/pt.c index 3a0aa83cbd07..9494ca68fd9d 100644 --- a/arch/x86/events/intel/pt.c +++ b/arch/x86/events/intel/pt.c @@ -68,6 +68,7 @@ static struct pt_cap_desc { PT_CAP(topa_output, 0, CPUID_ECX, BIT(0)), PT_CAP(topa_multiple_entries, 0, CPUID_ECX, BIT(1)), PT_CAP(single_range_output, 0, CPUID_ECX, BIT(2)), + PT_CAP(output_subsys, 0, CPUID_ECX, BIT(3)), PT_CAP(payloads_lip, 0, CPUID_ECX, BIT(31)), PT_CAP(num_address_ranges, 1, CPUID_EAX, 0x3), PT_CAP(mtc_periods, 1, CPUID_EAX, 0xffff0000), @@ -75,14 +76,21 @@ static struct pt_cap_desc { PT_CAP(psb_periods, 1, CPUID_EBX, 0xffff0000), }; -static u32 pt_cap_get(enum pt_capabilities cap) +u32 intel_pt_validate_cap(u32 *caps, enum pt_capabilities capability) { - struct pt_cap_desc *cd = &pt_caps[cap]; - u32 c = pt_pmu.caps[cd->leaf * PT_CPUID_REGS_NUM + cd->reg]; + struct pt_cap_desc *cd = &pt_caps[capability]; + u32 c = caps[cd->leaf * PT_CPUID_REGS_NUM + cd->reg]; unsigned int shift = __ffs(cd->mask); return (c & cd->mask) >> shift; } +EXPORT_SYMBOL_GPL(intel_pt_validate_cap); + +u32 intel_pt_validate_hw_cap(enum pt_capabilities cap) +{ + return intel_pt_validate_cap(pt_pmu.caps, cap); +} +EXPORT_SYMBOL_GPL(intel_pt_validate_hw_cap); static ssize_t pt_cap_show(struct device *cdev, struct device_attribute *attr, @@ -92,7 +100,7 @@ static ssize_t pt_cap_show(struct device *cdev, container_of(attr, struct dev_ext_attribute, attr); enum pt_capabilities cap = (long)ea->var; - return snprintf(buf, PAGE_SIZE, "%x\n", pt_cap_get(cap)); + return snprintf(buf, PAGE_SIZE, "%x\n", intel_pt_validate_hw_cap(cap)); } static struct attribute_group pt_cap_group __ro_after_init = { @@ -310,16 +318,16 @@ static bool pt_event_valid(struct perf_event *event) return false; if (config & RTIT_CTL_CYC_PSB) { - if (!pt_cap_get(PT_CAP_psb_cyc)) + if (!intel_pt_validate_hw_cap(PT_CAP_psb_cyc)) return false; - allowed = pt_cap_get(PT_CAP_psb_periods); + allowed = intel_pt_validate_hw_cap(PT_CAP_psb_periods); requested = (config & RTIT_CTL_PSB_FREQ) >> RTIT_CTL_PSB_FREQ_OFFSET; if (requested && (!(allowed & BIT(requested)))) return false; - allowed = pt_cap_get(PT_CAP_cycle_thresholds); + allowed = intel_pt_validate_hw_cap(PT_CAP_cycle_thresholds); requested = (config & RTIT_CTL_CYC_THRESH) >> RTIT_CTL_CYC_THRESH_OFFSET; if (requested && (!(allowed & BIT(requested)))) @@ -334,10 +342,10 @@ static bool pt_event_valid(struct perf_event *event) * Spec says that setting mtc period bits while mtc bit in * CPUID is 0 will #GP, so better safe than sorry. */ - if (!pt_cap_get(PT_CAP_mtc)) + if (!intel_pt_validate_hw_cap(PT_CAP_mtc)) return false; - allowed = pt_cap_get(PT_CAP_mtc_periods); + allowed = intel_pt_validate_hw_cap(PT_CAP_mtc_periods); if (!allowed) return false; @@ -349,11 +357,11 @@ static bool pt_event_valid(struct perf_event *event) } if (config & RTIT_CTL_PWR_EVT_EN && - !pt_cap_get(PT_CAP_power_event_trace)) + !intel_pt_validate_hw_cap(PT_CAP_power_event_trace)) return false; if (config & RTIT_CTL_PTW) { - if (!pt_cap_get(PT_CAP_ptwrite)) + if (!intel_pt_validate_hw_cap(PT_CAP_ptwrite)) return false; /* FUPonPTW without PTW doesn't make sense */ @@ -598,7 +606,7 @@ static struct topa *topa_alloc(int cpu, gfp_t gfp) * In case of singe-entry ToPA, always put the self-referencing END * link as the 2nd entry in the table */ - if (!pt_cap_get(PT_CAP_topa_multiple_entries)) { + if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) { TOPA_ENTRY(topa, 1)->base = topa->phys >> TOPA_SHIFT; TOPA_ENTRY(topa, 1)->end = 1; } @@ -638,7 +646,7 @@ static void topa_insert_table(struct pt_buffer *buf, struct topa *topa) topa->offset = last->offset + last->size; buf->last = topa; - if (!pt_cap_get(PT_CAP_topa_multiple_entries)) + if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) return; BUG_ON(last->last != TENTS_PER_PAGE - 1); @@ -654,7 +662,7 @@ static void topa_insert_table(struct pt_buffer *buf, struct topa *topa) static bool topa_table_full(struct topa *topa) { /* single-entry ToPA is a special case */ - if (!pt_cap_get(PT_CAP_topa_multiple_entries)) + if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) return !!topa->last; return topa->last == TENTS_PER_PAGE - 1; @@ -690,7 +698,8 @@ static int topa_insert_pages(struct pt_buffer *buf, gfp_t gfp) TOPA_ENTRY(topa, -1)->base = page_to_phys(p) >> TOPA_SHIFT; TOPA_ENTRY(topa, -1)->size = order; - if (!buf->snapshot && !pt_cap_get(PT_CAP_topa_multiple_entries)) { + if (!buf->snapshot && + !intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) { TOPA_ENTRY(topa, -1)->intr = 1; TOPA_ENTRY(topa, -1)->stop = 1; } @@ -725,7 +734,7 @@ static void pt_topa_dump(struct pt_buffer *buf) topa->table[i].intr ? 'I' : ' ', topa->table[i].stop ? 'S' : ' ', *(u64 *)&topa->table[i]); - if ((pt_cap_get(PT_CAP_topa_multiple_entries) && + if ((intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) && topa->table[i].stop) || topa->table[i].end) break; @@ -828,7 +837,7 @@ static void pt_handle_status(struct pt *pt) * means we are already losing data; need to let the decoder * know. */ - if (!pt_cap_get(PT_CAP_topa_multiple_entries) || + if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) || buf->output_off == sizes(TOPA_ENTRY(buf->cur, buf->cur_idx)->size)) { perf_aux_output_flag(&pt->handle, PERF_AUX_FLAG_TRUNCATED); @@ -840,7 +849,8 @@ static void pt_handle_status(struct pt *pt) * Also on single-entry ToPA implementations, interrupt will come * before the output reaches its output region's boundary. */ - if (!pt_cap_get(PT_CAP_topa_multiple_entries) && !buf->snapshot && + if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) && + !buf->snapshot && pt_buffer_region_size(buf) - buf->output_off <= TOPA_PMI_MARGIN) { void *head = pt_buffer_region(buf); @@ -931,7 +941,7 @@ static int pt_buffer_reset_markers(struct pt_buffer *buf, /* single entry ToPA is handled by marking all regions STOP=1 INT=1 */ - if (!pt_cap_get(PT_CAP_topa_multiple_entries)) + if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) return 0; /* clear STOP and INT from current entry */ @@ -1082,7 +1092,7 @@ static int pt_buffer_init_topa(struct pt_buffer *buf, unsigned long nr_pages, pt_buffer_setup_topa_index(buf); /* link last table to the first one, unless we're double buffering */ - if (pt_cap_get(PT_CAP_topa_multiple_entries)) { + if (intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) { TOPA_ENTRY(buf->last, -1)->base = buf->first->phys >> TOPA_SHIFT; TOPA_ENTRY(buf->last, -1)->end = 1; } @@ -1153,7 +1163,7 @@ static int pt_addr_filters_init(struct perf_event *event) struct pt_filters *filters; int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu); - if (!pt_cap_get(PT_CAP_num_address_ranges)) + if (!intel_pt_validate_hw_cap(PT_CAP_num_address_ranges)) return 0; filters = kzalloc_node(sizeof(struct pt_filters), GFP_KERNEL, node); @@ -1202,7 +1212,7 @@ static int pt_event_addr_filters_validate(struct list_head *filters) return -EINVAL; } - if (++range > pt_cap_get(PT_CAP_num_address_ranges)) + if (++range > intel_pt_validate_hw_cap(PT_CAP_num_address_ranges)) return -EOPNOTSUPP; } @@ -1507,12 +1517,12 @@ static __init int pt_init(void) if (ret) return ret; - if (!pt_cap_get(PT_CAP_topa_output)) { + if (!intel_pt_validate_hw_cap(PT_CAP_topa_output)) { pr_warn("ToPA output is not supported on this CPU\n"); return -ENODEV; } - if (!pt_cap_get(PT_CAP_topa_multiple_entries)) + if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) pt_pmu.pmu.capabilities = PERF_PMU_CAP_AUX_NO_SG | PERF_PMU_CAP_AUX_SW_DOUBLEBUF; @@ -1530,7 +1540,7 @@ static __init int pt_init(void) pt_pmu.pmu.addr_filters_sync = pt_event_addr_filters_sync; pt_pmu.pmu.addr_filters_validate = pt_event_addr_filters_validate; pt_pmu.pmu.nr_addr_filters = - pt_cap_get(PT_CAP_num_address_ranges); + intel_pt_validate_hw_cap(PT_CAP_num_address_ranges); ret = perf_pmu_register(&pt_pmu.pmu, "intel_pt", -1); diff --git a/arch/x86/events/intel/pt.h b/arch/x86/events/intel/pt.h index 0eb41d07b79a..269e15a9086c 100644 --- a/arch/x86/events/intel/pt.h +++ b/arch/x86/events/intel/pt.h @@ -20,43 +20,6 @@ #define __INTEL_PT_H__ /* - * PT MSR bit definitions - */ -#define RTIT_CTL_TRACEEN BIT(0) -#define RTIT_CTL_CYCLEACC BIT(1) -#define RTIT_CTL_OS BIT(2) -#define RTIT_CTL_USR BIT(3) -#define RTIT_CTL_PWR_EVT_EN BIT(4) -#define RTIT_CTL_FUP_ON_PTW BIT(5) -#define RTIT_CTL_CR3EN BIT(7) -#define RTIT_CTL_TOPA BIT(8) -#define RTIT_CTL_MTC_EN BIT(9) -#define RTIT_CTL_TSC_EN BIT(10) -#define RTIT_CTL_DISRETC BIT(11) -#define RTIT_CTL_PTW_EN BIT(12) -#define RTIT_CTL_BRANCH_EN BIT(13) -#define RTIT_CTL_MTC_RANGE_OFFSET 14 -#define RTIT_CTL_MTC_RANGE (0x0full << RTIT_CTL_MTC_RANGE_OFFSET) -#define RTIT_CTL_CYC_THRESH_OFFSET 19 -#define RTIT_CTL_CYC_THRESH (0x0full << RTIT_CTL_CYC_THRESH_OFFSET) -#define RTIT_CTL_PSB_FREQ_OFFSET 24 -#define RTIT_CTL_PSB_FREQ (0x0full << RTIT_CTL_PSB_FREQ_OFFSET) -#define RTIT_CTL_ADDR0_OFFSET 32 -#define RTIT_CTL_ADDR0 (0x0full << RTIT_CTL_ADDR0_OFFSET) -#define RTIT_CTL_ADDR1_OFFSET 36 -#define RTIT_CTL_ADDR1 (0x0full << RTIT_CTL_ADDR1_OFFSET) -#define RTIT_CTL_ADDR2_OFFSET 40 -#define RTIT_CTL_ADDR2 (0x0full << RTIT_CTL_ADDR2_OFFSET) -#define RTIT_CTL_ADDR3_OFFSET 44 -#define RTIT_CTL_ADDR3 (0x0full << RTIT_CTL_ADDR3_OFFSET) -#define RTIT_STATUS_FILTEREN BIT(0) -#define RTIT_STATUS_CONTEXTEN BIT(1) -#define RTIT_STATUS_TRIGGEREN BIT(2) -#define RTIT_STATUS_BUFFOVF BIT(3) -#define RTIT_STATUS_ERROR BIT(4) -#define RTIT_STATUS_STOPPED BIT(5) - -/* * Single-entry ToPA: when this close to region boundary, switch * buffers to avoid losing data. */ @@ -82,30 +45,9 @@ struct topa_entry { u64 rsvd4 : 16; }; -#define PT_CPUID_LEAVES 2 -#define PT_CPUID_REGS_NUM 4 /* number of regsters (eax, ebx, ecx, edx) */ - /* TSC to Core Crystal Clock Ratio */ #define CPUID_TSC_LEAF 0x15 -enum pt_capabilities { - PT_CAP_max_subleaf = 0, - PT_CAP_cr3_filtering, - PT_CAP_psb_cyc, - PT_CAP_ip_filtering, - PT_CAP_mtc, - PT_CAP_ptwrite, - PT_CAP_power_event_trace, - PT_CAP_topa_output, - PT_CAP_topa_multiple_entries, - PT_CAP_single_range_output, - PT_CAP_payloads_lip, - PT_CAP_num_address_ranges, - PT_CAP_mtc_periods, - PT_CAP_cycle_thresholds, - PT_CAP_psb_periods, -}; - struct pt_pmu { struct pmu pmu; u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES]; diff --git a/arch/x86/hyperv/nested.c b/arch/x86/hyperv/nested.c index b8e60cc50461..dd0a843f766d 100644 --- a/arch/x86/hyperv/nested.c +++ b/arch/x86/hyperv/nested.c @@ -7,6 +7,7 @@ * * Author : Lan Tianyu <Tianyu.Lan@microsoft.com> */ +#define pr_fmt(fmt) "Hyper-V: " fmt #include <linux/types.h> @@ -54,3 +55,82 @@ fault: return ret; } EXPORT_SYMBOL_GPL(hyperv_flush_guest_mapping); + +int hyperv_fill_flush_guest_mapping_list( + struct hv_guest_mapping_flush_list *flush, + u64 start_gfn, u64 pages) +{ + u64 cur = start_gfn; + u64 additional_pages; + int gpa_n = 0; + + do { + /* + * If flush requests exceed max flush count, go back to + * flush tlbs without range. + */ + if (gpa_n >= HV_MAX_FLUSH_REP_COUNT) + return -ENOSPC; + + additional_pages = min_t(u64, pages, HV_MAX_FLUSH_PAGES) - 1; + + flush->gpa_list[gpa_n].page.additional_pages = additional_pages; + flush->gpa_list[gpa_n].page.largepage = false; + flush->gpa_list[gpa_n].page.basepfn = cur; + + pages -= additional_pages + 1; + cur += additional_pages + 1; + gpa_n++; + } while (pages > 0); + + return gpa_n; +} +EXPORT_SYMBOL_GPL(hyperv_fill_flush_guest_mapping_list); + +int hyperv_flush_guest_mapping_range(u64 as, + hyperv_fill_flush_list_func fill_flush_list_func, void *data) +{ + struct hv_guest_mapping_flush_list **flush_pcpu; + struct hv_guest_mapping_flush_list *flush; + u64 status = 0; + unsigned long flags; + int ret = -ENOTSUPP; + int gpa_n = 0; + + if (!hv_hypercall_pg || !fill_flush_list_func) + goto fault; + + local_irq_save(flags); + + flush_pcpu = (struct hv_guest_mapping_flush_list **) + this_cpu_ptr(hyperv_pcpu_input_arg); + + flush = *flush_pcpu; + if (unlikely(!flush)) { + local_irq_restore(flags); + goto fault; + } + + flush->address_space = as; + flush->flags = 0; + + gpa_n = fill_flush_list_func(flush, data); + if (gpa_n < 0) { + local_irq_restore(flags); + goto fault; + } + + status = hv_do_rep_hypercall(HVCALL_FLUSH_GUEST_PHYSICAL_ADDRESS_LIST, + gpa_n, 0, flush, NULL); + + local_irq_restore(flags); + + if (!(status & HV_HYPERCALL_RESULT_MASK)) + ret = 0; + else + ret = status; +fault: + trace_hyperv_nested_flush_guest_mapping_range(as, ret); + return ret; +} +EXPORT_SYMBOL_GPL(hyperv_flush_guest_mapping_range); diff --git a/arch/x86/include/asm/cpufeatures.h b/arch/x86/include/asm/cpufeatures.h index df8e94e2f7be..6d6122524711 100644 --- a/arch/x86/include/asm/cpufeatures.h +++ b/arch/x86/include/asm/cpufeatures.h @@ -281,6 +281,7 @@ #define X86_FEATURE_CLZERO (13*32+ 0) /* CLZERO instruction */ #define X86_FEATURE_IRPERF (13*32+ 1) /* Instructions Retired Count */ #define X86_FEATURE_XSAVEERPTR (13*32+ 2) /* Always save/restore FP error pointers */ +#define X86_FEATURE_WBNOINVD (13*32+ 9) /* WBNOINVD instruction */ #define X86_FEATURE_AMD_IBPB (13*32+12) /* "" Indirect Branch Prediction Barrier */ #define X86_FEATURE_AMD_IBRS (13*32+14) /* "" Indirect Branch Restricted Speculation */ #define X86_FEATURE_AMD_STIBP (13*32+15) /* "" Single Thread Indirect Branch Predictors */ diff --git a/arch/x86/include/asm/hyperv-tlfs.h b/arch/x86/include/asm/hyperv-tlfs.h index 4139f7650fe5..705dafc2d11a 100644 --- a/arch/x86/include/asm/hyperv-tlfs.h +++ b/arch/x86/include/asm/hyperv-tlfs.h @@ -10,6 +10,7 @@ #define _ASM_X86_HYPERV_TLFS_H #include <linux/types.h> +#include <asm/page.h> /* * The below CPUID leaves are present if VersionAndFeatures.HypervisorPresent @@ -30,158 +31,150 @@ /* * Feature identification. EAX indicates which features are available * to the partition based upon the current partition privileges. + * These are HYPERV_CPUID_FEATURES.EAX bits. */ /* VP Runtime (HV_X64_MSR_VP_RUNTIME) available */ -#define HV_X64_MSR_VP_RUNTIME_AVAILABLE (1 << 0) +#define HV_X64_MSR_VP_RUNTIME_AVAILABLE BIT(0) /* Partition Reference Counter (HV_X64_MSR_TIME_REF_COUNT) available*/ -#define HV_MSR_TIME_REF_COUNT_AVAILABLE (1 << 1) -/* Partition reference TSC MSR is available */ -#define HV_MSR_REFERENCE_TSC_AVAILABLE (1 << 9) -/* Partition Guest IDLE MSR is available */ -#define HV_X64_MSR_GUEST_IDLE_AVAILABLE (1 << 10) - -/* A partition's reference time stamp counter (TSC) page */ -#define HV_X64_MSR_REFERENCE_TSC 0x40000021 - -/* - * There is a single feature flag that signifies if the partition has access - * to MSRs with local APIC and TSC frequencies. - */ -#define HV_X64_ACCESS_FREQUENCY_MSRS (1 << 11) - -/* AccessReenlightenmentControls privilege */ -#define HV_X64_ACCESS_REENLIGHTENMENT BIT(13) - +#define HV_MSR_TIME_REF_COUNT_AVAILABLE BIT(1) /* * Basic SynIC MSRs (HV_X64_MSR_SCONTROL through HV_X64_MSR_EOM * and HV_X64_MSR_SINT0 through HV_X64_MSR_SINT15) available */ -#define HV_X64_MSR_SYNIC_AVAILABLE (1 << 2) +#define HV_X64_MSR_SYNIC_AVAILABLE BIT(2) /* * Synthetic Timer MSRs (HV_X64_MSR_STIMER0_CONFIG through * HV_X64_MSR_STIMER3_COUNT) available */ -#define HV_MSR_SYNTIMER_AVAILABLE (1 << 3) +#define HV_MSR_SYNTIMER_AVAILABLE BIT(3) /* * APIC access MSRs (HV_X64_MSR_EOI, HV_X64_MSR_ICR and HV_X64_MSR_TPR) * are available */ -#define HV_X64_MSR_APIC_ACCESS_AVAILABLE (1 << 4) +#define HV_X64_MSR_APIC_ACCESS_AVAILABLE BIT(4) /* Hypercall MSRs (HV_X64_MSR_GUEST_OS_ID and HV_X64_MSR_HYPERCALL) available*/ -#define HV_X64_MSR_HYPERCALL_AVAILABLE (1 << 5) +#define HV_X64_MSR_HYPERCALL_AVAILABLE BIT(5) /* Access virtual processor index MSR (HV_X64_MSR_VP_INDEX) available*/ -#define HV_X64_MSR_VP_INDEX_AVAILABLE (1 << 6) +#define HV_X64_MSR_VP_INDEX_AVAILABLE BIT(6) /* Virtual system reset MSR (HV_X64_MSR_RESET) is available*/ -#define HV_X64_MSR_RESET_AVAILABLE (1 << 7) - /* - * Access statistics pages MSRs (HV_X64_MSR_STATS_PARTITION_RETAIL_PAGE, - * HV_X64_MSR_STATS_PARTITION_INTERNAL_PAGE, HV_X64_MSR_STATS_VP_RETAIL_PAGE, - * HV_X64_MSR_STATS_VP_INTERNAL_PAGE) available - */ -#define HV_X64_MSR_STAT_PAGES_AVAILABLE (1 << 8) - -/* Frequency MSRs available */ -#define HV_FEATURE_FREQUENCY_MSRS_AVAILABLE (1 << 8) - -/* Crash MSR available */ -#define HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE (1 << 10) - -/* stimer Direct Mode is available */ -#define HV_STIMER_DIRECT_MODE_AVAILABLE (1 << 19) +#define HV_X64_MSR_RESET_AVAILABLE BIT(7) +/* + * Access statistics pages MSRs (HV_X64_MSR_STATS_PARTITION_RETAIL_PAGE, + * HV_X64_MSR_STATS_PARTITION_INTERNAL_PAGE, HV_X64_MSR_STATS_VP_RETAIL_PAGE, + * HV_X64_MSR_STATS_VP_INTERNAL_PAGE) available + */ +#define HV_X64_MSR_STAT_PAGES_AVAILABLE BIT(8) +/* Partition reference TSC MSR is available */ +#define HV_MSR_REFERENCE_TSC_AVAILABLE BIT(9) +/* Partition Guest IDLE MSR is available */ +#define HV_X64_MSR_GUEST_IDLE_AVAILABLE BIT(10) +/* + * There is a single feature flag that signifies if the partition has access + * to MSRs with local APIC and TSC frequencies. + */ +#define HV_X64_ACCESS_FREQUENCY_MSRS BIT(11) +/* AccessReenlightenmentControls privilege */ +#define HV_X64_ACCESS_REENLIGHTENMENT BIT(13) /* - * Feature identification: EBX indicates which flags were specified at - * partition creation. The format is the same as the partition creation - * flag structure defined in section Partition Creation Flags. + * Feature identification: indicates which flags were specified at partition + * creation. The format is the same as the partition creation flag structure + * defined in section Partition Creation Flags. + * These are HYPERV_CPUID_FEATURES.EBX bits. */ -#define HV_X64_CREATE_PARTITIONS (1 << 0) -#define HV_X64_ACCESS_PARTITION_ID (1 << 1) -#define HV_X64_ACCESS_MEMORY_POOL (1 << 2) -#define HV_X64_ADJUST_MESSAGE_BUFFERS (1 << 3) -#define HV_X64_POST_MESSAGES (1 << 4) -#define HV_X64_SIGNAL_EVENTS (1 << 5) -#define HV_X64_CREATE_PORT (1 << 6) -#define HV_X64_CONNECT_PORT (1 << 7) -#define HV_X64_ACCESS_STATS (1 << 8) -#define HV_X64_DEBUGGING (1 << 11) -#define HV_X64_CPU_POWER_MANAGEMENT (1 << 12) -#define HV_X64_CONFIGURE_PROFILER (1 << 13) +#define HV_X64_CREATE_PARTITIONS BIT(0) +#define HV_X64_ACCESS_PARTITION_ID BIT(1) +#define HV_X64_ACCESS_MEMORY_POOL BIT(2) +#define HV_X64_ADJUST_MESSAGE_BUFFERS BIT(3) +#define HV_X64_POST_MESSAGES BIT(4) +#define HV_X64_SIGNAL_EVENTS BIT(5) +#define HV_X64_CREATE_PORT BIT(6) +#define HV_X64_CONNECT_PORT BIT(7) +#define HV_X64_ACCESS_STATS BIT(8) +#define HV_X64_DEBUGGING BIT(11) +#define HV_X64_CPU_POWER_MANAGEMENT BIT(12) /* * Feature identification. EDX indicates which miscellaneous features * are available to the partition. + * These are HYPERV_CPUID_FEATURES.EDX bits. */ /* The MWAIT instruction is available (per section MONITOR / MWAIT) */ -#define HV_X64_MWAIT_AVAILABLE (1 << 0) +#define HV_X64_MWAIT_AVAILABLE BIT(0) /* Guest debugging support is available */ -#define HV_X64_GUEST_DEBUGGING_AVAILABLE (1 << 1) +#define HV_X64_GUEST_DEBUGGING_AVAILABLE BIT(1) /* Performance Monitor support is available*/ -#define HV_X64_PERF_MONITOR_AVAILABLE (1 << 2) +#define HV_X64_PERF_MONITOR_AVAILABLE BIT(2) /* Support for physical CPU dynamic partitioning events is available*/ -#define HV_X64_CPU_DYNAMIC_PARTITIONING_AVAILABLE (1 << 3) +#define HV_X64_CPU_DYNAMIC_PARTITIONING_AVAILABLE BIT(3) /* * Support for passing hypercall input parameter block via XMM * registers is available */ -#define HV_X64_HYPERCALL_PARAMS_XMM_AVAILABLE (1 << 4) +#define HV_X64_HYPERCALL_PARAMS_XMM_AVAILABLE BIT(4) /* Support for a virtual guest idle state is available */ -#define HV_X64_GUEST_IDLE_STATE_AVAILABLE (1 << 5) -/* Guest crash data handler available */ -#define HV_X64_GUEST_CRASH_MSR_AVAILABLE (1 << 10) +#define HV_X64_GUEST_IDLE_STATE_AVAILABLE BIT(5) +/* Frequency MSRs available */ +#define HV_FEATURE_FREQUENCY_MSRS_AVAILABLE BIT(8) +/* Crash MSR available */ +#define HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE BIT(10) +/* stimer Direct Mode is available */ +#define HV_STIMER_DIRECT_MODE_AVAILABLE BIT(19) /* * Implementation recommendations. Indicates which behaviors the hypervisor * recommends the OS implement for optimal performance. + * These are HYPERV_CPUID_ENLIGHTMENT_INFO.EAX bits. + */ +/* + * Recommend using hypercall for address space switches rather + * than MOV to CR3 instruction */ - /* - * Recommend using hypercall for address space switches rather - * than MOV to CR3 instruction - */ -#define HV_X64_AS_SWITCH_RECOMMENDED (1 << 0) +#define HV_X64_AS_SWITCH_RECOMMENDED BIT(0) /* Recommend using hypercall for local TLB flushes rather * than INVLPG or MOV to CR3 instructions */ -#define HV_X64_LOCAL_TLB_FLUSH_RECOMMENDED (1 << 1) +#define HV_X64_LOCAL_TLB_FLUSH_RECOMMENDED BIT(1) /* * Recommend using hypercall for remote TLB flushes rather * than inter-processor interrupts */ -#define HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED (1 << 2) +#define HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED BIT(2) /* * Recommend using MSRs for accessing APIC registers * EOI, ICR and TPR rather than their memory-mapped counterparts */ -#define HV_X64_APIC_ACCESS_RECOMMENDED (1 << 3) +#define HV_X64_APIC_ACCESS_RECOMMENDED BIT(3) /* Recommend using the hypervisor-provided MSR to initiate a system RESET */ -#define HV_X64_SYSTEM_RESET_RECOMMENDED (1 << 4) +#define HV_X64_SYSTEM_RESET_RECOMMENDED BIT(4) /* * Recommend using relaxed timing for this partition. If used, * the VM should disable any watchdog timeouts that rely on the * timely delivery of external interrupts */ -#define HV_X64_RELAXED_TIMING_RECOMMENDED (1 << 5) +#define HV_X64_RELAXED_TIMING_RECOMMENDED BIT(5) /* * Recommend not using Auto End-Of-Interrupt feature */ -#define HV_DEPRECATING_AEOI_RECOMMENDED (1 << 9) +#define HV_DEPRECATING_AEOI_RECOMMENDED BIT(9) /* * Recommend using cluster IPI hypercalls. */ -#define HV_X64_CLUSTER_IPI_RECOMMENDED (1 << 10) +#define HV_X64_CLUSTER_IPI_RECOMMENDED BIT(10) /* Recommend using the newer ExProcessorMasks interface */ -#define HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED (1 << 11) +#define HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED BIT(11) /* Recommend using enlightened VMCS */ -#define HV_X64_ENLIGHTENED_VMCS_RECOMMENDED (1 << 14) +#define HV_X64_ENLIGHTENED_VMCS_RECOMMENDED BIT(14) -/* - * Crash notification flags. - */ -#define HV_CRASH_CTL_CRASH_NOTIFY_MSG BIT_ULL(62) -#define HV_CRASH_CTL_CRASH_NOTIFY BIT_ULL(63) +/* Nested features. These are HYPERV_CPUID_NESTED_FEATURES.EAX bits. */ +#define HV_X64_NESTED_GUEST_MAPPING_FLUSH BIT(18) +#define HV_X64_NESTED_MSR_BITMAP BIT(19) + +/* Hyper-V specific model specific registers (MSRs) */ /* MSR used to identify the guest OS. */ #define HV_X64_MSR_GUEST_OS_ID 0x40000000 @@ -201,6 +194,9 @@ /* MSR used to read the per-partition time reference counter */ #define HV_X64_MSR_TIME_REF_COUNT 0x40000020 +/* A partition's reference time stamp counter (TSC) page */ +#define HV_X64_MSR_REFERENCE_TSC 0x40000021 + /* MSR used to retrieve the TSC frequency */ #define HV_X64_MSR_TSC_FREQUENCY 0x40000022 @@ -258,9 +254,11 @@ #define HV_X64_MSR_CRASH_P3 0x40000103 #define HV_X64_MSR_CRASH_P4 0x40000104 #define HV_X64_MSR_CRASH_CTL 0x40000105 -#define HV_X64_MSR_CRASH_CTL_NOTIFY (1ULL << 63) -#define HV_X64_MSR_CRASH_PARAMS \ - (1 + (HV_X64_MSR_CRASH_P4 - HV_X64_MSR_CRASH_P0)) + +/* TSC emulation after migration */ +#define HV_X64_MSR_REENLIGHTENMENT_CONTROL 0x40000106 +#define HV_X64_MSR_TSC_EMULATION_CONTROL 0x40000107 +#define HV_X64_MSR_TSC_EMULATION_STATUS 0x40000108 /* * Declare the MSR used to setup pages used to communicate with the hypervisor. @@ -271,7 +269,7 @@ union hv_x64_msr_hypercall_contents { u64 enable:1; u64 reserved:11; u64 guest_physical_address:52; - }; + } __packed; }; /* @@ -283,7 +281,7 @@ struct ms_hyperv_tsc_page { volatile u64 tsc_scale; volatile s64 tsc_offset; u64 reserved2[509]; -}; +} __packed; /* * The guest OS needs to register the guest ID with the hypervisor. @@ -311,39 +309,37 @@ struct ms_hyperv_tsc_page { #define HV_LINUX_VENDOR_ID 0x8100 -/* TSC emulation after migration */ -#define HV_X64_MSR_REENLIGHTENMENT_CONTROL 0x40000106 - -/* Nested features (CPUID 0x4000000A) EAX */ -#define HV_X64_NESTED_GUEST_MAPPING_FLUSH BIT(18) -#define HV_X64_NESTED_MSR_BITMAP BIT(19) - struct hv_reenlightenment_control { __u64 vector:8; __u64 reserved1:8; __u64 enabled:1; __u64 reserved2:15; __u64 target_vp:32; -}; - -#define HV_X64_MSR_TSC_EMULATION_CONTROL 0x40000107 -#define HV_X64_MSR_TSC_EMULATION_STATUS 0x40000108 +} __packed; struct hv_tsc_emulation_control { __u64 enabled:1; __u64 reserved:63; -}; +} __packed; struct hv_tsc_emulation_status { __u64 inprogress:1; __u64 reserved:63; -}; +} __packed; #define HV_X64_MSR_HYPERCALL_ENABLE 0x00000001 #define HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT 12 #define HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_MASK \ (~((1ull << HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT) - 1)) +/* + * Crash notification (HV_X64_MSR_CRASH_CTL) flags. + */ +#define HV_CRASH_CTL_CRASH_NOTIFY_MSG BIT_ULL(62) +#define HV_CRASH_CTL_CRASH_NOTIFY BIT_ULL(63) +#define HV_X64_MSR_CRASH_PARAMS \ + (1 + (HV_X64_MSR_CRASH_P4 - HV_X64_MSR_CRASH_P0)) + #define HV_IPI_LOW_VECTOR 0x10 #define HV_IPI_HIGH_VECTOR 0xff @@ -358,6 +354,7 @@ struct hv_tsc_emulation_status { #define HVCALL_POST_MESSAGE 0x005c #define HVCALL_SIGNAL_EVENT 0x005d #define HVCALL_FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE 0x00af +#define HVCALL_FLUSH_GUEST_PHYSICAL_ADDRESS_LIST 0x00b0 #define HV_X64_MSR_VP_ASSIST_PAGE_ENABLE 0x00000001 #define HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT 12 @@ -409,7 +406,7 @@ typedef struct _HV_REFERENCE_TSC_PAGE { __u32 res1; __u64 tsc_scale; __s64 tsc_offset; -} HV_REFERENCE_TSC_PAGE, *PHV_REFERENCE_TSC_PAGE; +} __packed HV_REFERENCE_TSC_PAGE, *PHV_REFERENCE_TSC_PAGE; /* Define the number of synthetic interrupt sources. */ #define HV_SYNIC_SINT_COUNT (16) @@ -466,7 +463,7 @@ union hv_message_flags { struct { __u8 msg_pending:1; __u8 reserved:7; - }; + } __packed; }; /* Define port identifier type. */ @@ -475,7 +472,7 @@ union hv_port_id { struct { __u32 id:24; __u32 reserved:8; - } u; + } __packed u; }; /* Define synthetic interrupt controller message header. */ @@ -488,7 +485,7 @@ struct hv_message_header { __u64 sender; union hv_port_id port; }; -}; +} __packed; /* Define synthetic interrupt controller message format. */ struct hv_message { @@ -496,12 +493,12 @@ struct hv_message { union { __u64 payload[HV_MESSAGE_PAYLOAD_QWORD_COUNT]; } u; -}; +} __packed; /* Define the synthetic interrupt message page layout. */ struct hv_message_page { struct hv_message sint_message[HV_SYNIC_SINT_COUNT]; -}; +} __packed; /* Define timer message payload structure. */ struct hv_timer_message_payload { @@ -509,7 +506,7 @@ struct hv_timer_message_payload { __u32 reserved; __u64 expiration_time; /* When the timer expired */ __u64 delivery_time; /* When the message was delivered */ -}; +} __packed; /* Define virtual processor assist page structure. */ struct hv_vp_assist_page { @@ -518,8 +515,9 @@ struct hv_vp_assist_page { __u64 vtl_control[2]; __u64 nested_enlightenments_control[2]; __u32 enlighten_vmentry; + __u32 padding; __u64 current_nested_vmcs; -}; +} __packed; struct hv_enlightened_vmcs { u32 revision_id; @@ -533,6 +531,8 @@ struct hv_enlightened_vmcs { u16 host_gs_selector; u16 host_tr_selector; + u16 padding16_1; + u64 host_ia32_pat; u64 host_ia32_efer; @@ -651,7 +651,7 @@ struct hv_enlightened_vmcs { u64 ept_pointer; u16 virtual_processor_id; - u16 padding16[3]; + u16 padding16_2[3]; u64 padding64_2[5]; u64 guest_physical_address; @@ -693,7 +693,7 @@ struct hv_enlightened_vmcs { u32 nested_flush_hypercall:1; u32 msr_bitmap:1; u32 reserved:30; - } hv_enlightenments_control; + } __packed hv_enlightenments_control; u32 hv_vp_id; u64 hv_vm_id; @@ -703,7 +703,7 @@ struct hv_enlightened_vmcs { u64 padding64_5[7]; u64 xss_exit_bitmap; u64 padding64_6[7]; -}; +} __packed; #define HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE 0 #define HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP BIT(0) @@ -725,36 +725,129 @@ struct hv_enlightened_vmcs { #define HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL 0xFFFF -#define HV_STIMER_ENABLE (1ULL << 0) -#define HV_STIMER_PERIODIC (1ULL << 1) -#define HV_STIMER_LAZY (1ULL << 2) -#define HV_STIMER_AUTOENABLE (1ULL << 3) -#define HV_STIMER_SINT(config) (__u8)(((config) >> 16) & 0x0F) +/* Define synthetic interrupt controller flag constants. */ +#define HV_EVENT_FLAGS_COUNT (256 * 8) +#define HV_EVENT_FLAGS_LONG_COUNT (256 / sizeof(unsigned long)) + +/* + * Synthetic timer configuration. + */ +union hv_stimer_config { + u64 as_uint64; + struct { + u64 enable:1; + u64 periodic:1; + u64 lazy:1; + u64 auto_enable:1; + u64 apic_vector:8; + u64 direct_mode:1; + u64 reserved_z0:3; + u64 sintx:4; + u64 reserved_z1:44; + } __packed; +}; + + +/* Define the synthetic interrupt controller event flags format. */ +union hv_synic_event_flags { + unsigned long flags[HV_EVENT_FLAGS_LONG_COUNT]; +}; + +/* Define SynIC control register. */ +union hv_synic_scontrol { + u64 as_uint64; + struct { + u64 enable:1; + u64 reserved:63; + } __packed; +}; + +/* Define synthetic interrupt source. */ +union hv_synic_sint { + u64 as_uint64; + struct { + u64 vector:8; + u64 reserved1:8; + u64 masked:1; + u64 auto_eoi:1; + u64 reserved2:46; + } __packed; +}; + +/* Define the format of the SIMP register */ +union hv_synic_simp { + u64 as_uint64; + struct { + u64 simp_enabled:1; + u64 preserved:11; + u64 base_simp_gpa:52; + } __packed; +}; + +/* Define the format of the SIEFP register */ +union hv_synic_siefp { + u64 as_uint64; + struct { + u64 siefp_enabled:1; + u64 preserved:11; + u64 base_siefp_gpa:52; + } __packed; +}; struct hv_vpset { u64 format; u64 valid_bank_mask; u64 bank_contents[]; -}; +} __packed; /* HvCallSendSyntheticClusterIpi hypercall */ struct hv_send_ipi { u32 vector; u32 reserved; u64 cpu_mask; -}; +} __packed; /* HvCallSendSyntheticClusterIpiEx hypercall */ struct hv_send_ipi_ex { u32 vector; u32 reserved; struct hv_vpset vp_set; -}; +} __packed; /* HvFlushGuestPhysicalAddressSpace hypercalls */ struct hv_guest_mapping_flush { u64 address_space; u64 flags; +} __packed; + +/* + * HV_MAX_FLUSH_PAGES = "additional_pages" + 1. It's limited + * by the bitwidth of "additional_pages" in union hv_gpa_page_range. + */ +#define HV_MAX_FLUSH_PAGES (2048) + +/* HvFlushGuestPhysicalAddressList hypercall */ +union hv_gpa_page_range { + u64 address_space; + struct { + u64 additional_pages:11; + u64 largepage:1; + u64 basepfn:52; + } page; +}; + +/* + * All input flush parameters should be in single page. The max flush + * count is equal with how many entries of union hv_gpa_page_range can + * be populated into the input parameter page. + */ +#define HV_MAX_FLUSH_REP_COUNT (PAGE_SIZE - 2 * sizeof(u64) / \ + sizeof(union hv_gpa_page_range)) + +struct hv_guest_mapping_flush_list { + u64 address_space; + u64 flags; + union hv_gpa_page_range gpa_list[HV_MAX_FLUSH_REP_COUNT]; }; /* HvFlushVirtualAddressSpace, HvFlushVirtualAddressList hypercalls */ @@ -763,7 +856,7 @@ struct hv_tlb_flush { u64 flags; u64 processor_mask; u64 gva_list[]; -}; +} __packed; /* HvFlushVirtualAddressSpaceEx, HvFlushVirtualAddressListEx hypercalls */ struct hv_tlb_flush_ex { @@ -771,6 +864,6 @@ struct hv_tlb_flush_ex { u64 flags; struct hv_vpset hv_vp_set; u64 gva_list[]; -}; +} __packed; #endif diff --git a/arch/x86/include/asm/intel_pt.h b/arch/x86/include/asm/intel_pt.h index b523f51c5400..634f99b1dc22 100644 --- a/arch/x86/include/asm/intel_pt.h +++ b/arch/x86/include/asm/intel_pt.h @@ -2,10 +2,36 @@ #ifndef _ASM_X86_INTEL_PT_H #define _ASM_X86_INTEL_PT_H +#define PT_CPUID_LEAVES 2 +#define PT_CPUID_REGS_NUM 4 /* number of regsters (eax, ebx, ecx, edx) */ + +enum pt_capabilities { + PT_CAP_max_subleaf = 0, + PT_CAP_cr3_filtering, + PT_CAP_psb_cyc, + PT_CAP_ip_filtering, + PT_CAP_mtc, + PT_CAP_ptwrite, + PT_CAP_power_event_trace, + PT_CAP_topa_output, + PT_CAP_topa_multiple_entries, + PT_CAP_single_range_output, + PT_CAP_output_subsys, + PT_CAP_payloads_lip, + PT_CAP_num_address_ranges, + PT_CAP_mtc_periods, + PT_CAP_cycle_thresholds, + PT_CAP_psb_periods, +}; + #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) void cpu_emergency_stop_pt(void); +extern u32 intel_pt_validate_hw_cap(enum pt_capabilities cap); +extern u32 intel_pt_validate_cap(u32 *caps, enum pt_capabilities cap); #else static inline void cpu_emergency_stop_pt(void) {} +static inline u32 intel_pt_validate_hw_cap(enum pt_capabilities cap) { return 0; } +static inline u32 intel_pt_validate_cap(u32 *caps, enum pt_capabilities capability) { return 0; } #endif #endif /* _ASM_X86_INTEL_PT_H */ diff --git a/arch/x86/include/asm/kvm_host.h b/arch/x86/include/asm/kvm_host.h index fbda5a917c5b..4660ce90de7f 100644 --- a/arch/x86/include/asm/kvm_host.h +++ b/arch/x86/include/asm/kvm_host.h @@ -439,6 +439,11 @@ struct kvm_mmu { u64 pdptrs[4]; /* pae */ }; +struct kvm_tlb_range { + u64 start_gfn; + u64 pages; +}; + enum pmc_type { KVM_PMC_GP = 0, KVM_PMC_FIXED, @@ -497,7 +502,7 @@ struct kvm_mtrr { struct kvm_vcpu_hv_stimer { struct hrtimer timer; int index; - u64 config; + union hv_stimer_config config; u64 count; u64 exp_time; struct hv_message msg; @@ -601,17 +606,16 @@ struct kvm_vcpu_arch { /* * QEMU userspace and the guest each have their own FPU state. - * In vcpu_run, we switch between the user and guest FPU contexts. - * While running a VCPU, the VCPU thread will have the guest FPU - * context. + * In vcpu_run, we switch between the user, maintained in the + * task_struct struct, and guest FPU contexts. While running a VCPU, + * the VCPU thread will have the guest FPU context. * * Note that while the PKRU state lives inside the fpu registers, * it is switched out separately at VMENTER and VMEXIT time. The * "guest_fpu" state here contains the guest FPU context, with the * host PRKU bits. */ - struct fpu user_fpu; - struct fpu guest_fpu; + struct fpu *guest_fpu; u64 xcr0; u64 guest_supported_xcr0; @@ -1042,6 +1046,8 @@ struct kvm_x86_ops { void (*tlb_flush)(struct kvm_vcpu *vcpu, bool invalidate_gpa); int (*tlb_remote_flush)(struct kvm *kvm); + int (*tlb_remote_flush_with_range)(struct kvm *kvm, + struct kvm_tlb_range *range); /* * Flush any TLB entries associated with the given GVA. @@ -1106,6 +1112,7 @@ struct kvm_x86_ops { bool (*mpx_supported)(void); bool (*xsaves_supported)(void); bool (*umip_emulated)(void); + bool (*pt_supported)(void); int (*check_nested_events)(struct kvm_vcpu *vcpu, bool external_intr); void (*request_immediate_exit)(struct kvm_vcpu *vcpu); @@ -1186,6 +1193,7 @@ struct kvm_x86_ops { int (*nested_enable_evmcs)(struct kvm_vcpu *vcpu, uint16_t *vmcs_version); + uint16_t (*nested_get_evmcs_version)(struct kvm_vcpu *vcpu); }; struct kvm_arch_async_pf { @@ -1196,6 +1204,7 @@ struct kvm_arch_async_pf { }; extern struct kvm_x86_ops *kvm_x86_ops; +extern struct kmem_cache *x86_fpu_cache; #define __KVM_HAVE_ARCH_VM_ALLOC static inline struct kvm *kvm_arch_alloc_vm(void) @@ -1492,7 +1501,7 @@ asmlinkage void kvm_spurious_fault(void); "cmpb $0, kvm_rebooting \n\t" \ "jne 668b \n\t" \ __ASM_SIZE(push) " $666b \n\t" \ - "call kvm_spurious_fault \n\t" \ + "jmp kvm_spurious_fault \n\t" \ ".popsection \n\t" \ _ASM_EXTABLE(666b, 667b) @@ -1503,7 +1512,7 @@ asmlinkage void kvm_spurious_fault(void); int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end); int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end); int kvm_test_age_hva(struct kvm *kvm, unsigned long hva); -void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte); +int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte); int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v); int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu); int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu); diff --git a/arch/x86/include/asm/mshyperv.h b/arch/x86/include/asm/mshyperv.h index 1d0a7778e163..cc60e617931c 100644 --- a/arch/x86/include/asm/mshyperv.h +++ b/arch/x86/include/asm/mshyperv.h @@ -22,6 +22,11 @@ struct ms_hyperv_info { extern struct ms_hyperv_info ms_hyperv; + +typedef int (*hyperv_fill_flush_list_func)( + struct hv_guest_mapping_flush_list *flush, + void *data); + /* * Generate the guest ID. */ @@ -348,6 +353,11 @@ void set_hv_tscchange_cb(void (*cb)(void)); void clear_hv_tscchange_cb(void); void hyperv_stop_tsc_emulation(void); int hyperv_flush_guest_mapping(u64 as); +int hyperv_flush_guest_mapping_range(u64 as, + hyperv_fill_flush_list_func fill_func, void *data); +int hyperv_fill_flush_guest_mapping_list( + struct hv_guest_mapping_flush_list *flush, + u64 start_gfn, u64 end_gfn); #ifdef CONFIG_X86_64 void hv_apic_init(void); @@ -370,6 +380,11 @@ static inline struct hv_vp_assist_page *hv_get_vp_assist_page(unsigned int cpu) return NULL; } static inline int hyperv_flush_guest_mapping(u64 as) { return -1; } +static inline int hyperv_flush_guest_mapping_range(u64 as, + hyperv_fill_flush_list_func fill_func, void *data) +{ + return -1; +} #endif /* CONFIG_HYPERV */ #ifdef CONFIG_HYPERV_TSCPAGE diff --git a/arch/x86/include/asm/msr-index.h b/arch/x86/include/asm/msr-index.h index 9e39cc8bd989..8e40c2446fd1 100644 --- a/arch/x86/include/asm/msr-index.h +++ b/arch/x86/include/asm/msr-index.h @@ -121,7 +121,43 @@ #define MSR_PEBS_LD_LAT_THRESHOLD 0x000003f6 #define MSR_IA32_RTIT_CTL 0x00000570 +#define RTIT_CTL_TRACEEN BIT(0) +#define RTIT_CTL_CYCLEACC BIT(1) +#define RTIT_CTL_OS BIT(2) +#define RTIT_CTL_USR BIT(3) +#define RTIT_CTL_PWR_EVT_EN BIT(4) +#define RTIT_CTL_FUP_ON_PTW BIT(5) +#define RTIT_CTL_FABRIC_EN BIT(6) +#define RTIT_CTL_CR3EN BIT(7) +#define RTIT_CTL_TOPA BIT(8) +#define RTIT_CTL_MTC_EN BIT(9) +#define RTIT_CTL_TSC_EN BIT(10) +#define RTIT_CTL_DISRETC BIT(11) +#define RTIT_CTL_PTW_EN BIT(12) +#define RTIT_CTL_BRANCH_EN BIT(13) +#define RTIT_CTL_MTC_RANGE_OFFSET 14 +#define RTIT_CTL_MTC_RANGE (0x0full << RTIT_CTL_MTC_RANGE_OFFSET) +#define RTIT_CTL_CYC_THRESH_OFFSET 19 +#define RTIT_CTL_CYC_THRESH (0x0full << RTIT_CTL_CYC_THRESH_OFFSET) +#define RTIT_CTL_PSB_FREQ_OFFSET 24 +#define RTIT_CTL_PSB_FREQ (0x0full << RTIT_CTL_PSB_FREQ_OFFSET) +#define RTIT_CTL_ADDR0_OFFSET 32 +#define RTIT_CTL_ADDR0 (0x0full << RTIT_CTL_ADDR0_OFFSET) +#define RTIT_CTL_ADDR1_OFFSET 36 +#define RTIT_CTL_ADDR1 (0x0full << RTIT_CTL_ADDR1_OFFSET) +#define RTIT_CTL_ADDR2_OFFSET 40 +#define RTIT_CTL_ADDR2 (0x0full << RTIT_CTL_ADDR2_OFFSET) +#define RTIT_CTL_ADDR3_OFFSET 44 +#define RTIT_CTL_ADDR3 (0x0full << RTIT_CTL_ADDR3_OFFSET) #define MSR_IA32_RTIT_STATUS 0x00000571 +#define RTIT_STATUS_FILTEREN BIT(0) +#define RTIT_STATUS_CONTEXTEN BIT(1) +#define RTIT_STATUS_TRIGGEREN BIT(2) +#define RTIT_STATUS_BUFFOVF BIT(3) +#define RTIT_STATUS_ERROR BIT(4) +#define RTIT_STATUS_STOPPED BIT(5) +#define RTIT_STATUS_BYTECNT_OFFSET 32 +#define RTIT_STATUS_BYTECNT (0x1ffffull << RTIT_STATUS_BYTECNT_OFFSET) #define MSR_IA32_RTIT_ADDR0_A 0x00000580 #define MSR_IA32_RTIT_ADDR0_B 0x00000581 #define MSR_IA32_RTIT_ADDR1_A 0x00000582 @@ -772,6 +808,7 @@ #define VMX_BASIC_INOUT 0x0040000000000000LLU /* MSR_IA32_VMX_MISC bits */ +#define MSR_IA32_VMX_MISC_INTEL_PT (1ULL << 14) #define MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS (1ULL << 29) #define MSR_IA32_VMX_MISC_PREEMPTION_TIMER_SCALE 0x1F /* AMD-V MSRs */ diff --git a/arch/x86/include/asm/svm.h b/arch/x86/include/asm/svm.h index 93b462e48067..dec9c1e84c78 100644 --- a/arch/x86/include/asm/svm.h +++ b/arch/x86/include/asm/svm.h @@ -290,11 +290,4 @@ struct __attribute__ ((__packed__)) vmcb { #define SVM_CR0_SELECTIVE_MASK (X86_CR0_TS | X86_CR0_MP) -#define SVM_VMLOAD ".byte 0x0f, 0x01, 0xda" -#define SVM_VMRUN ".byte 0x0f, 0x01, 0xd8" -#define SVM_VMSAVE ".byte 0x0f, 0x01, 0xdb" -#define SVM_CLGI ".byte 0x0f, 0x01, 0xdd" -#define SVM_STGI ".byte 0x0f, 0x01, 0xdc" -#define SVM_INVLPGA ".byte 0x0f, 0x01, 0xdf" - #endif diff --git a/arch/x86/include/asm/trace/hyperv.h b/arch/x86/include/asm/trace/hyperv.h index 2e6245a023ef..ace464f09681 100644 --- a/arch/x86/include/asm/trace/hyperv.h +++ b/arch/x86/include/asm/trace/hyperv.h @@ -42,6 +42,20 @@ TRACE_EVENT(hyperv_nested_flush_guest_mapping, TP_printk("address space %llx ret %d", __entry->as, __entry->ret) ); +TRACE_EVENT(hyperv_nested_flush_guest_mapping_range, + TP_PROTO(u64 as, int ret), + TP_ARGS(as, ret), + + TP_STRUCT__entry( + __field(u64, as) + __field(int, ret) + ), + TP_fast_assign(__entry->as = as; + __entry->ret = ret; + ), + TP_printk("address space %llx ret %d", __entry->as, __entry->ret) + ); + TRACE_EVENT(hyperv_send_ipi_mask, TP_PROTO(const struct cpumask *cpus, int vector), diff --git a/arch/x86/include/asm/vmx.h b/arch/x86/include/asm/vmx.h index ade0f153947d..4e4133e86484 100644 --- a/arch/x86/include/asm/vmx.h +++ b/arch/x86/include/asm/vmx.h @@ -77,7 +77,10 @@ #define SECONDARY_EXEC_ENCLS_EXITING 0x00008000 #define SECONDARY_EXEC_RDSEED_EXITING 0x00010000 #define SECONDARY_EXEC_ENABLE_PML 0x00020000 +#define SECONDARY_EXEC_PT_CONCEAL_VMX 0x00080000 #define SECONDARY_EXEC_XSAVES 0x00100000 +#define SECONDARY_EXEC_PT_USE_GPA 0x01000000 +#define SECONDARY_EXEC_MODE_BASED_EPT_EXEC 0x00400000 #define SECONDARY_EXEC_TSC_SCALING 0x02000000 #define PIN_BASED_EXT_INTR_MASK 0x00000001 @@ -98,6 +101,8 @@ #define VM_EXIT_LOAD_IA32_EFER 0x00200000 #define VM_EXIT_SAVE_VMX_PREEMPTION_TIMER 0x00400000 #define VM_EXIT_CLEAR_BNDCFGS 0x00800000 +#define VM_EXIT_PT_CONCEAL_PIP 0x01000000 +#define VM_EXIT_CLEAR_IA32_RTIT_CTL 0x02000000 #define VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR 0x00036dff @@ -109,6 +114,8 @@ #define VM_ENTRY_LOAD_IA32_PAT 0x00004000 #define VM_ENTRY_LOAD_IA32_EFER 0x00008000 #define VM_ENTRY_LOAD_BNDCFGS 0x00010000 +#define VM_ENTRY_PT_CONCEAL_PIP 0x00020000 +#define VM_ENTRY_LOAD_IA32_RTIT_CTL 0x00040000 #define VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR 0x000011ff @@ -240,6 +247,8 @@ enum vmcs_field { GUEST_PDPTR3_HIGH = 0x00002811, GUEST_BNDCFGS = 0x00002812, GUEST_BNDCFGS_HIGH = 0x00002813, + GUEST_IA32_RTIT_CTL = 0x00002814, + GUEST_IA32_RTIT_CTL_HIGH = 0x00002815, HOST_IA32_PAT = 0x00002c00, HOST_IA32_PAT_HIGH = 0x00002c01, HOST_IA32_EFER = 0x00002c02, diff --git a/arch/x86/kernel/kvmclock.c b/arch/x86/kernel/kvmclock.c index 30084ecaa20f..e811d4d1c824 100644 --- a/arch/x86/kernel/kvmclock.c +++ b/arch/x86/kernel/kvmclock.c @@ -1,19 +1,6 @@ +// SPDX-License-Identifier: GPL-2.0-or-later /* KVM paravirtual clock driver. A clocksource implementation Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc. - - This program is free software; you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 2 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program; if not, write to the Free Software - Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include <linux/clocksource.h> diff --git a/arch/x86/kvm/Makefile b/arch/x86/kvm/Makefile index dc4f2fdf5e57..69b3a7c30013 100644 --- a/arch/x86/kvm/Makefile +++ b/arch/x86/kvm/Makefile @@ -16,7 +16,7 @@ kvm-y += x86.o mmu.o emulate.o i8259.o irq.o lapic.o \ i8254.o ioapic.o irq_comm.o cpuid.o pmu.o mtrr.o \ hyperv.o page_track.o debugfs.o -kvm-intel-y += vmx.o pmu_intel.o +kvm-intel-y += vmx/vmx.o vmx/vmenter.o vmx/pmu_intel.o vmx/vmcs12.o vmx/evmcs.o vmx/nested.o kvm-amd-y += svm.o pmu_amd.o obj-$(CONFIG_KVM) += kvm.o diff --git a/arch/x86/kvm/cpuid.c b/arch/x86/kvm/cpuid.c index 7bcfa61375c0..bbffa6c54697 100644 --- a/arch/x86/kvm/cpuid.c +++ b/arch/x86/kvm/cpuid.c @@ -67,9 +67,6 @@ u64 kvm_supported_xcr0(void) #define F(x) bit(X86_FEATURE_##x) -/* For scattered features from cpufeatures.h; we currently expose none */ -#define KF(x) bit(KVM_CPUID_BIT_##x) - int kvm_update_cpuid(struct kvm_vcpu *vcpu) { struct kvm_cpuid_entry2 *best; @@ -337,6 +334,7 @@ static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function, unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0; unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0; unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0; + unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0; /* cpuid 1.edx */ const u32 kvm_cpuid_1_edx_x86_features = @@ -380,8 +378,8 @@ static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function, /* cpuid 0x80000008.ebx */ const u32 kvm_cpuid_8000_0008_ebx_x86_features = - F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) | - F(AMD_SSB_NO); + F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) | + F(AMD_SSB_NO) | F(AMD_STIBP); /* cpuid 0xC0000001.edx */ const u32 kvm_cpuid_C000_0001_edx_x86_features = @@ -395,7 +393,7 @@ static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function, F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) | F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) | - F(SHA_NI) | F(AVX512BW) | F(AVX512VL); + F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | f_intel_pt; /* cpuid 0xD.1.eax */ const u32 kvm_cpuid_D_1_eax_x86_features = @@ -411,7 +409,7 @@ static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function, /* cpuid 7.0.edx*/ const u32 kvm_cpuid_7_0_edx_x86_features = F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) | - F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES); + F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP); /* all calls to cpuid_count() should be made on the same cpu */ get_cpu(); @@ -426,7 +424,7 @@ static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function, switch (function) { case 0: - entry->eax = min(entry->eax, (u32)0xd); + entry->eax = min(entry->eax, (u32)(f_intel_pt ? 0x14 : 0xd)); break; case 1: entry->edx &= kvm_cpuid_1_edx_x86_features; @@ -603,6 +601,23 @@ static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function, } break; } + /* Intel PT */ + case 0x14: { + int t, times = entry->eax; + + if (!f_intel_pt) + break; + + entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; + for (t = 1; t <= times; ++t) { + if (*nent >= maxnent) + goto out; + do_cpuid_1_ent(&entry[t], function, t); + entry[t].flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; + ++*nent; + } + break; + } case KVM_CPUID_SIGNATURE: { static const char signature[12] = "KVMKVMKVM\0\0"; const u32 *sigptr = (const u32 *)signature; diff --git a/arch/x86/kvm/hyperv.c b/arch/x86/kvm/hyperv.c index 4e80080f277a..c90a5352d158 100644 --- a/arch/x86/kvm/hyperv.c +++ b/arch/x86/kvm/hyperv.c @@ -38,6 +38,9 @@ #define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, 64) +static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer, + bool vcpu_kick); + static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint) { return atomic64_read(&synic->sint[sint]); @@ -158,59 +161,24 @@ static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx) return (synic->active) ? synic : NULL; } -static void synic_clear_sint_msg_pending(struct kvm_vcpu_hv_synic *synic, - u32 sint) -{ - struct kvm_vcpu *vcpu = synic_to_vcpu(synic); - struct page *page; - gpa_t gpa; - struct hv_message *msg; - struct hv_message_page *msg_page; - - gpa = synic->msg_page & PAGE_MASK; - page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT); - if (is_error_page(page)) { - vcpu_err(vcpu, "Hyper-V SynIC can't get msg page, gpa 0x%llx\n", - gpa); - return; - } - msg_page = kmap_atomic(page); - - msg = &msg_page->sint_message[sint]; - msg->header.message_flags.msg_pending = 0; - - kunmap_atomic(msg_page); - kvm_release_page_dirty(page); - kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); -} - static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint) { struct kvm *kvm = vcpu->kvm; struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu); struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu); struct kvm_vcpu_hv_stimer *stimer; - int gsi, idx, stimers_pending; + int gsi, idx; trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint); - if (synic->msg_page & HV_SYNIC_SIMP_ENABLE) - synic_clear_sint_msg_pending(synic, sint); - /* Try to deliver pending Hyper-V SynIC timers messages */ - stimers_pending = 0; for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) { stimer = &hv_vcpu->stimer[idx]; - if (stimer->msg_pending && - (stimer->config & HV_STIMER_ENABLE) && - HV_STIMER_SINT(stimer->config) == sint) { - set_bit(stimer->index, - hv_vcpu->stimer_pending_bitmap); - stimers_pending++; - } + if (stimer->msg_pending && stimer->config.enable && + !stimer->config.direct_mode && + stimer->config.sintx == sint) + stimer_mark_pending(stimer, false); } - if (stimers_pending) - kvm_make_request(KVM_REQ_HV_STIMER, vcpu); idx = srcu_read_lock(&kvm->irq_srcu); gsi = atomic_read(&synic->sint_to_gsi[sint]); @@ -497,7 +465,7 @@ static int stimer_start(struct kvm_vcpu_hv_stimer *stimer) time_now = get_time_ref_counter(stimer_to_vcpu(stimer)->kvm); ktime_now = ktime_get(); - if (stimer->config & HV_STIMER_PERIODIC) { + if (stimer->config.periodic) { if (stimer->exp_time) { if (time_now >= stimer->exp_time) { u64 remainder; @@ -546,13 +514,18 @@ static int stimer_start(struct kvm_vcpu_hv_stimer *stimer) static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config, bool host) { + union hv_stimer_config new_config = {.as_uint64 = config}, + old_config = {.as_uint64 = stimer->config.as_uint64}; + trace_kvm_hv_stimer_set_config(stimer_to_vcpu(stimer)->vcpu_id, stimer->index, config, host); stimer_cleanup(stimer); - if ((stimer->config & HV_STIMER_ENABLE) && HV_STIMER_SINT(config) == 0) - config &= ~HV_STIMER_ENABLE; - stimer->config = config; + if (old_config.enable && + !new_config.direct_mode && new_config.sintx == 0) + new_config.enable = 0; + stimer->config.as_uint64 = new_config.as_uint64; + stimer_mark_pending(stimer, false); return 0; } @@ -566,16 +539,16 @@ static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count, stimer_cleanup(stimer); stimer->count = count; if (stimer->count == 0) - stimer->config &= ~HV_STIMER_ENABLE; - else if (stimer->config & HV_STIMER_AUTOENABLE) - stimer->config |= HV_STIMER_ENABLE; + stimer->config.enable = 0; + else if (stimer->config.auto_enable) + stimer->config.enable = 1; stimer_mark_pending(stimer, false); return 0; } static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig) { - *pconfig = stimer->config; + *pconfig = stimer->config.as_uint64; return 0; } @@ -586,44 +559,60 @@ static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount) } static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint, - struct hv_message *src_msg) + struct hv_message *src_msg, bool no_retry) { struct kvm_vcpu *vcpu = synic_to_vcpu(synic); - struct page *page; - gpa_t gpa; - struct hv_message *dst_msg; + int msg_off = offsetof(struct hv_message_page, sint_message[sint]); + gfn_t msg_page_gfn; + struct hv_message_header hv_hdr; int r; - struct hv_message_page *msg_page; if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE)) return -ENOENT; - gpa = synic->msg_page & PAGE_MASK; - page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT); - if (is_error_page(page)) - return -EFAULT; + msg_page_gfn = synic->msg_page >> PAGE_SHIFT; - msg_page = kmap_atomic(page); - dst_msg = &msg_page->sint_message[sint]; - if (sync_cmpxchg(&dst_msg->header.message_type, HVMSG_NONE, - src_msg->header.message_type) != HVMSG_NONE) { - dst_msg->header.message_flags.msg_pending = 1; - r = -EAGAIN; - } else { - memcpy(&dst_msg->u.payload, &src_msg->u.payload, - src_msg->header.payload_size); - dst_msg->header.message_type = src_msg->header.message_type; - dst_msg->header.payload_size = src_msg->header.payload_size; - r = synic_set_irq(synic, sint); - if (r >= 1) - r = 0; - else if (r == 0) - r = -EFAULT; + /* + * Strictly following the spec-mandated ordering would assume setting + * .msg_pending before checking .message_type. However, this function + * is only called in vcpu context so the entire update is atomic from + * guest POV and thus the exact order here doesn't matter. + */ + r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type, + msg_off + offsetof(struct hv_message, + header.message_type), + sizeof(hv_hdr.message_type)); + if (r < 0) + return r; + + if (hv_hdr.message_type != HVMSG_NONE) { + if (no_retry) + return 0; + + hv_hdr.message_flags.msg_pending = 1; + r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, + &hv_hdr.message_flags, + msg_off + + offsetof(struct hv_message, + header.message_flags), + sizeof(hv_hdr.message_flags)); + if (r < 0) + return r; + return -EAGAIN; } - kunmap_atomic(msg_page); - kvm_release_page_dirty(page); - kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); - return r; + + r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off, + sizeof(src_msg->header) + + src_msg->header.payload_size); + if (r < 0) + return r; + + r = synic_set_irq(synic, sint); + if (r < 0) + return r; + if (r == 0) + return -EFAULT; + return 0; } static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer) @@ -633,24 +622,45 @@ static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer) struct hv_timer_message_payload *payload = (struct hv_timer_message_payload *)&msg->u.payload; + /* + * To avoid piling up periodic ticks, don't retry message + * delivery for them (within "lazy" lost ticks policy). + */ + bool no_retry = stimer->config.periodic; + payload->expiration_time = stimer->exp_time; payload->delivery_time = get_time_ref_counter(vcpu->kvm); return synic_deliver_msg(vcpu_to_synic(vcpu), - HV_STIMER_SINT(stimer->config), msg); + stimer->config.sintx, msg, + no_retry); +} + +static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer) +{ + struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer); + struct kvm_lapic_irq irq = { + .delivery_mode = APIC_DM_FIXED, + .vector = stimer->config.apic_vector + }; + + return !kvm_apic_set_irq(vcpu, &irq, NULL); } static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer) { - int r; + int r, direct = stimer->config.direct_mode; stimer->msg_pending = true; - r = stimer_send_msg(stimer); + if (!direct) + r = stimer_send_msg(stimer); + else + r = stimer_notify_direct(stimer); trace_kvm_hv_stimer_expiration(stimer_to_vcpu(stimer)->vcpu_id, - stimer->index, r); + stimer->index, direct, r); if (!r) { stimer->msg_pending = false; - if (!(stimer->config & HV_STIMER_PERIODIC)) - stimer->config &= ~HV_STIMER_ENABLE; + if (!(stimer->config.periodic)) + stimer->config.enable = 0; } } @@ -664,7 +674,7 @@ void kvm_hv_process_stimers(struct kvm_vcpu *vcpu) for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++) if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) { stimer = &hv_vcpu->stimer[i]; - if (stimer->config & HV_STIMER_ENABLE) { + if (stimer->config.enable) { exp_time = stimer->exp_time; if (exp_time) { @@ -674,7 +684,7 @@ void kvm_hv_process_stimers(struct kvm_vcpu *vcpu) stimer_expiration(stimer); } - if ((stimer->config & HV_STIMER_ENABLE) && + if ((stimer->config.enable) && stimer->count) { if (!stimer->msg_pending) stimer_start(stimer); @@ -815,9 +825,9 @@ static int kvm_hv_msr_set_crash_ctl(struct kvm_vcpu *vcpu, u64 data, bool host) struct kvm_hv *hv = &vcpu->kvm->arch.hyperv; if (host) - hv->hv_crash_ctl = data & HV_X64_MSR_CRASH_CTL_NOTIFY; + hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY; - if (!host && (data & HV_X64_MSR_CRASH_CTL_NOTIFY)) { + if (!host && (data & HV_CRASH_CTL_CRASH_NOTIFY)) { vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n", hv->hv_crash_param[0], @@ -1758,3 +1768,124 @@ int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args) return kvm_hv_eventfd_deassign(kvm, args->conn_id); return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd); } + +int kvm_vcpu_ioctl_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid, + struct kvm_cpuid_entry2 __user *entries) +{ + uint16_t evmcs_ver = kvm_x86_ops->nested_get_evmcs_version(vcpu); + struct kvm_cpuid_entry2 cpuid_entries[] = { + { .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS }, + { .function = HYPERV_CPUID_INTERFACE }, + { .function = HYPERV_CPUID_VERSION }, + { .function = HYPERV_CPUID_FEATURES }, + { .function = HYPERV_CPUID_ENLIGHTMENT_INFO }, + { .function = HYPERV_CPUID_IMPLEMENT_LIMITS }, + { .function = HYPERV_CPUID_NESTED_FEATURES }, + }; + int i, nent = ARRAY_SIZE(cpuid_entries); + + /* Skip NESTED_FEATURES if eVMCS is not supported */ + if (!evmcs_ver) + --nent; + + if (cpuid->nent < nent) + return -E2BIG; + + if (cpuid->nent > nent) + cpuid->nent = nent; + + for (i = 0; i < nent; i++) { + struct kvm_cpuid_entry2 *ent = &cpuid_entries[i]; + u32 signature[3]; + + switch (ent->function) { + case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS: + memcpy(signature, "Linux KVM Hv", 12); + + ent->eax = HYPERV_CPUID_NESTED_FEATURES; + ent->ebx = signature[0]; + ent->ecx = signature[1]; + ent->edx = signature[2]; + break; + + case HYPERV_CPUID_INTERFACE: + memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12); + ent->eax = signature[0]; + break; + + case HYPERV_CPUID_VERSION: + /* + * We implement some Hyper-V 2016 functions so let's use + * this version. + */ + ent->eax = 0x00003839; + ent->ebx = 0x000A0000; + break; + + case HYPERV_CPUID_FEATURES: + ent->eax |= HV_X64_MSR_VP_RUNTIME_AVAILABLE; + ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE; + ent->eax |= HV_X64_MSR_SYNIC_AVAILABLE; + ent->eax |= HV_MSR_SYNTIMER_AVAILABLE; + ent->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE; + ent->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE; + ent->eax |= HV_X64_MSR_VP_INDEX_AVAILABLE; + ent->eax |= HV_X64_MSR_RESET_AVAILABLE; + ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE; + ent->eax |= HV_X64_MSR_GUEST_IDLE_AVAILABLE; + ent->eax |= HV_X64_ACCESS_FREQUENCY_MSRS; + ent->eax |= HV_X64_ACCESS_REENLIGHTENMENT; + + ent->ebx |= HV_X64_POST_MESSAGES; + ent->ebx |= HV_X64_SIGNAL_EVENTS; + + ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE; + ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE; + ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE; + + break; + + case HYPERV_CPUID_ENLIGHTMENT_INFO: + ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED; + ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED; + ent->eax |= HV_X64_SYSTEM_RESET_RECOMMENDED; + ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED; + ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED; + ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED; + ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED; + + /* + * Default number of spinlock retry attempts, matches + * HyperV 2016. + */ + ent->ebx = 0x00000FFF; + + break; + + case HYPERV_CPUID_IMPLEMENT_LIMITS: + /* Maximum number of virtual processors */ + ent->eax = KVM_MAX_VCPUS; + /* + * Maximum number of logical processors, matches + * HyperV 2016. + */ + ent->ebx = 64; + + break; + + case HYPERV_CPUID_NESTED_FEATURES: + ent->eax = evmcs_ver; + + break; + + default: + break; + } + } + + if (copy_to_user(entries, cpuid_entries, + nent * sizeof(struct kvm_cpuid_entry2))) + return -EFAULT; + + return 0; +} diff --git a/arch/x86/kvm/hyperv.h b/arch/x86/kvm/hyperv.h index 0e66c12ed2c3..fd7cf13a2144 100644 --- a/arch/x86/kvm/hyperv.h +++ b/arch/x86/kvm/hyperv.h @@ -24,6 +24,8 @@ #ifndef __ARCH_X86_KVM_HYPERV_H__ #define __ARCH_X86_KVM_HYPERV_H__ +#include <linux/kvm_host.h> + static inline struct kvm_vcpu_hv *vcpu_to_hv_vcpu(struct kvm_vcpu *vcpu) { return &vcpu->arch.hyperv; @@ -95,5 +97,7 @@ void kvm_hv_setup_tsc_page(struct kvm *kvm, void kvm_hv_init_vm(struct kvm *kvm); void kvm_hv_destroy_vm(struct kvm *kvm); int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args); +int kvm_vcpu_ioctl_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid, + struct kvm_cpuid_entry2 __user *entries); #endif diff --git a/arch/x86/kvm/kvm_cache_regs.h b/arch/x86/kvm/kvm_cache_regs.h index 9619dcc2b325..f8f56a93358b 100644 --- a/arch/x86/kvm/kvm_cache_regs.h +++ b/arch/x86/kvm/kvm_cache_regs.h @@ -2,6 +2,8 @@ #ifndef ASM_KVM_CACHE_REGS_H #define ASM_KVM_CACHE_REGS_H +#include <linux/kvm_host.h> + #define KVM_POSSIBLE_CR0_GUEST_BITS X86_CR0_TS #define KVM_POSSIBLE_CR4_GUEST_BITS \ (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \ diff --git a/arch/x86/kvm/lapic.c b/arch/x86/kvm/lapic.c index c4533d05c214..9f089e2e09d0 100644 --- a/arch/x86/kvm/lapic.c +++ b/arch/x86/kvm/lapic.c @@ -251,10 +251,9 @@ static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val) if (enabled != apic->sw_enabled) { apic->sw_enabled = enabled; - if (enabled) { + if (enabled) static_key_slow_dec_deferred(&apic_sw_disabled); - recalculate_apic_map(apic->vcpu->kvm); - } else + else static_key_slow_inc(&apic_sw_disabled.key); } } diff --git a/arch/x86/kvm/mmu.c b/arch/x86/kvm/mmu.c index 7c03c0f35444..ce770b446238 100644 --- a/arch/x86/kvm/mmu.c +++ b/arch/x86/kvm/mmu.c @@ -264,6 +264,35 @@ static void mmu_spte_set(u64 *sptep, u64 spte); static union kvm_mmu_page_role kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu); + +static inline bool kvm_available_flush_tlb_with_range(void) +{ + return kvm_x86_ops->tlb_remote_flush_with_range; +} + +static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm, + struct kvm_tlb_range *range) +{ + int ret = -ENOTSUPP; + + if (range && kvm_x86_ops->tlb_remote_flush_with_range) + ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range); + + if (ret) + kvm_flush_remote_tlbs(kvm); +} + +static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm, + u64 start_gfn, u64 pages) +{ + struct kvm_tlb_range range; + + range.start_gfn = start_gfn; + range.pages = pages; + + kvm_flush_remote_tlbs_with_range(kvm, &range); +} + void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value) { BUG_ON((mmio_mask & mmio_value) != mmio_value); @@ -1456,8 +1485,12 @@ static bool __drop_large_spte(struct kvm *kvm, u64 *sptep) static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep) { - if (__drop_large_spte(vcpu->kvm, sptep)) - kvm_flush_remote_tlbs(vcpu->kvm); + if (__drop_large_spte(vcpu->kvm, sptep)) { + struct kvm_mmu_page *sp = page_header(__pa(sptep)); + + kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, + KVM_PAGES_PER_HPAGE(sp->role.level)); + } } /* @@ -1743,10 +1776,12 @@ restart: } } - if (need_flush) - kvm_flush_remote_tlbs(kvm); + if (need_flush && kvm_available_flush_tlb_with_range()) { + kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); + return 0; + } - return 0; + return need_flush; } struct slot_rmap_walk_iterator { @@ -1880,9 +1915,9 @@ int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end) return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp); } -void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) +int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) { - kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp); + return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp); } static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, @@ -1925,7 +1960,8 @@ static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0); - kvm_flush_remote_tlbs(vcpu->kvm); + kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, + KVM_PAGES_PER_HPAGE(sp->role.level)); } int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) @@ -2441,7 +2477,7 @@ static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, account_shadowed(vcpu->kvm, sp); if (level == PT_PAGE_TABLE_LEVEL && rmap_write_protect(vcpu, gfn)) - kvm_flush_remote_tlbs(vcpu->kvm); + kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1); if (level > PT_PAGE_TABLE_LEVEL && need_sync) flush |= kvm_sync_pages(vcpu, gfn, &invalid_list); @@ -2561,7 +2597,7 @@ static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, return; drop_parent_pte(child, sptep); - kvm_flush_remote_tlbs(vcpu->kvm); + kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1); } } @@ -2985,8 +3021,10 @@ static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access, ret = RET_PF_EMULATE; kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); } + if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush) - kvm_flush_remote_tlbs(vcpu->kvm); + kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, + KVM_PAGES_PER_HPAGE(level)); if (unlikely(is_mmio_spte(*sptep))) ret = RET_PF_EMULATE; @@ -5586,8 +5624,13 @@ void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) { struct kvm_memslots *slots; struct kvm_memory_slot *memslot; + bool flush_tlb = true; + bool flush = false; int i; + if (kvm_available_flush_tlb_with_range()) + flush_tlb = false; + spin_lock(&kvm->mmu_lock); for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { slots = __kvm_memslots(kvm, i); @@ -5599,12 +5642,17 @@ void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) if (start >= end) continue; - slot_handle_level_range(kvm, memslot, kvm_zap_rmapp, - PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL, - start, end - 1, true); + flush |= slot_handle_level_range(kvm, memslot, + kvm_zap_rmapp, PT_PAGE_TABLE_LEVEL, + PT_MAX_HUGEPAGE_LEVEL, start, + end - 1, flush_tlb); } } + if (flush) + kvm_flush_remote_tlbs_with_address(kvm, gfn_start, + gfn_end - gfn_start + 1); + spin_unlock(&kvm->mmu_lock); } @@ -5638,12 +5686,13 @@ void kvm_mmu_slot_remove_write_access(struct kvm *kvm, * spte from present to present (changing the spte from present * to nonpresent will flush all the TLBs immediately), in other * words, the only case we care is mmu_spte_update() where we - * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE + * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE * instead of PT_WRITABLE_MASK, that means it does not depend * on PT_WRITABLE_MASK anymore. */ if (flush) - kvm_flush_remote_tlbs(kvm); + kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, + memslot->npages); } static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, @@ -5671,7 +5720,13 @@ restart: !kvm_is_reserved_pfn(pfn) && PageTransCompoundMap(pfn_to_page(pfn))) { pte_list_remove(rmap_head, sptep); - need_tlb_flush = 1; + + if (kvm_available_flush_tlb_with_range()) + kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, + KVM_PAGES_PER_HPAGE(sp->role.level)); + else + need_tlb_flush = 1; + goto restart; } } @@ -5707,7 +5762,8 @@ void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, * dirty_bitmap. */ if (flush) - kvm_flush_remote_tlbs(kvm); + kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, + memslot->npages); } EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty); @@ -5725,7 +5781,8 @@ void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm, lockdep_assert_held(&kvm->slots_lock); if (flush) - kvm_flush_remote_tlbs(kvm); + kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, + memslot->npages); } EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access); @@ -5742,7 +5799,8 @@ void kvm_mmu_slot_set_dirty(struct kvm *kvm, /* see kvm_mmu_slot_leaf_clear_dirty */ if (flush) - kvm_flush_remote_tlbs(kvm); + kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn, + memslot->npages); } EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty); diff --git a/arch/x86/kvm/paging_tmpl.h b/arch/x86/kvm/paging_tmpl.h index 7cf2185b7eb5..6bdca39829bc 100644 --- a/arch/x86/kvm/paging_tmpl.h +++ b/arch/x86/kvm/paging_tmpl.h @@ -894,7 +894,8 @@ static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa) pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t); if (mmu_page_zap_pte(vcpu->kvm, sp, sptep)) - kvm_flush_remote_tlbs(vcpu->kvm); + kvm_flush_remote_tlbs_with_address(vcpu->kvm, + sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level)); if (!rmap_can_add(vcpu)) break; diff --git a/arch/x86/kvm/svm.c b/arch/x86/kvm/svm.c index 101f53ccf571..307e5bddb6d9 100644 --- a/arch/x86/kvm/svm.c +++ b/arch/x86/kvm/svm.c @@ -675,11 +675,6 @@ struct svm_cpu_data { static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data); -struct svm_init_data { - int cpu; - int r; -}; - static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) @@ -711,17 +706,17 @@ static u32 svm_msrpm_offset(u32 msr) static inline void clgi(void) { - asm volatile (__ex(SVM_CLGI)); + asm volatile (__ex("clgi")); } static inline void stgi(void) { - asm volatile (__ex(SVM_STGI)); + asm volatile (__ex("stgi")); } static inline void invlpga(unsigned long addr, u32 asid) { - asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid)); + asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr)); } static int get_npt_level(struct kvm_vcpu *vcpu) @@ -1456,10 +1451,11 @@ static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) g_tsc_offset = svm->vmcb->control.tsc_offset - svm->nested.hsave->control.tsc_offset; svm->nested.hsave->control.tsc_offset = offset; - } else - trace_kvm_write_tsc_offset(vcpu->vcpu_id, - svm->vmcb->control.tsc_offset, - offset); + } + + trace_kvm_write_tsc_offset(vcpu->vcpu_id, + svm->vmcb->control.tsc_offset - g_tsc_offset, + offset); svm->vmcb->control.tsc_offset = offset + g_tsc_offset; @@ -2129,6 +2125,13 @@ static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id) goto out; } + svm->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, GFP_KERNEL); + if (!svm->vcpu.arch.guest_fpu) { + printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n"); + err = -ENOMEM; + goto free_partial_svm; + } + err = kvm_vcpu_init(&svm->vcpu, kvm, id); if (err) goto free_svm; @@ -2188,6 +2191,8 @@ free_page1: uninit: kvm_vcpu_uninit(&svm->vcpu); free_svm: + kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu); +free_partial_svm: kmem_cache_free(kvm_vcpu_cache, svm); out: return ERR_PTR(err); @@ -2217,6 +2222,7 @@ static void svm_free_vcpu(struct kvm_vcpu *vcpu) __free_page(virt_to_page(svm->nested.hsave)); __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER); kvm_vcpu_uninit(vcpu); + kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu); kmem_cache_free(kvm_vcpu_cache, svm); } @@ -3278,6 +3284,8 @@ static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *fr dst->event_inj_err = from->event_inj_err; dst->nested_cr3 = from->nested_cr3; dst->virt_ext = from->virt_ext; + dst->pause_filter_count = from->pause_filter_count; + dst->pause_filter_thresh = from->pause_filter_thresh; } static int nested_svm_vmexit(struct vcpu_svm *svm) @@ -3356,6 +3364,11 @@ static int nested_svm_vmexit(struct vcpu_svm *svm) nested_vmcb->control.event_inj = 0; nested_vmcb->control.event_inj_err = 0; + nested_vmcb->control.pause_filter_count = + svm->vmcb->control.pause_filter_count; + nested_vmcb->control.pause_filter_thresh = + svm->vmcb->control.pause_filter_thresh; + /* We always set V_INTR_MASKING and remember the old value in hflags */ if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK)) nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK; @@ -3532,6 +3545,11 @@ static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa, svm->vmcb->control.event_inj = nested_vmcb->control.event_inj; svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err; + svm->vmcb->control.pause_filter_count = + nested_vmcb->control.pause_filter_count; + svm->vmcb->control.pause_filter_thresh = + nested_vmcb->control.pause_filter_thresh; + nested_svm_unmap(page); /* Enter Guest-Mode */ @@ -5636,9 +5654,9 @@ static void svm_vcpu_run(struct kvm_vcpu *vcpu) /* Enter guest mode */ "push %%" _ASM_AX " \n\t" "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t" - __ex(SVM_VMLOAD) "\n\t" - __ex(SVM_VMRUN) "\n\t" - __ex(SVM_VMSAVE) "\n\t" + __ex("vmload %%" _ASM_AX) "\n\t" + __ex("vmrun %%" _ASM_AX) "\n\t" + __ex("vmsave %%" _ASM_AX) "\n\t" "pop %%" _ASM_AX " \n\t" /* Save guest registers, load host registers */ @@ -5836,6 +5854,13 @@ static bool svm_cpu_has_accelerated_tpr(void) static bool svm_has_emulated_msr(int index) { + switch (index) { + case MSR_IA32_MCG_EXT_CTL: + return false; + default: + break; + } + return true; } @@ -5924,6 +5949,11 @@ static bool svm_umip_emulated(void) return false; } +static bool svm_pt_supported(void) +{ + return false; +} + static bool svm_has_wbinvd_exit(void) { return true; @@ -7053,6 +7083,12 @@ failed: return ret; } +static uint16_t nested_get_evmcs_version(struct kvm_vcpu *vcpu) +{ + /* Not supported */ + return 0; +} + static int nested_enable_evmcs(struct kvm_vcpu *vcpu, uint16_t *vmcs_version) { @@ -7159,6 +7195,7 @@ static struct kvm_x86_ops svm_x86_ops __ro_after_init = { .mpx_supported = svm_mpx_supported, .xsaves_supported = svm_xsaves_supported, .umip_emulated = svm_umip_emulated, + .pt_supported = svm_pt_supported, .set_supported_cpuid = svm_set_supported_cpuid, @@ -7191,6 +7228,7 @@ static struct kvm_x86_ops svm_x86_ops __ro_after_init = { .mem_enc_unreg_region = svm_unregister_enc_region, .nested_enable_evmcs = nested_enable_evmcs, + .nested_get_evmcs_version = nested_get_evmcs_version, }; static int __init svm_init(void) diff --git a/arch/x86/kvm/trace.h b/arch/x86/kvm/trace.h index 0659465a745c..705f40ae2532 100644 --- a/arch/x86/kvm/trace.h +++ b/arch/x86/kvm/trace.h @@ -1254,24 +1254,26 @@ TRACE_EVENT(kvm_hv_stimer_callback, * Tracepoint for stimer_expiration. */ TRACE_EVENT(kvm_hv_stimer_expiration, - TP_PROTO(int vcpu_id, int timer_index, int msg_send_result), - TP_ARGS(vcpu_id, timer_index, msg_send_result), + TP_PROTO(int vcpu_id, int timer_index, int direct, int msg_send_result), + TP_ARGS(vcpu_id, timer_index, direct, msg_send_result), TP_STRUCT__entry( __field(int, vcpu_id) __field(int, timer_index) + __field(int, direct) __field(int, msg_send_result) ), TP_fast_assign( __entry->vcpu_id = vcpu_id; __entry->timer_index = timer_index; + __entry->direct = direct; __entry->msg_send_result = msg_send_result; ), - TP_printk("vcpu_id %d timer %d msg send result %d", + TP_printk("vcpu_id %d timer %d direct %d send result %d", __entry->vcpu_id, __entry->timer_index, - __entry->msg_send_result) + __entry->direct, __entry->msg_send_result) ); /* diff --git a/arch/x86/kvm/vmx.c b/arch/x86/kvm/vmx.c deleted file mode 100644 index 8d5d984541be..000000000000 --- a/arch/x86/kvm/vmx.c +++ /dev/null @@ -1,15252 +0,0 @@ -/* - * Kernel-based Virtual Machine driver for Linux - * - * This module enables machines with Intel VT-x extensions to run virtual - * machines without emulation or binary translation. - * - * Copyright (C) 2006 Qumranet, Inc. - * Copyright 2010 Red Hat, Inc. and/or its affiliates. - * - * Authors: - * Avi Kivity <avi@qumranet.com> - * Yaniv Kamay <yaniv@qumranet.com> - * - * This work is licensed under the terms of the GNU GPL, version 2. See - * the COPYING file in the top-level directory. - * - */ - -#include "irq.h" -#include "mmu.h" -#include "cpuid.h" -#include "lapic.h" -#include "hyperv.h" - -#include <linux/kvm_host.h> -#include <linux/module.h> -#include <linux/kernel.h> -#include <linux/mm.h> -#include <linux/highmem.h> -#include <linux/sched.h> -#include <linux/moduleparam.h> -#include <linux/mod_devicetable.h> -#include <linux/trace_events.h> -#include <linux/slab.h> -#include <linux/tboot.h> -#include <linux/hrtimer.h> -#include <linux/frame.h> -#include <linux/nospec.h> -#include "kvm_cache_regs.h" -#include "x86.h" - -#include <asm/asm.h> -#include <asm/cpu.h> -#include <asm/io.h> -#include <asm/desc.h> -#include <asm/vmx.h> -#include <asm/virtext.h> -#include <asm/mce.h> -#include <asm/fpu/internal.h> -#include <asm/perf_event.h> -#include <asm/debugreg.h> -#include <asm/kexec.h> -#include <asm/apic.h> -#include <asm/irq_remapping.h> -#include <asm/mmu_context.h> -#include <asm/spec-ctrl.h> -#include <asm/mshyperv.h> - -#include "trace.h" -#include "pmu.h" -#include "vmx_evmcs.h" - -#define __ex(x) __kvm_handle_fault_on_reboot(x) -#define __ex_clear(x, reg) \ - ____kvm_handle_fault_on_reboot(x, "xor " reg ", " reg) - -MODULE_AUTHOR("Qumranet"); -MODULE_LICENSE("GPL"); - -static const struct x86_cpu_id vmx_cpu_id[] = { - X86_FEATURE_MATCH(X86_FEATURE_VMX), - {} -}; -MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); - -static bool __read_mostly enable_vpid = 1; -module_param_named(vpid, enable_vpid, bool, 0444); - -static bool __read_mostly enable_vnmi = 1; -module_param_named(vnmi, enable_vnmi, bool, S_IRUGO); - -static bool __read_mostly flexpriority_enabled = 1; -module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); - -static bool __read_mostly enable_ept = 1; -module_param_named(ept, enable_ept, bool, S_IRUGO); - -static bool __read_mostly enable_unrestricted_guest = 1; -module_param_named(unrestricted_guest, - enable_unrestricted_guest, bool, S_IRUGO); - -static bool __read_mostly enable_ept_ad_bits = 1; -module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); - -static bool __read_mostly emulate_invalid_guest_state = true; -module_param(emulate_invalid_guest_state, bool, S_IRUGO); - -static bool __read_mostly fasteoi = 1; -module_param(fasteoi, bool, S_IRUGO); - -static bool __read_mostly enable_apicv = 1; -module_param(enable_apicv, bool, S_IRUGO); - -static bool __read_mostly enable_shadow_vmcs = 1; -module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO); -/* - * If nested=1, nested virtualization is supported, i.e., guests may use - * VMX and be a hypervisor for its own guests. If nested=0, guests may not - * use VMX instructions. - */ -static bool __read_mostly nested = 1; -module_param(nested, bool, S_IRUGO); - -static bool __read_mostly nested_early_check = 0; -module_param(nested_early_check, bool, S_IRUGO); - -static u64 __read_mostly host_xss; - -static bool __read_mostly enable_pml = 1; -module_param_named(pml, enable_pml, bool, S_IRUGO); - -#define MSR_TYPE_R 1 -#define MSR_TYPE_W 2 -#define MSR_TYPE_RW 3 - -#define MSR_BITMAP_MODE_X2APIC 1 -#define MSR_BITMAP_MODE_X2APIC_APICV 2 - -#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL - -/* Guest_tsc -> host_tsc conversion requires 64-bit division. */ -static int __read_mostly cpu_preemption_timer_multi; -static bool __read_mostly enable_preemption_timer = 1; -#ifdef CONFIG_X86_64 -module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); -#endif - -#define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) -#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE -#define KVM_VM_CR0_ALWAYS_ON \ - (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \ - X86_CR0_WP | X86_CR0_PG | X86_CR0_PE) -#define KVM_CR4_GUEST_OWNED_BITS \ - (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \ - | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD) - -#define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE -#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) -#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) - -#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) - -#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5 - -/* - * Hyper-V requires all of these, so mark them as supported even though - * they are just treated the same as all-context. - */ -#define VMX_VPID_EXTENT_SUPPORTED_MASK \ - (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \ - VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \ - VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \ - VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT) - -/* - * These 2 parameters are used to config the controls for Pause-Loop Exiting: - * ple_gap: upper bound on the amount of time between two successive - * executions of PAUSE in a loop. Also indicate if ple enabled. - * According to test, this time is usually smaller than 128 cycles. - * ple_window: upper bound on the amount of time a guest is allowed to execute - * in a PAUSE loop. Tests indicate that most spinlocks are held for - * less than 2^12 cycles - * Time is measured based on a counter that runs at the same rate as the TSC, - * refer SDM volume 3b section 21.6.13 & 22.1.3. - */ -static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; -module_param(ple_gap, uint, 0444); - -static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; -module_param(ple_window, uint, 0444); - -/* Default doubles per-vcpu window every exit. */ -static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; -module_param(ple_window_grow, uint, 0444); - -/* Default resets per-vcpu window every exit to ple_window. */ -static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; -module_param(ple_window_shrink, uint, 0444); - -/* Default is to compute the maximum so we can never overflow. */ -static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; -module_param(ple_window_max, uint, 0444); - -extern const ulong vmx_return; -extern const ulong vmx_early_consistency_check_return; - -static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); -static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); -static DEFINE_MUTEX(vmx_l1d_flush_mutex); - -/* Storage for pre module init parameter parsing */ -static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; - -static const struct { - const char *option; - bool for_parse; -} vmentry_l1d_param[] = { - [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, - [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, - [VMENTER_L1D_FLUSH_COND] = {"cond", true}, - [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, - [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, - [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, -}; - -#define L1D_CACHE_ORDER 4 -static void *vmx_l1d_flush_pages; - -static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) -{ - struct page *page; - unsigned int i; - - if (!enable_ept) { - l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; - return 0; - } - - if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { - u64 msr; - - rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr); - if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { - l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; - return 0; - } - } - - /* If set to auto use the default l1tf mitigation method */ - if (l1tf == VMENTER_L1D_FLUSH_AUTO) { - switch (l1tf_mitigation) { - case L1TF_MITIGATION_OFF: - l1tf = VMENTER_L1D_FLUSH_NEVER; - break; - case L1TF_MITIGATION_FLUSH_NOWARN: - case L1TF_MITIGATION_FLUSH: - case L1TF_MITIGATION_FLUSH_NOSMT: - l1tf = VMENTER_L1D_FLUSH_COND; - break; - case L1TF_MITIGATION_FULL: - case L1TF_MITIGATION_FULL_FORCE: - l1tf = VMENTER_L1D_FLUSH_ALWAYS; - break; - } - } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { - l1tf = VMENTER_L1D_FLUSH_ALWAYS; - } - - if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && - !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { - page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); - if (!page) - return -ENOMEM; - vmx_l1d_flush_pages = page_address(page); - - /* - * Initialize each page with a different pattern in - * order to protect against KSM in the nested - * virtualization case. - */ - for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { - memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, - PAGE_SIZE); - } - } - - l1tf_vmx_mitigation = l1tf; - - if (l1tf != VMENTER_L1D_FLUSH_NEVER) - static_branch_enable(&vmx_l1d_should_flush); - else - static_branch_disable(&vmx_l1d_should_flush); - - if (l1tf == VMENTER_L1D_FLUSH_COND) - static_branch_enable(&vmx_l1d_flush_cond); - else - static_branch_disable(&vmx_l1d_flush_cond); - return 0; -} - -static int vmentry_l1d_flush_parse(const char *s) -{ - unsigned int i; - - if (s) { - for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { - if (vmentry_l1d_param[i].for_parse && - sysfs_streq(s, vmentry_l1d_param[i].option)) - return i; - } - } - return -EINVAL; -} - -static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) -{ - int l1tf, ret; - - l1tf = vmentry_l1d_flush_parse(s); - if (l1tf < 0) - return l1tf; - - if (!boot_cpu_has(X86_BUG_L1TF)) - return 0; - - /* - * Has vmx_init() run already? If not then this is the pre init - * parameter parsing. In that case just store the value and let - * vmx_init() do the proper setup after enable_ept has been - * established. - */ - if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { - vmentry_l1d_flush_param = l1tf; - return 0; - } - - mutex_lock(&vmx_l1d_flush_mutex); - ret = vmx_setup_l1d_flush(l1tf); - mutex_unlock(&vmx_l1d_flush_mutex); - return ret; -} - -static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) -{ - if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) - return sprintf(s, "???\n"); - - return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); -} - -static const struct kernel_param_ops vmentry_l1d_flush_ops = { - .set = vmentry_l1d_flush_set, - .get = vmentry_l1d_flush_get, -}; -module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); - -enum ept_pointers_status { - EPT_POINTERS_CHECK = 0, - EPT_POINTERS_MATCH = 1, - EPT_POINTERS_MISMATCH = 2 -}; - -struct kvm_vmx { - struct kvm kvm; - - unsigned int tss_addr; - bool ept_identity_pagetable_done; - gpa_t ept_identity_map_addr; - - enum ept_pointers_status ept_pointers_match; - spinlock_t ept_pointer_lock; -}; - -#define NR_AUTOLOAD_MSRS 8 - -struct vmcs_hdr { - u32 revision_id:31; - u32 shadow_vmcs:1; -}; - -struct vmcs { - struct vmcs_hdr hdr; - u32 abort; - char data[0]; -}; - -/* - * vmcs_host_state tracks registers that are loaded from the VMCS on VMEXIT - * and whose values change infrequently, but are not constant. I.e. this is - * used as a write-through cache of the corresponding VMCS fields. - */ -struct vmcs_host_state { - unsigned long cr3; /* May not match real cr3 */ - unsigned long cr4; /* May not match real cr4 */ - unsigned long gs_base; - unsigned long fs_base; - - u16 fs_sel, gs_sel, ldt_sel; -#ifdef CONFIG_X86_64 - u16 ds_sel, es_sel; -#endif -}; - -/* - * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also - * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs - * loaded on this CPU (so we can clear them if the CPU goes down). - */ -struct loaded_vmcs { - struct vmcs *vmcs; - struct vmcs *shadow_vmcs; - int cpu; - bool launched; - bool nmi_known_unmasked; - bool hv_timer_armed; - /* Support for vnmi-less CPUs */ - int soft_vnmi_blocked; - ktime_t entry_time; - s64 vnmi_blocked_time; - unsigned long *msr_bitmap; - struct list_head loaded_vmcss_on_cpu_link; - struct vmcs_host_state host_state; -}; - -struct shared_msr_entry { - unsigned index; - u64 data; - u64 mask; -}; - -/* - * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a - * single nested guest (L2), hence the name vmcs12. Any VMX implementation has - * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is - * stored in guest memory specified by VMPTRLD, but is opaque to the guest, - * which must access it using VMREAD/VMWRITE/VMCLEAR instructions. - * More than one of these structures may exist, if L1 runs multiple L2 guests. - * nested_vmx_run() will use the data here to build the vmcs02: a VMCS for the - * underlying hardware which will be used to run L2. - * This structure is packed to ensure that its layout is identical across - * machines (necessary for live migration). - * - * IMPORTANT: Changing the layout of existing fields in this structure - * will break save/restore compatibility with older kvm releases. When - * adding new fields, either use space in the reserved padding* arrays - * or add the new fields to the end of the structure. - */ -typedef u64 natural_width; -struct __packed vmcs12 { - /* According to the Intel spec, a VMCS region must start with the - * following two fields. Then follow implementation-specific data. - */ - struct vmcs_hdr hdr; - u32 abort; - - u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */ - u32 padding[7]; /* room for future expansion */ - - u64 io_bitmap_a; - u64 io_bitmap_b; - u64 msr_bitmap; - u64 vm_exit_msr_store_addr; - u64 vm_exit_msr_load_addr; - u64 vm_entry_msr_load_addr; - u64 tsc_offset; - u64 virtual_apic_page_addr; - u64 apic_access_addr; - u64 posted_intr_desc_addr; - u64 ept_pointer; - u64 eoi_exit_bitmap0; - u64 eoi_exit_bitmap1; - u64 eoi_exit_bitmap2; - u64 eoi_exit_bitmap3; - u64 xss_exit_bitmap; - u64 guest_physical_address; - u64 vmcs_link_pointer; - u64 guest_ia32_debugctl; - u64 guest_ia32_pat; - u64 guest_ia32_efer; - u64 guest_ia32_perf_global_ctrl; - u64 guest_pdptr0; - u64 guest_pdptr1; - u64 guest_pdptr2; - u64 guest_pdptr3; - u64 guest_bndcfgs; - u64 host_ia32_pat; - u64 host_ia32_efer; - u64 host_ia32_perf_global_ctrl; - u64 vmread_bitmap; - u64 vmwrite_bitmap; - u64 vm_function_control; - u64 eptp_list_address; - u64 pml_address; - u64 padding64[3]; /* room for future expansion */ - /* - * To allow migration of L1 (complete with its L2 guests) between - * machines of different natural widths (32 or 64 bit), we cannot have - * unsigned long fields with no explict size. We use u64 (aliased - * natural_width) instead. Luckily, x86 is little-endian. - */ - natural_width cr0_guest_host_mask; - natural_width cr4_guest_host_mask; - natural_width cr0_read_shadow; - natural_width cr4_read_shadow; - natural_width cr3_target_value0; - natural_width cr3_target_value1; - natural_width cr3_target_value2; - natural_width cr3_target_value3; - natural_width exit_qualification; - natural_width guest_linear_address; - natural_width guest_cr0; - natural_width guest_cr3; - natural_width guest_cr4; - natural_width guest_es_base; - natural_width guest_cs_base; - natural_width guest_ss_base; - natural_width guest_ds_base; - natural_width guest_fs_base; - natural_width guest_gs_base; - natural_width guest_ldtr_base; - natural_width guest_tr_base; - natural_width guest_gdtr_base; - natural_width guest_idtr_base; - natural_width guest_dr7; - natural_width guest_rsp; - natural_width guest_rip; - natural_width guest_rflags; - natural_width guest_pending_dbg_exceptions; - natural_width guest_sysenter_esp; - natural_width guest_sysenter_eip; - natural_width host_cr0; - natural_width host_cr3; - natural_width host_cr4; - natural_width host_fs_base; - natural_width host_gs_base; - natural_width host_tr_base; - natural_width host_gdtr_base; - natural_width host_idtr_base; - natural_width host_ia32_sysenter_esp; - natural_width host_ia32_sysenter_eip; - natural_width host_rsp; - natural_width host_rip; - natural_width paddingl[8]; /* room for future expansion */ - u32 pin_based_vm_exec_control; - u32 cpu_based_vm_exec_control; - u32 exception_bitmap; - u32 page_fault_error_code_mask; - u32 page_fault_error_code_match; - u32 cr3_target_count; - u32 vm_exit_controls; - u32 vm_exit_msr_store_count; - u32 vm_exit_msr_load_count; - u32 vm_entry_controls; - u32 vm_entry_msr_load_count; - u32 vm_entry_intr_info_field; - u32 vm_entry_exception_error_code; - u32 vm_entry_instruction_len; - u32 tpr_threshold; - u32 secondary_vm_exec_control; - u32 vm_instruction_error; - u32 vm_exit_reason; - u32 vm_exit_intr_info; - u32 vm_exit_intr_error_code; - u32 idt_vectoring_info_field; - u32 idt_vectoring_error_code; - u32 vm_exit_instruction_len; - u32 vmx_instruction_info; - u32 guest_es_limit; - u32 guest_cs_limit; - u32 guest_ss_limit; - u32 guest_ds_limit; - u32 guest_fs_limit; - u32 guest_gs_limit; - u32 guest_ldtr_limit; - u32 guest_tr_limit; - u32 guest_gdtr_limit; - u32 guest_idtr_limit; - u32 guest_es_ar_bytes; - u32 guest_cs_ar_bytes; - u32 guest_ss_ar_bytes; - u32 guest_ds_ar_bytes; - u32 guest_fs_ar_bytes; - u32 guest_gs_ar_bytes; - u32 guest_ldtr_ar_bytes; - u32 guest_tr_ar_bytes; - u32 guest_interruptibility_info; - u32 guest_activity_state; - u32 guest_sysenter_cs; - u32 host_ia32_sysenter_cs; - u32 vmx_preemption_timer_value; - u32 padding32[7]; /* room for future expansion */ - u16 virtual_processor_id; - u16 posted_intr_nv; - u16 guest_es_selector; - u16 guest_cs_selector; - u16 guest_ss_selector; - u16 guest_ds_selector; - u16 guest_fs_selector; - u16 guest_gs_selector; - u16 guest_ldtr_selector; - u16 guest_tr_selector; - u16 guest_intr_status; - u16 host_es_selector; - u16 host_cs_selector; - u16 host_ss_selector; - u16 host_ds_selector; - u16 host_fs_selector; - u16 host_gs_selector; - u16 host_tr_selector; - u16 guest_pml_index; -}; - -/* - * For save/restore compatibility, the vmcs12 field offsets must not change. - */ -#define CHECK_OFFSET(field, loc) \ - BUILD_BUG_ON_MSG(offsetof(struct vmcs12, field) != (loc), \ - "Offset of " #field " in struct vmcs12 has changed.") - -static inline void vmx_check_vmcs12_offsets(void) { - CHECK_OFFSET(hdr, 0); - CHECK_OFFSET(abort, 4); - CHECK_OFFSET(launch_state, 8); - CHECK_OFFSET(io_bitmap_a, 40); - CHECK_OFFSET(io_bitmap_b, 48); - CHECK_OFFSET(msr_bitmap, 56); - CHECK_OFFSET(vm_exit_msr_store_addr, 64); - CHECK_OFFSET(vm_exit_msr_load_addr, 72); - CHECK_OFFSET(vm_entry_msr_load_addr, 80); - CHECK_OFFSET(tsc_offset, 88); - CHECK_OFFSET(virtual_apic_page_addr, 96); - CHECK_OFFSET(apic_access_addr, 104); - CHECK_OFFSET(posted_intr_desc_addr, 112); - CHECK_OFFSET(ept_pointer, 120); - CHECK_OFFSET(eoi_exit_bitmap0, 128); - CHECK_OFFSET(eoi_exit_bitmap1, 136); - CHECK_OFFSET(eoi_exit_bitmap2, 144); - CHECK_OFFSET(eoi_exit_bitmap3, 152); - CHECK_OFFSET(xss_exit_bitmap, 160); - CHECK_OFFSET(guest_physical_address, 168); - CHECK_OFFSET(vmcs_link_pointer, 176); - CHECK_OFFSET(guest_ia32_debugctl, 184); - CHECK_OFFSET(guest_ia32_pat, 192); - CHECK_OFFSET(guest_ia32_efer, 200); - CHECK_OFFSET(guest_ia32_perf_global_ctrl, 208); - CHECK_OFFSET(guest_pdptr0, 216); - CHECK_OFFSET(guest_pdptr1, 224); - CHECK_OFFSET(guest_pdptr2, 232); - CHECK_OFFSET(guest_pdptr3, 240); - CHECK_OFFSET(guest_bndcfgs, 248); - CHECK_OFFSET(host_ia32_pat, 256); - CHECK_OFFSET(host_ia32_efer, 264); - CHECK_OFFSET(host_ia32_perf_global_ctrl, 272); - CHECK_OFFSET(vmread_bitmap, 280); - CHECK_OFFSET(vmwrite_bitmap, 288); - CHECK_OFFSET(vm_function_control, 296); - CHECK_OFFSET(eptp_list_address, 304); - CHECK_OFFSET(pml_address, 312); - CHECK_OFFSET(cr0_guest_host_mask, 344); - CHECK_OFFSET(cr4_guest_host_mask, 352); - CHECK_OFFSET(cr0_read_shadow, 360); - CHECK_OFFSET(cr4_read_shadow, 368); - CHECK_OFFSET(cr3_target_value0, 376); - CHECK_OFFSET(cr3_target_value1, 384); - CHECK_OFFSET(cr3_target_value2, 392); - CHECK_OFFSET(cr3_target_value3, 400); - CHECK_OFFSET(exit_qualification, 408); - CHECK_OFFSET(guest_linear_address, 416); - CHECK_OFFSET(guest_cr0, 424); - CHECK_OFFSET(guest_cr3, 432); - CHECK_OFFSET(guest_cr4, 440); - CHECK_OFFSET(guest_es_base, 448); - CHECK_OFFSET(guest_cs_base, 456); - CHECK_OFFSET(guest_ss_base, 464); - CHECK_OFFSET(guest_ds_base, 472); - CHECK_OFFSET(guest_fs_base, 480); - CHECK_OFFSET(guest_gs_base, 488); - CHECK_OFFSET(guest_ldtr_base, 496); - CHECK_OFFSET(guest_tr_base, 504); - CHECK_OFFSET(guest_gdtr_base, 512); - CHECK_OFFSET(guest_idtr_base, 520); - CHECK_OFFSET(guest_dr7, 528); - CHECK_OFFSET(guest_rsp, 536); - CHECK_OFFSET(guest_rip, 544); - CHECK_OFFSET(guest_rflags, 552); - CHECK_OFFSET(guest_pending_dbg_exceptions, 560); - CHECK_OFFSET(guest_sysenter_esp, 568); - CHECK_OFFSET(guest_sysenter_eip, 576); - CHECK_OFFSET(host_cr0, 584); - CHECK_OFFSET(host_cr3, 592); - CHECK_OFFSET(host_cr4, 600); - CHECK_OFFSET(host_fs_base, 608); - CHECK_OFFSET(host_gs_base, 616); - CHECK_OFFSET(host_tr_base, 624); - CHECK_OFFSET(host_gdtr_base, 632); - CHECK_OFFSET(host_idtr_base, 640); - CHECK_OFFSET(host_ia32_sysenter_esp, 648); - CHECK_OFFSET(host_ia32_sysenter_eip, 656); - CHECK_OFFSET(host_rsp, 664); - CHECK_OFFSET(host_rip, 672); - CHECK_OFFSET(pin_based_vm_exec_control, 744); - CHECK_OFFSET(cpu_based_vm_exec_control, 748); - CHECK_OFFSET(exception_bitmap, 752); - CHECK_OFFSET(page_fault_error_code_mask, 756); - CHECK_OFFSET(page_fault_error_code_match, 760); - CHECK_OFFSET(cr3_target_count, 764); - CHECK_OFFSET(vm_exit_controls, 768); - CHECK_OFFSET(vm_exit_msr_store_count, 772); - CHECK_OFFSET(vm_exit_msr_load_count, 776); - CHECK_OFFSET(vm_entry_controls, 780); - CHECK_OFFSET(vm_entry_msr_load_count, 784); - CHECK_OFFSET(vm_entry_intr_info_field, 788); - CHECK_OFFSET(vm_entry_exception_error_code, 792); - CHECK_OFFSET(vm_entry_instruction_len, 796); - CHECK_OFFSET(tpr_threshold, 800); - CHECK_OFFSET(secondary_vm_exec_control, 804); - CHECK_OFFSET(vm_instruction_error, 808); - CHECK_OFFSET(vm_exit_reason, 812); - CHECK_OFFSET(vm_exit_intr_info, 816); - CHECK_OFFSET(vm_exit_intr_error_code, 820); - CHECK_OFFSET(idt_vectoring_info_field, 824); - CHECK_OFFSET(idt_vectoring_error_code, 828); - CHECK_OFFSET(vm_exit_instruction_len, 832); - CHECK_OFFSET(vmx_instruction_info, 836); - CHECK_OFFSET(guest_es_limit, 840); - CHECK_OFFSET(guest_cs_limit, 844); - CHECK_OFFSET(guest_ss_limit, 848); - CHECK_OFFSET(guest_ds_limit, 852); - CHECK_OFFSET(guest_fs_limit, 856); - CHECK_OFFSET(guest_gs_limit, 860); - CHECK_OFFSET(guest_ldtr_limit, 864); - CHECK_OFFSET(guest_tr_limit, 868); - CHECK_OFFSET(guest_gdtr_limit, 872); - CHECK_OFFSET(guest_idtr_limit, 876); - CHECK_OFFSET(guest_es_ar_bytes, 880); - CHECK_OFFSET(guest_cs_ar_bytes, 884); - CHECK_OFFSET(guest_ss_ar_bytes, 888); - CHECK_OFFSET(guest_ds_ar_bytes, 892); - CHECK_OFFSET(guest_fs_ar_bytes, 896); - CHECK_OFFSET(guest_gs_ar_bytes, 900); - CHECK_OFFSET(guest_ldtr_ar_bytes, 904); - CHECK_OFFSET(guest_tr_ar_bytes, 908); - CHECK_OFFSET(guest_interruptibility_info, 912); - CHECK_OFFSET(guest_activity_state, 916); - CHECK_OFFSET(guest_sysenter_cs, 920); - CHECK_OFFSET(host_ia32_sysenter_cs, 924); - CHECK_OFFSET(vmx_preemption_timer_value, 928); - CHECK_OFFSET(virtual_processor_id, 960); - CHECK_OFFSET(posted_intr_nv, 962); - CHECK_OFFSET(guest_es_selector, 964); - CHECK_OFFSET(guest_cs_selector, 966); - CHECK_OFFSET(guest_ss_selector, 968); - CHECK_OFFSET(guest_ds_selector, 970); - CHECK_OFFSET(guest_fs_selector, 972); - CHECK_OFFSET(guest_gs_selector, 974); - CHECK_OFFSET(guest_ldtr_selector, 976); - CHECK_OFFSET(guest_tr_selector, 978); - CHECK_OFFSET(guest_intr_status, 980); - CHECK_OFFSET(host_es_selector, 982); - CHECK_OFFSET(host_cs_selector, 984); - CHECK_OFFSET(host_ss_selector, 986); - CHECK_OFFSET(host_ds_selector, 988); - CHECK_OFFSET(host_fs_selector, 990); - CHECK_OFFSET(host_gs_selector, 992); - CHECK_OFFSET(host_tr_selector, 994); - CHECK_OFFSET(guest_pml_index, 996); -} - -/* - * VMCS12_REVISION is an arbitrary id that should be changed if the content or - * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and - * VMPTRLD verifies that the VMCS region that L1 is loading contains this id. - * - * IMPORTANT: Changing this value will break save/restore compatibility with - * older kvm releases. - */ -#define VMCS12_REVISION 0x11e57ed0 - -/* - * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region - * and any VMCS region. Although only sizeof(struct vmcs12) are used by the - * current implementation, 4K are reserved to avoid future complications. - */ -#define VMCS12_SIZE 0x1000 - -/* - * VMCS12_MAX_FIELD_INDEX is the highest index value used in any - * supported VMCS12 field encoding. - */ -#define VMCS12_MAX_FIELD_INDEX 0x17 - -struct nested_vmx_msrs { - /* - * We only store the "true" versions of the VMX capability MSRs. We - * generate the "non-true" versions by setting the must-be-1 bits - * according to the SDM. - */ - u32 procbased_ctls_low; - u32 procbased_ctls_high; - u32 secondary_ctls_low; - u32 secondary_ctls_high; - u32 pinbased_ctls_low; - u32 pinbased_ctls_high; - u32 exit_ctls_low; - u32 exit_ctls_high; - u32 entry_ctls_low; - u32 entry_ctls_high; - u32 misc_low; - u32 misc_high; - u32 ept_caps; - u32 vpid_caps; - u64 basic; - u64 cr0_fixed0; - u64 cr0_fixed1; - u64 cr4_fixed0; - u64 cr4_fixed1; - u64 vmcs_enum; - u64 vmfunc_controls; -}; - -/* - * The nested_vmx structure is part of vcpu_vmx, and holds information we need - * for correct emulation of VMX (i.e., nested VMX) on this vcpu. - */ -struct nested_vmx { - /* Has the level1 guest done vmxon? */ - bool vmxon; - gpa_t vmxon_ptr; - bool pml_full; - - /* The guest-physical address of the current VMCS L1 keeps for L2 */ - gpa_t current_vmptr; - /* - * Cache of the guest's VMCS, existing outside of guest memory. - * Loaded from guest memory during VMPTRLD. Flushed to guest - * memory during VMCLEAR and VMPTRLD. - */ - struct vmcs12 *cached_vmcs12; - /* - * Cache of the guest's shadow VMCS, existing outside of guest - * memory. Loaded from guest memory during VM entry. Flushed - * to guest memory during VM exit. - */ - struct vmcs12 *cached_shadow_vmcs12; - /* - * Indicates if the shadow vmcs or enlightened vmcs must be updated - * with the data held by struct vmcs12. - */ - bool need_vmcs12_sync; - bool dirty_vmcs12; - - /* - * vmcs02 has been initialized, i.e. state that is constant for - * vmcs02 has been written to the backing VMCS. Initialization - * is delayed until L1 actually attempts to run a nested VM. - */ - bool vmcs02_initialized; - - bool change_vmcs01_virtual_apic_mode; - - /* - * Enlightened VMCS has been enabled. It does not mean that L1 has to - * use it. However, VMX features available to L1 will be limited based - * on what the enlightened VMCS supports. - */ - bool enlightened_vmcs_enabled; - - /* L2 must run next, and mustn't decide to exit to L1. */ - bool nested_run_pending; - - struct loaded_vmcs vmcs02; - - /* - * Guest pages referred to in the vmcs02 with host-physical - * pointers, so we must keep them pinned while L2 runs. - */ - struct page *apic_access_page; - struct page *virtual_apic_page; - struct page *pi_desc_page; - struct pi_desc *pi_desc; - bool pi_pending; - u16 posted_intr_nv; - - struct hrtimer preemption_timer; - bool preemption_timer_expired; - - /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */ - u64 vmcs01_debugctl; - u64 vmcs01_guest_bndcfgs; - - u16 vpid02; - u16 last_vpid; - - struct nested_vmx_msrs msrs; - - /* SMM related state */ - struct { - /* in VMX operation on SMM entry? */ - bool vmxon; - /* in guest mode on SMM entry? */ - bool guest_mode; - } smm; - - gpa_t hv_evmcs_vmptr; - struct page *hv_evmcs_page; - struct hv_enlightened_vmcs *hv_evmcs; -}; - -#define POSTED_INTR_ON 0 -#define POSTED_INTR_SN 1 - -/* Posted-Interrupt Descriptor */ -struct pi_desc { - u32 pir[8]; /* Posted interrupt requested */ - union { - struct { - /* bit 256 - Outstanding Notification */ - u16 on : 1, - /* bit 257 - Suppress Notification */ - sn : 1, - /* bit 271:258 - Reserved */ - rsvd_1 : 14; - /* bit 279:272 - Notification Vector */ - u8 nv; - /* bit 287:280 - Reserved */ - u8 rsvd_2; - /* bit 319:288 - Notification Destination */ - u32 ndst; - }; - u64 control; - }; - u32 rsvd[6]; -} __aligned(64); - -static bool pi_test_and_set_on(struct pi_desc *pi_desc) -{ - return test_and_set_bit(POSTED_INTR_ON, - (unsigned long *)&pi_desc->control); -} - -static bool pi_test_and_clear_on(struct pi_desc *pi_desc) -{ - return test_and_clear_bit(POSTED_INTR_ON, - (unsigned long *)&pi_desc->control); -} - -static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc) -{ - return test_and_set_bit(vector, (unsigned long *)pi_desc->pir); -} - -static inline void pi_clear_sn(struct pi_desc *pi_desc) -{ - return clear_bit(POSTED_INTR_SN, - (unsigned long *)&pi_desc->control); -} - -static inline void pi_set_sn(struct pi_desc *pi_desc) -{ - return set_bit(POSTED_INTR_SN, - (unsigned long *)&pi_desc->control); -} - -static inline void pi_clear_on(struct pi_desc *pi_desc) -{ - clear_bit(POSTED_INTR_ON, - (unsigned long *)&pi_desc->control); -} - -static inline int pi_test_on(struct pi_desc *pi_desc) -{ - return test_bit(POSTED_INTR_ON, - (unsigned long *)&pi_desc->control); -} - -static inline int pi_test_sn(struct pi_desc *pi_desc) -{ - return test_bit(POSTED_INTR_SN, - (unsigned long *)&pi_desc->control); -} - -struct vmx_msrs { - unsigned int nr; - struct vmx_msr_entry val[NR_AUTOLOAD_MSRS]; -}; - -struct vcpu_vmx { - struct kvm_vcpu vcpu; - unsigned long host_rsp; - u8 fail; - u8 msr_bitmap_mode; - u32 exit_intr_info; - u32 idt_vectoring_info; - ulong rflags; - struct shared_msr_entry *guest_msrs; - int nmsrs; - int save_nmsrs; - bool guest_msrs_dirty; - unsigned long host_idt_base; -#ifdef CONFIG_X86_64 - u64 msr_host_kernel_gs_base; - u64 msr_guest_kernel_gs_base; -#endif - - u64 arch_capabilities; - u64 spec_ctrl; - - u32 vm_entry_controls_shadow; - u32 vm_exit_controls_shadow; - u32 secondary_exec_control; - - /* - * loaded_vmcs points to the VMCS currently used in this vcpu. For a - * non-nested (L1) guest, it always points to vmcs01. For a nested - * guest (L2), it points to a different VMCS. loaded_cpu_state points - * to the VMCS whose state is loaded into the CPU registers that only - * need to be switched when transitioning to/from the kernel; a NULL - * value indicates that host state is loaded. - */ - struct loaded_vmcs vmcs01; - struct loaded_vmcs *loaded_vmcs; - struct loaded_vmcs *loaded_cpu_state; - bool __launched; /* temporary, used in vmx_vcpu_run */ - struct msr_autoload { - struct vmx_msrs guest; - struct vmx_msrs host; - } msr_autoload; - - struct { - int vm86_active; - ulong save_rflags; - struct kvm_segment segs[8]; - } rmode; - struct { - u32 bitmask; /* 4 bits per segment (1 bit per field) */ - struct kvm_save_segment { - u16 selector; - unsigned long base; - u32 limit; - u32 ar; - } seg[8]; - } segment_cache; - int vpid; - bool emulation_required; - - u32 exit_reason; - - /* Posted interrupt descriptor */ - struct pi_desc pi_desc; - - /* Support for a guest hypervisor (nested VMX) */ - struct nested_vmx nested; - - /* Dynamic PLE window. */ - int ple_window; - bool ple_window_dirty; - - bool req_immediate_exit; - - /* Support for PML */ -#define PML_ENTITY_NUM 512 - struct page *pml_pg; - - /* apic deadline value in host tsc */ - u64 hv_deadline_tsc; - - u64 current_tsc_ratio; - - u32 host_pkru; - - unsigned long host_debugctlmsr; - - /* - * Only bits masked by msr_ia32_feature_control_valid_bits can be set in - * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included - * in msr_ia32_feature_control_valid_bits. - */ - u64 msr_ia32_feature_control; - u64 msr_ia32_feature_control_valid_bits; - u64 ept_pointer; -}; - -enum segment_cache_field { - SEG_FIELD_SEL = 0, - SEG_FIELD_BASE = 1, - SEG_FIELD_LIMIT = 2, - SEG_FIELD_AR = 3, - - SEG_FIELD_NR = 4 -}; - -static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm) -{ - return container_of(kvm, struct kvm_vmx, kvm); -} - -static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu) -{ - return container_of(vcpu, struct vcpu_vmx, vcpu); -} - -static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu) -{ - return &(to_vmx(vcpu)->pi_desc); -} - -#define ROL16(val, n) ((u16)(((u16)(val) << (n)) | ((u16)(val) >> (16 - (n))))) -#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x) -#define FIELD(number, name) [ROL16(number, 6)] = VMCS12_OFFSET(name) -#define FIELD64(number, name) \ - FIELD(number, name), \ - [ROL16(number##_HIGH, 6)] = VMCS12_OFFSET(name) + sizeof(u32) - - -static u16 shadow_read_only_fields[] = { -#define SHADOW_FIELD_RO(x) x, -#include "vmx_shadow_fields.h" -}; -static int max_shadow_read_only_fields = - ARRAY_SIZE(shadow_read_only_fields); - -static u16 shadow_read_write_fields[] = { -#define SHADOW_FIELD_RW(x) x, -#include "vmx_shadow_fields.h" -}; -static int max_shadow_read_write_fields = - ARRAY_SIZE(shadow_read_write_fields); - -static const unsigned short vmcs_field_to_offset_table[] = { - FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id), - FIELD(POSTED_INTR_NV, posted_intr_nv), - FIELD(GUEST_ES_SELECTOR, guest_es_selector), - FIELD(GUEST_CS_SELECTOR, guest_cs_selector), - FIELD(GUEST_SS_SELECTOR, guest_ss_selector), - FIELD(GUEST_DS_SELECTOR, guest_ds_selector), - FIELD(GUEST_FS_SELECTOR, guest_fs_selector), - FIELD(GUEST_GS_SELECTOR, guest_gs_selector), - FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector), - FIELD(GUEST_TR_SELECTOR, guest_tr_selector), - FIELD(GUEST_INTR_STATUS, guest_intr_status), - FIELD(GUEST_PML_INDEX, guest_pml_index), - FIELD(HOST_ES_SELECTOR, host_es_selector), - FIELD(HOST_CS_SELECTOR, host_cs_selector), - FIELD(HOST_SS_SELECTOR, host_ss_selector), - FIELD(HOST_DS_SELECTOR, host_ds_selector), - FIELD(HOST_FS_SELECTOR, host_fs_selector), - FIELD(HOST_GS_SELECTOR, host_gs_selector), - FIELD(HOST_TR_SELECTOR, host_tr_selector), - FIELD64(IO_BITMAP_A, io_bitmap_a), - FIELD64(IO_BITMAP_B, io_bitmap_b), - FIELD64(MSR_BITMAP, msr_bitmap), - FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr), - FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr), - FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr), - FIELD64(PML_ADDRESS, pml_address), - FIELD64(TSC_OFFSET, tsc_offset), - FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr), - FIELD64(APIC_ACCESS_ADDR, apic_access_addr), - FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr), - FIELD64(VM_FUNCTION_CONTROL, vm_function_control), - FIELD64(EPT_POINTER, ept_pointer), - FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0), - FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1), - FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2), - FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3), - FIELD64(EPTP_LIST_ADDRESS, eptp_list_address), - FIELD64(VMREAD_BITMAP, vmread_bitmap), - FIELD64(VMWRITE_BITMAP, vmwrite_bitmap), - FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap), - FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address), - FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer), - FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl), - FIELD64(GUEST_IA32_PAT, guest_ia32_pat), - FIELD64(GUEST_IA32_EFER, guest_ia32_efer), - FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl), - FIELD64(GUEST_PDPTR0, guest_pdptr0), - FIELD64(GUEST_PDPTR1, guest_pdptr1), - FIELD64(GUEST_PDPTR2, guest_pdptr2), - FIELD64(GUEST_PDPTR3, guest_pdptr3), - FIELD64(GUEST_BNDCFGS, guest_bndcfgs), - FIELD64(HOST_IA32_PAT, host_ia32_pat), - FIELD64(HOST_IA32_EFER, host_ia32_efer), - FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl), - FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control), - FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control), - FIELD(EXCEPTION_BITMAP, exception_bitmap), - FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask), - FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match), - FIELD(CR3_TARGET_COUNT, cr3_target_count), - FIELD(VM_EXIT_CONTROLS, vm_exit_controls), - FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count), - FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count), - FIELD(VM_ENTRY_CONTROLS, vm_entry_controls), - FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count), - FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field), - FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code), - FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len), - FIELD(TPR_THRESHOLD, tpr_threshold), - FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control), - FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error), - FIELD(VM_EXIT_REASON, vm_exit_reason), - FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info), - FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code), - FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field), - FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code), - FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len), - FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info), - FIELD(GUEST_ES_LIMIT, guest_es_limit), - FIELD(GUEST_CS_LIMIT, guest_cs_limit), - FIELD(GUEST_SS_LIMIT, guest_ss_limit), - FIELD(GUEST_DS_LIMIT, guest_ds_limit), - FIELD(GUEST_FS_LIMIT, guest_fs_limit), - FIELD(GUEST_GS_LIMIT, guest_gs_limit), - FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit), - FIELD(GUEST_TR_LIMIT, guest_tr_limit), - FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit), - FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit), - FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes), - FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes), - FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes), - FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes), - FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes), - FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes), - FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes), - FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes), - FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info), - FIELD(GUEST_ACTIVITY_STATE, guest_activity_state), - FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs), - FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs), - FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value), - FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask), - FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask), - FIELD(CR0_READ_SHADOW, cr0_read_shadow), - FIELD(CR4_READ_SHADOW, cr4_read_shadow), - FIELD(CR3_TARGET_VALUE0, cr3_target_value0), - FIELD(CR3_TARGET_VALUE1, cr3_target_value1), - FIELD(CR3_TARGET_VALUE2, cr3_target_value2), - FIELD(CR3_TARGET_VALUE3, cr3_target_value3), - FIELD(EXIT_QUALIFICATION, exit_qualification), - FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address), - FIELD(GUEST_CR0, guest_cr0), - FIELD(GUEST_CR3, guest_cr3), - FIELD(GUEST_CR4, guest_cr4), - FIELD(GUEST_ES_BASE, guest_es_base), - FIELD(GUEST_CS_BASE, guest_cs_base), - FIELD(GUEST_SS_BASE, guest_ss_base), - FIELD(GUEST_DS_BASE, guest_ds_base), - FIELD(GUEST_FS_BASE, guest_fs_base), - FIELD(GUEST_GS_BASE, guest_gs_base), - FIELD(GUEST_LDTR_BASE, guest_ldtr_base), - FIELD(GUEST_TR_BASE, guest_tr_base), - FIELD(GUEST_GDTR_BASE, guest_gdtr_base), - FIELD(GUEST_IDTR_BASE, guest_idtr_base), - FIELD(GUEST_DR7, guest_dr7), - FIELD(GUEST_RSP, guest_rsp), - FIELD(GUEST_RIP, guest_rip), - FIELD(GUEST_RFLAGS, guest_rflags), - FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions), - FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp), - FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip), - FIELD(HOST_CR0, host_cr0), - FIELD(HOST_CR3, host_cr3), - FIELD(HOST_CR4, host_cr4), - FIELD(HOST_FS_BASE, host_fs_base), - FIELD(HOST_GS_BASE, host_gs_base), - FIELD(HOST_TR_BASE, host_tr_base), - FIELD(HOST_GDTR_BASE, host_gdtr_base), - FIELD(HOST_IDTR_BASE, host_idtr_base), - FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp), - FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip), - FIELD(HOST_RSP, host_rsp), - FIELD(HOST_RIP, host_rip), -}; - -static inline short vmcs_field_to_offset(unsigned long field) -{ - const size_t size = ARRAY_SIZE(vmcs_field_to_offset_table); - unsigned short offset; - unsigned index; - - if (field >> 15) - return -ENOENT; - - index = ROL16(field, 6); - if (index >= size) - return -ENOENT; - - index = array_index_nospec(index, size); - offset = vmcs_field_to_offset_table[index]; - if (offset == 0) - return -ENOENT; - return offset; -} - -static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu) -{ - return to_vmx(vcpu)->nested.cached_vmcs12; -} - -static inline struct vmcs12 *get_shadow_vmcs12(struct kvm_vcpu *vcpu) -{ - return to_vmx(vcpu)->nested.cached_shadow_vmcs12; -} - -static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu); -static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu); -static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa); -static bool vmx_xsaves_supported(void); -static void vmx_set_segment(struct kvm_vcpu *vcpu, - struct kvm_segment *var, int seg); -static void vmx_get_segment(struct kvm_vcpu *vcpu, - struct kvm_segment *var, int seg); -static bool guest_state_valid(struct kvm_vcpu *vcpu); -static u32 vmx_segment_access_rights(struct kvm_segment *var); -static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx); -static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu); -static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked); -static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12, - u16 error_code); -static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu); -static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, - u32 msr, int type); - -static DEFINE_PER_CPU(struct vmcs *, vmxarea); -static DEFINE_PER_CPU(struct vmcs *, current_vmcs); -/* - * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed - * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. - */ -static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); - -/* - * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we - * can find which vCPU should be waken up. - */ -static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu); -static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock); - -enum { - VMX_VMREAD_BITMAP, - VMX_VMWRITE_BITMAP, - VMX_BITMAP_NR -}; - -static unsigned long *vmx_bitmap[VMX_BITMAP_NR]; - -#define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP]) -#define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP]) - -static bool cpu_has_load_ia32_efer; -static bool cpu_has_load_perf_global_ctrl; - -static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); -static DEFINE_SPINLOCK(vmx_vpid_lock); - -static struct vmcs_config { - int size; - int order; - u32 basic_cap; - u32 revision_id; - u32 pin_based_exec_ctrl; - u32 cpu_based_exec_ctrl; - u32 cpu_based_2nd_exec_ctrl; - u32 vmexit_ctrl; - u32 vmentry_ctrl; - struct nested_vmx_msrs nested; -} vmcs_config; - -static struct vmx_capability { - u32 ept; - u32 vpid; -} vmx_capability; - -#define VMX_SEGMENT_FIELD(seg) \ - [VCPU_SREG_##seg] = { \ - .selector = GUEST_##seg##_SELECTOR, \ - .base = GUEST_##seg##_BASE, \ - .limit = GUEST_##seg##_LIMIT, \ - .ar_bytes = GUEST_##seg##_AR_BYTES, \ - } - -static const struct kvm_vmx_segment_field { - unsigned selector; - unsigned base; - unsigned limit; - unsigned ar_bytes; -} kvm_vmx_segment_fields[] = { - VMX_SEGMENT_FIELD(CS), - VMX_SEGMENT_FIELD(DS), - VMX_SEGMENT_FIELD(ES), - VMX_SEGMENT_FIELD(FS), - VMX_SEGMENT_FIELD(GS), - VMX_SEGMENT_FIELD(SS), - VMX_SEGMENT_FIELD(TR), - VMX_SEGMENT_FIELD(LDTR), -}; - -static u64 host_efer; - -static void ept_save_pdptrs(struct kvm_vcpu *vcpu); - -/* - * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it - * away by decrementing the array size. - */ -static const u32 vmx_msr_index[] = { -#ifdef CONFIG_X86_64 - MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, -#endif - MSR_EFER, MSR_TSC_AUX, MSR_STAR, -}; - -DEFINE_STATIC_KEY_FALSE(enable_evmcs); - -#define current_evmcs ((struct hv_enlightened_vmcs *)this_cpu_read(current_vmcs)) - -#define KVM_EVMCS_VERSION 1 - -/* - * Enlightened VMCSv1 doesn't support these: - * - * POSTED_INTR_NV = 0x00000002, - * GUEST_INTR_STATUS = 0x00000810, - * APIC_ACCESS_ADDR = 0x00002014, - * POSTED_INTR_DESC_ADDR = 0x00002016, - * EOI_EXIT_BITMAP0 = 0x0000201c, - * EOI_EXIT_BITMAP1 = 0x0000201e, - * EOI_EXIT_BITMAP2 = 0x00002020, - * EOI_EXIT_BITMAP3 = 0x00002022, - * GUEST_PML_INDEX = 0x00000812, - * PML_ADDRESS = 0x0000200e, - * VM_FUNCTION_CONTROL = 0x00002018, - * EPTP_LIST_ADDRESS = 0x00002024, - * VMREAD_BITMAP = 0x00002026, - * VMWRITE_BITMAP = 0x00002028, - * - * TSC_MULTIPLIER = 0x00002032, - * PLE_GAP = 0x00004020, - * PLE_WINDOW = 0x00004022, - * VMX_PREEMPTION_TIMER_VALUE = 0x0000482E, - * GUEST_IA32_PERF_GLOBAL_CTRL = 0x00002808, - * HOST_IA32_PERF_GLOBAL_CTRL = 0x00002c04, - * - * Currently unsupported in KVM: - * GUEST_IA32_RTIT_CTL = 0x00002814, - */ -#define EVMCS1_UNSUPPORTED_PINCTRL (PIN_BASED_POSTED_INTR | \ - PIN_BASED_VMX_PREEMPTION_TIMER) -#define EVMCS1_UNSUPPORTED_2NDEXEC \ - (SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | \ - SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | \ - SECONDARY_EXEC_APIC_REGISTER_VIRT | \ - SECONDARY_EXEC_ENABLE_PML | \ - SECONDARY_EXEC_ENABLE_VMFUNC | \ - SECONDARY_EXEC_SHADOW_VMCS | \ - SECONDARY_EXEC_TSC_SCALING | \ - SECONDARY_EXEC_PAUSE_LOOP_EXITING) -#define EVMCS1_UNSUPPORTED_VMEXIT_CTRL (VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) -#define EVMCS1_UNSUPPORTED_VMENTRY_CTRL (VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) -#define EVMCS1_UNSUPPORTED_VMFUNC (VMX_VMFUNC_EPTP_SWITCHING) - -#if IS_ENABLED(CONFIG_HYPERV) -static bool __read_mostly enlightened_vmcs = true; -module_param(enlightened_vmcs, bool, 0444); - -static inline void evmcs_write64(unsigned long field, u64 value) -{ - u16 clean_field; - int offset = get_evmcs_offset(field, &clean_field); - - if (offset < 0) - return; - - *(u64 *)((char *)current_evmcs + offset) = value; - - current_evmcs->hv_clean_fields &= ~clean_field; -} - -static inline void evmcs_write32(unsigned long field, u32 value) -{ - u16 clean_field; - int offset = get_evmcs_offset(field, &clean_field); - - if (offset < 0) - return; - - *(u32 *)((char *)current_evmcs + offset) = value; - current_evmcs->hv_clean_fields &= ~clean_field; -} - -static inline void evmcs_write16(unsigned long field, u16 value) -{ - u16 clean_field; - int offset = get_evmcs_offset(field, &clean_field); - - if (offset < 0) - return; - - *(u16 *)((char *)current_evmcs + offset) = value; - current_evmcs->hv_clean_fields &= ~clean_field; -} - -static inline u64 evmcs_read64(unsigned long field) -{ - int offset = get_evmcs_offset(field, NULL); - - if (offset < 0) - return 0; - - return *(u64 *)((char *)current_evmcs + offset); -} - -static inline u32 evmcs_read32(unsigned long field) -{ - int offset = get_evmcs_offset(field, NULL); - - if (offset < 0) - return 0; - - return *(u32 *)((char *)current_evmcs + offset); -} - -static inline u16 evmcs_read16(unsigned long field) -{ - int offset = get_evmcs_offset(field, NULL); - - if (offset < 0) - return 0; - - return *(u16 *)((char *)current_evmcs + offset); -} - -static inline void evmcs_touch_msr_bitmap(void) -{ - if (unlikely(!current_evmcs)) - return; - - if (current_evmcs->hv_enlightenments_control.msr_bitmap) - current_evmcs->hv_clean_fields &= - ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP; -} - -static void evmcs_load(u64 phys_addr) -{ - struct hv_vp_assist_page *vp_ap = - hv_get_vp_assist_page(smp_processor_id()); - - vp_ap->current_nested_vmcs = phys_addr; - vp_ap->enlighten_vmentry = 1; -} - -static void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf) -{ - vmcs_conf->pin_based_exec_ctrl &= ~EVMCS1_UNSUPPORTED_PINCTRL; - vmcs_conf->cpu_based_2nd_exec_ctrl &= ~EVMCS1_UNSUPPORTED_2NDEXEC; - - vmcs_conf->vmexit_ctrl &= ~EVMCS1_UNSUPPORTED_VMEXIT_CTRL; - vmcs_conf->vmentry_ctrl &= ~EVMCS1_UNSUPPORTED_VMENTRY_CTRL; - -} - -/* check_ept_pointer() should be under protection of ept_pointer_lock. */ -static void check_ept_pointer_match(struct kvm *kvm) -{ - struct kvm_vcpu *vcpu; - u64 tmp_eptp = INVALID_PAGE; - int i; - - kvm_for_each_vcpu(i, vcpu, kvm) { - if (!VALID_PAGE(tmp_eptp)) { - tmp_eptp = to_vmx(vcpu)->ept_pointer; - } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) { - to_kvm_vmx(kvm)->ept_pointers_match - = EPT_POINTERS_MISMATCH; - return; - } - } - - to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH; -} - -static int vmx_hv_remote_flush_tlb(struct kvm *kvm) -{ - struct kvm_vcpu *vcpu; - int ret = -ENOTSUPP, i; - - spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock); - - if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK) - check_ept_pointer_match(kvm); - - /* - * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs the address of the - * base of EPT PML4 table, strip off EPT configuration information. - */ - if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) { - kvm_for_each_vcpu(i, vcpu, kvm) - ret |= hyperv_flush_guest_mapping( - to_vmx(kvm_get_vcpu(kvm, i))->ept_pointer & PAGE_MASK); - } else { - ret = hyperv_flush_guest_mapping( - to_vmx(kvm_get_vcpu(kvm, 0))->ept_pointer & PAGE_MASK); - } - - spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock); - return ret; -} -#else /* !IS_ENABLED(CONFIG_HYPERV) */ -static inline void evmcs_write64(unsigned long field, u64 value) {} -static inline void evmcs_write32(unsigned long field, u32 value) {} -static inline void evmcs_write16(unsigned long field, u16 value) {} -static inline u64 evmcs_read64(unsigned long field) { return 0; } -static inline u32 evmcs_read32(unsigned long field) { return 0; } -static inline u16 evmcs_read16(unsigned long field) { return 0; } -static inline void evmcs_load(u64 phys_addr) {} -static inline void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf) {} -static inline void evmcs_touch_msr_bitmap(void) {} -#endif /* IS_ENABLED(CONFIG_HYPERV) */ - -static int nested_enable_evmcs(struct kvm_vcpu *vcpu, - uint16_t *vmcs_version) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - /* - * vmcs_version represents the range of supported Enlightened VMCS - * versions: lower 8 bits is the minimal version, higher 8 bits is the - * maximum supported version. KVM supports versions from 1 to - * KVM_EVMCS_VERSION. - */ - if (vmcs_version) - *vmcs_version = (KVM_EVMCS_VERSION << 8) | 1; - - /* We don't support disabling the feature for simplicity. */ - if (vmx->nested.enlightened_vmcs_enabled) - return 0; - - vmx->nested.enlightened_vmcs_enabled = true; - - vmx->nested.msrs.pinbased_ctls_high &= ~EVMCS1_UNSUPPORTED_PINCTRL; - vmx->nested.msrs.entry_ctls_high &= ~EVMCS1_UNSUPPORTED_VMENTRY_CTRL; - vmx->nested.msrs.exit_ctls_high &= ~EVMCS1_UNSUPPORTED_VMEXIT_CTRL; - vmx->nested.msrs.secondary_ctls_high &= ~EVMCS1_UNSUPPORTED_2NDEXEC; - vmx->nested.msrs.vmfunc_controls &= ~EVMCS1_UNSUPPORTED_VMFUNC; - - return 0; -} - -static inline bool is_exception_n(u32 intr_info, u8 vector) -{ - return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | - INTR_INFO_VALID_MASK)) == - (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK); -} - -static inline bool is_debug(u32 intr_info) -{ - return is_exception_n(intr_info, DB_VECTOR); -} - -static inline bool is_breakpoint(u32 intr_info) -{ - return is_exception_n(intr_info, BP_VECTOR); -} - -static inline bool is_page_fault(u32 intr_info) -{ - return is_exception_n(intr_info, PF_VECTOR); -} - -static inline bool is_invalid_opcode(u32 intr_info) -{ - return is_exception_n(intr_info, UD_VECTOR); -} - -static inline bool is_gp_fault(u32 intr_info) -{ - return is_exception_n(intr_info, GP_VECTOR); -} - -static inline bool is_machine_check(u32 intr_info) -{ - return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | - INTR_INFO_VALID_MASK)) == - (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK); -} - -/* Undocumented: icebp/int1 */ -static inline bool is_icebp(u32 intr_info) -{ - return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK)) - == (INTR_TYPE_PRIV_SW_EXCEPTION | INTR_INFO_VALID_MASK); -} - -static inline bool cpu_has_vmx_msr_bitmap(void) -{ - return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS; -} - -static inline bool cpu_has_vmx_tpr_shadow(void) -{ - return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW; -} - -static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu) -{ - return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu); -} - -static inline bool cpu_has_secondary_exec_ctrls(void) -{ - return vmcs_config.cpu_based_exec_ctrl & - CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; -} - -static inline bool cpu_has_vmx_virtualize_apic_accesses(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; -} - -static inline bool cpu_has_vmx_virtualize_x2apic_mode(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; -} - -static inline bool cpu_has_vmx_apic_register_virt(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_APIC_REGISTER_VIRT; -} - -static inline bool cpu_has_vmx_virtual_intr_delivery(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY; -} - -static inline bool cpu_has_vmx_encls_vmexit(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_ENCLS_EXITING; -} - -/* - * Comment's format: document - errata name - stepping - processor name. - * Refer from - * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp - */ -static u32 vmx_preemption_cpu_tfms[] = { -/* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ -0x000206E6, -/* 323056.pdf - AAX65 - C2 - Xeon L3406 */ -/* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ -/* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ -0x00020652, -/* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ -0x00020655, -/* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ -/* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ -/* - * 320767.pdf - AAP86 - B1 - - * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile - */ -0x000106E5, -/* 321333.pdf - AAM126 - C0 - Xeon 3500 */ -0x000106A0, -/* 321333.pdf - AAM126 - C1 - Xeon 3500 */ -0x000106A1, -/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ -0x000106A4, - /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ - /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ - /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ -0x000106A5, -}; - -static inline bool cpu_has_broken_vmx_preemption_timer(void) -{ - u32 eax = cpuid_eax(0x00000001), i; - - /* Clear the reserved bits */ - eax &= ~(0x3U << 14 | 0xfU << 28); - for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) - if (eax == vmx_preemption_cpu_tfms[i]) - return true; - - return false; -} - -static inline bool cpu_has_vmx_preemption_timer(void) -{ - return vmcs_config.pin_based_exec_ctrl & - PIN_BASED_VMX_PREEMPTION_TIMER; -} - -static inline bool cpu_has_vmx_posted_intr(void) -{ - return IS_ENABLED(CONFIG_X86_LOCAL_APIC) && - vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR; -} - -static inline bool cpu_has_vmx_apicv(void) -{ - return cpu_has_vmx_apic_register_virt() && - cpu_has_vmx_virtual_intr_delivery() && - cpu_has_vmx_posted_intr(); -} - -static inline bool cpu_has_vmx_flexpriority(void) -{ - return cpu_has_vmx_tpr_shadow() && - cpu_has_vmx_virtualize_apic_accesses(); -} - -static inline bool cpu_has_vmx_ept_execute_only(void) -{ - return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT; -} - -static inline bool cpu_has_vmx_ept_2m_page(void) -{ - return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT; -} - -static inline bool cpu_has_vmx_ept_1g_page(void) -{ - return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT; -} - -static inline bool cpu_has_vmx_ept_4levels(void) -{ - return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT; -} - -static inline bool cpu_has_vmx_ept_mt_wb(void) -{ - return vmx_capability.ept & VMX_EPTP_WB_BIT; -} - -static inline bool cpu_has_vmx_ept_5levels(void) -{ - return vmx_capability.ept & VMX_EPT_PAGE_WALK_5_BIT; -} - -static inline bool cpu_has_vmx_ept_ad_bits(void) -{ - return vmx_capability.ept & VMX_EPT_AD_BIT; -} - -static inline bool cpu_has_vmx_invept_context(void) -{ - return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT; -} - -static inline bool cpu_has_vmx_invept_global(void) -{ - return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT; -} - -static inline bool cpu_has_vmx_invvpid_individual_addr(void) -{ - return vmx_capability.vpid & VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT; -} - -static inline bool cpu_has_vmx_invvpid_single(void) -{ - return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT; -} - -static inline bool cpu_has_vmx_invvpid_global(void) -{ - return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT; -} - -static inline bool cpu_has_vmx_invvpid(void) -{ - return vmx_capability.vpid & VMX_VPID_INVVPID_BIT; -} - -static inline bool cpu_has_vmx_ept(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_ENABLE_EPT; -} - -static inline bool cpu_has_vmx_unrestricted_guest(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_UNRESTRICTED_GUEST; -} - -static inline bool cpu_has_vmx_ple(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_PAUSE_LOOP_EXITING; -} - -static inline bool cpu_has_vmx_basic_inout(void) -{ - return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT); -} - -static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) -{ - return flexpriority_enabled && lapic_in_kernel(vcpu); -} - -static inline bool cpu_has_vmx_vpid(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_ENABLE_VPID; -} - -static inline bool cpu_has_vmx_rdtscp(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_RDTSCP; -} - -static inline bool cpu_has_vmx_invpcid(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_ENABLE_INVPCID; -} - -static inline bool cpu_has_virtual_nmis(void) -{ - return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS; -} - -static inline bool cpu_has_vmx_wbinvd_exit(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_WBINVD_EXITING; -} - -static inline bool cpu_has_vmx_shadow_vmcs(void) -{ - u64 vmx_msr; - rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); - /* check if the cpu supports writing r/o exit information fields */ - if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS)) - return false; - - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_SHADOW_VMCS; -} - -static inline bool cpu_has_vmx_pml(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML; -} - -static inline bool cpu_has_vmx_tsc_scaling(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_TSC_SCALING; -} - -static inline bool cpu_has_vmx_vmfunc(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_ENABLE_VMFUNC; -} - -static bool vmx_umip_emulated(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_DESC; -} - -static inline bool report_flexpriority(void) -{ - return flexpriority_enabled; -} - -static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu) -{ - return vmx_misc_cr3_count(to_vmx(vcpu)->nested.msrs.misc_low); -} - -/* - * Do the virtual VMX capability MSRs specify that L1 can use VMWRITE - * to modify any valid field of the VMCS, or are the VM-exit - * information fields read-only? - */ -static inline bool nested_cpu_has_vmwrite_any_field(struct kvm_vcpu *vcpu) -{ - return to_vmx(vcpu)->nested.msrs.misc_low & - MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS; -} - -static inline bool nested_cpu_has_zero_length_injection(struct kvm_vcpu *vcpu) -{ - return to_vmx(vcpu)->nested.msrs.misc_low & VMX_MISC_ZERO_LEN_INS; -} - -static inline bool nested_cpu_supports_monitor_trap_flag(struct kvm_vcpu *vcpu) -{ - return to_vmx(vcpu)->nested.msrs.procbased_ctls_high & - CPU_BASED_MONITOR_TRAP_FLAG; -} - -static inline bool nested_cpu_has_vmx_shadow_vmcs(struct kvm_vcpu *vcpu) -{ - return to_vmx(vcpu)->nested.msrs.secondary_ctls_high & - SECONDARY_EXEC_SHADOW_VMCS; -} - -static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit) -{ - return vmcs12->cpu_based_vm_exec_control & bit; -} - -static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit) -{ - return (vmcs12->cpu_based_vm_exec_control & - CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) && - (vmcs12->secondary_vm_exec_control & bit); -} - -static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12) -{ - return vmcs12->pin_based_vm_exec_control & - PIN_BASED_VMX_PREEMPTION_TIMER; -} - -static inline bool nested_cpu_has_nmi_exiting(struct vmcs12 *vmcs12) -{ - return vmcs12->pin_based_vm_exec_control & PIN_BASED_NMI_EXITING; -} - -static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12) -{ - return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS; -} - -static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12) -{ - return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT); -} - -static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12) -{ - return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES); -} - -static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12) -{ - return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML); -} - -static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12) -{ - return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); -} - -static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12) -{ - return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID); -} - -static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12) -{ - return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT); -} - -static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12) -{ - return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); -} - -static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12) -{ - return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR; -} - -static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12) -{ - return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC); -} - -static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12) -{ - return nested_cpu_has_vmfunc(vmcs12) && - (vmcs12->vm_function_control & - VMX_VMFUNC_EPTP_SWITCHING); -} - -static inline bool nested_cpu_has_shadow_vmcs(struct vmcs12 *vmcs12) -{ - return nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS); -} - -static inline bool is_nmi(u32 intr_info) -{ - return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK)) - == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK); -} - -static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason, - u32 exit_intr_info, - unsigned long exit_qualification); - -static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr) -{ - int i; - - for (i = 0; i < vmx->nmsrs; ++i) - if (vmx_msr_index[vmx->guest_msrs[i].index] == msr) - return i; - return -1; -} - -static inline void __invvpid(unsigned long ext, u16 vpid, gva_t gva) -{ - struct { - u64 vpid : 16; - u64 rsvd : 48; - u64 gva; - } operand = { vpid, 0, gva }; - bool error; - - asm volatile (__ex("invvpid %2, %1") CC_SET(na) - : CC_OUT(na) (error) : "r"(ext), "m"(operand)); - BUG_ON(error); -} - -static inline void __invept(unsigned long ext, u64 eptp, gpa_t gpa) -{ - struct { - u64 eptp, gpa; - } operand = {eptp, gpa}; - bool error; - - asm volatile (__ex("invept %2, %1") CC_SET(na) - : CC_OUT(na) (error) : "r"(ext), "m"(operand)); - BUG_ON(error); -} - -static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr) -{ - int i; - - i = __find_msr_index(vmx, msr); - if (i >= 0) - return &vmx->guest_msrs[i]; - return NULL; -} - -static void vmcs_clear(struct vmcs *vmcs) -{ - u64 phys_addr = __pa(vmcs); - bool error; - - asm volatile (__ex("vmclear %1") CC_SET(na) - : CC_OUT(na) (error) : "m"(phys_addr)); - if (unlikely(error)) - printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n", - vmcs, phys_addr); -} - -static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs) -{ - vmcs_clear(loaded_vmcs->vmcs); - if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) - vmcs_clear(loaded_vmcs->shadow_vmcs); - loaded_vmcs->cpu = -1; - loaded_vmcs->launched = 0; -} - -static void vmcs_load(struct vmcs *vmcs) -{ - u64 phys_addr = __pa(vmcs); - bool error; - - if (static_branch_unlikely(&enable_evmcs)) - return evmcs_load(phys_addr); - - asm volatile (__ex("vmptrld %1") CC_SET(na) - : CC_OUT(na) (error) : "m"(phys_addr)); - if (unlikely(error)) - printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n", - vmcs, phys_addr); -} - -#ifdef CONFIG_KEXEC_CORE -/* - * This bitmap is used to indicate whether the vmclear - * operation is enabled on all cpus. All disabled by - * default. - */ -static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE; - -static inline void crash_enable_local_vmclear(int cpu) -{ - cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap); -} - -static inline void crash_disable_local_vmclear(int cpu) -{ - cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap); -} - -static inline int crash_local_vmclear_enabled(int cpu) -{ - return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap); -} - -static void crash_vmclear_local_loaded_vmcss(void) -{ - int cpu = raw_smp_processor_id(); - struct loaded_vmcs *v; - - if (!crash_local_vmclear_enabled(cpu)) - return; - - list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), - loaded_vmcss_on_cpu_link) - vmcs_clear(v->vmcs); -} -#else -static inline void crash_enable_local_vmclear(int cpu) { } -static inline void crash_disable_local_vmclear(int cpu) { } -#endif /* CONFIG_KEXEC_CORE */ - -static void __loaded_vmcs_clear(void *arg) -{ - struct loaded_vmcs *loaded_vmcs = arg; - int cpu = raw_smp_processor_id(); - - if (loaded_vmcs->cpu != cpu) - return; /* vcpu migration can race with cpu offline */ - if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) - per_cpu(current_vmcs, cpu) = NULL; - crash_disable_local_vmclear(cpu); - list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); - - /* - * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link - * is before setting loaded_vmcs->vcpu to -1 which is done in - * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist - * then adds the vmcs into percpu list before it is deleted. - */ - smp_wmb(); - - loaded_vmcs_init(loaded_vmcs); - crash_enable_local_vmclear(cpu); -} - -static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) -{ - int cpu = loaded_vmcs->cpu; - - if (cpu != -1) - smp_call_function_single(cpu, - __loaded_vmcs_clear, loaded_vmcs, 1); -} - -static inline bool vpid_sync_vcpu_addr(int vpid, gva_t addr) -{ - if (vpid == 0) - return true; - - if (cpu_has_vmx_invvpid_individual_addr()) { - __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR, vpid, addr); - return true; - } - - return false; -} - -static inline void vpid_sync_vcpu_single(int vpid) -{ - if (vpid == 0) - return; - - if (cpu_has_vmx_invvpid_single()) - __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0); -} - -static inline void vpid_sync_vcpu_global(void) -{ - if (cpu_has_vmx_invvpid_global()) - __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0); -} - -static inline void vpid_sync_context(int vpid) -{ - if (cpu_has_vmx_invvpid_single()) - vpid_sync_vcpu_single(vpid); - else - vpid_sync_vcpu_global(); -} - -static inline void ept_sync_global(void) -{ - __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0); -} - -static inline void ept_sync_context(u64 eptp) -{ - if (cpu_has_vmx_invept_context()) - __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0); - else - ept_sync_global(); -} - -static __always_inline void vmcs_check16(unsigned long field) -{ - BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000, - "16-bit accessor invalid for 64-bit field"); - BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001, - "16-bit accessor invalid for 64-bit high field"); - BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000, - "16-bit accessor invalid for 32-bit high field"); - BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000, - "16-bit accessor invalid for natural width field"); -} - -static __always_inline void vmcs_check32(unsigned long field) -{ - BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0, - "32-bit accessor invalid for 16-bit field"); - BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000, - "32-bit accessor invalid for natural width field"); -} - -static __always_inline void vmcs_check64(unsigned long field) -{ - BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0, - "64-bit accessor invalid for 16-bit field"); - BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001, - "64-bit accessor invalid for 64-bit high field"); - BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000, - "64-bit accessor invalid for 32-bit field"); - BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000, - "64-bit accessor invalid for natural width field"); -} - -static __always_inline void vmcs_checkl(unsigned long field) -{ - BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0, - "Natural width accessor invalid for 16-bit field"); - BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000, - "Natural width accessor invalid for 64-bit field"); - BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001, - "Natural width accessor invalid for 64-bit high field"); - BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000, - "Natural width accessor invalid for 32-bit field"); -} - -static __always_inline unsigned long __vmcs_readl(unsigned long field) -{ - unsigned long value; - - asm volatile (__ex_clear("vmread %1, %0", "%k0") - : "=r"(value) : "r"(field)); - return value; -} - -static __always_inline u16 vmcs_read16(unsigned long field) -{ - vmcs_check16(field); - if (static_branch_unlikely(&enable_evmcs)) - return evmcs_read16(field); - return __vmcs_readl(field); -} - -static __always_inline u32 vmcs_read32(unsigned long field) -{ - vmcs_check32(field); - if (static_branch_unlikely(&enable_evmcs)) - return evmcs_read32(field); - return __vmcs_readl(field); -} - -static __always_inline u64 vmcs_read64(unsigned long field) -{ - vmcs_check64(field); - if (static_branch_unlikely(&enable_evmcs)) - return evmcs_read64(field); -#ifdef CONFIG_X86_64 - return __vmcs_readl(field); -#else - return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32); -#endif -} - -static __always_inline unsigned long vmcs_readl(unsigned long field) -{ - vmcs_checkl(field); - if (static_branch_unlikely(&enable_evmcs)) - return evmcs_read64(field); - return __vmcs_readl(field); -} - -static noinline void vmwrite_error(unsigned long field, unsigned long value) -{ - printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n", - field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); - dump_stack(); -} - -static __always_inline void __vmcs_writel(unsigned long field, unsigned long value) -{ - bool error; - - asm volatile (__ex("vmwrite %2, %1") CC_SET(na) - : CC_OUT(na) (error) : "r"(field), "rm"(value)); - if (unlikely(error)) - vmwrite_error(field, value); -} - -static __always_inline void vmcs_write16(unsigned long field, u16 value) -{ - vmcs_check16(field); - if (static_branch_unlikely(&enable_evmcs)) - return evmcs_write16(field, value); - - __vmcs_writel(field, value); -} - -static __always_inline void vmcs_write32(unsigned long field, u32 value) -{ - vmcs_check32(field); - if (static_branch_unlikely(&enable_evmcs)) - return evmcs_write32(field, value); - - __vmcs_writel(field, value); -} - -static __always_inline void vmcs_write64(unsigned long field, u64 value) -{ - vmcs_check64(field); - if (static_branch_unlikely(&enable_evmcs)) - return evmcs_write64(field, value); - - __vmcs_writel(field, value); -#ifndef CONFIG_X86_64 - asm volatile (""); - __vmcs_writel(field+1, value >> 32); -#endif -} - -static __always_inline void vmcs_writel(unsigned long field, unsigned long value) -{ - vmcs_checkl(field); - if (static_branch_unlikely(&enable_evmcs)) - return evmcs_write64(field, value); - - __vmcs_writel(field, value); -} - -static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask) -{ - BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000, - "vmcs_clear_bits does not support 64-bit fields"); - if (static_branch_unlikely(&enable_evmcs)) - return evmcs_write32(field, evmcs_read32(field) & ~mask); - - __vmcs_writel(field, __vmcs_readl(field) & ~mask); -} - -static __always_inline void vmcs_set_bits(unsigned long field, u32 mask) -{ - BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000, - "vmcs_set_bits does not support 64-bit fields"); - if (static_branch_unlikely(&enable_evmcs)) - return evmcs_write32(field, evmcs_read32(field) | mask); - - __vmcs_writel(field, __vmcs_readl(field) | mask); -} - -static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx) -{ - vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS); -} - -static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val) -{ - vmcs_write32(VM_ENTRY_CONTROLS, val); - vmx->vm_entry_controls_shadow = val; -} - -static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val) -{ - if (vmx->vm_entry_controls_shadow != val) - vm_entry_controls_init(vmx, val); -} - -static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx) -{ - return vmx->vm_entry_controls_shadow; -} - - -static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val) -{ - vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val); -} - -static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val) -{ - vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val); -} - -static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx) -{ - vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS); -} - -static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val) -{ - vmcs_write32(VM_EXIT_CONTROLS, val); - vmx->vm_exit_controls_shadow = val; -} - -static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val) -{ - if (vmx->vm_exit_controls_shadow != val) - vm_exit_controls_init(vmx, val); -} - -static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx) -{ - return vmx->vm_exit_controls_shadow; -} - - -static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val) -{ - vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val); -} - -static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val) -{ - vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val); -} - -static void vmx_segment_cache_clear(struct vcpu_vmx *vmx) -{ - vmx->segment_cache.bitmask = 0; -} - -static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, - unsigned field) -{ - bool ret; - u32 mask = 1 << (seg * SEG_FIELD_NR + field); - - if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) { - vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS); - vmx->segment_cache.bitmask = 0; - } - ret = vmx->segment_cache.bitmask & mask; - vmx->segment_cache.bitmask |= mask; - return ret; -} - -static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) -{ - u16 *p = &vmx->segment_cache.seg[seg].selector; - - if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) - *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); - return *p; -} - -static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) -{ - ulong *p = &vmx->segment_cache.seg[seg].base; - - if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) - *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); - return *p; -} - -static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) -{ - u32 *p = &vmx->segment_cache.seg[seg].limit; - - if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) - *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); - return *p; -} - -static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) -{ - u32 *p = &vmx->segment_cache.seg[seg].ar; - - if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) - *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); - return *p; -} - -static void update_exception_bitmap(struct kvm_vcpu *vcpu) -{ - u32 eb; - - eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | - (1u << DB_VECTOR) | (1u << AC_VECTOR); - /* - * Guest access to VMware backdoor ports could legitimately - * trigger #GP because of TSS I/O permission bitmap. - * We intercept those #GP and allow access to them anyway - * as VMware does. - */ - if (enable_vmware_backdoor) - eb |= (1u << GP_VECTOR); - if ((vcpu->guest_debug & - (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == - (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) - eb |= 1u << BP_VECTOR; - if (to_vmx(vcpu)->rmode.vm86_active) - eb = ~0; - if (enable_ept) - eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */ - - /* When we are running a nested L2 guest and L1 specified for it a - * certain exception bitmap, we must trap the same exceptions and pass - * them to L1. When running L2, we will only handle the exceptions - * specified above if L1 did not want them. - */ - if (is_guest_mode(vcpu)) - eb |= get_vmcs12(vcpu)->exception_bitmap; - - vmcs_write32(EXCEPTION_BITMAP, eb); -} - -/* - * Check if MSR is intercepted for currently loaded MSR bitmap. - */ -static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) -{ - unsigned long *msr_bitmap; - int f = sizeof(unsigned long); - - if (!cpu_has_vmx_msr_bitmap()) - return true; - - msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap; - - if (msr <= 0x1fff) { - return !!test_bit(msr, msr_bitmap + 0x800 / f); - } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { - msr &= 0x1fff; - return !!test_bit(msr, msr_bitmap + 0xc00 / f); - } - - return true; -} - -/* - * Check if MSR is intercepted for L01 MSR bitmap. - */ -static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr) -{ - unsigned long *msr_bitmap; - int f = sizeof(unsigned long); - - if (!cpu_has_vmx_msr_bitmap()) - return true; - - msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap; - - if (msr <= 0x1fff) { - return !!test_bit(msr, msr_bitmap + 0x800 / f); - } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { - msr &= 0x1fff; - return !!test_bit(msr, msr_bitmap + 0xc00 / f); - } - - return true; -} - -static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, - unsigned long entry, unsigned long exit) -{ - vm_entry_controls_clearbit(vmx, entry); - vm_exit_controls_clearbit(vmx, exit); -} - -static int find_msr(struct vmx_msrs *m, unsigned int msr) -{ - unsigned int i; - - for (i = 0; i < m->nr; ++i) { - if (m->val[i].index == msr) - return i; - } - return -ENOENT; -} - -static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) -{ - int i; - struct msr_autoload *m = &vmx->msr_autoload; - - switch (msr) { - case MSR_EFER: - if (cpu_has_load_ia32_efer) { - clear_atomic_switch_msr_special(vmx, - VM_ENTRY_LOAD_IA32_EFER, - VM_EXIT_LOAD_IA32_EFER); - return; - } - break; - case MSR_CORE_PERF_GLOBAL_CTRL: - if (cpu_has_load_perf_global_ctrl) { - clear_atomic_switch_msr_special(vmx, - VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, - VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); - return; - } - break; - } - i = find_msr(&m->guest, msr); - if (i < 0) - goto skip_guest; - --m->guest.nr; - m->guest.val[i] = m->guest.val[m->guest.nr]; - vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); - -skip_guest: - i = find_msr(&m->host, msr); - if (i < 0) - return; - - --m->host.nr; - m->host.val[i] = m->host.val[m->host.nr]; - vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); -} - -static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, - unsigned long entry, unsigned long exit, - unsigned long guest_val_vmcs, unsigned long host_val_vmcs, - u64 guest_val, u64 host_val) -{ - vmcs_write64(guest_val_vmcs, guest_val); - if (host_val_vmcs != HOST_IA32_EFER) - vmcs_write64(host_val_vmcs, host_val); - vm_entry_controls_setbit(vmx, entry); - vm_exit_controls_setbit(vmx, exit); -} - -static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, - u64 guest_val, u64 host_val, bool entry_only) -{ - int i, j = 0; - struct msr_autoload *m = &vmx->msr_autoload; - - switch (msr) { - case MSR_EFER: - if (cpu_has_load_ia32_efer) { - add_atomic_switch_msr_special(vmx, - VM_ENTRY_LOAD_IA32_EFER, - VM_EXIT_LOAD_IA32_EFER, - GUEST_IA32_EFER, - HOST_IA32_EFER, - guest_val, host_val); - return; - } - break; - case MSR_CORE_PERF_GLOBAL_CTRL: - if (cpu_has_load_perf_global_ctrl) { - add_atomic_switch_msr_special(vmx, - VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, - VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, - GUEST_IA32_PERF_GLOBAL_CTRL, - HOST_IA32_PERF_GLOBAL_CTRL, - guest_val, host_val); - return; - } - break; - case MSR_IA32_PEBS_ENABLE: - /* PEBS needs a quiescent period after being disabled (to write - * a record). Disabling PEBS through VMX MSR swapping doesn't - * provide that period, so a CPU could write host's record into - * guest's memory. - */ - wrmsrl(MSR_IA32_PEBS_ENABLE, 0); - } - - i = find_msr(&m->guest, msr); - if (!entry_only) - j = find_msr(&m->host, msr); - - if (i == NR_AUTOLOAD_MSRS || j == NR_AUTOLOAD_MSRS) { - printk_once(KERN_WARNING "Not enough msr switch entries. " - "Can't add msr %x\n", msr); - return; - } - if (i < 0) { - i = m->guest.nr++; - vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); - } - m->guest.val[i].index = msr; - m->guest.val[i].value = guest_val; - - if (entry_only) - return; - - if (j < 0) { - j = m->host.nr++; - vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); - } - m->host.val[j].index = msr; - m->host.val[j].value = host_val; -} - -static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset) -{ - u64 guest_efer = vmx->vcpu.arch.efer; - u64 ignore_bits = 0; - - if (!enable_ept) { - /* - * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing - * host CPUID is more efficient than testing guest CPUID - * or CR4. Host SMEP is anyway a requirement for guest SMEP. - */ - if (boot_cpu_has(X86_FEATURE_SMEP)) - guest_efer |= EFER_NX; - else if (!(guest_efer & EFER_NX)) - ignore_bits |= EFER_NX; - } - - /* - * LMA and LME handled by hardware; SCE meaningless outside long mode. - */ - ignore_bits |= EFER_SCE; -#ifdef CONFIG_X86_64 - ignore_bits |= EFER_LMA | EFER_LME; - /* SCE is meaningful only in long mode on Intel */ - if (guest_efer & EFER_LMA) - ignore_bits &= ~(u64)EFER_SCE; -#endif - - /* - * On EPT, we can't emulate NX, so we must switch EFER atomically. - * On CPUs that support "load IA32_EFER", always switch EFER - * atomically, since it's faster than switching it manually. - */ - if (cpu_has_load_ia32_efer || - (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { - if (!(guest_efer & EFER_LMA)) - guest_efer &= ~EFER_LME; - if (guest_efer != host_efer) - add_atomic_switch_msr(vmx, MSR_EFER, - guest_efer, host_efer, false); - else - clear_atomic_switch_msr(vmx, MSR_EFER); - return false; - } else { - clear_atomic_switch_msr(vmx, MSR_EFER); - - guest_efer &= ~ignore_bits; - guest_efer |= host_efer & ignore_bits; - - vmx->guest_msrs[efer_offset].data = guest_efer; - vmx->guest_msrs[efer_offset].mask = ~ignore_bits; - - return true; - } -} - -#ifdef CONFIG_X86_32 -/* - * On 32-bit kernels, VM exits still load the FS and GS bases from the - * VMCS rather than the segment table. KVM uses this helper to figure - * out the current bases to poke them into the VMCS before entry. - */ -static unsigned long segment_base(u16 selector) -{ - struct desc_struct *table; - unsigned long v; - - if (!(selector & ~SEGMENT_RPL_MASK)) - return 0; - - table = get_current_gdt_ro(); - - if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { - u16 ldt_selector = kvm_read_ldt(); - - if (!(ldt_selector & ~SEGMENT_RPL_MASK)) - return 0; - - table = (struct desc_struct *)segment_base(ldt_selector); - } - v = get_desc_base(&table[selector >> 3]); - return v; -} -#endif - -static void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct vmcs_host_state *host_state; -#ifdef CONFIG_X86_64 - int cpu = raw_smp_processor_id(); -#endif - unsigned long fs_base, gs_base; - u16 fs_sel, gs_sel; - int i; - - vmx->req_immediate_exit = false; - - /* - * Note that guest MSRs to be saved/restored can also be changed - * when guest state is loaded. This happens when guest transitions - * to/from long-mode by setting MSR_EFER.LMA. - */ - if (!vmx->loaded_cpu_state || vmx->guest_msrs_dirty) { - vmx->guest_msrs_dirty = false; - for (i = 0; i < vmx->save_nmsrs; ++i) - kvm_set_shared_msr(vmx->guest_msrs[i].index, - vmx->guest_msrs[i].data, - vmx->guest_msrs[i].mask); - - } - - if (vmx->loaded_cpu_state) - return; - - vmx->loaded_cpu_state = vmx->loaded_vmcs; - host_state = &vmx->loaded_cpu_state->host_state; - - /* - * Set host fs and gs selectors. Unfortunately, 22.2.3 does not - * allow segment selectors with cpl > 0 or ti == 1. - */ - host_state->ldt_sel = kvm_read_ldt(); - -#ifdef CONFIG_X86_64 - savesegment(ds, host_state->ds_sel); - savesegment(es, host_state->es_sel); - - gs_base = cpu_kernelmode_gs_base(cpu); - if (likely(is_64bit_mm(current->mm))) { - save_fsgs_for_kvm(); - fs_sel = current->thread.fsindex; - gs_sel = current->thread.gsindex; - fs_base = current->thread.fsbase; - vmx->msr_host_kernel_gs_base = current->thread.gsbase; - } else { - savesegment(fs, fs_sel); - savesegment(gs, gs_sel); - fs_base = read_msr(MSR_FS_BASE); - vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); - } - - wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); -#else - savesegment(fs, fs_sel); - savesegment(gs, gs_sel); - fs_base = segment_base(fs_sel); - gs_base = segment_base(gs_sel); -#endif - - if (unlikely(fs_sel != host_state->fs_sel)) { - if (!(fs_sel & 7)) - vmcs_write16(HOST_FS_SELECTOR, fs_sel); - else - vmcs_write16(HOST_FS_SELECTOR, 0); - host_state->fs_sel = fs_sel; - } - if (unlikely(gs_sel != host_state->gs_sel)) { - if (!(gs_sel & 7)) - vmcs_write16(HOST_GS_SELECTOR, gs_sel); - else - vmcs_write16(HOST_GS_SELECTOR, 0); - host_state->gs_sel = gs_sel; - } - if (unlikely(fs_base != host_state->fs_base)) { - vmcs_writel(HOST_FS_BASE, fs_base); - host_state->fs_base = fs_base; - } - if (unlikely(gs_base != host_state->gs_base)) { - vmcs_writel(HOST_GS_BASE, gs_base); - host_state->gs_base = gs_base; - } -} - -static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) -{ - struct vmcs_host_state *host_state; - - if (!vmx->loaded_cpu_state) - return; - - WARN_ON_ONCE(vmx->loaded_cpu_state != vmx->loaded_vmcs); - host_state = &vmx->loaded_cpu_state->host_state; - - ++vmx->vcpu.stat.host_state_reload; - vmx->loaded_cpu_state = NULL; - -#ifdef CONFIG_X86_64 - rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); -#endif - if (host_state->ldt_sel || (host_state->gs_sel & 7)) { - kvm_load_ldt(host_state->ldt_sel); -#ifdef CONFIG_X86_64 - load_gs_index(host_state->gs_sel); -#else - loadsegment(gs, host_state->gs_sel); -#endif - } - if (host_state->fs_sel & 7) - loadsegment(fs, host_state->fs_sel); -#ifdef CONFIG_X86_64 - if (unlikely(host_state->ds_sel | host_state->es_sel)) { - loadsegment(ds, host_state->ds_sel); - loadsegment(es, host_state->es_sel); - } -#endif - invalidate_tss_limit(); -#ifdef CONFIG_X86_64 - wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); -#endif - load_fixmap_gdt(raw_smp_processor_id()); -} - -#ifdef CONFIG_X86_64 -static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) -{ - preempt_disable(); - if (vmx->loaded_cpu_state) - rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); - preempt_enable(); - return vmx->msr_guest_kernel_gs_base; -} - -static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) -{ - preempt_disable(); - if (vmx->loaded_cpu_state) - wrmsrl(MSR_KERNEL_GS_BASE, data); - preempt_enable(); - vmx->msr_guest_kernel_gs_base = data; -} -#endif - -static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu) -{ - struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); - struct pi_desc old, new; - unsigned int dest; - - /* - * In case of hot-plug or hot-unplug, we may have to undo - * vmx_vcpu_pi_put even if there is no assigned device. And we - * always keep PI.NDST up to date for simplicity: it makes the - * code easier, and CPU migration is not a fast path. - */ - if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu) - return; - - /* - * First handle the simple case where no cmpxchg is necessary; just - * allow posting non-urgent interrupts. - * - * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change - * PI.NDST: pi_post_block will do it for us and the wakeup_handler - * expects the VCPU to be on the blocked_vcpu_list that matches - * PI.NDST. - */ - if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR || - vcpu->cpu == cpu) { - pi_clear_sn(pi_desc); - return; - } - - /* The full case. */ - do { - old.control = new.control = pi_desc->control; - - dest = cpu_physical_id(cpu); - - if (x2apic_enabled()) - new.ndst = dest; - else - new.ndst = (dest << 8) & 0xFF00; - - new.sn = 0; - } while (cmpxchg64(&pi_desc->control, old.control, - new.control) != old.control); -} - -static void decache_tsc_multiplier(struct vcpu_vmx *vmx) -{ - vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio; - vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio); -} - -/* - * Switches to specified vcpu, until a matching vcpu_put(), but assumes - * vcpu mutex is already taken. - */ -static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - bool already_loaded = vmx->loaded_vmcs->cpu == cpu; - - if (!already_loaded) { - loaded_vmcs_clear(vmx->loaded_vmcs); - local_irq_disable(); - crash_disable_local_vmclear(cpu); - - /* - * Read loaded_vmcs->cpu should be before fetching - * loaded_vmcs->loaded_vmcss_on_cpu_link. - * See the comments in __loaded_vmcs_clear(). - */ - smp_rmb(); - - list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, - &per_cpu(loaded_vmcss_on_cpu, cpu)); - crash_enable_local_vmclear(cpu); - local_irq_enable(); - } - - if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) { - per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; - vmcs_load(vmx->loaded_vmcs->vmcs); - indirect_branch_prediction_barrier(); - } - - if (!already_loaded) { - void *gdt = get_current_gdt_ro(); - unsigned long sysenter_esp; - - kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); - - /* - * Linux uses per-cpu TSS and GDT, so set these when switching - * processors. See 22.2.4. - */ - vmcs_writel(HOST_TR_BASE, - (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); - vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ - - /* - * VM exits change the host TR limit to 0x67 after a VM - * exit. This is okay, since 0x67 covers everything except - * the IO bitmap and have have code to handle the IO bitmap - * being lost after a VM exit. - */ - BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67); - - rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); - vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ - - vmx->loaded_vmcs->cpu = cpu; - } - - /* Setup TSC multiplier */ - if (kvm_has_tsc_control && - vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio) - decache_tsc_multiplier(vmx); - - vmx_vcpu_pi_load(vcpu, cpu); - vmx->host_pkru = read_pkru(); - vmx->host_debugctlmsr = get_debugctlmsr(); -} - -static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu) -{ - struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); - - if (!kvm_arch_has_assigned_device(vcpu->kvm) || - !irq_remapping_cap(IRQ_POSTING_CAP) || - !kvm_vcpu_apicv_active(vcpu)) - return; - - /* Set SN when the vCPU is preempted */ - if (vcpu->preempted) - pi_set_sn(pi_desc); -} - -static void vmx_vcpu_put(struct kvm_vcpu *vcpu) -{ - vmx_vcpu_pi_put(vcpu); - - vmx_prepare_switch_to_host(to_vmx(vcpu)); -} - -static bool emulation_required(struct kvm_vcpu *vcpu) -{ - return emulate_invalid_guest_state && !guest_state_valid(vcpu); -} - -static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu); - -/* - * Return the cr0 value that a nested guest would read. This is a combination - * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by - * its hypervisor (cr0_read_shadow). - */ -static inline unsigned long nested_read_cr0(struct vmcs12 *fields) -{ - return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) | - (fields->cr0_read_shadow & fields->cr0_guest_host_mask); -} -static inline unsigned long nested_read_cr4(struct vmcs12 *fields) -{ - return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) | - (fields->cr4_read_shadow & fields->cr4_guest_host_mask); -} - -static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) -{ - unsigned long rflags, save_rflags; - - if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) { - __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail); - rflags = vmcs_readl(GUEST_RFLAGS); - if (to_vmx(vcpu)->rmode.vm86_active) { - rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; - save_rflags = to_vmx(vcpu)->rmode.save_rflags; - rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; - } - to_vmx(vcpu)->rflags = rflags; - } - return to_vmx(vcpu)->rflags; -} - -static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) -{ - unsigned long old_rflags = vmx_get_rflags(vcpu); - - __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail); - to_vmx(vcpu)->rflags = rflags; - if (to_vmx(vcpu)->rmode.vm86_active) { - to_vmx(vcpu)->rmode.save_rflags = rflags; - rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; - } - vmcs_writel(GUEST_RFLAGS, rflags); - - if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM) - to_vmx(vcpu)->emulation_required = emulation_required(vcpu); -} - -static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) -{ - u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); - int ret = 0; - - if (interruptibility & GUEST_INTR_STATE_STI) - ret |= KVM_X86_SHADOW_INT_STI; - if (interruptibility & GUEST_INTR_STATE_MOV_SS) - ret |= KVM_X86_SHADOW_INT_MOV_SS; - - return ret; -} - -static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) -{ - u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); - u32 interruptibility = interruptibility_old; - - interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); - - if (mask & KVM_X86_SHADOW_INT_MOV_SS) - interruptibility |= GUEST_INTR_STATE_MOV_SS; - else if (mask & KVM_X86_SHADOW_INT_STI) - interruptibility |= GUEST_INTR_STATE_STI; - - if ((interruptibility != interruptibility_old)) - vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); -} - -static void skip_emulated_instruction(struct kvm_vcpu *vcpu) -{ - unsigned long rip; - - rip = kvm_rip_read(vcpu); - rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN); - kvm_rip_write(vcpu, rip); - - /* skipping an emulated instruction also counts */ - vmx_set_interrupt_shadow(vcpu, 0); -} - -static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu, - unsigned long exit_qual) -{ - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - unsigned int nr = vcpu->arch.exception.nr; - u32 intr_info = nr | INTR_INFO_VALID_MASK; - - if (vcpu->arch.exception.has_error_code) { - vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code; - intr_info |= INTR_INFO_DELIVER_CODE_MASK; - } - - if (kvm_exception_is_soft(nr)) - intr_info |= INTR_TYPE_SOFT_EXCEPTION; - else - intr_info |= INTR_TYPE_HARD_EXCEPTION; - - if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) && - vmx_get_nmi_mask(vcpu)) - intr_info |= INTR_INFO_UNBLOCK_NMI; - - nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual); -} - -/* - * KVM wants to inject page-faults which it got to the guest. This function - * checks whether in a nested guest, we need to inject them to L1 or L2. - */ -static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual) -{ - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - unsigned int nr = vcpu->arch.exception.nr; - bool has_payload = vcpu->arch.exception.has_payload; - unsigned long payload = vcpu->arch.exception.payload; - - if (nr == PF_VECTOR) { - if (vcpu->arch.exception.nested_apf) { - *exit_qual = vcpu->arch.apf.nested_apf_token; - return 1; - } - if (nested_vmx_is_page_fault_vmexit(vmcs12, - vcpu->arch.exception.error_code)) { - *exit_qual = has_payload ? payload : vcpu->arch.cr2; - return 1; - } - } else if (vmcs12->exception_bitmap & (1u << nr)) { - if (nr == DB_VECTOR) { - if (!has_payload) { - payload = vcpu->arch.dr6; - payload &= ~(DR6_FIXED_1 | DR6_BT); - payload ^= DR6_RTM; - } - *exit_qual = payload; - } else - *exit_qual = 0; - return 1; - } - - return 0; -} - -static void vmx_clear_hlt(struct kvm_vcpu *vcpu) -{ - /* - * Ensure that we clear the HLT state in the VMCS. We don't need to - * explicitly skip the instruction because if the HLT state is set, - * then the instruction is already executing and RIP has already been - * advanced. - */ - if (kvm_hlt_in_guest(vcpu->kvm) && - vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) - vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); -} - -static void vmx_queue_exception(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - unsigned nr = vcpu->arch.exception.nr; - bool has_error_code = vcpu->arch.exception.has_error_code; - u32 error_code = vcpu->arch.exception.error_code; - u32 intr_info = nr | INTR_INFO_VALID_MASK; - - kvm_deliver_exception_payload(vcpu); - - if (has_error_code) { - vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); - intr_info |= INTR_INFO_DELIVER_CODE_MASK; - } - - if (vmx->rmode.vm86_active) { - int inc_eip = 0; - if (kvm_exception_is_soft(nr)) - inc_eip = vcpu->arch.event_exit_inst_len; - if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE) - kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); - return; - } - - WARN_ON_ONCE(vmx->emulation_required); - - if (kvm_exception_is_soft(nr)) { - vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, - vmx->vcpu.arch.event_exit_inst_len); - intr_info |= INTR_TYPE_SOFT_EXCEPTION; - } else - intr_info |= INTR_TYPE_HARD_EXCEPTION; - - vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); - - vmx_clear_hlt(vcpu); -} - -static bool vmx_rdtscp_supported(void) -{ - return cpu_has_vmx_rdtscp(); -} - -static bool vmx_invpcid_supported(void) -{ - return cpu_has_vmx_invpcid(); -} - -/* - * Swap MSR entry in host/guest MSR entry array. - */ -static void move_msr_up(struct vcpu_vmx *vmx, int from, int to) -{ - struct shared_msr_entry tmp; - - tmp = vmx->guest_msrs[to]; - vmx->guest_msrs[to] = vmx->guest_msrs[from]; - vmx->guest_msrs[from] = tmp; -} - -/* - * Set up the vmcs to automatically save and restore system - * msrs. Don't touch the 64-bit msrs if the guest is in legacy - * mode, as fiddling with msrs is very expensive. - */ -static void setup_msrs(struct vcpu_vmx *vmx) -{ - int save_nmsrs, index; - - save_nmsrs = 0; -#ifdef CONFIG_X86_64 - if (is_long_mode(&vmx->vcpu)) { - index = __find_msr_index(vmx, MSR_SYSCALL_MASK); - if (index >= 0) - move_msr_up(vmx, index, save_nmsrs++); - index = __find_msr_index(vmx, MSR_LSTAR); - if (index >= 0) - move_msr_up(vmx, index, save_nmsrs++); - index = __find_msr_index(vmx, MSR_CSTAR); - if (index >= 0) - move_msr_up(vmx, index, save_nmsrs++); - index = __find_msr_index(vmx, MSR_TSC_AUX); - if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP)) - move_msr_up(vmx, index, save_nmsrs++); - /* - * MSR_STAR is only needed on long mode guests, and only - * if efer.sce is enabled. - */ - index = __find_msr_index(vmx, MSR_STAR); - if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE)) - move_msr_up(vmx, index, save_nmsrs++); - } -#endif - index = __find_msr_index(vmx, MSR_EFER); - if (index >= 0 && update_transition_efer(vmx, index)) - move_msr_up(vmx, index, save_nmsrs++); - - vmx->save_nmsrs = save_nmsrs; - vmx->guest_msrs_dirty = true; - - if (cpu_has_vmx_msr_bitmap()) - vmx_update_msr_bitmap(&vmx->vcpu); -} - -static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu) -{ - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - - if (is_guest_mode(vcpu) && - (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)) - return vcpu->arch.tsc_offset - vmcs12->tsc_offset; - - return vcpu->arch.tsc_offset; -} - -static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) -{ - u64 active_offset = offset; - if (is_guest_mode(vcpu)) { - /* - * We're here if L1 chose not to trap WRMSR to TSC. According - * to the spec, this should set L1's TSC; The offset that L1 - * set for L2 remains unchanged, and still needs to be added - * to the newly set TSC to get L2's TSC. - */ - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING)) - active_offset += vmcs12->tsc_offset; - } else { - trace_kvm_write_tsc_offset(vcpu->vcpu_id, - vmcs_read64(TSC_OFFSET), offset); - } - - vmcs_write64(TSC_OFFSET, active_offset); - return active_offset; -} - -/* - * nested_vmx_allowed() checks whether a guest should be allowed to use VMX - * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for - * all guests if the "nested" module option is off, and can also be disabled - * for a single guest by disabling its VMX cpuid bit. - */ -static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu) -{ - return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX); -} - -/* - * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be - * returned for the various VMX controls MSRs when nested VMX is enabled. - * The same values should also be used to verify that vmcs12 control fields are - * valid during nested entry from L1 to L2. - * Each of these control msrs has a low and high 32-bit half: A low bit is on - * if the corresponding bit in the (32-bit) control field *must* be on, and a - * bit in the high half is on if the corresponding bit in the control field - * may be on. See also vmx_control_verify(). - */ -static void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, bool apicv) -{ - if (!nested) { - memset(msrs, 0, sizeof(*msrs)); - return; - } - - /* - * Note that as a general rule, the high half of the MSRs (bits in - * the control fields which may be 1) should be initialized by the - * intersection of the underlying hardware's MSR (i.e., features which - * can be supported) and the list of features we want to expose - - * because they are known to be properly supported in our code. - * Also, usually, the low half of the MSRs (bits which must be 1) can - * be set to 0, meaning that L1 may turn off any of these bits. The - * reason is that if one of these bits is necessary, it will appear - * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control - * fields of vmcs01 and vmcs02, will turn these bits off - and - * nested_vmx_exit_reflected() will not pass related exits to L1. - * These rules have exceptions below. - */ - - /* pin-based controls */ - rdmsr(MSR_IA32_VMX_PINBASED_CTLS, - msrs->pinbased_ctls_low, - msrs->pinbased_ctls_high); - msrs->pinbased_ctls_low |= - PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR; - msrs->pinbased_ctls_high &= - PIN_BASED_EXT_INTR_MASK | - PIN_BASED_NMI_EXITING | - PIN_BASED_VIRTUAL_NMIS | - (apicv ? PIN_BASED_POSTED_INTR : 0); - msrs->pinbased_ctls_high |= - PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR | - PIN_BASED_VMX_PREEMPTION_TIMER; - - /* exit controls */ - rdmsr(MSR_IA32_VMX_EXIT_CTLS, - msrs->exit_ctls_low, - msrs->exit_ctls_high); - msrs->exit_ctls_low = - VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR; - - msrs->exit_ctls_high &= -#ifdef CONFIG_X86_64 - VM_EXIT_HOST_ADDR_SPACE_SIZE | -#endif - VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT; - msrs->exit_ctls_high |= - VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR | - VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER | - VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT; - - /* We support free control of debug control saving. */ - msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS; - - /* entry controls */ - rdmsr(MSR_IA32_VMX_ENTRY_CTLS, - msrs->entry_ctls_low, - msrs->entry_ctls_high); - msrs->entry_ctls_low = - VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR; - msrs->entry_ctls_high &= -#ifdef CONFIG_X86_64 - VM_ENTRY_IA32E_MODE | -#endif - VM_ENTRY_LOAD_IA32_PAT; - msrs->entry_ctls_high |= - (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER); - - /* We support free control of debug control loading. */ - msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS; - - /* cpu-based controls */ - rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, - msrs->procbased_ctls_low, - msrs->procbased_ctls_high); - msrs->procbased_ctls_low = - CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR; - msrs->procbased_ctls_high &= - CPU_BASED_VIRTUAL_INTR_PENDING | - CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING | - CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING | - CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING | - CPU_BASED_CR3_STORE_EXITING | -#ifdef CONFIG_X86_64 - CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING | -#endif - CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING | - CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG | - CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING | - CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING | - CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; - /* - * We can allow some features even when not supported by the - * hardware. For example, L1 can specify an MSR bitmap - and we - * can use it to avoid exits to L1 - even when L0 runs L2 - * without MSR bitmaps. - */ - msrs->procbased_ctls_high |= - CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR | - CPU_BASED_USE_MSR_BITMAPS; - - /* We support free control of CR3 access interception. */ - msrs->procbased_ctls_low &= - ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING); - - /* - * secondary cpu-based controls. Do not include those that - * depend on CPUID bits, they are added later by vmx_cpuid_update. - */ - rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2, - msrs->secondary_ctls_low, - msrs->secondary_ctls_high); - msrs->secondary_ctls_low = 0; - msrs->secondary_ctls_high &= - SECONDARY_EXEC_DESC | - SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | - SECONDARY_EXEC_APIC_REGISTER_VIRT | - SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | - SECONDARY_EXEC_WBINVD_EXITING; - - /* - * We can emulate "VMCS shadowing," even if the hardware - * doesn't support it. - */ - msrs->secondary_ctls_high |= - SECONDARY_EXEC_SHADOW_VMCS; - - if (enable_ept) { - /* nested EPT: emulate EPT also to L1 */ - msrs->secondary_ctls_high |= - SECONDARY_EXEC_ENABLE_EPT; - msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT | - VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT; - if (cpu_has_vmx_ept_execute_only()) - msrs->ept_caps |= - VMX_EPT_EXECUTE_ONLY_BIT; - msrs->ept_caps &= vmx_capability.ept; - msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT | - VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT | - VMX_EPT_1GB_PAGE_BIT; - if (enable_ept_ad_bits) { - msrs->secondary_ctls_high |= - SECONDARY_EXEC_ENABLE_PML; - msrs->ept_caps |= VMX_EPT_AD_BIT; - } - } - - if (cpu_has_vmx_vmfunc()) { - msrs->secondary_ctls_high |= - SECONDARY_EXEC_ENABLE_VMFUNC; - /* - * Advertise EPTP switching unconditionally - * since we emulate it - */ - if (enable_ept) - msrs->vmfunc_controls = - VMX_VMFUNC_EPTP_SWITCHING; - } - - /* - * Old versions of KVM use the single-context version without - * checking for support, so declare that it is supported even - * though it is treated as global context. The alternative is - * not failing the single-context invvpid, and it is worse. - */ - if (enable_vpid) { - msrs->secondary_ctls_high |= - SECONDARY_EXEC_ENABLE_VPID; - msrs->vpid_caps = VMX_VPID_INVVPID_BIT | - VMX_VPID_EXTENT_SUPPORTED_MASK; - } - - if (enable_unrestricted_guest) - msrs->secondary_ctls_high |= - SECONDARY_EXEC_UNRESTRICTED_GUEST; - - if (flexpriority_enabled) - msrs->secondary_ctls_high |= - SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; - - /* miscellaneous data */ - rdmsr(MSR_IA32_VMX_MISC, - msrs->misc_low, - msrs->misc_high); - msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA; - msrs->misc_low |= - MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS | - VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE | - VMX_MISC_ACTIVITY_HLT; - msrs->misc_high = 0; - - /* - * This MSR reports some information about VMX support. We - * should return information about the VMX we emulate for the - * guest, and the VMCS structure we give it - not about the - * VMX support of the underlying hardware. - */ - msrs->basic = - VMCS12_REVISION | - VMX_BASIC_TRUE_CTLS | - ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) | - (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT); - - if (cpu_has_vmx_basic_inout()) - msrs->basic |= VMX_BASIC_INOUT; - - /* - * These MSRs specify bits which the guest must keep fixed on - * while L1 is in VMXON mode (in L1's root mode, or running an L2). - * We picked the standard core2 setting. - */ -#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE) -#define VMXON_CR4_ALWAYSON X86_CR4_VMXE - msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON; - msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON; - - /* These MSRs specify bits which the guest must keep fixed off. */ - rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1); - rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1); - - /* highest index: VMX_PREEMPTION_TIMER_VALUE */ - msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1; -} - -/* - * if fixed0[i] == 1: val[i] must be 1 - * if fixed1[i] == 0: val[i] must be 0 - */ -static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1) -{ - return ((val & fixed1) | fixed0) == val; -} - -static inline bool vmx_control_verify(u32 control, u32 low, u32 high) -{ - return fixed_bits_valid(control, low, high); -} - -static inline u64 vmx_control_msr(u32 low, u32 high) -{ - return low | ((u64)high << 32); -} - -static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask) -{ - superset &= mask; - subset &= mask; - - return (superset | subset) == superset; -} - -static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data) -{ - const u64 feature_and_reserved = - /* feature (except bit 48; see below) */ - BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) | - /* reserved */ - BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56); - u64 vmx_basic = vmx->nested.msrs.basic; - - if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved)) - return -EINVAL; - - /* - * KVM does not emulate a version of VMX that constrains physical - * addresses of VMX structures (e.g. VMCS) to 32-bits. - */ - if (data & BIT_ULL(48)) - return -EINVAL; - - if (vmx_basic_vmcs_revision_id(vmx_basic) != - vmx_basic_vmcs_revision_id(data)) - return -EINVAL; - - if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data)) - return -EINVAL; - - vmx->nested.msrs.basic = data; - return 0; -} - -static int -vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data) -{ - u64 supported; - u32 *lowp, *highp; - - switch (msr_index) { - case MSR_IA32_VMX_TRUE_PINBASED_CTLS: - lowp = &vmx->nested.msrs.pinbased_ctls_low; - highp = &vmx->nested.msrs.pinbased_ctls_high; - break; - case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: - lowp = &vmx->nested.msrs.procbased_ctls_low; - highp = &vmx->nested.msrs.procbased_ctls_high; - break; - case MSR_IA32_VMX_TRUE_EXIT_CTLS: - lowp = &vmx->nested.msrs.exit_ctls_low; - highp = &vmx->nested.msrs.exit_ctls_high; - break; - case MSR_IA32_VMX_TRUE_ENTRY_CTLS: - lowp = &vmx->nested.msrs.entry_ctls_low; - highp = &vmx->nested.msrs.entry_ctls_high; - break; - case MSR_IA32_VMX_PROCBASED_CTLS2: - lowp = &vmx->nested.msrs.secondary_ctls_low; - highp = &vmx->nested.msrs.secondary_ctls_high; - break; - default: - BUG(); - } - - supported = vmx_control_msr(*lowp, *highp); - - /* Check must-be-1 bits are still 1. */ - if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0))) - return -EINVAL; - - /* Check must-be-0 bits are still 0. */ - if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32))) - return -EINVAL; - - *lowp = data; - *highp = data >> 32; - return 0; -} - -static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data) -{ - const u64 feature_and_reserved_bits = - /* feature */ - BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) | - BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) | - /* reserved */ - GENMASK_ULL(13, 9) | BIT_ULL(31); - u64 vmx_misc; - - vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low, - vmx->nested.msrs.misc_high); - - if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits)) - return -EINVAL; - - if ((vmx->nested.msrs.pinbased_ctls_high & - PIN_BASED_VMX_PREEMPTION_TIMER) && - vmx_misc_preemption_timer_rate(data) != - vmx_misc_preemption_timer_rate(vmx_misc)) - return -EINVAL; - - if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc)) - return -EINVAL; - - if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc)) - return -EINVAL; - - if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc)) - return -EINVAL; - - vmx->nested.msrs.misc_low = data; - vmx->nested.msrs.misc_high = data >> 32; - - /* - * If L1 has read-only VM-exit information fields, use the - * less permissive vmx_vmwrite_bitmap to specify write - * permissions for the shadow VMCS. - */ - if (enable_shadow_vmcs && !nested_cpu_has_vmwrite_any_field(&vmx->vcpu)) - vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap)); - - return 0; -} - -static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data) -{ - u64 vmx_ept_vpid_cap; - - vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps, - vmx->nested.msrs.vpid_caps); - - /* Every bit is either reserved or a feature bit. */ - if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL)) - return -EINVAL; - - vmx->nested.msrs.ept_caps = data; - vmx->nested.msrs.vpid_caps = data >> 32; - return 0; -} - -static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data) -{ - u64 *msr; - - switch (msr_index) { - case MSR_IA32_VMX_CR0_FIXED0: - msr = &vmx->nested.msrs.cr0_fixed0; - break; - case MSR_IA32_VMX_CR4_FIXED0: - msr = &vmx->nested.msrs.cr4_fixed0; - break; - default: - BUG(); - } - - /* - * 1 bits (which indicates bits which "must-be-1" during VMX operation) - * must be 1 in the restored value. - */ - if (!is_bitwise_subset(data, *msr, -1ULL)) - return -EINVAL; - - *msr = data; - return 0; -} - -/* - * Called when userspace is restoring VMX MSRs. - * - * Returns 0 on success, non-0 otherwise. - */ -static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - /* - * Don't allow changes to the VMX capability MSRs while the vCPU - * is in VMX operation. - */ - if (vmx->nested.vmxon) - return -EBUSY; - - switch (msr_index) { - case MSR_IA32_VMX_BASIC: - return vmx_restore_vmx_basic(vmx, data); - case MSR_IA32_VMX_PINBASED_CTLS: - case MSR_IA32_VMX_PROCBASED_CTLS: - case MSR_IA32_VMX_EXIT_CTLS: - case MSR_IA32_VMX_ENTRY_CTLS: - /* - * The "non-true" VMX capability MSRs are generated from the - * "true" MSRs, so we do not support restoring them directly. - * - * If userspace wants to emulate VMX_BASIC[55]=0, userspace - * should restore the "true" MSRs with the must-be-1 bits - * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND - * DEFAULT SETTINGS". - */ - return -EINVAL; - case MSR_IA32_VMX_TRUE_PINBASED_CTLS: - case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: - case MSR_IA32_VMX_TRUE_EXIT_CTLS: - case MSR_IA32_VMX_TRUE_ENTRY_CTLS: - case MSR_IA32_VMX_PROCBASED_CTLS2: - return vmx_restore_control_msr(vmx, msr_index, data); - case MSR_IA32_VMX_MISC: - return vmx_restore_vmx_misc(vmx, data); - case MSR_IA32_VMX_CR0_FIXED0: - case MSR_IA32_VMX_CR4_FIXED0: - return vmx_restore_fixed0_msr(vmx, msr_index, data); - case MSR_IA32_VMX_CR0_FIXED1: - case MSR_IA32_VMX_CR4_FIXED1: - /* - * These MSRs are generated based on the vCPU's CPUID, so we - * do not support restoring them directly. - */ - return -EINVAL; - case MSR_IA32_VMX_EPT_VPID_CAP: - return vmx_restore_vmx_ept_vpid_cap(vmx, data); - case MSR_IA32_VMX_VMCS_ENUM: - vmx->nested.msrs.vmcs_enum = data; - return 0; - default: - /* - * The rest of the VMX capability MSRs do not support restore. - */ - return -EINVAL; - } -} - -/* Returns 0 on success, non-0 otherwise. */ -static int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata) -{ - switch (msr_index) { - case MSR_IA32_VMX_BASIC: - *pdata = msrs->basic; - break; - case MSR_IA32_VMX_TRUE_PINBASED_CTLS: - case MSR_IA32_VMX_PINBASED_CTLS: - *pdata = vmx_control_msr( - msrs->pinbased_ctls_low, - msrs->pinbased_ctls_high); - if (msr_index == MSR_IA32_VMX_PINBASED_CTLS) - *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR; - break; - case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: - case MSR_IA32_VMX_PROCBASED_CTLS: - *pdata = vmx_control_msr( - msrs->procbased_ctls_low, - msrs->procbased_ctls_high); - if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS) - *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR; - break; - case MSR_IA32_VMX_TRUE_EXIT_CTLS: - case MSR_IA32_VMX_EXIT_CTLS: - *pdata = vmx_control_msr( - msrs->exit_ctls_low, - msrs->exit_ctls_high); - if (msr_index == MSR_IA32_VMX_EXIT_CTLS) - *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR; - break; - case MSR_IA32_VMX_TRUE_ENTRY_CTLS: - case MSR_IA32_VMX_ENTRY_CTLS: - *pdata = vmx_control_msr( - msrs->entry_ctls_low, - msrs->entry_ctls_high); - if (msr_index == MSR_IA32_VMX_ENTRY_CTLS) - *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR; - break; - case MSR_IA32_VMX_MISC: - *pdata = vmx_control_msr( - msrs->misc_low, - msrs->misc_high); - break; - case MSR_IA32_VMX_CR0_FIXED0: - *pdata = msrs->cr0_fixed0; - break; - case MSR_IA32_VMX_CR0_FIXED1: - *pdata = msrs->cr0_fixed1; - break; - case MSR_IA32_VMX_CR4_FIXED0: - *pdata = msrs->cr4_fixed0; - break; - case MSR_IA32_VMX_CR4_FIXED1: - *pdata = msrs->cr4_fixed1; - break; - case MSR_IA32_VMX_VMCS_ENUM: - *pdata = msrs->vmcs_enum; - break; - case MSR_IA32_VMX_PROCBASED_CTLS2: - *pdata = vmx_control_msr( - msrs->secondary_ctls_low, - msrs->secondary_ctls_high); - break; - case MSR_IA32_VMX_EPT_VPID_CAP: - *pdata = msrs->ept_caps | - ((u64)msrs->vpid_caps << 32); - break; - case MSR_IA32_VMX_VMFUNC: - *pdata = msrs->vmfunc_controls; - break; - default: - return 1; - } - - return 0; -} - -static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu, - uint64_t val) -{ - uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits; - - return !(val & ~valid_bits); -} - -static int vmx_get_msr_feature(struct kvm_msr_entry *msr) -{ - switch (msr->index) { - case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: - if (!nested) - return 1; - return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); - default: - return 1; - } - - return 0; -} - -/* - * Reads an msr value (of 'msr_index') into 'pdata'. - * Returns 0 on success, non-0 otherwise. - * Assumes vcpu_load() was already called. - */ -static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct shared_msr_entry *msr; - - switch (msr_info->index) { -#ifdef CONFIG_X86_64 - case MSR_FS_BASE: - msr_info->data = vmcs_readl(GUEST_FS_BASE); - break; - case MSR_GS_BASE: - msr_info->data = vmcs_readl(GUEST_GS_BASE); - break; - case MSR_KERNEL_GS_BASE: - msr_info->data = vmx_read_guest_kernel_gs_base(vmx); - break; -#endif - case MSR_EFER: - return kvm_get_msr_common(vcpu, msr_info); - case MSR_IA32_SPEC_CTRL: - if (!msr_info->host_initiated && - !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) - return 1; - - msr_info->data = to_vmx(vcpu)->spec_ctrl; - break; - case MSR_IA32_ARCH_CAPABILITIES: - if (!msr_info->host_initiated && - !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) - return 1; - msr_info->data = to_vmx(vcpu)->arch_capabilities; - break; - case MSR_IA32_SYSENTER_CS: - msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); - break; - case MSR_IA32_SYSENTER_EIP: - msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); - break; - case MSR_IA32_SYSENTER_ESP: - msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); - break; - case MSR_IA32_BNDCFGS: - if (!kvm_mpx_supported() || - (!msr_info->host_initiated && - !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) - return 1; - msr_info->data = vmcs_read64(GUEST_BNDCFGS); - break; - case MSR_IA32_MCG_EXT_CTL: - if (!msr_info->host_initiated && - !(vmx->msr_ia32_feature_control & - FEATURE_CONTROL_LMCE)) - return 1; - msr_info->data = vcpu->arch.mcg_ext_ctl; - break; - case MSR_IA32_FEATURE_CONTROL: - msr_info->data = vmx->msr_ia32_feature_control; - break; - case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: - if (!nested_vmx_allowed(vcpu)) - return 1; - return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, - &msr_info->data); - case MSR_IA32_XSS: - if (!vmx_xsaves_supported()) - return 1; - msr_info->data = vcpu->arch.ia32_xss; - break; - case MSR_TSC_AUX: - if (!msr_info->host_initiated && - !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) - return 1; - /* Otherwise falls through */ - default: - msr = find_msr_entry(vmx, msr_info->index); - if (msr) { - msr_info->data = msr->data; - break; - } - return kvm_get_msr_common(vcpu, msr_info); - } - - return 0; -} - -static void vmx_leave_nested(struct kvm_vcpu *vcpu); - -/* - * Writes msr value into into the appropriate "register". - * Returns 0 on success, non-0 otherwise. - * Assumes vcpu_load() was already called. - */ -static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct shared_msr_entry *msr; - int ret = 0; - u32 msr_index = msr_info->index; - u64 data = msr_info->data; - - switch (msr_index) { - case MSR_EFER: - ret = kvm_set_msr_common(vcpu, msr_info); - break; -#ifdef CONFIG_X86_64 - case MSR_FS_BASE: - vmx_segment_cache_clear(vmx); - vmcs_writel(GUEST_FS_BASE, data); - break; - case MSR_GS_BASE: - vmx_segment_cache_clear(vmx); - vmcs_writel(GUEST_GS_BASE, data); - break; - case MSR_KERNEL_GS_BASE: - vmx_write_guest_kernel_gs_base(vmx, data); - break; -#endif - case MSR_IA32_SYSENTER_CS: - vmcs_write32(GUEST_SYSENTER_CS, data); - break; - case MSR_IA32_SYSENTER_EIP: - vmcs_writel(GUEST_SYSENTER_EIP, data); - break; - case MSR_IA32_SYSENTER_ESP: - vmcs_writel(GUEST_SYSENTER_ESP, data); - break; - case MSR_IA32_BNDCFGS: - if (!kvm_mpx_supported() || - (!msr_info->host_initiated && - !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) - return 1; - if (is_noncanonical_address(data & PAGE_MASK, vcpu) || - (data & MSR_IA32_BNDCFGS_RSVD)) - return 1; - vmcs_write64(GUEST_BNDCFGS, data); - break; - case MSR_IA32_SPEC_CTRL: - if (!msr_info->host_initiated && - !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) - return 1; - - /* The STIBP bit doesn't fault even if it's not advertised */ - if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD)) - return 1; - - vmx->spec_ctrl = data; - - if (!data) - break; - - /* - * For non-nested: - * When it's written (to non-zero) for the first time, pass - * it through. - * - * For nested: - * The handling of the MSR bitmap for L2 guests is done in - * nested_vmx_merge_msr_bitmap. We should not touch the - * vmcs02.msr_bitmap here since it gets completely overwritten - * in the merging. We update the vmcs01 here for L1 as well - * since it will end up touching the MSR anyway now. - */ - vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, - MSR_IA32_SPEC_CTRL, - MSR_TYPE_RW); - break; - case MSR_IA32_PRED_CMD: - if (!msr_info->host_initiated && - !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) - return 1; - - if (data & ~PRED_CMD_IBPB) - return 1; - - if (!data) - break; - - wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); - - /* - * For non-nested: - * When it's written (to non-zero) for the first time, pass - * it through. - * - * For nested: - * The handling of the MSR bitmap for L2 guests is done in - * nested_vmx_merge_msr_bitmap. We should not touch the - * vmcs02.msr_bitmap here since it gets completely overwritten - * in the merging. - */ - vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD, - MSR_TYPE_W); - break; - case MSR_IA32_ARCH_CAPABILITIES: - if (!msr_info->host_initiated) - return 1; - vmx->arch_capabilities = data; - break; - case MSR_IA32_CR_PAT: - if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { - if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) - return 1; - vmcs_write64(GUEST_IA32_PAT, data); - vcpu->arch.pat = data; - break; - } - ret = kvm_set_msr_common(vcpu, msr_info); - break; - case MSR_IA32_TSC_ADJUST: - ret = kvm_set_msr_common(vcpu, msr_info); - break; - case MSR_IA32_MCG_EXT_CTL: - if ((!msr_info->host_initiated && - !(to_vmx(vcpu)->msr_ia32_feature_control & - FEATURE_CONTROL_LMCE)) || - (data & ~MCG_EXT_CTL_LMCE_EN)) - return 1; - vcpu->arch.mcg_ext_ctl = data; - break; - case MSR_IA32_FEATURE_CONTROL: - if (!vmx_feature_control_msr_valid(vcpu, data) || - (to_vmx(vcpu)->msr_ia32_feature_control & - FEATURE_CONTROL_LOCKED && !msr_info->host_initiated)) - return 1; - vmx->msr_ia32_feature_control = data; - if (msr_info->host_initiated && data == 0) - vmx_leave_nested(vcpu); - break; - case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: - if (!msr_info->host_initiated) - return 1; /* they are read-only */ - if (!nested_vmx_allowed(vcpu)) - return 1; - return vmx_set_vmx_msr(vcpu, msr_index, data); - case MSR_IA32_XSS: - if (!vmx_xsaves_supported()) - return 1; - /* - * The only supported bit as of Skylake is bit 8, but - * it is not supported on KVM. - */ - if (data != 0) - return 1; - vcpu->arch.ia32_xss = data; - if (vcpu->arch.ia32_xss != host_xss) - add_atomic_switch_msr(vmx, MSR_IA32_XSS, - vcpu->arch.ia32_xss, host_xss, false); - else - clear_atomic_switch_msr(vmx, MSR_IA32_XSS); - break; - case MSR_TSC_AUX: - if (!msr_info->host_initiated && - !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) - return 1; - /* Check reserved bit, higher 32 bits should be zero */ - if ((data >> 32) != 0) - return 1; - /* Otherwise falls through */ - default: - msr = find_msr_entry(vmx, msr_index); - if (msr) { - u64 old_msr_data = msr->data; - msr->data = data; - if (msr - vmx->guest_msrs < vmx->save_nmsrs) { - preempt_disable(); - ret = kvm_set_shared_msr(msr->index, msr->data, - msr->mask); - preempt_enable(); - if (ret) - msr->data = old_msr_data; - } - break; - } - ret = kvm_set_msr_common(vcpu, msr_info); - } - - return ret; -} - -static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) -{ - __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail); - switch (reg) { - case VCPU_REGS_RSP: - vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); - break; - case VCPU_REGS_RIP: - vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); - break; - case VCPU_EXREG_PDPTR: - if (enable_ept) - ept_save_pdptrs(vcpu); - break; - default: - break; - } -} - -static __init int cpu_has_kvm_support(void) -{ - return cpu_has_vmx(); -} - -static __init int vmx_disabled_by_bios(void) -{ - u64 msr; - - rdmsrl(MSR_IA32_FEATURE_CONTROL, msr); - if (msr & FEATURE_CONTROL_LOCKED) { - /* launched w/ TXT and VMX disabled */ - if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX) - && tboot_enabled()) - return 1; - /* launched w/o TXT and VMX only enabled w/ TXT */ - if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX) - && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX) - && !tboot_enabled()) { - printk(KERN_WARNING "kvm: disable TXT in the BIOS or " - "activate TXT before enabling KVM\n"); - return 1; - } - /* launched w/o TXT and VMX disabled */ - if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX) - && !tboot_enabled()) - return 1; - } - - return 0; -} - -static void kvm_cpu_vmxon(u64 addr) -{ - cr4_set_bits(X86_CR4_VMXE); - intel_pt_handle_vmx(1); - - asm volatile ("vmxon %0" : : "m"(addr)); -} - -static int hardware_enable(void) -{ - int cpu = raw_smp_processor_id(); - u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); - u64 old, test_bits; - - if (cr4_read_shadow() & X86_CR4_VMXE) - return -EBUSY; - - /* - * This can happen if we hot-added a CPU but failed to allocate - * VP assist page for it. - */ - if (static_branch_unlikely(&enable_evmcs) && - !hv_get_vp_assist_page(cpu)) - return -EFAULT; - - INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); - INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu)); - spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); - - /* - * Now we can enable the vmclear operation in kdump - * since the loaded_vmcss_on_cpu list on this cpu - * has been initialized. - * - * Though the cpu is not in VMX operation now, there - * is no problem to enable the vmclear operation - * for the loaded_vmcss_on_cpu list is empty! - */ - crash_enable_local_vmclear(cpu); - - rdmsrl(MSR_IA32_FEATURE_CONTROL, old); - - test_bits = FEATURE_CONTROL_LOCKED; - test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; - if (tboot_enabled()) - test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX; - - if ((old & test_bits) != test_bits) { - /* enable and lock */ - wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits); - } - kvm_cpu_vmxon(phys_addr); - if (enable_ept) - ept_sync_global(); - - return 0; -} - -static void vmclear_local_loaded_vmcss(void) -{ - int cpu = raw_smp_processor_id(); - struct loaded_vmcs *v, *n; - - list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), - loaded_vmcss_on_cpu_link) - __loaded_vmcs_clear(v); -} - - -/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot() - * tricks. - */ -static void kvm_cpu_vmxoff(void) -{ - asm volatile (__ex("vmxoff")); - - intel_pt_handle_vmx(0); - cr4_clear_bits(X86_CR4_VMXE); -} - -static void hardware_disable(void) -{ - vmclear_local_loaded_vmcss(); - kvm_cpu_vmxoff(); -} - -static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, - u32 msr, u32 *result) -{ - u32 vmx_msr_low, vmx_msr_high; - u32 ctl = ctl_min | ctl_opt; - - rdmsr(msr, vmx_msr_low, vmx_msr_high); - - ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ - ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ - - /* Ensure minimum (required) set of control bits are supported. */ - if (ctl_min & ~ctl) - return -EIO; - - *result = ctl; - return 0; -} - -static __init bool allow_1_setting(u32 msr, u32 ctl) -{ - u32 vmx_msr_low, vmx_msr_high; - - rdmsr(msr, vmx_msr_low, vmx_msr_high); - return vmx_msr_high & ctl; -} - -static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf) -{ - u32 vmx_msr_low, vmx_msr_high; - u32 min, opt, min2, opt2; - u32 _pin_based_exec_control = 0; - u32 _cpu_based_exec_control = 0; - u32 _cpu_based_2nd_exec_control = 0; - u32 _vmexit_control = 0; - u32 _vmentry_control = 0; - - memset(vmcs_conf, 0, sizeof(*vmcs_conf)); - min = CPU_BASED_HLT_EXITING | -#ifdef CONFIG_X86_64 - CPU_BASED_CR8_LOAD_EXITING | - CPU_BASED_CR8_STORE_EXITING | -#endif - CPU_BASED_CR3_LOAD_EXITING | - CPU_BASED_CR3_STORE_EXITING | - CPU_BASED_UNCOND_IO_EXITING | - CPU_BASED_MOV_DR_EXITING | - CPU_BASED_USE_TSC_OFFSETING | - CPU_BASED_MWAIT_EXITING | - CPU_BASED_MONITOR_EXITING | - CPU_BASED_INVLPG_EXITING | - CPU_BASED_RDPMC_EXITING; - - opt = CPU_BASED_TPR_SHADOW | - CPU_BASED_USE_MSR_BITMAPS | - CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; - if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS, - &_cpu_based_exec_control) < 0) - return -EIO; -#ifdef CONFIG_X86_64 - if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) - _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING & - ~CPU_BASED_CR8_STORE_EXITING; -#endif - if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { - min2 = 0; - opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | - SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | - SECONDARY_EXEC_WBINVD_EXITING | - SECONDARY_EXEC_ENABLE_VPID | - SECONDARY_EXEC_ENABLE_EPT | - SECONDARY_EXEC_UNRESTRICTED_GUEST | - SECONDARY_EXEC_PAUSE_LOOP_EXITING | - SECONDARY_EXEC_DESC | - SECONDARY_EXEC_RDTSCP | - SECONDARY_EXEC_ENABLE_INVPCID | - SECONDARY_EXEC_APIC_REGISTER_VIRT | - SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | - SECONDARY_EXEC_SHADOW_VMCS | - SECONDARY_EXEC_XSAVES | - SECONDARY_EXEC_RDSEED_EXITING | - SECONDARY_EXEC_RDRAND_EXITING | - SECONDARY_EXEC_ENABLE_PML | - SECONDARY_EXEC_TSC_SCALING | - SECONDARY_EXEC_ENABLE_VMFUNC | - SECONDARY_EXEC_ENCLS_EXITING; - if (adjust_vmx_controls(min2, opt2, - MSR_IA32_VMX_PROCBASED_CTLS2, - &_cpu_based_2nd_exec_control) < 0) - return -EIO; - } -#ifndef CONFIG_X86_64 - if (!(_cpu_based_2nd_exec_control & - SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) - _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; -#endif - - if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) - _cpu_based_2nd_exec_control &= ~( - SECONDARY_EXEC_APIC_REGISTER_VIRT | - SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | - SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); - - rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, - &vmx_capability.ept, &vmx_capability.vpid); - - if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) { - /* CR3 accesses and invlpg don't need to cause VM Exits when EPT - enabled */ - _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | - CPU_BASED_CR3_STORE_EXITING | - CPU_BASED_INVLPG_EXITING); - } else if (vmx_capability.ept) { - vmx_capability.ept = 0; - pr_warn_once("EPT CAP should not exist if not support " - "1-setting enable EPT VM-execution control\n"); - } - if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && - vmx_capability.vpid) { - vmx_capability.vpid = 0; - pr_warn_once("VPID CAP should not exist if not support " - "1-setting enable VPID VM-execution control\n"); - } - - min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT; -#ifdef CONFIG_X86_64 - min |= VM_EXIT_HOST_ADDR_SPACE_SIZE; -#endif - opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT | - VM_EXIT_CLEAR_BNDCFGS; - if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS, - &_vmexit_control) < 0) - return -EIO; - - min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING; - opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR | - PIN_BASED_VMX_PREEMPTION_TIMER; - if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS, - &_pin_based_exec_control) < 0) - return -EIO; - - if (cpu_has_broken_vmx_preemption_timer()) - _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; - if (!(_cpu_based_2nd_exec_control & - SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) - _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; - - min = VM_ENTRY_LOAD_DEBUG_CONTROLS; - opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS; - if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS, - &_vmentry_control) < 0) - return -EIO; - - rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); - - /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ - if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) - return -EIO; - -#ifdef CONFIG_X86_64 - /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ - if (vmx_msr_high & (1u<<16)) - return -EIO; -#endif - - /* Require Write-Back (WB) memory type for VMCS accesses. */ - if (((vmx_msr_high >> 18) & 15) != 6) - return -EIO; - - vmcs_conf->size = vmx_msr_high & 0x1fff; - vmcs_conf->order = get_order(vmcs_conf->size); - vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; - - vmcs_conf->revision_id = vmx_msr_low; - - vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; - vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; - vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; - vmcs_conf->vmexit_ctrl = _vmexit_control; - vmcs_conf->vmentry_ctrl = _vmentry_control; - - if (static_branch_unlikely(&enable_evmcs)) - evmcs_sanitize_exec_ctrls(vmcs_conf); - - cpu_has_load_ia32_efer = - allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS, - VM_ENTRY_LOAD_IA32_EFER) - && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS, - VM_EXIT_LOAD_IA32_EFER); - - cpu_has_load_perf_global_ctrl = - allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS, - VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) - && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS, - VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); - - /* - * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL - * but due to errata below it can't be used. Workaround is to use - * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL. - * - * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32] - * - * AAK155 (model 26) - * AAP115 (model 30) - * AAT100 (model 37) - * BC86,AAY89,BD102 (model 44) - * BA97 (model 46) - * - */ - if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) { - switch (boot_cpu_data.x86_model) { - case 26: - case 30: - case 37: - case 44: - case 46: - cpu_has_load_perf_global_ctrl = false; - printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " - "does not work properly. Using workaround\n"); - break; - default: - break; - } - } - - if (boot_cpu_has(X86_FEATURE_XSAVES)) - rdmsrl(MSR_IA32_XSS, host_xss); - - return 0; -} - -static struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu) -{ - int node = cpu_to_node(cpu); - struct page *pages; - struct vmcs *vmcs; - - pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order); - if (!pages) - return NULL; - vmcs = page_address(pages); - memset(vmcs, 0, vmcs_config.size); - - /* KVM supports Enlightened VMCS v1 only */ - if (static_branch_unlikely(&enable_evmcs)) - vmcs->hdr.revision_id = KVM_EVMCS_VERSION; - else - vmcs->hdr.revision_id = vmcs_config.revision_id; - - if (shadow) - vmcs->hdr.shadow_vmcs = 1; - return vmcs; -} - -static void free_vmcs(struct vmcs *vmcs) -{ - free_pages((unsigned long)vmcs, vmcs_config.order); -} - -/* - * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded - */ -static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) -{ - if (!loaded_vmcs->vmcs) - return; - loaded_vmcs_clear(loaded_vmcs); - free_vmcs(loaded_vmcs->vmcs); - loaded_vmcs->vmcs = NULL; - if (loaded_vmcs->msr_bitmap) - free_page((unsigned long)loaded_vmcs->msr_bitmap); - WARN_ON(loaded_vmcs->shadow_vmcs != NULL); -} - -static struct vmcs *alloc_vmcs(bool shadow) -{ - return alloc_vmcs_cpu(shadow, raw_smp_processor_id()); -} - -static int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) -{ - loaded_vmcs->vmcs = alloc_vmcs(false); - if (!loaded_vmcs->vmcs) - return -ENOMEM; - - loaded_vmcs->shadow_vmcs = NULL; - loaded_vmcs_init(loaded_vmcs); - - if (cpu_has_vmx_msr_bitmap()) { - loaded_vmcs->msr_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL); - if (!loaded_vmcs->msr_bitmap) - goto out_vmcs; - memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); - - if (IS_ENABLED(CONFIG_HYPERV) && - static_branch_unlikely(&enable_evmcs) && - (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { - struct hv_enlightened_vmcs *evmcs = - (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs; - - evmcs->hv_enlightenments_control.msr_bitmap = 1; - } - } - - memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); - - return 0; - -out_vmcs: - free_loaded_vmcs(loaded_vmcs); - return -ENOMEM; -} - -static void free_kvm_area(void) -{ - int cpu; - - for_each_possible_cpu(cpu) { - free_vmcs(per_cpu(vmxarea, cpu)); - per_cpu(vmxarea, cpu) = NULL; - } -} - -enum vmcs_field_width { - VMCS_FIELD_WIDTH_U16 = 0, - VMCS_FIELD_WIDTH_U64 = 1, - VMCS_FIELD_WIDTH_U32 = 2, - VMCS_FIELD_WIDTH_NATURAL_WIDTH = 3 -}; - -static inline int vmcs_field_width(unsigned long field) -{ - if (0x1 & field) /* the *_HIGH fields are all 32 bit */ - return VMCS_FIELD_WIDTH_U32; - return (field >> 13) & 0x3 ; -} - -static inline int vmcs_field_readonly(unsigned long field) -{ - return (((field >> 10) & 0x3) == 1); -} - -static void init_vmcs_shadow_fields(void) -{ - int i, j; - - for (i = j = 0; i < max_shadow_read_only_fields; i++) { - u16 field = shadow_read_only_fields[i]; - if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 && - (i + 1 == max_shadow_read_only_fields || - shadow_read_only_fields[i + 1] != field + 1)) - pr_err("Missing field from shadow_read_only_field %x\n", - field + 1); - - clear_bit(field, vmx_vmread_bitmap); -#ifdef CONFIG_X86_64 - if (field & 1) - continue; -#endif - if (j < i) - shadow_read_only_fields[j] = field; - j++; - } - max_shadow_read_only_fields = j; - - for (i = j = 0; i < max_shadow_read_write_fields; i++) { - u16 field = shadow_read_write_fields[i]; - if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 && - (i + 1 == max_shadow_read_write_fields || - shadow_read_write_fields[i + 1] != field + 1)) - pr_err("Missing field from shadow_read_write_field %x\n", - field + 1); - - /* - * PML and the preemption timer can be emulated, but the - * processor cannot vmwrite to fields that don't exist - * on bare metal. - */ - switch (field) { - case GUEST_PML_INDEX: - if (!cpu_has_vmx_pml()) - continue; - break; - case VMX_PREEMPTION_TIMER_VALUE: - if (!cpu_has_vmx_preemption_timer()) - continue; - break; - case GUEST_INTR_STATUS: - if (!cpu_has_vmx_apicv()) - continue; - break; - default: - break; - } - - clear_bit(field, vmx_vmwrite_bitmap); - clear_bit(field, vmx_vmread_bitmap); -#ifdef CONFIG_X86_64 - if (field & 1) - continue; -#endif - if (j < i) - shadow_read_write_fields[j] = field; - j++; - } - max_shadow_read_write_fields = j; -} - -static __init int alloc_kvm_area(void) -{ - int cpu; - - for_each_possible_cpu(cpu) { - struct vmcs *vmcs; - - vmcs = alloc_vmcs_cpu(false, cpu); - if (!vmcs) { - free_kvm_area(); - return -ENOMEM; - } - - /* - * When eVMCS is enabled, alloc_vmcs_cpu() sets - * vmcs->revision_id to KVM_EVMCS_VERSION instead of - * revision_id reported by MSR_IA32_VMX_BASIC. - * - * However, even though not explictly documented by - * TLFS, VMXArea passed as VMXON argument should - * still be marked with revision_id reported by - * physical CPU. - */ - if (static_branch_unlikely(&enable_evmcs)) - vmcs->hdr.revision_id = vmcs_config.revision_id; - - per_cpu(vmxarea, cpu) = vmcs; - } - return 0; -} - -static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, - struct kvm_segment *save) -{ - if (!emulate_invalid_guest_state) { - /* - * CS and SS RPL should be equal during guest entry according - * to VMX spec, but in reality it is not always so. Since vcpu - * is in the middle of the transition from real mode to - * protected mode it is safe to assume that RPL 0 is a good - * default value. - */ - if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) - save->selector &= ~SEGMENT_RPL_MASK; - save->dpl = save->selector & SEGMENT_RPL_MASK; - save->s = 1; - } - vmx_set_segment(vcpu, save, seg); -} - -static void enter_pmode(struct kvm_vcpu *vcpu) -{ - unsigned long flags; - struct vcpu_vmx *vmx = to_vmx(vcpu); - - /* - * Update real mode segment cache. It may be not up-to-date if sement - * register was written while vcpu was in a guest mode. - */ - vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); - vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); - vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); - vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); - vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); - vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); - - vmx->rmode.vm86_active = 0; - - vmx_segment_cache_clear(vmx); - - vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); - - flags = vmcs_readl(GUEST_RFLAGS); - flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; - flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; - vmcs_writel(GUEST_RFLAGS, flags); - - vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | - (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); - - update_exception_bitmap(vcpu); - - fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); - fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); - fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); - fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); - fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); - fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); -} - -static void fix_rmode_seg(int seg, struct kvm_segment *save) -{ - const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; - struct kvm_segment var = *save; - - var.dpl = 0x3; - if (seg == VCPU_SREG_CS) - var.type = 0x3; - - if (!emulate_invalid_guest_state) { - var.selector = var.base >> 4; - var.base = var.base & 0xffff0; - var.limit = 0xffff; - var.g = 0; - var.db = 0; - var.present = 1; - var.s = 1; - var.l = 0; - var.unusable = 0; - var.type = 0x3; - var.avl = 0; - if (save->base & 0xf) - printk_once(KERN_WARNING "kvm: segment base is not " - "paragraph aligned when entering " - "protected mode (seg=%d)", seg); - } - - vmcs_write16(sf->selector, var.selector); - vmcs_writel(sf->base, var.base); - vmcs_write32(sf->limit, var.limit); - vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); -} - -static void enter_rmode(struct kvm_vcpu *vcpu) -{ - unsigned long flags; - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); - - vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); - vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); - vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); - vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); - vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); - vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); - vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); - - vmx->rmode.vm86_active = 1; - - /* - * Very old userspace does not call KVM_SET_TSS_ADDR before entering - * vcpu. Warn the user that an update is overdue. - */ - if (!kvm_vmx->tss_addr) - printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be " - "called before entering vcpu\n"); - - vmx_segment_cache_clear(vmx); - - vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); - vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); - vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); - - flags = vmcs_readl(GUEST_RFLAGS); - vmx->rmode.save_rflags = flags; - - flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; - - vmcs_writel(GUEST_RFLAGS, flags); - vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); - update_exception_bitmap(vcpu); - - fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); - fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); - fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); - fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); - fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); - fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); - - kvm_mmu_reset_context(vcpu); -} - -static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER); - - if (!msr) - return; - - vcpu->arch.efer = efer; - if (efer & EFER_LMA) { - vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); - msr->data = efer; - } else { - vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); - - msr->data = efer & ~EFER_LME; - } - setup_msrs(vmx); -} - -#ifdef CONFIG_X86_64 - -static void enter_lmode(struct kvm_vcpu *vcpu) -{ - u32 guest_tr_ar; - - vmx_segment_cache_clear(to_vmx(vcpu)); - - guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); - if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { - pr_debug_ratelimited("%s: tss fixup for long mode. \n", - __func__); - vmcs_write32(GUEST_TR_AR_BYTES, - (guest_tr_ar & ~VMX_AR_TYPE_MASK) - | VMX_AR_TYPE_BUSY_64_TSS); - } - vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); -} - -static void exit_lmode(struct kvm_vcpu *vcpu) -{ - vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); - vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); -} - -#endif - -static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid, - bool invalidate_gpa) -{ - if (enable_ept && (invalidate_gpa || !enable_vpid)) { - if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) - return; - ept_sync_context(construct_eptp(vcpu, - vcpu->arch.mmu->root_hpa)); - } else { - vpid_sync_context(vpid); - } -} - -static void vmx_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa) -{ - __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid, invalidate_gpa); -} - -static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) -{ - int vpid = to_vmx(vcpu)->vpid; - - if (!vpid_sync_vcpu_addr(vpid, addr)) - vpid_sync_context(vpid); - - /* - * If VPIDs are not supported or enabled, then the above is a no-op. - * But we don't really need a TLB flush in that case anyway, because - * each VM entry/exit includes an implicit flush when VPID is 0. - */ -} - -static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu) -{ - ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; - - vcpu->arch.cr0 &= ~cr0_guest_owned_bits; - vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits; -} - -static void vmx_decache_cr3(struct kvm_vcpu *vcpu) -{ - if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu))) - vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); - __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); -} - -static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu) -{ - ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; - - vcpu->arch.cr4 &= ~cr4_guest_owned_bits; - vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits; -} - -static void ept_load_pdptrs(struct kvm_vcpu *vcpu) -{ - struct kvm_mmu *mmu = vcpu->arch.walk_mmu; - - if (!test_bit(VCPU_EXREG_PDPTR, - (unsigned long *)&vcpu->arch.regs_dirty)) - return; - - if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) { - vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); - vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); - vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); - vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); - } -} - -static void ept_save_pdptrs(struct kvm_vcpu *vcpu) -{ - struct kvm_mmu *mmu = vcpu->arch.walk_mmu; - - if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) { - mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); - mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); - mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); - mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); - } - - __set_bit(VCPU_EXREG_PDPTR, - (unsigned long *)&vcpu->arch.regs_avail); - __set_bit(VCPU_EXREG_PDPTR, - (unsigned long *)&vcpu->arch.regs_dirty); -} - -static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val) -{ - u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0; - u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1; - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - - if (to_vmx(vcpu)->nested.msrs.secondary_ctls_high & - SECONDARY_EXEC_UNRESTRICTED_GUEST && - nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST)) - fixed0 &= ~(X86_CR0_PE | X86_CR0_PG); - - return fixed_bits_valid(val, fixed0, fixed1); -} - -static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val) -{ - u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0; - u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1; - - return fixed_bits_valid(val, fixed0, fixed1); -} - -static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val) -{ - u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr4_fixed0; - u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr4_fixed1; - - return fixed_bits_valid(val, fixed0, fixed1); -} - -/* No difference in the restrictions on guest and host CR4 in VMX operation. */ -#define nested_guest_cr4_valid nested_cr4_valid -#define nested_host_cr4_valid nested_cr4_valid - -static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); - -static void ept_update_paging_mode_cr0(unsigned long *hw_cr0, - unsigned long cr0, - struct kvm_vcpu *vcpu) -{ - if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) - vmx_decache_cr3(vcpu); - if (!(cr0 & X86_CR0_PG)) { - /* From paging/starting to nonpaging */ - vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, - vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) | - (CPU_BASED_CR3_LOAD_EXITING | - CPU_BASED_CR3_STORE_EXITING)); - vcpu->arch.cr0 = cr0; - vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); - } else if (!is_paging(vcpu)) { - /* From nonpaging to paging */ - vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, - vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) & - ~(CPU_BASED_CR3_LOAD_EXITING | - CPU_BASED_CR3_STORE_EXITING)); - vcpu->arch.cr0 = cr0; - vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); - } - - if (!(cr0 & X86_CR0_WP)) - *hw_cr0 &= ~X86_CR0_WP; -} - -static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - unsigned long hw_cr0; - - hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); - if (enable_unrestricted_guest) - hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; - else { - hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; - - if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) - enter_pmode(vcpu); - - if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) - enter_rmode(vcpu); - } - -#ifdef CONFIG_X86_64 - if (vcpu->arch.efer & EFER_LME) { - if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) - enter_lmode(vcpu); - if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) - exit_lmode(vcpu); - } -#endif - - if (enable_ept && !enable_unrestricted_guest) - ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu); - - vmcs_writel(CR0_READ_SHADOW, cr0); - vmcs_writel(GUEST_CR0, hw_cr0); - vcpu->arch.cr0 = cr0; - - /* depends on vcpu->arch.cr0 to be set to a new value */ - vmx->emulation_required = emulation_required(vcpu); -} - -static int get_ept_level(struct kvm_vcpu *vcpu) -{ - if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48)) - return 5; - return 4; -} - -static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa) -{ - u64 eptp = VMX_EPTP_MT_WB; - - eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; - - if (enable_ept_ad_bits && - (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) - eptp |= VMX_EPTP_AD_ENABLE_BIT; - eptp |= (root_hpa & PAGE_MASK); - - return eptp; -} - -static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) -{ - struct kvm *kvm = vcpu->kvm; - unsigned long guest_cr3; - u64 eptp; - - guest_cr3 = cr3; - if (enable_ept) { - eptp = construct_eptp(vcpu, cr3); - vmcs_write64(EPT_POINTER, eptp); - - if (kvm_x86_ops->tlb_remote_flush) { - spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock); - to_vmx(vcpu)->ept_pointer = eptp; - to_kvm_vmx(kvm)->ept_pointers_match - = EPT_POINTERS_CHECK; - spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock); - } - - if (enable_unrestricted_guest || is_paging(vcpu) || - is_guest_mode(vcpu)) - guest_cr3 = kvm_read_cr3(vcpu); - else - guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; - ept_load_pdptrs(vcpu); - } - - vmcs_writel(GUEST_CR3, guest_cr3); -} - -static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) -{ - /* - * Pass through host's Machine Check Enable value to hw_cr4, which - * is in force while we are in guest mode. Do not let guests control - * this bit, even if host CR4.MCE == 0. - */ - unsigned long hw_cr4; - - hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); - if (enable_unrestricted_guest) - hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; - else if (to_vmx(vcpu)->rmode.vm86_active) - hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; - else - hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; - - if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) { - if (cr4 & X86_CR4_UMIP) { - vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL, - SECONDARY_EXEC_DESC); - hw_cr4 &= ~X86_CR4_UMIP; - } else if (!is_guest_mode(vcpu) || - !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) - vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, - SECONDARY_EXEC_DESC); - } - - if (cr4 & X86_CR4_VMXE) { - /* - * To use VMXON (and later other VMX instructions), a guest - * must first be able to turn on cr4.VMXE (see handle_vmon()). - * So basically the check on whether to allow nested VMX - * is here. We operate under the default treatment of SMM, - * so VMX cannot be enabled under SMM. - */ - if (!nested_vmx_allowed(vcpu) || is_smm(vcpu)) - return 1; - } - - if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) - return 1; - - vcpu->arch.cr4 = cr4; - - if (!enable_unrestricted_guest) { - if (enable_ept) { - if (!is_paging(vcpu)) { - hw_cr4 &= ~X86_CR4_PAE; - hw_cr4 |= X86_CR4_PSE; - } else if (!(cr4 & X86_CR4_PAE)) { - hw_cr4 &= ~X86_CR4_PAE; - } - } - - /* - * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in - * hardware. To emulate this behavior, SMEP/SMAP/PKU needs - * to be manually disabled when guest switches to non-paging - * mode. - * - * If !enable_unrestricted_guest, the CPU is always running - * with CR0.PG=1 and CR4 needs to be modified. - * If enable_unrestricted_guest, the CPU automatically - * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. - */ - if (!is_paging(vcpu)) - hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); - } - - vmcs_writel(CR4_READ_SHADOW, cr4); - vmcs_writel(GUEST_CR4, hw_cr4); - return 0; -} - -static void vmx_get_segment(struct kvm_vcpu *vcpu, - struct kvm_segment *var, int seg) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - u32 ar; - - if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { - *var = vmx->rmode.segs[seg]; - if (seg == VCPU_SREG_TR - || var->selector == vmx_read_guest_seg_selector(vmx, seg)) - return; - var->base = vmx_read_guest_seg_base(vmx, seg); - var->selector = vmx_read_guest_seg_selector(vmx, seg); - return; - } - var->base = vmx_read_guest_seg_base(vmx, seg); - var->limit = vmx_read_guest_seg_limit(vmx, seg); - var->selector = vmx_read_guest_seg_selector(vmx, seg); - ar = vmx_read_guest_seg_ar(vmx, seg); - var->unusable = (ar >> 16) & 1; - var->type = ar & 15; - var->s = (ar >> 4) & 1; - var->dpl = (ar >> 5) & 3; - /* - * Some userspaces do not preserve unusable property. Since usable - * segment has to be present according to VMX spec we can use present - * property to amend userspace bug by making unusable segment always - * nonpresent. vmx_segment_access_rights() already marks nonpresent - * segment as unusable. - */ - var->present = !var->unusable; - var->avl = (ar >> 12) & 1; - var->l = (ar >> 13) & 1; - var->db = (ar >> 14) & 1; - var->g = (ar >> 15) & 1; -} - -static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) -{ - struct kvm_segment s; - - if (to_vmx(vcpu)->rmode.vm86_active) { - vmx_get_segment(vcpu, &s, seg); - return s.base; - } - return vmx_read_guest_seg_base(to_vmx(vcpu), seg); -} - -static int vmx_get_cpl(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - if (unlikely(vmx->rmode.vm86_active)) - return 0; - else { - int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); - return VMX_AR_DPL(ar); - } -} - -static u32 vmx_segment_access_rights(struct kvm_segment *var) -{ - u32 ar; - - if (var->unusable || !var->present) - ar = 1 << 16; - else { - ar = var->type & 15; - ar |= (var->s & 1) << 4; - ar |= (var->dpl & 3) << 5; - ar |= (var->present & 1) << 7; - ar |= (var->avl & 1) << 12; - ar |= (var->l & 1) << 13; - ar |= (var->db & 1) << 14; - ar |= (var->g & 1) << 15; - } - - return ar; -} - -static void vmx_set_segment(struct kvm_vcpu *vcpu, - struct kvm_segment *var, int seg) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; - - vmx_segment_cache_clear(vmx); - - if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { - vmx->rmode.segs[seg] = *var; - if (seg == VCPU_SREG_TR) - vmcs_write16(sf->selector, var->selector); - else if (var->s) - fix_rmode_seg(seg, &vmx->rmode.segs[seg]); - goto out; - } - - vmcs_writel(sf->base, var->base); - vmcs_write32(sf->limit, var->limit); - vmcs_write16(sf->selector, var->selector); - - /* - * Fix the "Accessed" bit in AR field of segment registers for older - * qemu binaries. - * IA32 arch specifies that at the time of processor reset the - * "Accessed" bit in the AR field of segment registers is 1. And qemu - * is setting it to 0 in the userland code. This causes invalid guest - * state vmexit when "unrestricted guest" mode is turned on. - * Fix for this setup issue in cpu_reset is being pushed in the qemu - * tree. Newer qemu binaries with that qemu fix would not need this - * kvm hack. - */ - if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR)) - var->type |= 0x1; /* Accessed */ - - vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); - -out: - vmx->emulation_required = emulation_required(vcpu); -} - -static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) -{ - u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); - - *db = (ar >> 14) & 1; - *l = (ar >> 13) & 1; -} - -static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) -{ - dt->size = vmcs_read32(GUEST_IDTR_LIMIT); - dt->address = vmcs_readl(GUEST_IDTR_BASE); -} - -static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) -{ - vmcs_write32(GUEST_IDTR_LIMIT, dt->size); - vmcs_writel(GUEST_IDTR_BASE, dt->address); -} - -static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) -{ - dt->size = vmcs_read32(GUEST_GDTR_LIMIT); - dt->address = vmcs_readl(GUEST_GDTR_BASE); -} - -static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) -{ - vmcs_write32(GUEST_GDTR_LIMIT, dt->size); - vmcs_writel(GUEST_GDTR_BASE, dt->address); -} - -static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) -{ - struct kvm_segment var; - u32 ar; - - vmx_get_segment(vcpu, &var, seg); - var.dpl = 0x3; - if (seg == VCPU_SREG_CS) - var.type = 0x3; - ar = vmx_segment_access_rights(&var); - - if (var.base != (var.selector << 4)) - return false; - if (var.limit != 0xffff) - return false; - if (ar != 0xf3) - return false; - - return true; -} - -static bool code_segment_valid(struct kvm_vcpu *vcpu) -{ - struct kvm_segment cs; - unsigned int cs_rpl; - - vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); - cs_rpl = cs.selector & SEGMENT_RPL_MASK; - - if (cs.unusable) - return false; - if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) - return false; - if (!cs.s) - return false; - if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { - if (cs.dpl > cs_rpl) - return false; - } else { - if (cs.dpl != cs_rpl) - return false; - } - if (!cs.present) - return false; - - /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ - return true; -} - -static bool stack_segment_valid(struct kvm_vcpu *vcpu) -{ - struct kvm_segment ss; - unsigned int ss_rpl; - - vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); - ss_rpl = ss.selector & SEGMENT_RPL_MASK; - - if (ss.unusable) - return true; - if (ss.type != 3 && ss.type != 7) - return false; - if (!ss.s) - return false; - if (ss.dpl != ss_rpl) /* DPL != RPL */ - return false; - if (!ss.present) - return false; - - return true; -} - -static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) -{ - struct kvm_segment var; - unsigned int rpl; - - vmx_get_segment(vcpu, &var, seg); - rpl = var.selector & SEGMENT_RPL_MASK; - - if (var.unusable) - return true; - if (!var.s) - return false; - if (!var.present) - return false; - if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { - if (var.dpl < rpl) /* DPL < RPL */ - return false; - } - - /* TODO: Add other members to kvm_segment_field to allow checking for other access - * rights flags - */ - return true; -} - -static bool tr_valid(struct kvm_vcpu *vcpu) -{ - struct kvm_segment tr; - - vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); - - if (tr.unusable) - return false; - if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ - return false; - if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ - return false; - if (!tr.present) - return false; - - return true; -} - -static bool ldtr_valid(struct kvm_vcpu *vcpu) -{ - struct kvm_segment ldtr; - - vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); - - if (ldtr.unusable) - return true; - if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ - return false; - if (ldtr.type != 2) - return false; - if (!ldtr.present) - return false; - - return true; -} - -static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) -{ - struct kvm_segment cs, ss; - - vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); - vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); - - return ((cs.selector & SEGMENT_RPL_MASK) == - (ss.selector & SEGMENT_RPL_MASK)); -} - -/* - * Check if guest state is valid. Returns true if valid, false if - * not. - * We assume that registers are always usable - */ -static bool guest_state_valid(struct kvm_vcpu *vcpu) -{ - if (enable_unrestricted_guest) - return true; - - /* real mode guest state checks */ - if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { - if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) - return false; - if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) - return false; - if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) - return false; - if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) - return false; - if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) - return false; - if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) - return false; - } else { - /* protected mode guest state checks */ - if (!cs_ss_rpl_check(vcpu)) - return false; - if (!code_segment_valid(vcpu)) - return false; - if (!stack_segment_valid(vcpu)) - return false; - if (!data_segment_valid(vcpu, VCPU_SREG_DS)) - return false; - if (!data_segment_valid(vcpu, VCPU_SREG_ES)) - return false; - if (!data_segment_valid(vcpu, VCPU_SREG_FS)) - return false; - if (!data_segment_valid(vcpu, VCPU_SREG_GS)) - return false; - if (!tr_valid(vcpu)) - return false; - if (!ldtr_valid(vcpu)) - return false; - } - /* TODO: - * - Add checks on RIP - * - Add checks on RFLAGS - */ - - return true; -} - -static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa) -{ - return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu)); -} - -static int init_rmode_tss(struct kvm *kvm) -{ - gfn_t fn; - u16 data = 0; - int idx, r; - - idx = srcu_read_lock(&kvm->srcu); - fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT; - r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); - if (r < 0) - goto out; - data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; - r = kvm_write_guest_page(kvm, fn++, &data, - TSS_IOPB_BASE_OFFSET, sizeof(u16)); - if (r < 0) - goto out; - r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE); - if (r < 0) - goto out; - r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); - if (r < 0) - goto out; - data = ~0; - r = kvm_write_guest_page(kvm, fn, &data, - RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1, - sizeof(u8)); -out: - srcu_read_unlock(&kvm->srcu, idx); - return r; -} - -static int init_rmode_identity_map(struct kvm *kvm) -{ - struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); - int i, idx, r = 0; - kvm_pfn_t identity_map_pfn; - u32 tmp; - - /* Protect kvm_vmx->ept_identity_pagetable_done. */ - mutex_lock(&kvm->slots_lock); - - if (likely(kvm_vmx->ept_identity_pagetable_done)) - goto out2; - - if (!kvm_vmx->ept_identity_map_addr) - kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; - identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT; - - r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, - kvm_vmx->ept_identity_map_addr, PAGE_SIZE); - if (r < 0) - goto out2; - - idx = srcu_read_lock(&kvm->srcu); - r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE); - if (r < 0) - goto out; - /* Set up identity-mapping pagetable for EPT in real mode */ - for (i = 0; i < PT32_ENT_PER_PAGE; i++) { - tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | - _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); - r = kvm_write_guest_page(kvm, identity_map_pfn, - &tmp, i * sizeof(tmp), sizeof(tmp)); - if (r < 0) - goto out; - } - kvm_vmx->ept_identity_pagetable_done = true; - -out: - srcu_read_unlock(&kvm->srcu, idx); - -out2: - mutex_unlock(&kvm->slots_lock); - return r; -} - -static void seg_setup(int seg) -{ - const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; - unsigned int ar; - - vmcs_write16(sf->selector, 0); - vmcs_writel(sf->base, 0); - vmcs_write32(sf->limit, 0xffff); - ar = 0x93; - if (seg == VCPU_SREG_CS) - ar |= 0x08; /* code segment */ - - vmcs_write32(sf->ar_bytes, ar); -} - -static int alloc_apic_access_page(struct kvm *kvm) -{ - struct page *page; - int r = 0; - - mutex_lock(&kvm->slots_lock); - if (kvm->arch.apic_access_page_done) - goto out; - r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, - APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); - if (r) - goto out; - - page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); - if (is_error_page(page)) { - r = -EFAULT; - goto out; - } - - /* - * Do not pin the page in memory, so that memory hot-unplug - * is able to migrate it. - */ - put_page(page); - kvm->arch.apic_access_page_done = true; -out: - mutex_unlock(&kvm->slots_lock); - return r; -} - -static int allocate_vpid(void) -{ - int vpid; - - if (!enable_vpid) - return 0; - spin_lock(&vmx_vpid_lock); - vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); - if (vpid < VMX_NR_VPIDS) - __set_bit(vpid, vmx_vpid_bitmap); - else - vpid = 0; - spin_unlock(&vmx_vpid_lock); - return vpid; -} - -static void free_vpid(int vpid) -{ - if (!enable_vpid || vpid == 0) - return; - spin_lock(&vmx_vpid_lock); - __clear_bit(vpid, vmx_vpid_bitmap); - spin_unlock(&vmx_vpid_lock); -} - -static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, - u32 msr, int type) -{ - int f = sizeof(unsigned long); - - if (!cpu_has_vmx_msr_bitmap()) - return; - - if (static_branch_unlikely(&enable_evmcs)) - evmcs_touch_msr_bitmap(); - - /* - * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals - * have the write-low and read-high bitmap offsets the wrong way round. - * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. - */ - if (msr <= 0x1fff) { - if (type & MSR_TYPE_R) - /* read-low */ - __clear_bit(msr, msr_bitmap + 0x000 / f); - - if (type & MSR_TYPE_W) - /* write-low */ - __clear_bit(msr, msr_bitmap + 0x800 / f); - - } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { - msr &= 0x1fff; - if (type & MSR_TYPE_R) - /* read-high */ - __clear_bit(msr, msr_bitmap + 0x400 / f); - - if (type & MSR_TYPE_W) - /* write-high */ - __clear_bit(msr, msr_bitmap + 0xc00 / f); - - } -} - -static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap, - u32 msr, int type) -{ - int f = sizeof(unsigned long); - - if (!cpu_has_vmx_msr_bitmap()) - return; - - if (static_branch_unlikely(&enable_evmcs)) - evmcs_touch_msr_bitmap(); - - /* - * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals - * have the write-low and read-high bitmap offsets the wrong way round. - * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. - */ - if (msr <= 0x1fff) { - if (type & MSR_TYPE_R) - /* read-low */ - __set_bit(msr, msr_bitmap + 0x000 / f); - - if (type & MSR_TYPE_W) - /* write-low */ - __set_bit(msr, msr_bitmap + 0x800 / f); - - } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { - msr &= 0x1fff; - if (type & MSR_TYPE_R) - /* read-high */ - __set_bit(msr, msr_bitmap + 0x400 / f); - - if (type & MSR_TYPE_W) - /* write-high */ - __set_bit(msr, msr_bitmap + 0xc00 / f); - - } -} - -static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap, - u32 msr, int type, bool value) -{ - if (value) - vmx_enable_intercept_for_msr(msr_bitmap, msr, type); - else - vmx_disable_intercept_for_msr(msr_bitmap, msr, type); -} - -/* - * If a msr is allowed by L0, we should check whether it is allowed by L1. - * The corresponding bit will be cleared unless both of L0 and L1 allow it. - */ -static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1, - unsigned long *msr_bitmap_nested, - u32 msr, int type) -{ - int f = sizeof(unsigned long); - - /* - * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals - * have the write-low and read-high bitmap offsets the wrong way round. - * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. - */ - if (msr <= 0x1fff) { - if (type & MSR_TYPE_R && - !test_bit(msr, msr_bitmap_l1 + 0x000 / f)) - /* read-low */ - __clear_bit(msr, msr_bitmap_nested + 0x000 / f); - - if (type & MSR_TYPE_W && - !test_bit(msr, msr_bitmap_l1 + 0x800 / f)) - /* write-low */ - __clear_bit(msr, msr_bitmap_nested + 0x800 / f); - - } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { - msr &= 0x1fff; - if (type & MSR_TYPE_R && - !test_bit(msr, msr_bitmap_l1 + 0x400 / f)) - /* read-high */ - __clear_bit(msr, msr_bitmap_nested + 0x400 / f); - - if (type & MSR_TYPE_W && - !test_bit(msr, msr_bitmap_l1 + 0xc00 / f)) - /* write-high */ - __clear_bit(msr, msr_bitmap_nested + 0xc00 / f); - - } -} - -static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu) -{ - u8 mode = 0; - - if (cpu_has_secondary_exec_ctrls() && - (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) & - SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { - mode |= MSR_BITMAP_MODE_X2APIC; - if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) - mode |= MSR_BITMAP_MODE_X2APIC_APICV; - } - - return mode; -} - -#define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4)) - -static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap, - u8 mode) -{ - int msr; - - for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { - unsigned word = msr / BITS_PER_LONG; - msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0; - msr_bitmap[word + (0x800 / sizeof(long))] = ~0; - } - - if (mode & MSR_BITMAP_MODE_X2APIC) { - /* - * TPR reads and writes can be virtualized even if virtual interrupt - * delivery is not in use. - */ - vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW); - if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { - vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R); - vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); - vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); - } - } -} - -static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; - u8 mode = vmx_msr_bitmap_mode(vcpu); - u8 changed = mode ^ vmx->msr_bitmap_mode; - - if (!changed) - return; - - if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV)) - vmx_update_msr_bitmap_x2apic(msr_bitmap, mode); - - vmx->msr_bitmap_mode = mode; -} - -static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu) -{ - return enable_apicv; -} - -static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu) -{ - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - gfn_t gfn; - - /* - * Don't need to mark the APIC access page dirty; it is never - * written to by the CPU during APIC virtualization. - */ - - if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) { - gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT; - kvm_vcpu_mark_page_dirty(vcpu, gfn); - } - - if (nested_cpu_has_posted_intr(vmcs12)) { - gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT; - kvm_vcpu_mark_page_dirty(vcpu, gfn); - } -} - - -static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - int max_irr; - void *vapic_page; - u16 status; - - if (!vmx->nested.pi_desc || !vmx->nested.pi_pending) - return; - - vmx->nested.pi_pending = false; - if (!pi_test_and_clear_on(vmx->nested.pi_desc)) - return; - - max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256); - if (max_irr != 256) { - vapic_page = kmap(vmx->nested.virtual_apic_page); - __kvm_apic_update_irr(vmx->nested.pi_desc->pir, - vapic_page, &max_irr); - kunmap(vmx->nested.virtual_apic_page); - - status = vmcs_read16(GUEST_INTR_STATUS); - if ((u8)max_irr > ((u8)status & 0xff)) { - status &= ~0xff; - status |= (u8)max_irr; - vmcs_write16(GUEST_INTR_STATUS, status); - } - } - - nested_mark_vmcs12_pages_dirty(vcpu); -} - -static u8 vmx_get_rvi(void) -{ - return vmcs_read16(GUEST_INTR_STATUS) & 0xff; -} - -static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - void *vapic_page; - u32 vppr; - int rvi; - - if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || - !nested_cpu_has_vid(get_vmcs12(vcpu)) || - WARN_ON_ONCE(!vmx->nested.virtual_apic_page)) - return false; - - rvi = vmx_get_rvi(); - - vapic_page = kmap(vmx->nested.virtual_apic_page); - vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); - kunmap(vmx->nested.virtual_apic_page); - - return ((rvi & 0xf0) > (vppr & 0xf0)); -} - -static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, - bool nested) -{ -#ifdef CONFIG_SMP - int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR; - - if (vcpu->mode == IN_GUEST_MODE) { - /* - * The vector of interrupt to be delivered to vcpu had - * been set in PIR before this function. - * - * Following cases will be reached in this block, and - * we always send a notification event in all cases as - * explained below. - * - * Case 1: vcpu keeps in non-root mode. Sending a - * notification event posts the interrupt to vcpu. - * - * Case 2: vcpu exits to root mode and is still - * runnable. PIR will be synced to vIRR before the - * next vcpu entry. Sending a notification event in - * this case has no effect, as vcpu is not in root - * mode. - * - * Case 3: vcpu exits to root mode and is blocked. - * vcpu_block() has already synced PIR to vIRR and - * never blocks vcpu if vIRR is not cleared. Therefore, - * a blocked vcpu here does not wait for any requested - * interrupts in PIR, and sending a notification event - * which has no effect is safe here. - */ - - apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); - return true; - } -#endif - return false; -} - -static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, - int vector) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - if (is_guest_mode(vcpu) && - vector == vmx->nested.posted_intr_nv) { - /* - * If a posted intr is not recognized by hardware, - * we will accomplish it in the next vmentry. - */ - vmx->nested.pi_pending = true; - kvm_make_request(KVM_REQ_EVENT, vcpu); - /* the PIR and ON have been set by L1. */ - if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true)) - kvm_vcpu_kick(vcpu); - return 0; - } - return -1; -} -/* - * Send interrupt to vcpu via posted interrupt way. - * 1. If target vcpu is running(non-root mode), send posted interrupt - * notification to vcpu and hardware will sync PIR to vIRR atomically. - * 2. If target vcpu isn't running(root mode), kick it to pick up the - * interrupt from PIR in next vmentry. - */ -static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - int r; - - r = vmx_deliver_nested_posted_interrupt(vcpu, vector); - if (!r) - return; - - if (pi_test_and_set_pir(vector, &vmx->pi_desc)) - return; - - /* If a previous notification has sent the IPI, nothing to do. */ - if (pi_test_and_set_on(&vmx->pi_desc)) - return; - - if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false)) - kvm_vcpu_kick(vcpu); -} - -/* - * Set up the vmcs's constant host-state fields, i.e., host-state fields that - * will not change in the lifetime of the guest. - * Note that host-state that does change is set elsewhere. E.g., host-state - * that is set differently for each CPU is set in vmx_vcpu_load(), not here. - */ -static void vmx_set_constant_host_state(struct vcpu_vmx *vmx) -{ - u32 low32, high32; - unsigned long tmpl; - struct desc_ptr dt; - unsigned long cr0, cr3, cr4; - - cr0 = read_cr0(); - WARN_ON(cr0 & X86_CR0_TS); - vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ - - /* - * Save the most likely value for this task's CR3 in the VMCS. - * We can't use __get_current_cr3_fast() because we're not atomic. - */ - cr3 = __read_cr3(); - vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ - vmx->loaded_vmcs->host_state.cr3 = cr3; - - /* Save the most likely value for this task's CR4 in the VMCS. */ - cr4 = cr4_read_shadow(); - vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ - vmx->loaded_vmcs->host_state.cr4 = cr4; - - vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ -#ifdef CONFIG_X86_64 - /* - * Load null selectors, so we can avoid reloading them in - * vmx_prepare_switch_to_host(), in case userspace uses - * the null selectors too (the expected case). - */ - vmcs_write16(HOST_DS_SELECTOR, 0); - vmcs_write16(HOST_ES_SELECTOR, 0); -#else - vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ - vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ -#endif - vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ - vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ - - store_idt(&dt); - vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */ - vmx->host_idt_base = dt.address; - - vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */ - - rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); - vmcs_write32(HOST_IA32_SYSENTER_CS, low32); - rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); - vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ - - if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { - rdmsr(MSR_IA32_CR_PAT, low32, high32); - vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); - } - - if (cpu_has_load_ia32_efer) - vmcs_write64(HOST_IA32_EFER, host_efer); -} - -static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) -{ - vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS; - if (enable_ept) - vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE; - if (is_guest_mode(&vmx->vcpu)) - vmx->vcpu.arch.cr4_guest_owned_bits &= - ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask; - vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits); -} - -static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) -{ - u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; - - if (!kvm_vcpu_apicv_active(&vmx->vcpu)) - pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; - - if (!enable_vnmi) - pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; - - /* Enable the preemption timer dynamically */ - pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; - return pin_based_exec_ctrl; -} - -static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx)); - if (cpu_has_secondary_exec_ctrls()) { - if (kvm_vcpu_apicv_active(vcpu)) - vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL, - SECONDARY_EXEC_APIC_REGISTER_VIRT | - SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); - else - vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, - SECONDARY_EXEC_APIC_REGISTER_VIRT | - SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); - } - - if (cpu_has_vmx_msr_bitmap()) - vmx_update_msr_bitmap(vcpu); -} - -static u32 vmx_exec_control(struct vcpu_vmx *vmx) -{ - u32 exec_control = vmcs_config.cpu_based_exec_ctrl; - - if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) - exec_control &= ~CPU_BASED_MOV_DR_EXITING; - - if (!cpu_need_tpr_shadow(&vmx->vcpu)) { - exec_control &= ~CPU_BASED_TPR_SHADOW; -#ifdef CONFIG_X86_64 - exec_control |= CPU_BASED_CR8_STORE_EXITING | - CPU_BASED_CR8_LOAD_EXITING; -#endif - } - if (!enable_ept) - exec_control |= CPU_BASED_CR3_STORE_EXITING | - CPU_BASED_CR3_LOAD_EXITING | - CPU_BASED_INVLPG_EXITING; - if (kvm_mwait_in_guest(vmx->vcpu.kvm)) - exec_control &= ~(CPU_BASED_MWAIT_EXITING | - CPU_BASED_MONITOR_EXITING); - if (kvm_hlt_in_guest(vmx->vcpu.kvm)) - exec_control &= ~CPU_BASED_HLT_EXITING; - return exec_control; -} - -static bool vmx_rdrand_supported(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_RDRAND_EXITING; -} - -static bool vmx_rdseed_supported(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_RDSEED_EXITING; -} - -static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx) -{ - struct kvm_vcpu *vcpu = &vmx->vcpu; - - u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; - - if (!cpu_need_virtualize_apic_accesses(vcpu)) - exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; - if (vmx->vpid == 0) - exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; - if (!enable_ept) { - exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; - enable_unrestricted_guest = 0; - } - if (!enable_unrestricted_guest) - exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; - if (kvm_pause_in_guest(vmx->vcpu.kvm)) - exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; - if (!kvm_vcpu_apicv_active(vcpu)) - exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | - SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); - exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; - - /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, - * in vmx_set_cr4. */ - exec_control &= ~SECONDARY_EXEC_DESC; - - /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD - (handle_vmptrld). - We can NOT enable shadow_vmcs here because we don't have yet - a current VMCS12 - */ - exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; - - if (!enable_pml) - exec_control &= ~SECONDARY_EXEC_ENABLE_PML; - - if (vmx_xsaves_supported()) { - /* Exposing XSAVES only when XSAVE is exposed */ - bool xsaves_enabled = - guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && - guest_cpuid_has(vcpu, X86_FEATURE_XSAVES); - - if (!xsaves_enabled) - exec_control &= ~SECONDARY_EXEC_XSAVES; - - if (nested) { - if (xsaves_enabled) - vmx->nested.msrs.secondary_ctls_high |= - SECONDARY_EXEC_XSAVES; - else - vmx->nested.msrs.secondary_ctls_high &= - ~SECONDARY_EXEC_XSAVES; - } - } - - if (vmx_rdtscp_supported()) { - bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP); - if (!rdtscp_enabled) - exec_control &= ~SECONDARY_EXEC_RDTSCP; - - if (nested) { - if (rdtscp_enabled) - vmx->nested.msrs.secondary_ctls_high |= - SECONDARY_EXEC_RDTSCP; - else - vmx->nested.msrs.secondary_ctls_high &= - ~SECONDARY_EXEC_RDTSCP; - } - } - - if (vmx_invpcid_supported()) { - /* Exposing INVPCID only when PCID is exposed */ - bool invpcid_enabled = - guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) && - guest_cpuid_has(vcpu, X86_FEATURE_PCID); - - if (!invpcid_enabled) { - exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID; - guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID); - } - - if (nested) { - if (invpcid_enabled) - vmx->nested.msrs.secondary_ctls_high |= - SECONDARY_EXEC_ENABLE_INVPCID; - else - vmx->nested.msrs.secondary_ctls_high &= - ~SECONDARY_EXEC_ENABLE_INVPCID; - } - } - - if (vmx_rdrand_supported()) { - bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND); - if (rdrand_enabled) - exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING; - - if (nested) { - if (rdrand_enabled) - vmx->nested.msrs.secondary_ctls_high |= - SECONDARY_EXEC_RDRAND_EXITING; - else - vmx->nested.msrs.secondary_ctls_high &= - ~SECONDARY_EXEC_RDRAND_EXITING; - } - } - - if (vmx_rdseed_supported()) { - bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED); - if (rdseed_enabled) - exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING; - - if (nested) { - if (rdseed_enabled) - vmx->nested.msrs.secondary_ctls_high |= - SECONDARY_EXEC_RDSEED_EXITING; - else - vmx->nested.msrs.secondary_ctls_high &= - ~SECONDARY_EXEC_RDSEED_EXITING; - } - } - - vmx->secondary_exec_control = exec_control; -} - -static void ept_set_mmio_spte_mask(void) -{ - /* - * EPT Misconfigurations can be generated if the value of bits 2:0 - * of an EPT paging-structure entry is 110b (write/execute). - */ - kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK, - VMX_EPT_MISCONFIG_WX_VALUE); -} - -#define VMX_XSS_EXIT_BITMAP 0 -/* - * Sets up the vmcs for emulated real mode. - */ -static void vmx_vcpu_setup(struct vcpu_vmx *vmx) -{ - int i; - - if (enable_shadow_vmcs) { - /* - * At vCPU creation, "VMWRITE to any supported field - * in the VMCS" is supported, so use the more - * permissive vmx_vmread_bitmap to specify both read - * and write permissions for the shadow VMCS. - */ - vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap)); - vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmread_bitmap)); - } - if (cpu_has_vmx_msr_bitmap()) - vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); - - vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */ - - /* Control */ - vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx)); - vmx->hv_deadline_tsc = -1; - - vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx)); - - if (cpu_has_secondary_exec_ctrls()) { - vmx_compute_secondary_exec_control(vmx); - vmcs_write32(SECONDARY_VM_EXEC_CONTROL, - vmx->secondary_exec_control); - } - - if (kvm_vcpu_apicv_active(&vmx->vcpu)) { - vmcs_write64(EOI_EXIT_BITMAP0, 0); - vmcs_write64(EOI_EXIT_BITMAP1, 0); - vmcs_write64(EOI_EXIT_BITMAP2, 0); - vmcs_write64(EOI_EXIT_BITMAP3, 0); - - vmcs_write16(GUEST_INTR_STATUS, 0); - - vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); - vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); - } - - if (!kvm_pause_in_guest(vmx->vcpu.kvm)) { - vmcs_write32(PLE_GAP, ple_gap); - vmx->ple_window = ple_window; - vmx->ple_window_dirty = true; - } - - vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); - vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); - vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ - - vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ - vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ - vmx_set_constant_host_state(vmx); - vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ - vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ - - if (cpu_has_vmx_vmfunc()) - vmcs_write64(VM_FUNCTION_CONTROL, 0); - - vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); - vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); - vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); - vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); - vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); - - if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) - vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); - - for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) { - u32 index = vmx_msr_index[i]; - u32 data_low, data_high; - int j = vmx->nmsrs; - - if (rdmsr_safe(index, &data_low, &data_high) < 0) - continue; - if (wrmsr_safe(index, data_low, data_high) < 0) - continue; - vmx->guest_msrs[j].index = i; - vmx->guest_msrs[j].data = 0; - vmx->guest_msrs[j].mask = -1ull; - ++vmx->nmsrs; - } - - vmx->arch_capabilities = kvm_get_arch_capabilities(); - - vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl); - - /* 22.2.1, 20.8.1 */ - vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl); - - vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS; - vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS); - - set_cr4_guest_host_mask(vmx); - - if (vmx_xsaves_supported()) - vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); - - if (enable_pml) { - vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); - vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); - } - - if (cpu_has_vmx_encls_vmexit()) - vmcs_write64(ENCLS_EXITING_BITMAP, -1ull); -} - -static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct msr_data apic_base_msr; - u64 cr0; - - vmx->rmode.vm86_active = 0; - vmx->spec_ctrl = 0; - - vcpu->arch.microcode_version = 0x100000000ULL; - vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val(); - kvm_set_cr8(vcpu, 0); - - if (!init_event) { - apic_base_msr.data = APIC_DEFAULT_PHYS_BASE | - MSR_IA32_APICBASE_ENABLE; - if (kvm_vcpu_is_reset_bsp(vcpu)) - apic_base_msr.data |= MSR_IA32_APICBASE_BSP; - apic_base_msr.host_initiated = true; - kvm_set_apic_base(vcpu, &apic_base_msr); - } - - vmx_segment_cache_clear(vmx); - - seg_setup(VCPU_SREG_CS); - vmcs_write16(GUEST_CS_SELECTOR, 0xf000); - vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); - - seg_setup(VCPU_SREG_DS); - seg_setup(VCPU_SREG_ES); - seg_setup(VCPU_SREG_FS); - seg_setup(VCPU_SREG_GS); - seg_setup(VCPU_SREG_SS); - - vmcs_write16(GUEST_TR_SELECTOR, 0); - vmcs_writel(GUEST_TR_BASE, 0); - vmcs_write32(GUEST_TR_LIMIT, 0xffff); - vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); - - vmcs_write16(GUEST_LDTR_SELECTOR, 0); - vmcs_writel(GUEST_LDTR_BASE, 0); - vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); - vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); - - if (!init_event) { - vmcs_write32(GUEST_SYSENTER_CS, 0); - vmcs_writel(GUEST_SYSENTER_ESP, 0); - vmcs_writel(GUEST_SYSENTER_EIP, 0); - vmcs_write64(GUEST_IA32_DEBUGCTL, 0); - } - - kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); - kvm_rip_write(vcpu, 0xfff0); - - vmcs_writel(GUEST_GDTR_BASE, 0); - vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); - - vmcs_writel(GUEST_IDTR_BASE, 0); - vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); - - vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); - vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); - vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); - if (kvm_mpx_supported()) - vmcs_write64(GUEST_BNDCFGS, 0); - - setup_msrs(vmx); - - vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ - - if (cpu_has_vmx_tpr_shadow() && !init_event) { - vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); - if (cpu_need_tpr_shadow(vcpu)) - vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, - __pa(vcpu->arch.apic->regs)); - vmcs_write32(TPR_THRESHOLD, 0); - } - - kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); - - if (vmx->vpid != 0) - vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); - - cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET; - vmx->vcpu.arch.cr0 = cr0; - vmx_set_cr0(vcpu, cr0); /* enter rmode */ - vmx_set_cr4(vcpu, 0); - vmx_set_efer(vcpu, 0); - - update_exception_bitmap(vcpu); - - vpid_sync_context(vmx->vpid); - if (init_event) - vmx_clear_hlt(vcpu); -} - -/* - * In nested virtualization, check if L1 asked to exit on external interrupts. - * For most existing hypervisors, this will always return true. - */ -static bool nested_exit_on_intr(struct kvm_vcpu *vcpu) -{ - return get_vmcs12(vcpu)->pin_based_vm_exec_control & - PIN_BASED_EXT_INTR_MASK; -} - -/* - * In nested virtualization, check if L1 has set - * VM_EXIT_ACK_INTR_ON_EXIT - */ -static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu) -{ - return get_vmcs12(vcpu)->vm_exit_controls & - VM_EXIT_ACK_INTR_ON_EXIT; -} - -static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu) -{ - return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu)); -} - -static void enable_irq_window(struct kvm_vcpu *vcpu) -{ - vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, - CPU_BASED_VIRTUAL_INTR_PENDING); -} - -static void enable_nmi_window(struct kvm_vcpu *vcpu) -{ - if (!enable_vnmi || - vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { - enable_irq_window(vcpu); - return; - } - - vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, - CPU_BASED_VIRTUAL_NMI_PENDING); -} - -static void vmx_inject_irq(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - uint32_t intr; - int irq = vcpu->arch.interrupt.nr; - - trace_kvm_inj_virq(irq); - - ++vcpu->stat.irq_injections; - if (vmx->rmode.vm86_active) { - int inc_eip = 0; - if (vcpu->arch.interrupt.soft) - inc_eip = vcpu->arch.event_exit_inst_len; - if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE) - kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); - return; - } - intr = irq | INTR_INFO_VALID_MASK; - if (vcpu->arch.interrupt.soft) { - intr |= INTR_TYPE_SOFT_INTR; - vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, - vmx->vcpu.arch.event_exit_inst_len); - } else - intr |= INTR_TYPE_EXT_INTR; - vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); - - vmx_clear_hlt(vcpu); -} - -static void vmx_inject_nmi(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - if (!enable_vnmi) { - /* - * Tracking the NMI-blocked state in software is built upon - * finding the next open IRQ window. This, in turn, depends on - * well-behaving guests: They have to keep IRQs disabled at - * least as long as the NMI handler runs. Otherwise we may - * cause NMI nesting, maybe breaking the guest. But as this is - * highly unlikely, we can live with the residual risk. - */ - vmx->loaded_vmcs->soft_vnmi_blocked = 1; - vmx->loaded_vmcs->vnmi_blocked_time = 0; - } - - ++vcpu->stat.nmi_injections; - vmx->loaded_vmcs->nmi_known_unmasked = false; - - if (vmx->rmode.vm86_active) { - if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE) - kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); - return; - } - - vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, - INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); - - vmx_clear_hlt(vcpu); -} - -static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - bool masked; - - if (!enable_vnmi) - return vmx->loaded_vmcs->soft_vnmi_blocked; - if (vmx->loaded_vmcs->nmi_known_unmasked) - return false; - masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; - vmx->loaded_vmcs->nmi_known_unmasked = !masked; - return masked; -} - -static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - if (!enable_vnmi) { - if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { - vmx->loaded_vmcs->soft_vnmi_blocked = masked; - vmx->loaded_vmcs->vnmi_blocked_time = 0; - } - } else { - vmx->loaded_vmcs->nmi_known_unmasked = !masked; - if (masked) - vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, - GUEST_INTR_STATE_NMI); - else - vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, - GUEST_INTR_STATE_NMI); - } -} - -static int vmx_nmi_allowed(struct kvm_vcpu *vcpu) -{ - if (to_vmx(vcpu)->nested.nested_run_pending) - return 0; - - if (!enable_vnmi && - to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) - return 0; - - return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & - (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI - | GUEST_INTR_STATE_NMI)); -} - -static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu) -{ - return (!to_vmx(vcpu)->nested.nested_run_pending && - vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) && - !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & - (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); -} - -static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) -{ - int ret; - - if (enable_unrestricted_guest) - return 0; - - ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, - PAGE_SIZE * 3); - if (ret) - return ret; - to_kvm_vmx(kvm)->tss_addr = addr; - return init_rmode_tss(kvm); -} - -static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) -{ - to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; - return 0; -} - -static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) -{ - switch (vec) { - case BP_VECTOR: - /* - * Update instruction length as we may reinject the exception - * from user space while in guest debugging mode. - */ - to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = - vmcs_read32(VM_EXIT_INSTRUCTION_LEN); - if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) - return false; - /* fall through */ - case DB_VECTOR: - if (vcpu->guest_debug & - (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) - return false; - /* fall through */ - case DE_VECTOR: - case OF_VECTOR: - case BR_VECTOR: - case UD_VECTOR: - case DF_VECTOR: - case SS_VECTOR: - case GP_VECTOR: - case MF_VECTOR: - return true; - break; - } - return false; -} - -static int handle_rmode_exception(struct kvm_vcpu *vcpu, - int vec, u32 err_code) -{ - /* - * Instruction with address size override prefix opcode 0x67 - * Cause the #SS fault with 0 error code in VM86 mode. - */ - if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { - if (kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE) { - if (vcpu->arch.halt_request) { - vcpu->arch.halt_request = 0; - return kvm_vcpu_halt(vcpu); - } - return 1; - } - return 0; - } - - /* - * Forward all other exceptions that are valid in real mode. - * FIXME: Breaks guest debugging in real mode, needs to be fixed with - * the required debugging infrastructure rework. - */ - kvm_queue_exception(vcpu, vec); - return 1; -} - -/* - * Trigger machine check on the host. We assume all the MSRs are already set up - * by the CPU and that we still run on the same CPU as the MCE occurred on. - * We pass a fake environment to the machine check handler because we want - * the guest to be always treated like user space, no matter what context - * it used internally. - */ -static void kvm_machine_check(void) -{ -#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64) - struct pt_regs regs = { - .cs = 3, /* Fake ring 3 no matter what the guest ran on */ - .flags = X86_EFLAGS_IF, - }; - - do_machine_check(®s, 0); -#endif -} - -static int handle_machine_check(struct kvm_vcpu *vcpu) -{ - /* already handled by vcpu_run */ - return 1; -} - -static int handle_exception(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct kvm_run *kvm_run = vcpu->run; - u32 intr_info, ex_no, error_code; - unsigned long cr2, rip, dr6; - u32 vect_info; - enum emulation_result er; - - vect_info = vmx->idt_vectoring_info; - intr_info = vmx->exit_intr_info; - - if (is_machine_check(intr_info)) - return handle_machine_check(vcpu); - - if (is_nmi(intr_info)) - return 1; /* already handled by vmx_vcpu_run() */ - - if (is_invalid_opcode(intr_info)) - return handle_ud(vcpu); - - error_code = 0; - if (intr_info & INTR_INFO_DELIVER_CODE_MASK) - error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); - - if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { - WARN_ON_ONCE(!enable_vmware_backdoor); - er = kvm_emulate_instruction(vcpu, - EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL); - if (er == EMULATE_USER_EXIT) - return 0; - else if (er != EMULATE_DONE) - kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); - return 1; - } - - /* - * The #PF with PFEC.RSVD = 1 indicates the guest is accessing - * MMIO, it is better to report an internal error. - * See the comments in vmx_handle_exit. - */ - if ((vect_info & VECTORING_INFO_VALID_MASK) && - !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { - vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; - vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; - vcpu->run->internal.ndata = 3; - vcpu->run->internal.data[0] = vect_info; - vcpu->run->internal.data[1] = intr_info; - vcpu->run->internal.data[2] = error_code; - return 0; - } - - if (is_page_fault(intr_info)) { - cr2 = vmcs_readl(EXIT_QUALIFICATION); - /* EPT won't cause page fault directly */ - WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept); - return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); - } - - ex_no = intr_info & INTR_INFO_VECTOR_MASK; - - if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) - return handle_rmode_exception(vcpu, ex_no, error_code); - - switch (ex_no) { - case AC_VECTOR: - kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); - return 1; - case DB_VECTOR: - dr6 = vmcs_readl(EXIT_QUALIFICATION); - if (!(vcpu->guest_debug & - (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { - vcpu->arch.dr6 &= ~15; - vcpu->arch.dr6 |= dr6 | DR6_RTM; - if (is_icebp(intr_info)) - skip_emulated_instruction(vcpu); - - kvm_queue_exception(vcpu, DB_VECTOR); - return 1; - } - kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1; - kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); - /* fall through */ - case BP_VECTOR: - /* - * Update instruction length as we may reinject #BP from - * user space while in guest debugging mode. Reading it for - * #DB as well causes no harm, it is not used in that case. - */ - vmx->vcpu.arch.event_exit_inst_len = - vmcs_read32(VM_EXIT_INSTRUCTION_LEN); - kvm_run->exit_reason = KVM_EXIT_DEBUG; - rip = kvm_rip_read(vcpu); - kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip; - kvm_run->debug.arch.exception = ex_no; - break; - default: - kvm_run->exit_reason = KVM_EXIT_EXCEPTION; - kvm_run->ex.exception = ex_no; - kvm_run->ex.error_code = error_code; - break; - } - return 0; -} - -static int handle_external_interrupt(struct kvm_vcpu *vcpu) -{ - ++vcpu->stat.irq_exits; - return 1; -} - -static int handle_triple_fault(struct kvm_vcpu *vcpu) -{ - vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; - vcpu->mmio_needed = 0; - return 0; -} - -static int handle_io(struct kvm_vcpu *vcpu) -{ - unsigned long exit_qualification; - int size, in, string; - unsigned port; - - exit_qualification = vmcs_readl(EXIT_QUALIFICATION); - string = (exit_qualification & 16) != 0; - - ++vcpu->stat.io_exits; - - if (string) - return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; - - port = exit_qualification >> 16; - size = (exit_qualification & 7) + 1; - in = (exit_qualification & 8) != 0; - - return kvm_fast_pio(vcpu, size, port, in); -} - -static void -vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) -{ - /* - * Patch in the VMCALL instruction: - */ - hypercall[0] = 0x0f; - hypercall[1] = 0x01; - hypercall[2] = 0xc1; -} - -/* called to set cr0 as appropriate for a mov-to-cr0 exit. */ -static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) -{ - if (is_guest_mode(vcpu)) { - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - unsigned long orig_val = val; - - /* - * We get here when L2 changed cr0 in a way that did not change - * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), - * but did change L0 shadowed bits. So we first calculate the - * effective cr0 value that L1 would like to write into the - * hardware. It consists of the L2-owned bits from the new - * value combined with the L1-owned bits from L1's guest_cr0. - */ - val = (val & ~vmcs12->cr0_guest_host_mask) | - (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); - - if (!nested_guest_cr0_valid(vcpu, val)) - return 1; - - if (kvm_set_cr0(vcpu, val)) - return 1; - vmcs_writel(CR0_READ_SHADOW, orig_val); - return 0; - } else { - if (to_vmx(vcpu)->nested.vmxon && - !nested_host_cr0_valid(vcpu, val)) - return 1; - - return kvm_set_cr0(vcpu, val); - } -} - -static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) -{ - if (is_guest_mode(vcpu)) { - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - unsigned long orig_val = val; - - /* analogously to handle_set_cr0 */ - val = (val & ~vmcs12->cr4_guest_host_mask) | - (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); - if (kvm_set_cr4(vcpu, val)) - return 1; - vmcs_writel(CR4_READ_SHADOW, orig_val); - return 0; - } else - return kvm_set_cr4(vcpu, val); -} - -static int handle_desc(struct kvm_vcpu *vcpu) -{ - WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP)); - return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; -} - -static int handle_cr(struct kvm_vcpu *vcpu) -{ - unsigned long exit_qualification, val; - int cr; - int reg; - int err; - int ret; - - exit_qualification = vmcs_readl(EXIT_QUALIFICATION); - cr = exit_qualification & 15; - reg = (exit_qualification >> 8) & 15; - switch ((exit_qualification >> 4) & 3) { - case 0: /* mov to cr */ - val = kvm_register_readl(vcpu, reg); - trace_kvm_cr_write(cr, val); - switch (cr) { - case 0: - err = handle_set_cr0(vcpu, val); - return kvm_complete_insn_gp(vcpu, err); - case 3: - WARN_ON_ONCE(enable_unrestricted_guest); - err = kvm_set_cr3(vcpu, val); - return kvm_complete_insn_gp(vcpu, err); - case 4: - err = handle_set_cr4(vcpu, val); - return kvm_complete_insn_gp(vcpu, err); - case 8: { - u8 cr8_prev = kvm_get_cr8(vcpu); - u8 cr8 = (u8)val; - err = kvm_set_cr8(vcpu, cr8); - ret = kvm_complete_insn_gp(vcpu, err); - if (lapic_in_kernel(vcpu)) - return ret; - if (cr8_prev <= cr8) - return ret; - /* - * TODO: we might be squashing a - * KVM_GUESTDBG_SINGLESTEP-triggered - * KVM_EXIT_DEBUG here. - */ - vcpu->run->exit_reason = KVM_EXIT_SET_TPR; - return 0; - } - } - break; - case 2: /* clts */ - WARN_ONCE(1, "Guest should always own CR0.TS"); - vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS)); - trace_kvm_cr_write(0, kvm_read_cr0(vcpu)); - return kvm_skip_emulated_instruction(vcpu); - case 1: /*mov from cr*/ - switch (cr) { - case 3: - WARN_ON_ONCE(enable_unrestricted_guest); - val = kvm_read_cr3(vcpu); - kvm_register_write(vcpu, reg, val); - trace_kvm_cr_read(cr, val); - return kvm_skip_emulated_instruction(vcpu); - case 8: - val = kvm_get_cr8(vcpu); - kvm_register_write(vcpu, reg, val); - trace_kvm_cr_read(cr, val); - return kvm_skip_emulated_instruction(vcpu); - } - break; - case 3: /* lmsw */ - val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; - trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val); - kvm_lmsw(vcpu, val); - - return kvm_skip_emulated_instruction(vcpu); - default: - break; - } - vcpu->run->exit_reason = 0; - vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", - (int)(exit_qualification >> 4) & 3, cr); - return 0; -} - -static int handle_dr(struct kvm_vcpu *vcpu) -{ - unsigned long exit_qualification; - int dr, dr7, reg; - - exit_qualification = vmcs_readl(EXIT_QUALIFICATION); - dr = exit_qualification & DEBUG_REG_ACCESS_NUM; - - /* First, if DR does not exist, trigger UD */ - if (!kvm_require_dr(vcpu, dr)) - return 1; - - /* Do not handle if the CPL > 0, will trigger GP on re-entry */ - if (!kvm_require_cpl(vcpu, 0)) - return 1; - dr7 = vmcs_readl(GUEST_DR7); - if (dr7 & DR7_GD) { - /* - * As the vm-exit takes precedence over the debug trap, we - * need to emulate the latter, either for the host or the - * guest debugging itself. - */ - if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { - vcpu->run->debug.arch.dr6 = vcpu->arch.dr6; - vcpu->run->debug.arch.dr7 = dr7; - vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); - vcpu->run->debug.arch.exception = DB_VECTOR; - vcpu->run->exit_reason = KVM_EXIT_DEBUG; - return 0; - } else { - vcpu->arch.dr6 &= ~15; - vcpu->arch.dr6 |= DR6_BD | DR6_RTM; - kvm_queue_exception(vcpu, DB_VECTOR); - return 1; - } - } - - if (vcpu->guest_debug == 0) { - vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, - CPU_BASED_MOV_DR_EXITING); - - /* - * No more DR vmexits; force a reload of the debug registers - * and reenter on this instruction. The next vmexit will - * retrieve the full state of the debug registers. - */ - vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; - return 1; - } - - reg = DEBUG_REG_ACCESS_REG(exit_qualification); - if (exit_qualification & TYPE_MOV_FROM_DR) { - unsigned long val; - - if (kvm_get_dr(vcpu, dr, &val)) - return 1; - kvm_register_write(vcpu, reg, val); - } else - if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg))) - return 1; - - return kvm_skip_emulated_instruction(vcpu); -} - -static u64 vmx_get_dr6(struct kvm_vcpu *vcpu) -{ - return vcpu->arch.dr6; -} - -static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val) -{ -} - -static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) -{ - get_debugreg(vcpu->arch.db[0], 0); - get_debugreg(vcpu->arch.db[1], 1); - get_debugreg(vcpu->arch.db[2], 2); - get_debugreg(vcpu->arch.db[3], 3); - get_debugreg(vcpu->arch.dr6, 6); - vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); - - vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; - vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING); -} - -static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) -{ - vmcs_writel(GUEST_DR7, val); -} - -static int handle_cpuid(struct kvm_vcpu *vcpu) -{ - return kvm_emulate_cpuid(vcpu); -} - -static int handle_rdmsr(struct kvm_vcpu *vcpu) -{ - u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX]; - struct msr_data msr_info; - - msr_info.index = ecx; - msr_info.host_initiated = false; - if (vmx_get_msr(vcpu, &msr_info)) { - trace_kvm_msr_read_ex(ecx); - kvm_inject_gp(vcpu, 0); - return 1; - } - - trace_kvm_msr_read(ecx, msr_info.data); - - /* FIXME: handling of bits 32:63 of rax, rdx */ - vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u; - vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u; - return kvm_skip_emulated_instruction(vcpu); -} - -static int handle_wrmsr(struct kvm_vcpu *vcpu) -{ - struct msr_data msr; - u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX]; - u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u) - | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32); - - msr.data = data; - msr.index = ecx; - msr.host_initiated = false; - if (kvm_set_msr(vcpu, &msr) != 0) { - trace_kvm_msr_write_ex(ecx, data); - kvm_inject_gp(vcpu, 0); - return 1; - } - - trace_kvm_msr_write(ecx, data); - return kvm_skip_emulated_instruction(vcpu); -} - -static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) -{ - kvm_apic_update_ppr(vcpu); - return 1; -} - -static int handle_interrupt_window(struct kvm_vcpu *vcpu) -{ - vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, - CPU_BASED_VIRTUAL_INTR_PENDING); - - kvm_make_request(KVM_REQ_EVENT, vcpu); - - ++vcpu->stat.irq_window_exits; - return 1; -} - -static int handle_halt(struct kvm_vcpu *vcpu) -{ - return kvm_emulate_halt(vcpu); -} - -static int handle_vmcall(struct kvm_vcpu *vcpu) -{ - return kvm_emulate_hypercall(vcpu); -} - -static int handle_invd(struct kvm_vcpu *vcpu) -{ - return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; -} - -static int handle_invlpg(struct kvm_vcpu *vcpu) -{ - unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); - - kvm_mmu_invlpg(vcpu, exit_qualification); - return kvm_skip_emulated_instruction(vcpu); -} - -static int handle_rdpmc(struct kvm_vcpu *vcpu) -{ - int err; - - err = kvm_rdpmc(vcpu); - return kvm_complete_insn_gp(vcpu, err); -} - -static int handle_wbinvd(struct kvm_vcpu *vcpu) -{ - return kvm_emulate_wbinvd(vcpu); -} - -static int handle_xsetbv(struct kvm_vcpu *vcpu) -{ - u64 new_bv = kvm_read_edx_eax(vcpu); - u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX); - - if (kvm_set_xcr(vcpu, index, new_bv) == 0) - return kvm_skip_emulated_instruction(vcpu); - return 1; -} - -static int handle_xsaves(struct kvm_vcpu *vcpu) -{ - kvm_skip_emulated_instruction(vcpu); - WARN(1, "this should never happen\n"); - return 1; -} - -static int handle_xrstors(struct kvm_vcpu *vcpu) -{ - kvm_skip_emulated_instruction(vcpu); - WARN(1, "this should never happen\n"); - return 1; -} - -static int handle_apic_access(struct kvm_vcpu *vcpu) -{ - if (likely(fasteoi)) { - unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); - int access_type, offset; - - access_type = exit_qualification & APIC_ACCESS_TYPE; - offset = exit_qualification & APIC_ACCESS_OFFSET; - /* - * Sane guest uses MOV to write EOI, with written value - * not cared. So make a short-circuit here by avoiding - * heavy instruction emulation. - */ - if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && - (offset == APIC_EOI)) { - kvm_lapic_set_eoi(vcpu); - return kvm_skip_emulated_instruction(vcpu); - } - } - return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; -} - -static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) -{ - unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); - int vector = exit_qualification & 0xff; - - /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ - kvm_apic_set_eoi_accelerated(vcpu, vector); - return 1; -} - -static int handle_apic_write(struct kvm_vcpu *vcpu) -{ - unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); - u32 offset = exit_qualification & 0xfff; - - /* APIC-write VM exit is trap-like and thus no need to adjust IP */ - kvm_apic_write_nodecode(vcpu, offset); - return 1; -} - -static int handle_task_switch(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - unsigned long exit_qualification; - bool has_error_code = false; - u32 error_code = 0; - u16 tss_selector; - int reason, type, idt_v, idt_index; - - idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); - idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); - type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); - - exit_qualification = vmcs_readl(EXIT_QUALIFICATION); - - reason = (u32)exit_qualification >> 30; - if (reason == TASK_SWITCH_GATE && idt_v) { - switch (type) { - case INTR_TYPE_NMI_INTR: - vcpu->arch.nmi_injected = false; - vmx_set_nmi_mask(vcpu, true); - break; - case INTR_TYPE_EXT_INTR: - case INTR_TYPE_SOFT_INTR: - kvm_clear_interrupt_queue(vcpu); - break; - case INTR_TYPE_HARD_EXCEPTION: - if (vmx->idt_vectoring_info & - VECTORING_INFO_DELIVER_CODE_MASK) { - has_error_code = true; - error_code = - vmcs_read32(IDT_VECTORING_ERROR_CODE); - } - /* fall through */ - case INTR_TYPE_SOFT_EXCEPTION: - kvm_clear_exception_queue(vcpu); - break; - default: - break; - } - } - tss_selector = exit_qualification; - - if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && - type != INTR_TYPE_EXT_INTR && - type != INTR_TYPE_NMI_INTR)) - skip_emulated_instruction(vcpu); - - if (kvm_task_switch(vcpu, tss_selector, - type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason, - has_error_code, error_code) == EMULATE_FAIL) { - vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; - vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; - vcpu->run->internal.ndata = 0; - return 0; - } - - /* - * TODO: What about debug traps on tss switch? - * Are we supposed to inject them and update dr6? - */ - - return 1; -} - -static int handle_ept_violation(struct kvm_vcpu *vcpu) -{ - unsigned long exit_qualification; - gpa_t gpa; - u64 error_code; - - exit_qualification = vmcs_readl(EXIT_QUALIFICATION); - - /* - * EPT violation happened while executing iret from NMI, - * "blocked by NMI" bit has to be set before next VM entry. - * There are errata that may cause this bit to not be set: - * AAK134, BY25. - */ - if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && - enable_vnmi && - (exit_qualification & INTR_INFO_UNBLOCK_NMI)) - vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); - - gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); - trace_kvm_page_fault(gpa, exit_qualification); - - /* Is it a read fault? */ - error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) - ? PFERR_USER_MASK : 0; - /* Is it a write fault? */ - error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) - ? PFERR_WRITE_MASK : 0; - /* Is it a fetch fault? */ - error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) - ? PFERR_FETCH_MASK : 0; - /* ept page table entry is present? */ - error_code |= (exit_qualification & - (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE | - EPT_VIOLATION_EXECUTABLE)) - ? PFERR_PRESENT_MASK : 0; - - error_code |= (exit_qualification & 0x100) != 0 ? - PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; - - vcpu->arch.exit_qualification = exit_qualification; - return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); -} - -static int handle_ept_misconfig(struct kvm_vcpu *vcpu) -{ - gpa_t gpa; - - /* - * A nested guest cannot optimize MMIO vmexits, because we have an - * nGPA here instead of the required GPA. - */ - gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); - if (!is_guest_mode(vcpu) && - !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { - trace_kvm_fast_mmio(gpa); - /* - * Doing kvm_skip_emulated_instruction() depends on undefined - * behavior: Intel's manual doesn't mandate - * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG - * occurs and while on real hardware it was observed to be set, - * other hypervisors (namely Hyper-V) don't set it, we end up - * advancing IP with some random value. Disable fast mmio when - * running nested and keep it for real hardware in hope that - * VM_EXIT_INSTRUCTION_LEN will always be set correctly. - */ - if (!static_cpu_has(X86_FEATURE_HYPERVISOR)) - return kvm_skip_emulated_instruction(vcpu); - else - return kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) == - EMULATE_DONE; - } - - return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); -} - -static int handle_nmi_window(struct kvm_vcpu *vcpu) -{ - WARN_ON_ONCE(!enable_vnmi); - vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, - CPU_BASED_VIRTUAL_NMI_PENDING); - ++vcpu->stat.nmi_window_exits; - kvm_make_request(KVM_REQ_EVENT, vcpu); - - return 1; -} - -static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - enum emulation_result err = EMULATE_DONE; - int ret = 1; - u32 cpu_exec_ctrl; - bool intr_window_requested; - unsigned count = 130; - - /* - * We should never reach the point where we are emulating L2 - * due to invalid guest state as that means we incorrectly - * allowed a nested VMEntry with an invalid vmcs12. - */ - WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending); - - cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); - intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING; - - while (vmx->emulation_required && count-- != 0) { - if (intr_window_requested && vmx_interrupt_allowed(vcpu)) - return handle_interrupt_window(&vmx->vcpu); - - if (kvm_test_request(KVM_REQ_EVENT, vcpu)) - return 1; - - err = kvm_emulate_instruction(vcpu, 0); - - if (err == EMULATE_USER_EXIT) { - ++vcpu->stat.mmio_exits; - ret = 0; - goto out; - } - - if (err != EMULATE_DONE) - goto emulation_error; - - if (vmx->emulation_required && !vmx->rmode.vm86_active && - vcpu->arch.exception.pending) - goto emulation_error; - - if (vcpu->arch.halt_request) { - vcpu->arch.halt_request = 0; - ret = kvm_vcpu_halt(vcpu); - goto out; - } - - if (signal_pending(current)) - goto out; - if (need_resched()) - schedule(); - } - -out: - return ret; - -emulation_error: - vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; - vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; - vcpu->run->internal.ndata = 0; - return 0; -} - -static void grow_ple_window(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - int old = vmx->ple_window; - - vmx->ple_window = __grow_ple_window(old, ple_window, - ple_window_grow, - ple_window_max); - - if (vmx->ple_window != old) - vmx->ple_window_dirty = true; - - trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old); -} - -static void shrink_ple_window(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - int old = vmx->ple_window; - - vmx->ple_window = __shrink_ple_window(old, ple_window, - ple_window_shrink, - ple_window); - - if (vmx->ple_window != old) - vmx->ple_window_dirty = true; - - trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old); -} - -/* - * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR. - */ -static void wakeup_handler(void) -{ - struct kvm_vcpu *vcpu; - int cpu = smp_processor_id(); - - spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); - list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu), - blocked_vcpu_list) { - struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); - - if (pi_test_on(pi_desc) == 1) - kvm_vcpu_kick(vcpu); - } - spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); -} - -static void vmx_enable_tdp(void) -{ - kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK, - enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull, - enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull, - 0ull, VMX_EPT_EXECUTABLE_MASK, - cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK, - VMX_EPT_RWX_MASK, 0ull); - - ept_set_mmio_spte_mask(); - kvm_enable_tdp(); -} - -static __init int hardware_setup(void) -{ - unsigned long host_bndcfgs; - int r = -ENOMEM, i; - - rdmsrl_safe(MSR_EFER, &host_efer); - - for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) - kvm_define_shared_msr(i, vmx_msr_index[i]); - - for (i = 0; i < VMX_BITMAP_NR; i++) { - vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL); - if (!vmx_bitmap[i]) - goto out; - } - - memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE); - memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE); - - if (setup_vmcs_config(&vmcs_config) < 0) { - r = -EIO; - goto out; - } - - if (boot_cpu_has(X86_FEATURE_NX)) - kvm_enable_efer_bits(EFER_NX); - - if (boot_cpu_has(X86_FEATURE_MPX)) { - rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); - WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost"); - } - - if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || - !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) - enable_vpid = 0; - - if (!cpu_has_vmx_ept() || - !cpu_has_vmx_ept_4levels() || - !cpu_has_vmx_ept_mt_wb() || - !cpu_has_vmx_invept_global()) - enable_ept = 0; - - if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) - enable_ept_ad_bits = 0; - - if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) - enable_unrestricted_guest = 0; - - if (!cpu_has_vmx_flexpriority()) - flexpriority_enabled = 0; - - if (!cpu_has_virtual_nmis()) - enable_vnmi = 0; - - /* - * set_apic_access_page_addr() is used to reload apic access - * page upon invalidation. No need to do anything if not - * using the APIC_ACCESS_ADDR VMCS field. - */ - if (!flexpriority_enabled) - kvm_x86_ops->set_apic_access_page_addr = NULL; - - if (!cpu_has_vmx_tpr_shadow()) - kvm_x86_ops->update_cr8_intercept = NULL; - - if (enable_ept && !cpu_has_vmx_ept_2m_page()) - kvm_disable_largepages(); - -#if IS_ENABLED(CONFIG_HYPERV) - if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH - && enable_ept) - kvm_x86_ops->tlb_remote_flush = vmx_hv_remote_flush_tlb; -#endif - - if (!cpu_has_vmx_ple()) { - ple_gap = 0; - ple_window = 0; - ple_window_grow = 0; - ple_window_max = 0; - ple_window_shrink = 0; - } - - if (!cpu_has_vmx_apicv()) { - enable_apicv = 0; - kvm_x86_ops->sync_pir_to_irr = NULL; - } - - if (cpu_has_vmx_tsc_scaling()) { - kvm_has_tsc_control = true; - kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; - kvm_tsc_scaling_ratio_frac_bits = 48; - } - - set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ - - if (enable_ept) - vmx_enable_tdp(); - else - kvm_disable_tdp(); - - if (!nested) { - kvm_x86_ops->get_nested_state = NULL; - kvm_x86_ops->set_nested_state = NULL; - } - - /* - * Only enable PML when hardware supports PML feature, and both EPT - * and EPT A/D bit features are enabled -- PML depends on them to work. - */ - if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) - enable_pml = 0; - - if (!enable_pml) { - kvm_x86_ops->slot_enable_log_dirty = NULL; - kvm_x86_ops->slot_disable_log_dirty = NULL; - kvm_x86_ops->flush_log_dirty = NULL; - kvm_x86_ops->enable_log_dirty_pt_masked = NULL; - } - - if (!cpu_has_vmx_preemption_timer()) - kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit; - - if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) { - u64 vmx_msr; - - rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); - cpu_preemption_timer_multi = - vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; - } else { - kvm_x86_ops->set_hv_timer = NULL; - kvm_x86_ops->cancel_hv_timer = NULL; - } - - if (!cpu_has_vmx_shadow_vmcs()) - enable_shadow_vmcs = 0; - if (enable_shadow_vmcs) - init_vmcs_shadow_fields(); - - kvm_set_posted_intr_wakeup_handler(wakeup_handler); - nested_vmx_setup_ctls_msrs(&vmcs_config.nested, enable_apicv); - - kvm_mce_cap_supported |= MCG_LMCE_P; - - return alloc_kvm_area(); - -out: - for (i = 0; i < VMX_BITMAP_NR; i++) - free_page((unsigned long)vmx_bitmap[i]); - - return r; -} - -static __exit void hardware_unsetup(void) -{ - int i; - - for (i = 0; i < VMX_BITMAP_NR; i++) - free_page((unsigned long)vmx_bitmap[i]); - - free_kvm_area(); -} - -/* - * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE - * exiting, so only get here on cpu with PAUSE-Loop-Exiting. - */ -static int handle_pause(struct kvm_vcpu *vcpu) -{ - if (!kvm_pause_in_guest(vcpu->kvm)) - grow_ple_window(vcpu); - - /* - * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" - * VM-execution control is ignored if CPL > 0. OTOH, KVM - * never set PAUSE_EXITING and just set PLE if supported, - * so the vcpu must be CPL=0 if it gets a PAUSE exit. - */ - kvm_vcpu_on_spin(vcpu, true); - return kvm_skip_emulated_instruction(vcpu); -} - -static int handle_nop(struct kvm_vcpu *vcpu) -{ - return kvm_skip_emulated_instruction(vcpu); -} - -static int handle_mwait(struct kvm_vcpu *vcpu) -{ - printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n"); - return handle_nop(vcpu); -} - -static int handle_invalid_op(struct kvm_vcpu *vcpu) -{ - kvm_queue_exception(vcpu, UD_VECTOR); - return 1; -} - -static int handle_monitor_trap(struct kvm_vcpu *vcpu) -{ - return 1; -} - -static int handle_monitor(struct kvm_vcpu *vcpu) -{ - printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n"); - return handle_nop(vcpu); -} - -/* - * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(), - * set the success or error code of an emulated VMX instruction (as specified - * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated - * instruction. - */ -static int nested_vmx_succeed(struct kvm_vcpu *vcpu) -{ - vmx_set_rflags(vcpu, vmx_get_rflags(vcpu) - & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | - X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF)); - return kvm_skip_emulated_instruction(vcpu); -} - -static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu) -{ - vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu) - & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF | - X86_EFLAGS_SF | X86_EFLAGS_OF)) - | X86_EFLAGS_CF); - return kvm_skip_emulated_instruction(vcpu); -} - -static int nested_vmx_failValid(struct kvm_vcpu *vcpu, - u32 vm_instruction_error) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - /* - * failValid writes the error number to the current VMCS, which - * can't be done if there isn't a current VMCS. - */ - if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs) - return nested_vmx_failInvalid(vcpu); - - vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu) - & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | - X86_EFLAGS_SF | X86_EFLAGS_OF)) - | X86_EFLAGS_ZF); - get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error; - /* - * We don't need to force a shadow sync because - * VM_INSTRUCTION_ERROR is not shadowed - */ - return kvm_skip_emulated_instruction(vcpu); -} - -static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator) -{ - /* TODO: not to reset guest simply here. */ - kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); - pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator); -} - -static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer) -{ - struct vcpu_vmx *vmx = - container_of(timer, struct vcpu_vmx, nested.preemption_timer); - - vmx->nested.preemption_timer_expired = true; - kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu); - kvm_vcpu_kick(&vmx->vcpu); - - return HRTIMER_NORESTART; -} - -/* - * Decode the memory-address operand of a vmx instruction, as recorded on an - * exit caused by such an instruction (run by a guest hypervisor). - * On success, returns 0. When the operand is invalid, returns 1 and throws - * #UD or #GP. - */ -static int get_vmx_mem_address(struct kvm_vcpu *vcpu, - unsigned long exit_qualification, - u32 vmx_instruction_info, bool wr, gva_t *ret) -{ - gva_t off; - bool exn; - struct kvm_segment s; - - /* - * According to Vol. 3B, "Information for VM Exits Due to Instruction - * Execution", on an exit, vmx_instruction_info holds most of the - * addressing components of the operand. Only the displacement part - * is put in exit_qualification (see 3B, "Basic VM-Exit Information"). - * For how an actual address is calculated from all these components, - * refer to Vol. 1, "Operand Addressing". - */ - int scaling = vmx_instruction_info & 3; - int addr_size = (vmx_instruction_info >> 7) & 7; - bool is_reg = vmx_instruction_info & (1u << 10); - int seg_reg = (vmx_instruction_info >> 15) & 7; - int index_reg = (vmx_instruction_info >> 18) & 0xf; - bool index_is_valid = !(vmx_instruction_info & (1u << 22)); - int base_reg = (vmx_instruction_info >> 23) & 0xf; - bool base_is_valid = !(vmx_instruction_info & (1u << 27)); - - if (is_reg) { - kvm_queue_exception(vcpu, UD_VECTOR); - return 1; - } - - /* Addr = segment_base + offset */ - /* offset = base + [index * scale] + displacement */ - off = exit_qualification; /* holds the displacement */ - if (base_is_valid) - off += kvm_register_read(vcpu, base_reg); - if (index_is_valid) - off += kvm_register_read(vcpu, index_reg)<<scaling; - vmx_get_segment(vcpu, &s, seg_reg); - *ret = s.base + off; - - if (addr_size == 1) /* 32 bit */ - *ret &= 0xffffffff; - - /* Checks for #GP/#SS exceptions. */ - exn = false; - if (is_long_mode(vcpu)) { - /* Long mode: #GP(0)/#SS(0) if the memory address is in a - * non-canonical form. This is the only check on the memory - * destination for long mode! - */ - exn = is_noncanonical_address(*ret, vcpu); - } else if (is_protmode(vcpu)) { - /* Protected mode: apply checks for segment validity in the - * following order: - * - segment type check (#GP(0) may be thrown) - * - usability check (#GP(0)/#SS(0)) - * - limit check (#GP(0)/#SS(0)) - */ - if (wr) - /* #GP(0) if the destination operand is located in a - * read-only data segment or any code segment. - */ - exn = ((s.type & 0xa) == 0 || (s.type & 8)); - else - /* #GP(0) if the source operand is located in an - * execute-only code segment - */ - exn = ((s.type & 0xa) == 8); - if (exn) { - kvm_queue_exception_e(vcpu, GP_VECTOR, 0); - return 1; - } - /* Protected mode: #GP(0)/#SS(0) if the segment is unusable. - */ - exn = (s.unusable != 0); - /* Protected mode: #GP(0)/#SS(0) if the memory - * operand is outside the segment limit. - */ - exn = exn || (off + sizeof(u64) > s.limit); - } - if (exn) { - kvm_queue_exception_e(vcpu, - seg_reg == VCPU_SREG_SS ? - SS_VECTOR : GP_VECTOR, - 0); - return 1; - } - - return 0; -} - -static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer) -{ - gva_t gva; - struct x86_exception e; - - if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), - vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva)) - return 1; - - if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) { - kvm_inject_page_fault(vcpu, &e); - return 1; - } - - return 0; -} - -/* - * Allocate a shadow VMCS and associate it with the currently loaded - * VMCS, unless such a shadow VMCS already exists. The newly allocated - * VMCS is also VMCLEARed, so that it is ready for use. - */ -static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs; - - /* - * We should allocate a shadow vmcs for vmcs01 only when L1 - * executes VMXON and free it when L1 executes VMXOFF. - * As it is invalid to execute VMXON twice, we shouldn't reach - * here when vmcs01 already have an allocated shadow vmcs. - */ - WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs); - - if (!loaded_vmcs->shadow_vmcs) { - loaded_vmcs->shadow_vmcs = alloc_vmcs(true); - if (loaded_vmcs->shadow_vmcs) - vmcs_clear(loaded_vmcs->shadow_vmcs); - } - return loaded_vmcs->shadow_vmcs; -} - -static int enter_vmx_operation(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - int r; - - r = alloc_loaded_vmcs(&vmx->nested.vmcs02); - if (r < 0) - goto out_vmcs02; - - vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL); - if (!vmx->nested.cached_vmcs12) - goto out_cached_vmcs12; - - vmx->nested.cached_shadow_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL); - if (!vmx->nested.cached_shadow_vmcs12) - goto out_cached_shadow_vmcs12; - - if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu)) - goto out_shadow_vmcs; - - hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC, - HRTIMER_MODE_REL_PINNED); - vmx->nested.preemption_timer.function = vmx_preemption_timer_fn; - - vmx->nested.vpid02 = allocate_vpid(); - - vmx->nested.vmcs02_initialized = false; - vmx->nested.vmxon = true; - return 0; - -out_shadow_vmcs: - kfree(vmx->nested.cached_shadow_vmcs12); - -out_cached_shadow_vmcs12: - kfree(vmx->nested.cached_vmcs12); - -out_cached_vmcs12: - free_loaded_vmcs(&vmx->nested.vmcs02); - -out_vmcs02: - return -ENOMEM; -} - -/* - * Emulate the VMXON instruction. - * Currently, we just remember that VMX is active, and do not save or even - * inspect the argument to VMXON (the so-called "VMXON pointer") because we - * do not currently need to store anything in that guest-allocated memory - * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their - * argument is different from the VMXON pointer (which the spec says they do). - */ -static int handle_vmon(struct kvm_vcpu *vcpu) -{ - int ret; - gpa_t vmptr; - struct page *page; - struct vcpu_vmx *vmx = to_vmx(vcpu); - const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED - | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; - - /* - * The Intel VMX Instruction Reference lists a bunch of bits that are - * prerequisite to running VMXON, most notably cr4.VMXE must be set to - * 1 (see vmx_set_cr4() for when we allow the guest to set this). - * Otherwise, we should fail with #UD. But most faulting conditions - * have already been checked by hardware, prior to the VM-exit for - * VMXON. We do test guest cr4.VMXE because processor CR4 always has - * that bit set to 1 in non-root mode. - */ - if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) { - kvm_queue_exception(vcpu, UD_VECTOR); - return 1; - } - - /* CPL=0 must be checked manually. */ - if (vmx_get_cpl(vcpu)) { - kvm_inject_gp(vcpu, 0); - return 1; - } - - if (vmx->nested.vmxon) - return nested_vmx_failValid(vcpu, - VMXERR_VMXON_IN_VMX_ROOT_OPERATION); - - if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES) - != VMXON_NEEDED_FEATURES) { - kvm_inject_gp(vcpu, 0); - return 1; - } - - if (nested_vmx_get_vmptr(vcpu, &vmptr)) - return 1; - - /* - * SDM 3: 24.11.5 - * The first 4 bytes of VMXON region contain the supported - * VMCS revision identifier - * - * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case; - * which replaces physical address width with 32 - */ - if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) - return nested_vmx_failInvalid(vcpu); - - page = kvm_vcpu_gpa_to_page(vcpu, vmptr); - if (is_error_page(page)) - return nested_vmx_failInvalid(vcpu); - - if (*(u32 *)kmap(page) != VMCS12_REVISION) { - kunmap(page); - kvm_release_page_clean(page); - return nested_vmx_failInvalid(vcpu); - } - kunmap(page); - kvm_release_page_clean(page); - - vmx->nested.vmxon_ptr = vmptr; - ret = enter_vmx_operation(vcpu); - if (ret) - return ret; - - return nested_vmx_succeed(vcpu); -} - -/* - * Intel's VMX Instruction Reference specifies a common set of prerequisites - * for running VMX instructions (except VMXON, whose prerequisites are - * slightly different). It also specifies what exception to inject otherwise. - * Note that many of these exceptions have priority over VM exits, so they - * don't have to be checked again here. - */ -static int nested_vmx_check_permission(struct kvm_vcpu *vcpu) -{ - if (!to_vmx(vcpu)->nested.vmxon) { - kvm_queue_exception(vcpu, UD_VECTOR); - return 0; - } - - if (vmx_get_cpl(vcpu)) { - kvm_inject_gp(vcpu, 0); - return 0; - } - - return 1; -} - -static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx) -{ - vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS); - vmcs_write64(VMCS_LINK_POINTER, -1ull); -} - -static inline void nested_release_evmcs(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - if (!vmx->nested.hv_evmcs) - return; - - kunmap(vmx->nested.hv_evmcs_page); - kvm_release_page_dirty(vmx->nested.hv_evmcs_page); - vmx->nested.hv_evmcs_vmptr = -1ull; - vmx->nested.hv_evmcs_page = NULL; - vmx->nested.hv_evmcs = NULL; -} - -static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - if (vmx->nested.current_vmptr == -1ull) - return; - - if (enable_shadow_vmcs) { - /* copy to memory all shadowed fields in case - they were modified */ - copy_shadow_to_vmcs12(vmx); - vmx->nested.need_vmcs12_sync = false; - vmx_disable_shadow_vmcs(vmx); - } - vmx->nested.posted_intr_nv = -1; - - /* Flush VMCS12 to guest memory */ - kvm_vcpu_write_guest_page(vcpu, - vmx->nested.current_vmptr >> PAGE_SHIFT, - vmx->nested.cached_vmcs12, 0, VMCS12_SIZE); - - kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); - - vmx->nested.current_vmptr = -1ull; -} - -/* - * Free whatever needs to be freed from vmx->nested when L1 goes down, or - * just stops using VMX. - */ -static void free_nested(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon) - return; - - vmx->nested.vmxon = false; - vmx->nested.smm.vmxon = false; - free_vpid(vmx->nested.vpid02); - vmx->nested.posted_intr_nv = -1; - vmx->nested.current_vmptr = -1ull; - if (enable_shadow_vmcs) { - vmx_disable_shadow_vmcs(vmx); - vmcs_clear(vmx->vmcs01.shadow_vmcs); - free_vmcs(vmx->vmcs01.shadow_vmcs); - vmx->vmcs01.shadow_vmcs = NULL; - } - kfree(vmx->nested.cached_vmcs12); - kfree(vmx->nested.cached_shadow_vmcs12); - /* Unpin physical memory we referred to in the vmcs02 */ - if (vmx->nested.apic_access_page) { - kvm_release_page_dirty(vmx->nested.apic_access_page); - vmx->nested.apic_access_page = NULL; - } - if (vmx->nested.virtual_apic_page) { - kvm_release_page_dirty(vmx->nested.virtual_apic_page); - vmx->nested.virtual_apic_page = NULL; - } - if (vmx->nested.pi_desc_page) { - kunmap(vmx->nested.pi_desc_page); - kvm_release_page_dirty(vmx->nested.pi_desc_page); - vmx->nested.pi_desc_page = NULL; - vmx->nested.pi_desc = NULL; - } - - kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); - - nested_release_evmcs(vcpu); - - free_loaded_vmcs(&vmx->nested.vmcs02); -} - -/* Emulate the VMXOFF instruction */ -static int handle_vmoff(struct kvm_vcpu *vcpu) -{ - if (!nested_vmx_check_permission(vcpu)) - return 1; - free_nested(vcpu); - return nested_vmx_succeed(vcpu); -} - -/* Emulate the VMCLEAR instruction */ -static int handle_vmclear(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - u32 zero = 0; - gpa_t vmptr; - - if (!nested_vmx_check_permission(vcpu)) - return 1; - - if (nested_vmx_get_vmptr(vcpu, &vmptr)) - return 1; - - if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) - return nested_vmx_failValid(vcpu, - VMXERR_VMCLEAR_INVALID_ADDRESS); - - if (vmptr == vmx->nested.vmxon_ptr) - return nested_vmx_failValid(vcpu, - VMXERR_VMCLEAR_VMXON_POINTER); - - if (vmx->nested.hv_evmcs_page) { - if (vmptr == vmx->nested.hv_evmcs_vmptr) - nested_release_evmcs(vcpu); - } else { - if (vmptr == vmx->nested.current_vmptr) - nested_release_vmcs12(vcpu); - - kvm_vcpu_write_guest(vcpu, - vmptr + offsetof(struct vmcs12, - launch_state), - &zero, sizeof(zero)); - } - - return nested_vmx_succeed(vcpu); -} - -static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch); - -/* Emulate the VMLAUNCH instruction */ -static int handle_vmlaunch(struct kvm_vcpu *vcpu) -{ - return nested_vmx_run(vcpu, true); -} - -/* Emulate the VMRESUME instruction */ -static int handle_vmresume(struct kvm_vcpu *vcpu) -{ - - return nested_vmx_run(vcpu, false); -} - -/* - * Read a vmcs12 field. Since these can have varying lengths and we return - * one type, we chose the biggest type (u64) and zero-extend the return value - * to that size. Note that the caller, handle_vmread, might need to use only - * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of - * 64-bit fields are to be returned). - */ -static inline int vmcs12_read_any(struct vmcs12 *vmcs12, - unsigned long field, u64 *ret) -{ - short offset = vmcs_field_to_offset(field); - char *p; - - if (offset < 0) - return offset; - - p = (char *)vmcs12 + offset; - - switch (vmcs_field_width(field)) { - case VMCS_FIELD_WIDTH_NATURAL_WIDTH: - *ret = *((natural_width *)p); - return 0; - case VMCS_FIELD_WIDTH_U16: - *ret = *((u16 *)p); - return 0; - case VMCS_FIELD_WIDTH_U32: - *ret = *((u32 *)p); - return 0; - case VMCS_FIELD_WIDTH_U64: - *ret = *((u64 *)p); - return 0; - default: - WARN_ON(1); - return -ENOENT; - } -} - - -static inline int vmcs12_write_any(struct vmcs12 *vmcs12, - unsigned long field, u64 field_value){ - short offset = vmcs_field_to_offset(field); - char *p = (char *)vmcs12 + offset; - if (offset < 0) - return offset; - - switch (vmcs_field_width(field)) { - case VMCS_FIELD_WIDTH_U16: - *(u16 *)p = field_value; - return 0; - case VMCS_FIELD_WIDTH_U32: - *(u32 *)p = field_value; - return 0; - case VMCS_FIELD_WIDTH_U64: - *(u64 *)p = field_value; - return 0; - case VMCS_FIELD_WIDTH_NATURAL_WIDTH: - *(natural_width *)p = field_value; - return 0; - default: - WARN_ON(1); - return -ENOENT; - } - -} - -static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx) -{ - struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12; - struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs; - - /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */ - vmcs12->tpr_threshold = evmcs->tpr_threshold; - vmcs12->guest_rip = evmcs->guest_rip; - - if (unlikely(!(evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) { - vmcs12->guest_rsp = evmcs->guest_rsp; - vmcs12->guest_rflags = evmcs->guest_rflags; - vmcs12->guest_interruptibility_info = - evmcs->guest_interruptibility_info; - } - - if (unlikely(!(evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) { - vmcs12->cpu_based_vm_exec_control = - evmcs->cpu_based_vm_exec_control; - } - - if (unlikely(!(evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) { - vmcs12->exception_bitmap = evmcs->exception_bitmap; - } - - if (unlikely(!(evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) { - vmcs12->vm_entry_controls = evmcs->vm_entry_controls; - } - - if (unlikely(!(evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) { - vmcs12->vm_entry_intr_info_field = - evmcs->vm_entry_intr_info_field; - vmcs12->vm_entry_exception_error_code = - evmcs->vm_entry_exception_error_code; - vmcs12->vm_entry_instruction_len = - evmcs->vm_entry_instruction_len; - } - - if (unlikely(!(evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) { - vmcs12->host_ia32_pat = evmcs->host_ia32_pat; - vmcs12->host_ia32_efer = evmcs->host_ia32_efer; - vmcs12->host_cr0 = evmcs->host_cr0; - vmcs12->host_cr3 = evmcs->host_cr3; - vmcs12->host_cr4 = evmcs->host_cr4; - vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp; - vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip; - vmcs12->host_rip = evmcs->host_rip; - vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs; - vmcs12->host_es_selector = evmcs->host_es_selector; - vmcs12->host_cs_selector = evmcs->host_cs_selector; - vmcs12->host_ss_selector = evmcs->host_ss_selector; - vmcs12->host_ds_selector = evmcs->host_ds_selector; - vmcs12->host_fs_selector = evmcs->host_fs_selector; - vmcs12->host_gs_selector = evmcs->host_gs_selector; - vmcs12->host_tr_selector = evmcs->host_tr_selector; - } - - if (unlikely(!(evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) { - vmcs12->pin_based_vm_exec_control = - evmcs->pin_based_vm_exec_control; - vmcs12->vm_exit_controls = evmcs->vm_exit_controls; - vmcs12->secondary_vm_exec_control = - evmcs->secondary_vm_exec_control; - } - - if (unlikely(!(evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) { - vmcs12->io_bitmap_a = evmcs->io_bitmap_a; - vmcs12->io_bitmap_b = evmcs->io_bitmap_b; - } - - if (unlikely(!(evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) { - vmcs12->msr_bitmap = evmcs->msr_bitmap; - } - - if (unlikely(!(evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) { - vmcs12->guest_es_base = evmcs->guest_es_base; - vmcs12->guest_cs_base = evmcs->guest_cs_base; - vmcs12->guest_ss_base = evmcs->guest_ss_base; - vmcs12->guest_ds_base = evmcs->guest_ds_base; - vmcs12->guest_fs_base = evmcs->guest_fs_base; - vmcs12->guest_gs_base = evmcs->guest_gs_base; - vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base; - vmcs12->guest_tr_base = evmcs->guest_tr_base; - vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base; - vmcs12->guest_idtr_base = evmcs->guest_idtr_base; - vmcs12->guest_es_limit = evmcs->guest_es_limit; - vmcs12->guest_cs_limit = evmcs->guest_cs_limit; - vmcs12->guest_ss_limit = evmcs->guest_ss_limit; - vmcs12->guest_ds_limit = evmcs->guest_ds_limit; - vmcs12->guest_fs_limit = evmcs->guest_fs_limit; - vmcs12->guest_gs_limit = evmcs->guest_gs_limit; - vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit; - vmcs12->guest_tr_limit = evmcs->guest_tr_limit; - vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit; - vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit; - vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes; - vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes; - vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes; - vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes; - vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes; - vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes; - vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes; - vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes; - vmcs12->guest_es_selector = evmcs->guest_es_selector; - vmcs12->guest_cs_selector = evmcs->guest_cs_selector; - vmcs12->guest_ss_selector = evmcs->guest_ss_selector; - vmcs12->guest_ds_selector = evmcs->guest_ds_selector; - vmcs12->guest_fs_selector = evmcs->guest_fs_selector; - vmcs12->guest_gs_selector = evmcs->guest_gs_selector; - vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector; - vmcs12->guest_tr_selector = evmcs->guest_tr_selector; - } - - if (unlikely(!(evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) { - vmcs12->tsc_offset = evmcs->tsc_offset; - vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr; - vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap; - } - - if (unlikely(!(evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) { - vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask; - vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask; - vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow; - vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow; - vmcs12->guest_cr0 = evmcs->guest_cr0; - vmcs12->guest_cr3 = evmcs->guest_cr3; - vmcs12->guest_cr4 = evmcs->guest_cr4; - vmcs12->guest_dr7 = evmcs->guest_dr7; - } - - if (unlikely(!(evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) { - vmcs12->host_fs_base = evmcs->host_fs_base; - vmcs12->host_gs_base = evmcs->host_gs_base; - vmcs12->host_tr_base = evmcs->host_tr_base; - vmcs12->host_gdtr_base = evmcs->host_gdtr_base; - vmcs12->host_idtr_base = evmcs->host_idtr_base; - vmcs12->host_rsp = evmcs->host_rsp; - } - - if (unlikely(!(evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) { - vmcs12->ept_pointer = evmcs->ept_pointer; - vmcs12->virtual_processor_id = evmcs->virtual_processor_id; - } - - if (unlikely(!(evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) { - vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer; - vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl; - vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat; - vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer; - vmcs12->guest_pdptr0 = evmcs->guest_pdptr0; - vmcs12->guest_pdptr1 = evmcs->guest_pdptr1; - vmcs12->guest_pdptr2 = evmcs->guest_pdptr2; - vmcs12->guest_pdptr3 = evmcs->guest_pdptr3; - vmcs12->guest_pending_dbg_exceptions = - evmcs->guest_pending_dbg_exceptions; - vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp; - vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip; - vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs; - vmcs12->guest_activity_state = evmcs->guest_activity_state; - vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs; - } - - /* - * Not used? - * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr; - * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr; - * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr; - * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0; - * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1; - * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2; - * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3; - * vmcs12->page_fault_error_code_mask = - * evmcs->page_fault_error_code_mask; - * vmcs12->page_fault_error_code_match = - * evmcs->page_fault_error_code_match; - * vmcs12->cr3_target_count = evmcs->cr3_target_count; - * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count; - * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count; - * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count; - */ - - /* - * Read only fields: - * vmcs12->guest_physical_address = evmcs->guest_physical_address; - * vmcs12->vm_instruction_error = evmcs->vm_instruction_error; - * vmcs12->vm_exit_reason = evmcs->vm_exit_reason; - * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info; - * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code; - * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field; - * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code; - * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len; - * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info; - * vmcs12->exit_qualification = evmcs->exit_qualification; - * vmcs12->guest_linear_address = evmcs->guest_linear_address; - * - * Not present in struct vmcs12: - * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx; - * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi; - * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi; - * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip; - */ - - return 0; -} - -static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx) -{ - struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12; - struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs; - - /* - * Should not be changed by KVM: - * - * evmcs->host_es_selector = vmcs12->host_es_selector; - * evmcs->host_cs_selector = vmcs12->host_cs_selector; - * evmcs->host_ss_selector = vmcs12->host_ss_selector; - * evmcs->host_ds_selector = vmcs12->host_ds_selector; - * evmcs->host_fs_selector = vmcs12->host_fs_selector; - * evmcs->host_gs_selector = vmcs12->host_gs_selector; - * evmcs->host_tr_selector = vmcs12->host_tr_selector; - * evmcs->host_ia32_pat = vmcs12->host_ia32_pat; - * evmcs->host_ia32_efer = vmcs12->host_ia32_efer; - * evmcs->host_cr0 = vmcs12->host_cr0; - * evmcs->host_cr3 = vmcs12->host_cr3; - * evmcs->host_cr4 = vmcs12->host_cr4; - * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp; - * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip; - * evmcs->host_rip = vmcs12->host_rip; - * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs; - * evmcs->host_fs_base = vmcs12->host_fs_base; - * evmcs->host_gs_base = vmcs12->host_gs_base; - * evmcs->host_tr_base = vmcs12->host_tr_base; - * evmcs->host_gdtr_base = vmcs12->host_gdtr_base; - * evmcs->host_idtr_base = vmcs12->host_idtr_base; - * evmcs->host_rsp = vmcs12->host_rsp; - * sync_vmcs12() doesn't read these: - * evmcs->io_bitmap_a = vmcs12->io_bitmap_a; - * evmcs->io_bitmap_b = vmcs12->io_bitmap_b; - * evmcs->msr_bitmap = vmcs12->msr_bitmap; - * evmcs->ept_pointer = vmcs12->ept_pointer; - * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap; - * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr; - * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr; - * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr; - * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0; - * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1; - * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2; - * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3; - * evmcs->tpr_threshold = vmcs12->tpr_threshold; - * evmcs->virtual_processor_id = vmcs12->virtual_processor_id; - * evmcs->exception_bitmap = vmcs12->exception_bitmap; - * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer; - * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control; - * evmcs->vm_exit_controls = vmcs12->vm_exit_controls; - * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control; - * evmcs->page_fault_error_code_mask = - * vmcs12->page_fault_error_code_mask; - * evmcs->page_fault_error_code_match = - * vmcs12->page_fault_error_code_match; - * evmcs->cr3_target_count = vmcs12->cr3_target_count; - * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr; - * evmcs->tsc_offset = vmcs12->tsc_offset; - * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl; - * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask; - * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask; - * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow; - * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow; - * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count; - * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count; - * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count; - * - * Not present in struct vmcs12: - * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx; - * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi; - * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi; - * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip; - */ - - evmcs->guest_es_selector = vmcs12->guest_es_selector; - evmcs->guest_cs_selector = vmcs12->guest_cs_selector; - evmcs->guest_ss_selector = vmcs12->guest_ss_selector; - evmcs->guest_ds_selector = vmcs12->guest_ds_selector; - evmcs->guest_fs_selector = vmcs12->guest_fs_selector; - evmcs->guest_gs_selector = vmcs12->guest_gs_selector; - evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector; - evmcs->guest_tr_selector = vmcs12->guest_tr_selector; - - evmcs->guest_es_limit = vmcs12->guest_es_limit; - evmcs->guest_cs_limit = vmcs12->guest_cs_limit; - evmcs->guest_ss_limit = vmcs12->guest_ss_limit; - evmcs->guest_ds_limit = vmcs12->guest_ds_limit; - evmcs->guest_fs_limit = vmcs12->guest_fs_limit; - evmcs->guest_gs_limit = vmcs12->guest_gs_limit; - evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit; - evmcs->guest_tr_limit = vmcs12->guest_tr_limit; - evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit; - evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit; - - evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes; - evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes; - evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes; - evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes; - evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes; - evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes; - evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes; - evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes; - - evmcs->guest_es_base = vmcs12->guest_es_base; - evmcs->guest_cs_base = vmcs12->guest_cs_base; - evmcs->guest_ss_base = vmcs12->guest_ss_base; - evmcs->guest_ds_base = vmcs12->guest_ds_base; - evmcs->guest_fs_base = vmcs12->guest_fs_base; - evmcs->guest_gs_base = vmcs12->guest_gs_base; - evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base; - evmcs->guest_tr_base = vmcs12->guest_tr_base; - evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base; - evmcs->guest_idtr_base = vmcs12->guest_idtr_base; - - evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat; - evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer; - - evmcs->guest_pdptr0 = vmcs12->guest_pdptr0; - evmcs->guest_pdptr1 = vmcs12->guest_pdptr1; - evmcs->guest_pdptr2 = vmcs12->guest_pdptr2; - evmcs->guest_pdptr3 = vmcs12->guest_pdptr3; - - evmcs->guest_pending_dbg_exceptions = - vmcs12->guest_pending_dbg_exceptions; - evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp; - evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip; - - evmcs->guest_activity_state = vmcs12->guest_activity_state; - evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs; - - evmcs->guest_cr0 = vmcs12->guest_cr0; - evmcs->guest_cr3 = vmcs12->guest_cr3; - evmcs->guest_cr4 = vmcs12->guest_cr4; - evmcs->guest_dr7 = vmcs12->guest_dr7; - - evmcs->guest_physical_address = vmcs12->guest_physical_address; - - evmcs->vm_instruction_error = vmcs12->vm_instruction_error; - evmcs->vm_exit_reason = vmcs12->vm_exit_reason; - evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info; - evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code; - evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field; - evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code; - evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len; - evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info; - - evmcs->exit_qualification = vmcs12->exit_qualification; - - evmcs->guest_linear_address = vmcs12->guest_linear_address; - evmcs->guest_rsp = vmcs12->guest_rsp; - evmcs->guest_rflags = vmcs12->guest_rflags; - - evmcs->guest_interruptibility_info = - vmcs12->guest_interruptibility_info; - evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control; - evmcs->vm_entry_controls = vmcs12->vm_entry_controls; - evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field; - evmcs->vm_entry_exception_error_code = - vmcs12->vm_entry_exception_error_code; - evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len; - - evmcs->guest_rip = vmcs12->guest_rip; - - evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs; - - return 0; -} - -/* - * Copy the writable VMCS shadow fields back to the VMCS12, in case - * they have been modified by the L1 guest. Note that the "read-only" - * VM-exit information fields are actually writable if the vCPU is - * configured to support "VMWRITE to any supported field in the VMCS." - */ -static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx) -{ - const u16 *fields[] = { - shadow_read_write_fields, - shadow_read_only_fields - }; - const int max_fields[] = { - max_shadow_read_write_fields, - max_shadow_read_only_fields - }; - int i, q; - unsigned long field; - u64 field_value; - struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs; - - preempt_disable(); - - vmcs_load(shadow_vmcs); - - for (q = 0; q < ARRAY_SIZE(fields); q++) { - for (i = 0; i < max_fields[q]; i++) { - field = fields[q][i]; - field_value = __vmcs_readl(field); - vmcs12_write_any(get_vmcs12(&vmx->vcpu), field, field_value); - } - /* - * Skip the VM-exit information fields if they are read-only. - */ - if (!nested_cpu_has_vmwrite_any_field(&vmx->vcpu)) - break; - } - - vmcs_clear(shadow_vmcs); - vmcs_load(vmx->loaded_vmcs->vmcs); - - preempt_enable(); -} - -static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx) -{ - const u16 *fields[] = { - shadow_read_write_fields, - shadow_read_only_fields - }; - const int max_fields[] = { - max_shadow_read_write_fields, - max_shadow_read_only_fields - }; - int i, q; - unsigned long field; - u64 field_value = 0; - struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs; - - vmcs_load(shadow_vmcs); - - for (q = 0; q < ARRAY_SIZE(fields); q++) { - for (i = 0; i < max_fields[q]; i++) { - field = fields[q][i]; - vmcs12_read_any(get_vmcs12(&vmx->vcpu), field, &field_value); - __vmcs_writel(field, field_value); - } - } - - vmcs_clear(shadow_vmcs); - vmcs_load(vmx->loaded_vmcs->vmcs); -} - -static int handle_vmread(struct kvm_vcpu *vcpu) -{ - unsigned long field; - u64 field_value; - unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); - u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); - gva_t gva = 0; - struct vmcs12 *vmcs12; - - if (!nested_vmx_check_permission(vcpu)) - return 1; - - if (to_vmx(vcpu)->nested.current_vmptr == -1ull) - return nested_vmx_failInvalid(vcpu); - - if (!is_guest_mode(vcpu)) - vmcs12 = get_vmcs12(vcpu); - else { - /* - * When vmcs->vmcs_link_pointer is -1ull, any VMREAD - * to shadowed-field sets the ALU flags for VMfailInvalid. - */ - if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull) - return nested_vmx_failInvalid(vcpu); - vmcs12 = get_shadow_vmcs12(vcpu); - } - - /* Decode instruction info and find the field to read */ - field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf)); - /* Read the field, zero-extended to a u64 field_value */ - if (vmcs12_read_any(vmcs12, field, &field_value) < 0) - return nested_vmx_failValid(vcpu, - VMXERR_UNSUPPORTED_VMCS_COMPONENT); - - /* - * Now copy part of this value to register or memory, as requested. - * Note that the number of bits actually copied is 32 or 64 depending - * on the guest's mode (32 or 64 bit), not on the given field's length. - */ - if (vmx_instruction_info & (1u << 10)) { - kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf), - field_value); - } else { - if (get_vmx_mem_address(vcpu, exit_qualification, - vmx_instruction_info, true, &gva)) - return 1; - /* _system ok, nested_vmx_check_permission has verified cpl=0 */ - kvm_write_guest_virt_system(vcpu, gva, &field_value, - (is_long_mode(vcpu) ? 8 : 4), NULL); - } - - return nested_vmx_succeed(vcpu); -} - - -static int handle_vmwrite(struct kvm_vcpu *vcpu) -{ - unsigned long field; - gva_t gva; - struct vcpu_vmx *vmx = to_vmx(vcpu); - unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); - u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); - - /* The value to write might be 32 or 64 bits, depending on L1's long - * mode, and eventually we need to write that into a field of several - * possible lengths. The code below first zero-extends the value to 64 - * bit (field_value), and then copies only the appropriate number of - * bits into the vmcs12 field. - */ - u64 field_value = 0; - struct x86_exception e; - struct vmcs12 *vmcs12; - - if (!nested_vmx_check_permission(vcpu)) - return 1; - - if (vmx->nested.current_vmptr == -1ull) - return nested_vmx_failInvalid(vcpu); - - if (vmx_instruction_info & (1u << 10)) - field_value = kvm_register_readl(vcpu, - (((vmx_instruction_info) >> 3) & 0xf)); - else { - if (get_vmx_mem_address(vcpu, exit_qualification, - vmx_instruction_info, false, &gva)) - return 1; - if (kvm_read_guest_virt(vcpu, gva, &field_value, - (is_64_bit_mode(vcpu) ? 8 : 4), &e)) { - kvm_inject_page_fault(vcpu, &e); - return 1; - } - } - - - field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf)); - /* - * If the vCPU supports "VMWRITE to any supported field in the - * VMCS," then the "read-only" fields are actually read/write. - */ - if (vmcs_field_readonly(field) && - !nested_cpu_has_vmwrite_any_field(vcpu)) - return nested_vmx_failValid(vcpu, - VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT); - - if (!is_guest_mode(vcpu)) - vmcs12 = get_vmcs12(vcpu); - else { - /* - * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE - * to shadowed-field sets the ALU flags for VMfailInvalid. - */ - if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull) - return nested_vmx_failInvalid(vcpu); - vmcs12 = get_shadow_vmcs12(vcpu); - } - - if (vmcs12_write_any(vmcs12, field, field_value) < 0) - return nested_vmx_failValid(vcpu, - VMXERR_UNSUPPORTED_VMCS_COMPONENT); - - /* - * Do not track vmcs12 dirty-state if in guest-mode - * as we actually dirty shadow vmcs12 instead of vmcs12. - */ - if (!is_guest_mode(vcpu)) { - switch (field) { -#define SHADOW_FIELD_RW(x) case x: -#include "vmx_shadow_fields.h" - /* - * The fields that can be updated by L1 without a vmexit are - * always updated in the vmcs02, the others go down the slow - * path of prepare_vmcs02. - */ - break; - default: - vmx->nested.dirty_vmcs12 = true; - break; - } - } - - return nested_vmx_succeed(vcpu); -} - -static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr) -{ - vmx->nested.current_vmptr = vmptr; - if (enable_shadow_vmcs) { - vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL, - SECONDARY_EXEC_SHADOW_VMCS); - vmcs_write64(VMCS_LINK_POINTER, - __pa(vmx->vmcs01.shadow_vmcs)); - vmx->nested.need_vmcs12_sync = true; - } - vmx->nested.dirty_vmcs12 = true; -} - -/* Emulate the VMPTRLD instruction */ -static int handle_vmptrld(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - gpa_t vmptr; - - if (!nested_vmx_check_permission(vcpu)) - return 1; - - if (nested_vmx_get_vmptr(vcpu, &vmptr)) - return 1; - - if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) - return nested_vmx_failValid(vcpu, - VMXERR_VMPTRLD_INVALID_ADDRESS); - - if (vmptr == vmx->nested.vmxon_ptr) - return nested_vmx_failValid(vcpu, - VMXERR_VMPTRLD_VMXON_POINTER); - - /* Forbid normal VMPTRLD if Enlightened version was used */ - if (vmx->nested.hv_evmcs) - return 1; - - if (vmx->nested.current_vmptr != vmptr) { - struct vmcs12 *new_vmcs12; - struct page *page; - page = kvm_vcpu_gpa_to_page(vcpu, vmptr); - if (is_error_page(page)) - return nested_vmx_failInvalid(vcpu); - - new_vmcs12 = kmap(page); - if (new_vmcs12->hdr.revision_id != VMCS12_REVISION || - (new_vmcs12->hdr.shadow_vmcs && - !nested_cpu_has_vmx_shadow_vmcs(vcpu))) { - kunmap(page); - kvm_release_page_clean(page); - return nested_vmx_failValid(vcpu, - VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID); - } - - nested_release_vmcs12(vcpu); - - /* - * Load VMCS12 from guest memory since it is not already - * cached. - */ - memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE); - kunmap(page); - kvm_release_page_clean(page); - - set_current_vmptr(vmx, vmptr); - } - - return nested_vmx_succeed(vcpu); -} - -/* - * This is an equivalent of the nested hypervisor executing the vmptrld - * instruction. - */ -static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu, - bool from_launch) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct hv_vp_assist_page assist_page; - - if (likely(!vmx->nested.enlightened_vmcs_enabled)) - return 1; - - if (unlikely(!kvm_hv_get_assist_page(vcpu, &assist_page))) - return 1; - - if (unlikely(!assist_page.enlighten_vmentry)) - return 1; - - if (unlikely(assist_page.current_nested_vmcs != - vmx->nested.hv_evmcs_vmptr)) { - - if (!vmx->nested.hv_evmcs) - vmx->nested.current_vmptr = -1ull; - - nested_release_evmcs(vcpu); - - vmx->nested.hv_evmcs_page = kvm_vcpu_gpa_to_page( - vcpu, assist_page.current_nested_vmcs); - - if (unlikely(is_error_page(vmx->nested.hv_evmcs_page))) - return 0; - - vmx->nested.hv_evmcs = kmap(vmx->nested.hv_evmcs_page); - - /* - * Currently, KVM only supports eVMCS version 1 - * (== KVM_EVMCS_VERSION) and thus we expect guest to set this - * value to first u32 field of eVMCS which should specify eVMCS - * VersionNumber. - * - * Guest should be aware of supported eVMCS versions by host by - * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is - * expected to set this CPUID leaf according to the value - * returned in vmcs_version from nested_enable_evmcs(). - * - * However, it turns out that Microsoft Hyper-V fails to comply - * to their own invented interface: When Hyper-V use eVMCS, it - * just sets first u32 field of eVMCS to revision_id specified - * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number - * which is one of the supported versions specified in - * CPUID.0x4000000A.EAX[0:15]. - * - * To overcome Hyper-V bug, we accept here either a supported - * eVMCS version or VMCS12 revision_id as valid values for first - * u32 field of eVMCS. - */ - if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) && - (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) { - nested_release_evmcs(vcpu); - return 0; - } - - vmx->nested.dirty_vmcs12 = true; - /* - * As we keep L2 state for one guest only 'hv_clean_fields' mask - * can't be used when we switch between them. Reset it here for - * simplicity. - */ - vmx->nested.hv_evmcs->hv_clean_fields &= - ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; - vmx->nested.hv_evmcs_vmptr = assist_page.current_nested_vmcs; - - /* - * Unlike normal vmcs12, enlightened vmcs12 is not fully - * reloaded from guest's memory (read only fields, fields not - * present in struct hv_enlightened_vmcs, ...). Make sure there - * are no leftovers. - */ - if (from_launch) { - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - memset(vmcs12, 0, sizeof(*vmcs12)); - vmcs12->hdr.revision_id = VMCS12_REVISION; - } - - } - return 1; -} - -/* Emulate the VMPTRST instruction */ -static int handle_vmptrst(struct kvm_vcpu *vcpu) -{ - unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION); - u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO); - gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr; - struct x86_exception e; - gva_t gva; - - if (!nested_vmx_check_permission(vcpu)) - return 1; - - if (unlikely(to_vmx(vcpu)->nested.hv_evmcs)) - return 1; - - if (get_vmx_mem_address(vcpu, exit_qual, instr_info, true, &gva)) - return 1; - /* *_system ok, nested_vmx_check_permission has verified cpl=0 */ - if (kvm_write_guest_virt_system(vcpu, gva, (void *)¤t_vmptr, - sizeof(gpa_t), &e)) { - kvm_inject_page_fault(vcpu, &e); - return 1; - } - return nested_vmx_succeed(vcpu); -} - -/* Emulate the INVEPT instruction */ -static int handle_invept(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - u32 vmx_instruction_info, types; - unsigned long type; - gva_t gva; - struct x86_exception e; - struct { - u64 eptp, gpa; - } operand; - - if (!(vmx->nested.msrs.secondary_ctls_high & - SECONDARY_EXEC_ENABLE_EPT) || - !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) { - kvm_queue_exception(vcpu, UD_VECTOR); - return 1; - } - - if (!nested_vmx_check_permission(vcpu)) - return 1; - - vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); - type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf); - - types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6; - - if (type >= 32 || !(types & (1 << type))) - return nested_vmx_failValid(vcpu, - VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); - - /* According to the Intel VMX instruction reference, the memory - * operand is read even if it isn't needed (e.g., for type==global) - */ - if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), - vmx_instruction_info, false, &gva)) - return 1; - if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) { - kvm_inject_page_fault(vcpu, &e); - return 1; - } - - switch (type) { - case VMX_EPT_EXTENT_GLOBAL: - /* - * TODO: track mappings and invalidate - * single context requests appropriately - */ - case VMX_EPT_EXTENT_CONTEXT: - kvm_mmu_sync_roots(vcpu); - kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); - break; - default: - BUG_ON(1); - break; - } - - return nested_vmx_succeed(vcpu); -} - -static u16 nested_get_vpid02(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid; -} - -static int handle_invvpid(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - u32 vmx_instruction_info; - unsigned long type, types; - gva_t gva; - struct x86_exception e; - struct { - u64 vpid; - u64 gla; - } operand; - u16 vpid02; - - if (!(vmx->nested.msrs.secondary_ctls_high & - SECONDARY_EXEC_ENABLE_VPID) || - !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) { - kvm_queue_exception(vcpu, UD_VECTOR); - return 1; - } - - if (!nested_vmx_check_permission(vcpu)) - return 1; - - vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); - type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf); - - types = (vmx->nested.msrs.vpid_caps & - VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8; - - if (type >= 32 || !(types & (1 << type))) - return nested_vmx_failValid(vcpu, - VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); - - /* according to the intel vmx instruction reference, the memory - * operand is read even if it isn't needed (e.g., for type==global) - */ - if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), - vmx_instruction_info, false, &gva)) - return 1; - if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) { - kvm_inject_page_fault(vcpu, &e); - return 1; - } - if (operand.vpid >> 16) - return nested_vmx_failValid(vcpu, - VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); - - vpid02 = nested_get_vpid02(vcpu); - switch (type) { - case VMX_VPID_EXTENT_INDIVIDUAL_ADDR: - if (!operand.vpid || - is_noncanonical_address(operand.gla, vcpu)) - return nested_vmx_failValid(vcpu, - VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); - if (cpu_has_vmx_invvpid_individual_addr()) { - __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR, - vpid02, operand.gla); - } else - __vmx_flush_tlb(vcpu, vpid02, false); - break; - case VMX_VPID_EXTENT_SINGLE_CONTEXT: - case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL: - if (!operand.vpid) - return nested_vmx_failValid(vcpu, - VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); - __vmx_flush_tlb(vcpu, vpid02, false); - break; - case VMX_VPID_EXTENT_ALL_CONTEXT: - __vmx_flush_tlb(vcpu, vpid02, false); - break; - default: - WARN_ON_ONCE(1); - return kvm_skip_emulated_instruction(vcpu); - } - - return nested_vmx_succeed(vcpu); -} - -static int handle_invpcid(struct kvm_vcpu *vcpu) -{ - u32 vmx_instruction_info; - unsigned long type; - bool pcid_enabled; - gva_t gva; - struct x86_exception e; - unsigned i; - unsigned long roots_to_free = 0; - struct { - u64 pcid; - u64 gla; - } operand; - - if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { - kvm_queue_exception(vcpu, UD_VECTOR); - return 1; - } - - vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); - type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf); - - if (type > 3) { - kvm_inject_gp(vcpu, 0); - return 1; - } - - /* According to the Intel instruction reference, the memory operand - * is read even if it isn't needed (e.g., for type==all) - */ - if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), - vmx_instruction_info, false, &gva)) - return 1; - - if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) { - kvm_inject_page_fault(vcpu, &e); - return 1; - } - - if (operand.pcid >> 12 != 0) { - kvm_inject_gp(vcpu, 0); - return 1; - } - - pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); - - switch (type) { - case INVPCID_TYPE_INDIV_ADDR: - if ((!pcid_enabled && (operand.pcid != 0)) || - is_noncanonical_address(operand.gla, vcpu)) { - kvm_inject_gp(vcpu, 0); - return 1; - } - kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); - return kvm_skip_emulated_instruction(vcpu); - - case INVPCID_TYPE_SINGLE_CTXT: - if (!pcid_enabled && (operand.pcid != 0)) { - kvm_inject_gp(vcpu, 0); - return 1; - } - - if (kvm_get_active_pcid(vcpu) == operand.pcid) { - kvm_mmu_sync_roots(vcpu); - kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); - } - - for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) - if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3) - == operand.pcid) - roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); - - kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free); - /* - * If neither the current cr3 nor any of the prev_roots use the - * given PCID, then nothing needs to be done here because a - * resync will happen anyway before switching to any other CR3. - */ - - return kvm_skip_emulated_instruction(vcpu); - - case INVPCID_TYPE_ALL_NON_GLOBAL: - /* - * Currently, KVM doesn't mark global entries in the shadow - * page tables, so a non-global flush just degenerates to a - * global flush. If needed, we could optimize this later by - * keeping track of global entries in shadow page tables. - */ - - /* fall-through */ - case INVPCID_TYPE_ALL_INCL_GLOBAL: - kvm_mmu_unload(vcpu); - return kvm_skip_emulated_instruction(vcpu); - - default: - BUG(); /* We have already checked above that type <= 3 */ - } -} - -static int handle_pml_full(struct kvm_vcpu *vcpu) -{ - unsigned long exit_qualification; - - trace_kvm_pml_full(vcpu->vcpu_id); - - exit_qualification = vmcs_readl(EXIT_QUALIFICATION); - - /* - * PML buffer FULL happened while executing iret from NMI, - * "blocked by NMI" bit has to be set before next VM entry. - */ - if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && - enable_vnmi && - (exit_qualification & INTR_INFO_UNBLOCK_NMI)) - vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, - GUEST_INTR_STATE_NMI); - - /* - * PML buffer already flushed at beginning of VMEXIT. Nothing to do - * here.., and there's no userspace involvement needed for PML. - */ - return 1; -} - -static int handle_preemption_timer(struct kvm_vcpu *vcpu) -{ - if (!to_vmx(vcpu)->req_immediate_exit) - kvm_lapic_expired_hv_timer(vcpu); - return 1; -} - -static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - int maxphyaddr = cpuid_maxphyaddr(vcpu); - - /* Check for memory type validity */ - switch (address & VMX_EPTP_MT_MASK) { - case VMX_EPTP_MT_UC: - if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)) - return false; - break; - case VMX_EPTP_MT_WB: - if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)) - return false; - break; - default: - return false; - } - - /* only 4 levels page-walk length are valid */ - if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4) - return false; - - /* Reserved bits should not be set */ - if (address >> maxphyaddr || ((address >> 7) & 0x1f)) - return false; - - /* AD, if set, should be supported */ - if (address & VMX_EPTP_AD_ENABLE_BIT) { - if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)) - return false; - } - - return true; -} - -static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) -{ - u32 index = vcpu->arch.regs[VCPU_REGS_RCX]; - u64 address; - bool accessed_dirty; - struct kvm_mmu *mmu = vcpu->arch.walk_mmu; - - if (!nested_cpu_has_eptp_switching(vmcs12) || - !nested_cpu_has_ept(vmcs12)) - return 1; - - if (index >= VMFUNC_EPTP_ENTRIES) - return 1; - - - if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT, - &address, index * 8, 8)) - return 1; - - accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT); - - /* - * If the (L2) guest does a vmfunc to the currently - * active ept pointer, we don't have to do anything else - */ - if (vmcs12->ept_pointer != address) { - if (!valid_ept_address(vcpu, address)) - return 1; - - kvm_mmu_unload(vcpu); - mmu->ept_ad = accessed_dirty; - mmu->mmu_role.base.ad_disabled = !accessed_dirty; - vmcs12->ept_pointer = address; - /* - * TODO: Check what's the correct approach in case - * mmu reload fails. Currently, we just let the next - * reload potentially fail - */ - kvm_mmu_reload(vcpu); - } - - return 0; -} - -static int handle_vmfunc(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct vmcs12 *vmcs12; - u32 function = vcpu->arch.regs[VCPU_REGS_RAX]; - - /* - * VMFUNC is only supported for nested guests, but we always enable the - * secondary control for simplicity; for non-nested mode, fake that we - * didn't by injecting #UD. - */ - if (!is_guest_mode(vcpu)) { - kvm_queue_exception(vcpu, UD_VECTOR); - return 1; - } - - vmcs12 = get_vmcs12(vcpu); - if ((vmcs12->vm_function_control & (1 << function)) == 0) - goto fail; - - switch (function) { - case 0: - if (nested_vmx_eptp_switching(vcpu, vmcs12)) - goto fail; - break; - default: - goto fail; - } - return kvm_skip_emulated_instruction(vcpu); - -fail: - nested_vmx_vmexit(vcpu, vmx->exit_reason, - vmcs_read32(VM_EXIT_INTR_INFO), - vmcs_readl(EXIT_QUALIFICATION)); - return 1; -} - -static int handle_encls(struct kvm_vcpu *vcpu) -{ - /* - * SGX virtualization is not yet supported. There is no software - * enable bit for SGX, so we have to trap ENCLS and inject a #UD - * to prevent the guest from executing ENCLS. - */ - kvm_queue_exception(vcpu, UD_VECTOR); - return 1; -} - -/* - * The exit handlers return 1 if the exit was handled fully and guest execution - * may resume. Otherwise they set the kvm_run parameter to indicate what needs - * to be done to userspace and return 0. - */ -static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { - [EXIT_REASON_EXCEPTION_NMI] = handle_exception, - [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, - [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, - [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, - [EXIT_REASON_IO_INSTRUCTION] = handle_io, - [EXIT_REASON_CR_ACCESS] = handle_cr, - [EXIT_REASON_DR_ACCESS] = handle_dr, - [EXIT_REASON_CPUID] = handle_cpuid, - [EXIT_REASON_MSR_READ] = handle_rdmsr, - [EXIT_REASON_MSR_WRITE] = handle_wrmsr, - [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window, - [EXIT_REASON_HLT] = handle_halt, - [EXIT_REASON_INVD] = handle_invd, - [EXIT_REASON_INVLPG] = handle_invlpg, - [EXIT_REASON_RDPMC] = handle_rdpmc, - [EXIT_REASON_VMCALL] = handle_vmcall, - [EXIT_REASON_VMCLEAR] = handle_vmclear, - [EXIT_REASON_VMLAUNCH] = handle_vmlaunch, - [EXIT_REASON_VMPTRLD] = handle_vmptrld, - [EXIT_REASON_VMPTRST] = handle_vmptrst, - [EXIT_REASON_VMREAD] = handle_vmread, - [EXIT_REASON_VMRESUME] = handle_vmresume, - [EXIT_REASON_VMWRITE] = handle_vmwrite, - [EXIT_REASON_VMOFF] = handle_vmoff, - [EXIT_REASON_VMON] = handle_vmon, - [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, - [EXIT_REASON_APIC_ACCESS] = handle_apic_access, - [EXIT_REASON_APIC_WRITE] = handle_apic_write, - [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, - [EXIT_REASON_WBINVD] = handle_wbinvd, - [EXIT_REASON_XSETBV] = handle_xsetbv, - [EXIT_REASON_TASK_SWITCH] = handle_task_switch, - [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, - [EXIT_REASON_GDTR_IDTR] = handle_desc, - [EXIT_REASON_LDTR_TR] = handle_desc, - [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, - [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, - [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, - [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait, - [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, - [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor, - [EXIT_REASON_INVEPT] = handle_invept, - [EXIT_REASON_INVVPID] = handle_invvpid, - [EXIT_REASON_RDRAND] = handle_invalid_op, - [EXIT_REASON_RDSEED] = handle_invalid_op, - [EXIT_REASON_XSAVES] = handle_xsaves, - [EXIT_REASON_XRSTORS] = handle_xrstors, - [EXIT_REASON_PML_FULL] = handle_pml_full, - [EXIT_REASON_INVPCID] = handle_invpcid, - [EXIT_REASON_VMFUNC] = handle_vmfunc, - [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, - [EXIT_REASON_ENCLS] = handle_encls, -}; - -static const int kvm_vmx_max_exit_handlers = - ARRAY_SIZE(kvm_vmx_exit_handlers); - -static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) -{ - unsigned long exit_qualification; - gpa_t bitmap, last_bitmap; - unsigned int port; - int size; - u8 b; - - if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) - return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING); - - exit_qualification = vmcs_readl(EXIT_QUALIFICATION); - - port = exit_qualification >> 16; - size = (exit_qualification & 7) + 1; - - last_bitmap = (gpa_t)-1; - b = -1; - - while (size > 0) { - if (port < 0x8000) - bitmap = vmcs12->io_bitmap_a; - else if (port < 0x10000) - bitmap = vmcs12->io_bitmap_b; - else - return true; - bitmap += (port & 0x7fff) / 8; - - if (last_bitmap != bitmap) - if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1)) - return true; - if (b & (1 << (port & 7))) - return true; - - port++; - size--; - last_bitmap = bitmap; - } - - return false; -} - -/* - * Return 1 if we should exit from L2 to L1 to handle an MSR access access, - * rather than handle it ourselves in L0. I.e., check whether L1 expressed - * disinterest in the current event (read or write a specific MSR) by using an - * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps. - */ -static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12, u32 exit_reason) -{ - u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX]; - gpa_t bitmap; - - if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) - return true; - - /* - * The MSR_BITMAP page is divided into four 1024-byte bitmaps, - * for the four combinations of read/write and low/high MSR numbers. - * First we need to figure out which of the four to use: - */ - bitmap = vmcs12->msr_bitmap; - if (exit_reason == EXIT_REASON_MSR_WRITE) - bitmap += 2048; - if (msr_index >= 0xc0000000) { - msr_index -= 0xc0000000; - bitmap += 1024; - } - - /* Then read the msr_index'th bit from this bitmap: */ - if (msr_index < 1024*8) { - unsigned char b; - if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1)) - return true; - return 1 & (b >> (msr_index & 7)); - } else - return true; /* let L1 handle the wrong parameter */ -} - -/* - * Return 1 if we should exit from L2 to L1 to handle a CR access exit, - * rather than handle it ourselves in L0. I.e., check if L1 wanted to - * intercept (via guest_host_mask etc.) the current event. - */ -static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) -{ - unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); - int cr = exit_qualification & 15; - int reg; - unsigned long val; - - switch ((exit_qualification >> 4) & 3) { - case 0: /* mov to cr */ - reg = (exit_qualification >> 8) & 15; - val = kvm_register_readl(vcpu, reg); - switch (cr) { - case 0: - if (vmcs12->cr0_guest_host_mask & - (val ^ vmcs12->cr0_read_shadow)) - return true; - break; - case 3: - if ((vmcs12->cr3_target_count >= 1 && - vmcs12->cr3_target_value0 == val) || - (vmcs12->cr3_target_count >= 2 && - vmcs12->cr3_target_value1 == val) || - (vmcs12->cr3_target_count >= 3 && - vmcs12->cr3_target_value2 == val) || - (vmcs12->cr3_target_count >= 4 && - vmcs12->cr3_target_value3 == val)) - return false; - if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING)) - return true; - break; - case 4: - if (vmcs12->cr4_guest_host_mask & - (vmcs12->cr4_read_shadow ^ val)) - return true; - break; - case 8: - if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING)) - return true; - break; - } - break; - case 2: /* clts */ - if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) && - (vmcs12->cr0_read_shadow & X86_CR0_TS)) - return true; - break; - case 1: /* mov from cr */ - switch (cr) { - case 3: - if (vmcs12->cpu_based_vm_exec_control & - CPU_BASED_CR3_STORE_EXITING) - return true; - break; - case 8: - if (vmcs12->cpu_based_vm_exec_control & - CPU_BASED_CR8_STORE_EXITING) - return true; - break; - } - break; - case 3: /* lmsw */ - /* - * lmsw can change bits 1..3 of cr0, and only set bit 0 of - * cr0. Other attempted changes are ignored, with no exit. - */ - val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; - if (vmcs12->cr0_guest_host_mask & 0xe & - (val ^ vmcs12->cr0_read_shadow)) - return true; - if ((vmcs12->cr0_guest_host_mask & 0x1) && - !(vmcs12->cr0_read_shadow & 0x1) && - (val & 0x1)) - return true; - break; - } - return false; -} - -static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12, gpa_t bitmap) -{ - u32 vmx_instruction_info; - unsigned long field; - u8 b; - - if (!nested_cpu_has_shadow_vmcs(vmcs12)) - return true; - - /* Decode instruction info and find the field to access */ - vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); - field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf)); - - /* Out-of-range fields always cause a VM exit from L2 to L1 */ - if (field >> 15) - return true; - - if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1)) - return true; - - return 1 & (b >> (field & 7)); -} - -/* - * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we - * should handle it ourselves in L0 (and then continue L2). Only call this - * when in is_guest_mode (L2). - */ -static bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason) -{ - u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO); - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - - if (vmx->nested.nested_run_pending) - return false; - - if (unlikely(vmx->fail)) { - pr_info_ratelimited("%s failed vm entry %x\n", __func__, - vmcs_read32(VM_INSTRUCTION_ERROR)); - return true; - } - - /* - * The host physical addresses of some pages of guest memory - * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC - * Page). The CPU may write to these pages via their host - * physical address while L2 is running, bypassing any - * address-translation-based dirty tracking (e.g. EPT write - * protection). - * - * Mark them dirty on every exit from L2 to prevent them from - * getting out of sync with dirty tracking. - */ - nested_mark_vmcs12_pages_dirty(vcpu); - - trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason, - vmcs_readl(EXIT_QUALIFICATION), - vmx->idt_vectoring_info, - intr_info, - vmcs_read32(VM_EXIT_INTR_ERROR_CODE), - KVM_ISA_VMX); - - switch (exit_reason) { - case EXIT_REASON_EXCEPTION_NMI: - if (is_nmi(intr_info)) - return false; - else if (is_page_fault(intr_info)) - return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept; - else if (is_debug(intr_info) && - vcpu->guest_debug & - (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) - return false; - else if (is_breakpoint(intr_info) && - vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) - return false; - return vmcs12->exception_bitmap & - (1u << (intr_info & INTR_INFO_VECTOR_MASK)); - case EXIT_REASON_EXTERNAL_INTERRUPT: - return false; - case EXIT_REASON_TRIPLE_FAULT: - return true; - case EXIT_REASON_PENDING_INTERRUPT: - return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING); - case EXIT_REASON_NMI_WINDOW: - return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING); - case EXIT_REASON_TASK_SWITCH: - return true; - case EXIT_REASON_CPUID: - return true; - case EXIT_REASON_HLT: - return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING); - case EXIT_REASON_INVD: - return true; - case EXIT_REASON_INVLPG: - return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING); - case EXIT_REASON_RDPMC: - return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING); - case EXIT_REASON_RDRAND: - return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING); - case EXIT_REASON_RDSEED: - return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING); - case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP: - return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING); - case EXIT_REASON_VMREAD: - return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12, - vmcs12->vmread_bitmap); - case EXIT_REASON_VMWRITE: - return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12, - vmcs12->vmwrite_bitmap); - case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR: - case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD: - case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME: - case EXIT_REASON_VMOFF: case EXIT_REASON_VMON: - case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID: - /* - * VMX instructions trap unconditionally. This allows L1 to - * emulate them for its L2 guest, i.e., allows 3-level nesting! - */ - return true; - case EXIT_REASON_CR_ACCESS: - return nested_vmx_exit_handled_cr(vcpu, vmcs12); - case EXIT_REASON_DR_ACCESS: - return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING); - case EXIT_REASON_IO_INSTRUCTION: - return nested_vmx_exit_handled_io(vcpu, vmcs12); - case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR: - return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC); - case EXIT_REASON_MSR_READ: - case EXIT_REASON_MSR_WRITE: - return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason); - case EXIT_REASON_INVALID_STATE: - return true; - case EXIT_REASON_MWAIT_INSTRUCTION: - return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING); - case EXIT_REASON_MONITOR_TRAP_FLAG: - return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG); - case EXIT_REASON_MONITOR_INSTRUCTION: - return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING); - case EXIT_REASON_PAUSE_INSTRUCTION: - return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) || - nested_cpu_has2(vmcs12, - SECONDARY_EXEC_PAUSE_LOOP_EXITING); - case EXIT_REASON_MCE_DURING_VMENTRY: - return false; - case EXIT_REASON_TPR_BELOW_THRESHOLD: - return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW); - case EXIT_REASON_APIC_ACCESS: - case EXIT_REASON_APIC_WRITE: - case EXIT_REASON_EOI_INDUCED: - /* - * The controls for "virtualize APIC accesses," "APIC- - * register virtualization," and "virtual-interrupt - * delivery" only come from vmcs12. - */ - return true; - case EXIT_REASON_EPT_VIOLATION: - /* - * L0 always deals with the EPT violation. If nested EPT is - * used, and the nested mmu code discovers that the address is - * missing in the guest EPT table (EPT12), the EPT violation - * will be injected with nested_ept_inject_page_fault() - */ - return false; - case EXIT_REASON_EPT_MISCONFIG: - /* - * L2 never uses directly L1's EPT, but rather L0's own EPT - * table (shadow on EPT) or a merged EPT table that L0 built - * (EPT on EPT). So any problems with the structure of the - * table is L0's fault. - */ - return false; - case EXIT_REASON_INVPCID: - return - nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) && - nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING); - case EXIT_REASON_WBINVD: - return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING); - case EXIT_REASON_XSETBV: - return true; - case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS: - /* - * This should never happen, since it is not possible to - * set XSS to a non-zero value---neither in L1 nor in L2. - * If if it were, XSS would have to be checked against - * the XSS exit bitmap in vmcs12. - */ - return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES); - case EXIT_REASON_PREEMPTION_TIMER: - return false; - case EXIT_REASON_PML_FULL: - /* We emulate PML support to L1. */ - return false; - case EXIT_REASON_VMFUNC: - /* VM functions are emulated through L2->L0 vmexits. */ - return false; - case EXIT_REASON_ENCLS: - /* SGX is never exposed to L1 */ - return false; - default: - return true; - } -} - -static int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason) -{ - u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); - - /* - * At this point, the exit interruption info in exit_intr_info - * is only valid for EXCEPTION_NMI exits. For EXTERNAL_INTERRUPT - * we need to query the in-kernel LAPIC. - */ - WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT); - if ((exit_intr_info & - (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) == - (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) { - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - vmcs12->vm_exit_intr_error_code = - vmcs_read32(VM_EXIT_INTR_ERROR_CODE); - } - - nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info, - vmcs_readl(EXIT_QUALIFICATION)); - return 1; -} - -static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2) -{ - *info1 = vmcs_readl(EXIT_QUALIFICATION); - *info2 = vmcs_read32(VM_EXIT_INTR_INFO); -} - -static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) -{ - if (vmx->pml_pg) { - __free_page(vmx->pml_pg); - vmx->pml_pg = NULL; - } -} - -static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - u64 *pml_buf; - u16 pml_idx; - - pml_idx = vmcs_read16(GUEST_PML_INDEX); - - /* Do nothing if PML buffer is empty */ - if (pml_idx == (PML_ENTITY_NUM - 1)) - return; - - /* PML index always points to next available PML buffer entity */ - if (pml_idx >= PML_ENTITY_NUM) - pml_idx = 0; - else - pml_idx++; - - pml_buf = page_address(vmx->pml_pg); - for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { - u64 gpa; - - gpa = pml_buf[pml_idx]; - WARN_ON(gpa & (PAGE_SIZE - 1)); - kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); - } - - /* reset PML index */ - vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); -} - -/* - * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap. - * Called before reporting dirty_bitmap to userspace. - */ -static void kvm_flush_pml_buffers(struct kvm *kvm) -{ - int i; - struct kvm_vcpu *vcpu; - /* - * We only need to kick vcpu out of guest mode here, as PML buffer - * is flushed at beginning of all VMEXITs, and it's obvious that only - * vcpus running in guest are possible to have unflushed GPAs in PML - * buffer. - */ - kvm_for_each_vcpu(i, vcpu, kvm) - kvm_vcpu_kick(vcpu); -} - -static void vmx_dump_sel(char *name, uint32_t sel) -{ - pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", - name, vmcs_read16(sel), - vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), - vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), - vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); -} - -static void vmx_dump_dtsel(char *name, uint32_t limit) -{ - pr_err("%s limit=0x%08x, base=0x%016lx\n", - name, vmcs_read32(limit), - vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); -} - -static void dump_vmcs(void) -{ - u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); - u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); - u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); - u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); - u32 secondary_exec_control = 0; - unsigned long cr4 = vmcs_readl(GUEST_CR4); - u64 efer = vmcs_read64(GUEST_IA32_EFER); - int i, n; - - if (cpu_has_secondary_exec_ctrls()) - secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); - - pr_err("*** Guest State ***\n"); - pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", - vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), - vmcs_readl(CR0_GUEST_HOST_MASK)); - pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", - cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); - pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); - if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) && - (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA)) - { - pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", - vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); - pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", - vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); - } - pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", - vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); - pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", - vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); - pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", - vmcs_readl(GUEST_SYSENTER_ESP), - vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); - vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); - vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); - vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); - vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); - vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); - vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); - vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); - vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); - vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); - vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); - if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) || - (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER))) - pr_err("EFER = 0x%016llx PAT = 0x%016llx\n", - efer, vmcs_read64(GUEST_IA32_PAT)); - pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", - vmcs_read64(GUEST_IA32_DEBUGCTL), - vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); - if (cpu_has_load_perf_global_ctrl && - vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) - pr_err("PerfGlobCtl = 0x%016llx\n", - vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); - if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) - pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); - pr_err("Interruptibility = %08x ActivityState = %08x\n", - vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), - vmcs_read32(GUEST_ACTIVITY_STATE)); - if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) - pr_err("InterruptStatus = %04x\n", - vmcs_read16(GUEST_INTR_STATUS)); - - pr_err("*** Host State ***\n"); - pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", - vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); - pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", - vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), - vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), - vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), - vmcs_read16(HOST_TR_SELECTOR)); - pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", - vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), - vmcs_readl(HOST_TR_BASE)); - pr_err("GDTBase=%016lx IDTBase=%016lx\n", - vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); - pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", - vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), - vmcs_readl(HOST_CR4)); - pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", - vmcs_readl(HOST_IA32_SYSENTER_ESP), - vmcs_read32(HOST_IA32_SYSENTER_CS), - vmcs_readl(HOST_IA32_SYSENTER_EIP)); - if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER)) - pr_err("EFER = 0x%016llx PAT = 0x%016llx\n", - vmcs_read64(HOST_IA32_EFER), - vmcs_read64(HOST_IA32_PAT)); - if (cpu_has_load_perf_global_ctrl && - vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) - pr_err("PerfGlobCtl = 0x%016llx\n", - vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); - - pr_err("*** Control State ***\n"); - pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n", - pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control); - pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl); - pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", - vmcs_read32(EXCEPTION_BITMAP), - vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), - vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); - pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", - vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), - vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), - vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); - pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", - vmcs_read32(VM_EXIT_INTR_INFO), - vmcs_read32(VM_EXIT_INTR_ERROR_CODE), - vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); - pr_err(" reason=%08x qualification=%016lx\n", - vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); - pr_err("IDTVectoring: info=%08x errcode=%08x\n", - vmcs_read32(IDT_VECTORING_INFO_FIELD), - vmcs_read32(IDT_VECTORING_ERROR_CODE)); - pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); - if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) - pr_err("TSC Multiplier = 0x%016llx\n", - vmcs_read64(TSC_MULTIPLIER)); - if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) - pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); - if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) - pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); - if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) - pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); - n = vmcs_read32(CR3_TARGET_COUNT); - for (i = 0; i + 1 < n; i += 4) - pr_err("CR3 target%u=%016lx target%u=%016lx\n", - i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2), - i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2)); - if (i < n) - pr_err("CR3 target%u=%016lx\n", - i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2)); - if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) - pr_err("PLE Gap=%08x Window=%08x\n", - vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); - if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) - pr_err("Virtual processor ID = 0x%04x\n", - vmcs_read16(VIRTUAL_PROCESSOR_ID)); -} - -/* - * The guest has exited. See if we can fix it or if we need userspace - * assistance. - */ -static int vmx_handle_exit(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - u32 exit_reason = vmx->exit_reason; - u32 vectoring_info = vmx->idt_vectoring_info; - - trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX); - - /* - * Flush logged GPAs PML buffer, this will make dirty_bitmap more - * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before - * querying dirty_bitmap, we only need to kick all vcpus out of guest - * mode as if vcpus is in root mode, the PML buffer must has been - * flushed already. - */ - if (enable_pml) - vmx_flush_pml_buffer(vcpu); - - /* If guest state is invalid, start emulating */ - if (vmx->emulation_required) - return handle_invalid_guest_state(vcpu); - - if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason)) - return nested_vmx_reflect_vmexit(vcpu, exit_reason); - - if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) { - dump_vmcs(); - vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; - vcpu->run->fail_entry.hardware_entry_failure_reason - = exit_reason; - return 0; - } - - if (unlikely(vmx->fail)) { - vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; - vcpu->run->fail_entry.hardware_entry_failure_reason - = vmcs_read32(VM_INSTRUCTION_ERROR); - return 0; - } - - /* - * Note: - * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by - * delivery event since it indicates guest is accessing MMIO. - * The vm-exit can be triggered again after return to guest that - * will cause infinite loop. - */ - if ((vectoring_info & VECTORING_INFO_VALID_MASK) && - (exit_reason != EXIT_REASON_EXCEPTION_NMI && - exit_reason != EXIT_REASON_EPT_VIOLATION && - exit_reason != EXIT_REASON_PML_FULL && - exit_reason != EXIT_REASON_TASK_SWITCH)) { - vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; - vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; - vcpu->run->internal.ndata = 3; - vcpu->run->internal.data[0] = vectoring_info; - vcpu->run->internal.data[1] = exit_reason; - vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; - if (exit_reason == EXIT_REASON_EPT_MISCONFIG) { - vcpu->run->internal.ndata++; - vcpu->run->internal.data[3] = - vmcs_read64(GUEST_PHYSICAL_ADDRESS); - } - return 0; - } - - if (unlikely(!enable_vnmi && - vmx->loaded_vmcs->soft_vnmi_blocked)) { - if (vmx_interrupt_allowed(vcpu)) { - vmx->loaded_vmcs->soft_vnmi_blocked = 0; - } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && - vcpu->arch.nmi_pending) { - /* - * This CPU don't support us in finding the end of an - * NMI-blocked window if the guest runs with IRQs - * disabled. So we pull the trigger after 1 s of - * futile waiting, but inform the user about this. - */ - printk(KERN_WARNING "%s: Breaking out of NMI-blocked " - "state on VCPU %d after 1 s timeout\n", - __func__, vcpu->vcpu_id); - vmx->loaded_vmcs->soft_vnmi_blocked = 0; - } - } - - if (exit_reason < kvm_vmx_max_exit_handlers - && kvm_vmx_exit_handlers[exit_reason]) - return kvm_vmx_exit_handlers[exit_reason](vcpu); - else { - vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", - exit_reason); - kvm_queue_exception(vcpu, UD_VECTOR); - return 1; - } -} - -/* - * Software based L1D cache flush which is used when microcode providing - * the cache control MSR is not loaded. - * - * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to - * flush it is required to read in 64 KiB because the replacement algorithm - * is not exactly LRU. This could be sized at runtime via topology - * information but as all relevant affected CPUs have 32KiB L1D cache size - * there is no point in doing so. - */ -static void vmx_l1d_flush(struct kvm_vcpu *vcpu) -{ - int size = PAGE_SIZE << L1D_CACHE_ORDER; - - /* - * This code is only executed when the the flush mode is 'cond' or - * 'always' - */ - if (static_branch_likely(&vmx_l1d_flush_cond)) { - bool flush_l1d; - - /* - * Clear the per-vcpu flush bit, it gets set again - * either from vcpu_run() or from one of the unsafe - * VMEXIT handlers. - */ - flush_l1d = vcpu->arch.l1tf_flush_l1d; - vcpu->arch.l1tf_flush_l1d = false; - - /* - * Clear the per-cpu flush bit, it gets set again from - * the interrupt handlers. - */ - flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); - kvm_clear_cpu_l1tf_flush_l1d(); - - if (!flush_l1d) - return; - } - - vcpu->stat.l1d_flush++; - - if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { - wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); - return; - } - - asm volatile( - /* First ensure the pages are in the TLB */ - "xorl %%eax, %%eax\n" - ".Lpopulate_tlb:\n\t" - "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" - "addl $4096, %%eax\n\t" - "cmpl %%eax, %[size]\n\t" - "jne .Lpopulate_tlb\n\t" - "xorl %%eax, %%eax\n\t" - "cpuid\n\t" - /* Now fill the cache */ - "xorl %%eax, %%eax\n" - ".Lfill_cache:\n" - "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" - "addl $64, %%eax\n\t" - "cmpl %%eax, %[size]\n\t" - "jne .Lfill_cache\n\t" - "lfence\n" - :: [flush_pages] "r" (vmx_l1d_flush_pages), - [size] "r" (size) - : "eax", "ebx", "ecx", "edx"); -} - -static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) -{ - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - - if (is_guest_mode(vcpu) && - nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) - return; - - if (irr == -1 || tpr < irr) { - vmcs_write32(TPR_THRESHOLD, 0); - return; - } - - vmcs_write32(TPR_THRESHOLD, irr); -} - -static void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) -{ - u32 sec_exec_control; - - if (!lapic_in_kernel(vcpu)) - return; - - if (!flexpriority_enabled && - !cpu_has_vmx_virtualize_x2apic_mode()) - return; - - /* Postpone execution until vmcs01 is the current VMCS. */ - if (is_guest_mode(vcpu)) { - to_vmx(vcpu)->nested.change_vmcs01_virtual_apic_mode = true; - return; - } - - sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); - sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | - SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); - - switch (kvm_get_apic_mode(vcpu)) { - case LAPIC_MODE_INVALID: - WARN_ONCE(true, "Invalid local APIC state"); - case LAPIC_MODE_DISABLED: - break; - case LAPIC_MODE_XAPIC: - if (flexpriority_enabled) { - sec_exec_control |= - SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; - vmx_flush_tlb(vcpu, true); - } - break; - case LAPIC_MODE_X2APIC: - if (cpu_has_vmx_virtualize_x2apic_mode()) - sec_exec_control |= - SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; - break; - } - vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control); - - vmx_update_msr_bitmap(vcpu); -} - -static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa) -{ - if (!is_guest_mode(vcpu)) { - vmcs_write64(APIC_ACCESS_ADDR, hpa); - vmx_flush_tlb(vcpu, true); - } -} - -static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) -{ - u16 status; - u8 old; - - if (max_isr == -1) - max_isr = 0; - - status = vmcs_read16(GUEST_INTR_STATUS); - old = status >> 8; - if (max_isr != old) { - status &= 0xff; - status |= max_isr << 8; - vmcs_write16(GUEST_INTR_STATUS, status); - } -} - -static void vmx_set_rvi(int vector) -{ - u16 status; - u8 old; - - if (vector == -1) - vector = 0; - - status = vmcs_read16(GUEST_INTR_STATUS); - old = (u8)status & 0xff; - if ((u8)vector != old) { - status &= ~0xff; - status |= (u8)vector; - vmcs_write16(GUEST_INTR_STATUS, status); - } -} - -static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) -{ - /* - * When running L2, updating RVI is only relevant when - * vmcs12 virtual-interrupt-delivery enabled. - * However, it can be enabled only when L1 also - * intercepts external-interrupts and in that case - * we should not update vmcs02 RVI but instead intercept - * interrupt. Therefore, do nothing when running L2. - */ - if (!is_guest_mode(vcpu)) - vmx_set_rvi(max_irr); -} - -static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - int max_irr; - bool max_irr_updated; - - WARN_ON(!vcpu->arch.apicv_active); - if (pi_test_on(&vmx->pi_desc)) { - pi_clear_on(&vmx->pi_desc); - /* - * IOMMU can write to PIR.ON, so the barrier matters even on UP. - * But on x86 this is just a compiler barrier anyway. - */ - smp_mb__after_atomic(); - max_irr_updated = - kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); - - /* - * If we are running L2 and L1 has a new pending interrupt - * which can be injected, we should re-evaluate - * what should be done with this new L1 interrupt. - * If L1 intercepts external-interrupts, we should - * exit from L2 to L1. Otherwise, interrupt should be - * delivered directly to L2. - */ - if (is_guest_mode(vcpu) && max_irr_updated) { - if (nested_exit_on_intr(vcpu)) - kvm_vcpu_exiting_guest_mode(vcpu); - else - kvm_make_request(KVM_REQ_EVENT, vcpu); - } - } else { - max_irr = kvm_lapic_find_highest_irr(vcpu); - } - vmx_hwapic_irr_update(vcpu, max_irr); - return max_irr; -} - -static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu) -{ - u8 rvi = vmx_get_rvi(); - u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI); - - return ((rvi & 0xf0) > (vppr & 0xf0)); -} - -static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) -{ - if (!kvm_vcpu_apicv_active(vcpu)) - return; - - vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); - vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); - vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); - vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); -} - -static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - pi_clear_on(&vmx->pi_desc); - memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); -} - -static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx) -{ - u32 exit_intr_info = 0; - u16 basic_exit_reason = (u16)vmx->exit_reason; - - if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY - || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI)) - return; - - if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) - exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); - vmx->exit_intr_info = exit_intr_info; - - /* if exit due to PF check for async PF */ - if (is_page_fault(exit_intr_info)) - vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason(); - - /* Handle machine checks before interrupts are enabled */ - if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY || - is_machine_check(exit_intr_info)) - kvm_machine_check(); - - /* We need to handle NMIs before interrupts are enabled */ - if (is_nmi(exit_intr_info)) { - kvm_before_interrupt(&vmx->vcpu); - asm("int $2"); - kvm_after_interrupt(&vmx->vcpu); - } -} - -static void vmx_handle_external_intr(struct kvm_vcpu *vcpu) -{ - u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); - - if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK)) - == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) { - unsigned int vector; - unsigned long entry; - gate_desc *desc; - struct vcpu_vmx *vmx = to_vmx(vcpu); -#ifdef CONFIG_X86_64 - unsigned long tmp; -#endif - - vector = exit_intr_info & INTR_INFO_VECTOR_MASK; - desc = (gate_desc *)vmx->host_idt_base + vector; - entry = gate_offset(desc); - asm volatile( -#ifdef CONFIG_X86_64 - "mov %%" _ASM_SP ", %[sp]\n\t" - "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t" - "push $%c[ss]\n\t" - "push %[sp]\n\t" -#endif - "pushf\n\t" - __ASM_SIZE(push) " $%c[cs]\n\t" - CALL_NOSPEC - : -#ifdef CONFIG_X86_64 - [sp]"=&r"(tmp), -#endif - ASM_CALL_CONSTRAINT - : - THUNK_TARGET(entry), - [ss]"i"(__KERNEL_DS), - [cs]"i"(__KERNEL_CS) - ); - } -} -STACK_FRAME_NON_STANDARD(vmx_handle_external_intr); - -static bool vmx_has_emulated_msr(int index) -{ - switch (index) { - case MSR_IA32_SMBASE: - /* - * We cannot do SMM unless we can run the guest in big - * real mode. - */ - return enable_unrestricted_guest || emulate_invalid_guest_state; - case MSR_AMD64_VIRT_SPEC_CTRL: - /* This is AMD only. */ - return false; - default: - return true; - } -} - -static bool vmx_mpx_supported(void) -{ - return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) && - (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS); -} - -static bool vmx_xsaves_supported(void) -{ - return vmcs_config.cpu_based_2nd_exec_ctrl & - SECONDARY_EXEC_XSAVES; -} - -static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) -{ - u32 exit_intr_info; - bool unblock_nmi; - u8 vector; - bool idtv_info_valid; - - idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; - - if (enable_vnmi) { - if (vmx->loaded_vmcs->nmi_known_unmasked) - return; - /* - * Can't use vmx->exit_intr_info since we're not sure what - * the exit reason is. - */ - exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); - unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; - vector = exit_intr_info & INTR_INFO_VECTOR_MASK; - /* - * SDM 3: 27.7.1.2 (September 2008) - * Re-set bit "block by NMI" before VM entry if vmexit caused by - * a guest IRET fault. - * SDM 3: 23.2.2 (September 2008) - * Bit 12 is undefined in any of the following cases: - * If the VM exit sets the valid bit in the IDT-vectoring - * information field. - * If the VM exit is due to a double fault. - */ - if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && - vector != DF_VECTOR && !idtv_info_valid) - vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, - GUEST_INTR_STATE_NMI); - else - vmx->loaded_vmcs->nmi_known_unmasked = - !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) - & GUEST_INTR_STATE_NMI); - } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) - vmx->loaded_vmcs->vnmi_blocked_time += - ktime_to_ns(ktime_sub(ktime_get(), - vmx->loaded_vmcs->entry_time)); -} - -static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, - u32 idt_vectoring_info, - int instr_len_field, - int error_code_field) -{ - u8 vector; - int type; - bool idtv_info_valid; - - idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; - - vcpu->arch.nmi_injected = false; - kvm_clear_exception_queue(vcpu); - kvm_clear_interrupt_queue(vcpu); - - if (!idtv_info_valid) - return; - - kvm_make_request(KVM_REQ_EVENT, vcpu); - - vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; - type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; - - switch (type) { - case INTR_TYPE_NMI_INTR: - vcpu->arch.nmi_injected = true; - /* - * SDM 3: 27.7.1.2 (September 2008) - * Clear bit "block by NMI" before VM entry if a NMI - * delivery faulted. - */ - vmx_set_nmi_mask(vcpu, false); - break; - case INTR_TYPE_SOFT_EXCEPTION: - vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); - /* fall through */ - case INTR_TYPE_HARD_EXCEPTION: - if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { - u32 err = vmcs_read32(error_code_field); - kvm_requeue_exception_e(vcpu, vector, err); - } else - kvm_requeue_exception(vcpu, vector); - break; - case INTR_TYPE_SOFT_INTR: - vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); - /* fall through */ - case INTR_TYPE_EXT_INTR: - kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); - break; - default: - break; - } -} - -static void vmx_complete_interrupts(struct vcpu_vmx *vmx) -{ - __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, - VM_EXIT_INSTRUCTION_LEN, - IDT_VECTORING_ERROR_CODE); -} - -static void vmx_cancel_injection(struct kvm_vcpu *vcpu) -{ - __vmx_complete_interrupts(vcpu, - vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), - VM_ENTRY_INSTRUCTION_LEN, - VM_ENTRY_EXCEPTION_ERROR_CODE); - - vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); -} - -static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) -{ - int i, nr_msrs; - struct perf_guest_switch_msr *msrs; - - msrs = perf_guest_get_msrs(&nr_msrs); - - if (!msrs) - return; - - for (i = 0; i < nr_msrs; i++) - if (msrs[i].host == msrs[i].guest) - clear_atomic_switch_msr(vmx, msrs[i].msr); - else - add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, - msrs[i].host, false); -} - -static void vmx_arm_hv_timer(struct vcpu_vmx *vmx, u32 val) -{ - vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, val); - if (!vmx->loaded_vmcs->hv_timer_armed) - vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL, - PIN_BASED_VMX_PREEMPTION_TIMER); - vmx->loaded_vmcs->hv_timer_armed = true; -} - -static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - u64 tscl; - u32 delta_tsc; - - if (vmx->req_immediate_exit) { - vmx_arm_hv_timer(vmx, 0); - return; - } - - if (vmx->hv_deadline_tsc != -1) { - tscl = rdtsc(); - if (vmx->hv_deadline_tsc > tscl) - /* set_hv_timer ensures the delta fits in 32-bits */ - delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> - cpu_preemption_timer_multi); - else - delta_tsc = 0; - - vmx_arm_hv_timer(vmx, delta_tsc); - return; - } - - if (vmx->loaded_vmcs->hv_timer_armed) - vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL, - PIN_BASED_VMX_PREEMPTION_TIMER); - vmx->loaded_vmcs->hv_timer_armed = false; -} - -static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - unsigned long cr3, cr4, evmcs_rsp; - - /* Record the guest's net vcpu time for enforced NMI injections. */ - if (unlikely(!enable_vnmi && - vmx->loaded_vmcs->soft_vnmi_blocked)) - vmx->loaded_vmcs->entry_time = ktime_get(); - - /* Don't enter VMX if guest state is invalid, let the exit handler - start emulation until we arrive back to a valid state */ - if (vmx->emulation_required) - return; - - if (vmx->ple_window_dirty) { - vmx->ple_window_dirty = false; - vmcs_write32(PLE_WINDOW, vmx->ple_window); - } - - if (vmx->nested.need_vmcs12_sync) { - /* - * hv_evmcs may end up being not mapped after migration (when - * L2 was running), map it here to make sure vmcs12 changes are - * properly reflected. - */ - if (vmx->nested.enlightened_vmcs_enabled && - !vmx->nested.hv_evmcs) - nested_vmx_handle_enlightened_vmptrld(vcpu, false); - - if (vmx->nested.hv_evmcs) { - copy_vmcs12_to_enlightened(vmx); - /* All fields are clean */ - vmx->nested.hv_evmcs->hv_clean_fields |= - HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; - } else { - copy_vmcs12_to_shadow(vmx); - } - vmx->nested.need_vmcs12_sync = false; - } - - if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty)) - vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); - if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty)) - vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); - - cr3 = __get_current_cr3_fast(); - if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { - vmcs_writel(HOST_CR3, cr3); - vmx->loaded_vmcs->host_state.cr3 = cr3; - } - - cr4 = cr4_read_shadow(); - if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { - vmcs_writel(HOST_CR4, cr4); - vmx->loaded_vmcs->host_state.cr4 = cr4; - } - - /* When single-stepping over STI and MOV SS, we must clear the - * corresponding interruptibility bits in the guest state. Otherwise - * vmentry fails as it then expects bit 14 (BS) in pending debug - * exceptions being set, but that's not correct for the guest debugging - * case. */ - if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) - vmx_set_interrupt_shadow(vcpu, 0); - - if (static_cpu_has(X86_FEATURE_PKU) && - kvm_read_cr4_bits(vcpu, X86_CR4_PKE) && - vcpu->arch.pkru != vmx->host_pkru) - __write_pkru(vcpu->arch.pkru); - - atomic_switch_perf_msrs(vmx); - - vmx_update_hv_timer(vcpu); - - /* - * If this vCPU has touched SPEC_CTRL, restore the guest's value if - * it's non-zero. Since vmentry is serialising on affected CPUs, there - * is no need to worry about the conditional branch over the wrmsr - * being speculatively taken. - */ - x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0); - - vmx->__launched = vmx->loaded_vmcs->launched; - - evmcs_rsp = static_branch_unlikely(&enable_evmcs) ? - (unsigned long)¤t_evmcs->host_rsp : 0; - - if (static_branch_unlikely(&vmx_l1d_should_flush)) - vmx_l1d_flush(vcpu); - - asm( - /* Store host registers */ - "push %%" _ASM_DX "; push %%" _ASM_BP ";" - "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */ - "push %%" _ASM_CX " \n\t" - "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t" - "je 1f \n\t" - "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t" - /* Avoid VMWRITE when Enlightened VMCS is in use */ - "test %%" _ASM_SI ", %%" _ASM_SI " \n\t" - "jz 2f \n\t" - "mov %%" _ASM_SP ", (%%" _ASM_SI ") \n\t" - "jmp 1f \n\t" - "2: \n\t" - __ex("vmwrite %%" _ASM_SP ", %%" _ASM_DX) "\n\t" - "1: \n\t" - /* Reload cr2 if changed */ - "mov %c[cr2](%0), %%" _ASM_AX " \n\t" - "mov %%cr2, %%" _ASM_DX " \n\t" - "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t" - "je 3f \n\t" - "mov %%" _ASM_AX", %%cr2 \n\t" - "3: \n\t" - /* Check if vmlaunch of vmresume is needed */ - "cmpl $0, %c[launched](%0) \n\t" - /* Load guest registers. Don't clobber flags. */ - "mov %c[rax](%0), %%" _ASM_AX " \n\t" - "mov %c[rbx](%0), %%" _ASM_BX " \n\t" - "mov %c[rdx](%0), %%" _ASM_DX " \n\t" - "mov %c[rsi](%0), %%" _ASM_SI " \n\t" - "mov %c[rdi](%0), %%" _ASM_DI " \n\t" - "mov %c[rbp](%0), %%" _ASM_BP " \n\t" -#ifdef CONFIG_X86_64 - "mov %c[r8](%0), %%r8 \n\t" - "mov %c[r9](%0), %%r9 \n\t" - "mov %c[r10](%0), %%r10 \n\t" - "mov %c[r11](%0), %%r11 \n\t" - "mov %c[r12](%0), %%r12 \n\t" - "mov %c[r13](%0), %%r13 \n\t" - "mov %c[r14](%0), %%r14 \n\t" - "mov %c[r15](%0), %%r15 \n\t" -#endif - "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */ - - /* Enter guest mode */ - "jne 1f \n\t" - __ex("vmlaunch") "\n\t" - "jmp 2f \n\t" - "1: " __ex("vmresume") "\n\t" - "2: " - /* Save guest registers, load host registers, keep flags */ - "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t" - "pop %0 \n\t" - "setbe %c[fail](%0)\n\t" - "mov %%" _ASM_AX ", %c[rax](%0) \n\t" - "mov %%" _ASM_BX ", %c[rbx](%0) \n\t" - __ASM_SIZE(pop) " %c[rcx](%0) \n\t" - "mov %%" _ASM_DX ", %c[rdx](%0) \n\t" - "mov %%" _ASM_SI ", %c[rsi](%0) \n\t" - "mov %%" _ASM_DI ", %c[rdi](%0) \n\t" - "mov %%" _ASM_BP ", %c[rbp](%0) \n\t" -#ifdef CONFIG_X86_64 - "mov %%r8, %c[r8](%0) \n\t" - "mov %%r9, %c[r9](%0) \n\t" - "mov %%r10, %c[r10](%0) \n\t" - "mov %%r11, %c[r11](%0) \n\t" - "mov %%r12, %c[r12](%0) \n\t" - "mov %%r13, %c[r13](%0) \n\t" - "mov %%r14, %c[r14](%0) \n\t" - "mov %%r15, %c[r15](%0) \n\t" - /* - * Clear host registers marked as clobbered to prevent - * speculative use. - */ - "xor %%r8d, %%r8d \n\t" - "xor %%r9d, %%r9d \n\t" - "xor %%r10d, %%r10d \n\t" - "xor %%r11d, %%r11d \n\t" - "xor %%r12d, %%r12d \n\t" - "xor %%r13d, %%r13d \n\t" - "xor %%r14d, %%r14d \n\t" - "xor %%r15d, %%r15d \n\t" -#endif - "mov %%cr2, %%" _ASM_AX " \n\t" - "mov %%" _ASM_AX ", %c[cr2](%0) \n\t" - - "xor %%eax, %%eax \n\t" - "xor %%ebx, %%ebx \n\t" - "xor %%esi, %%esi \n\t" - "xor %%edi, %%edi \n\t" - "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t" - ".pushsection .rodata \n\t" - ".global vmx_return \n\t" - "vmx_return: " _ASM_PTR " 2b \n\t" - ".popsection" - : : "c"(vmx), "d"((unsigned long)HOST_RSP), "S"(evmcs_rsp), - [launched]"i"(offsetof(struct vcpu_vmx, __launched)), - [fail]"i"(offsetof(struct vcpu_vmx, fail)), - [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)), - [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])), - [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])), - [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])), - [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])), - [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])), - [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])), - [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])), -#ifdef CONFIG_X86_64 - [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])), - [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])), - [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])), - [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])), - [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])), - [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])), - [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])), - [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])), -#endif - [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)), - [wordsize]"i"(sizeof(ulong)) - : "cc", "memory" -#ifdef CONFIG_X86_64 - , "rax", "rbx", "rdi" - , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" -#else - , "eax", "ebx", "edi" -#endif - ); - - /* - * We do not use IBRS in the kernel. If this vCPU has used the - * SPEC_CTRL MSR it may have left it on; save the value and - * turn it off. This is much more efficient than blindly adding - * it to the atomic save/restore list. Especially as the former - * (Saving guest MSRs on vmexit) doesn't even exist in KVM. - * - * For non-nested case: - * If the L01 MSR bitmap does not intercept the MSR, then we need to - * save it. - * - * For nested case: - * If the L02 MSR bitmap does not intercept the MSR, then we need to - * save it. - */ - if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) - vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); - - x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0); - - /* Eliminate branch target predictions from guest mode */ - vmexit_fill_RSB(); - - /* All fields are clean at this point */ - if (static_branch_unlikely(&enable_evmcs)) - current_evmcs->hv_clean_fields |= - HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; - - /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ - if (vmx->host_debugctlmsr) - update_debugctlmsr(vmx->host_debugctlmsr); - -#ifndef CONFIG_X86_64 - /* - * The sysexit path does not restore ds/es, so we must set them to - * a reasonable value ourselves. - * - * We can't defer this to vmx_prepare_switch_to_host() since that - * function may be executed in interrupt context, which saves and - * restore segments around it, nullifying its effect. - */ - loadsegment(ds, __USER_DS); - loadsegment(es, __USER_DS); -#endif - - vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP) - | (1 << VCPU_EXREG_RFLAGS) - | (1 << VCPU_EXREG_PDPTR) - | (1 << VCPU_EXREG_SEGMENTS) - | (1 << VCPU_EXREG_CR3)); - vcpu->arch.regs_dirty = 0; - - /* - * eager fpu is enabled if PKEY is supported and CR4 is switched - * back on host, so it is safe to read guest PKRU from current - * XSAVE. - */ - if (static_cpu_has(X86_FEATURE_PKU) && - kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) { - vcpu->arch.pkru = __read_pkru(); - if (vcpu->arch.pkru != vmx->host_pkru) - __write_pkru(vmx->host_pkru); - } - - vmx->nested.nested_run_pending = 0; - vmx->idt_vectoring_info = 0; - - vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON); - if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) - return; - - vmx->loaded_vmcs->launched = 1; - vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); - - vmx_complete_atomic_exit(vmx); - vmx_recover_nmi_blocking(vmx); - vmx_complete_interrupts(vmx); -} -STACK_FRAME_NON_STANDARD(vmx_vcpu_run); - -static struct kvm *vmx_vm_alloc(void) -{ - struct kvm_vmx *kvm_vmx = vzalloc(sizeof(struct kvm_vmx)); - return &kvm_vmx->kvm; -} - -static void vmx_vm_free(struct kvm *kvm) -{ - vfree(to_kvm_vmx(kvm)); -} - -static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - int cpu; - - if (vmx->loaded_vmcs == vmcs) - return; - - cpu = get_cpu(); - vmx_vcpu_put(vcpu); - vmx->loaded_vmcs = vmcs; - vmx_vcpu_load(vcpu, cpu); - put_cpu(); - - vm_entry_controls_reset_shadow(vmx); - vm_exit_controls_reset_shadow(vmx); - vmx_segment_cache_clear(vmx); -} - -/* - * Ensure that the current vmcs of the logical processor is the - * vmcs01 of the vcpu before calling free_nested(). - */ -static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu) -{ - vcpu_load(vcpu); - vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01); - free_nested(vcpu); - vcpu_put(vcpu); -} - -static void vmx_free_vcpu(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - if (enable_pml) - vmx_destroy_pml_buffer(vmx); - free_vpid(vmx->vpid); - leave_guest_mode(vcpu); - vmx_free_vcpu_nested(vcpu); - free_loaded_vmcs(vmx->loaded_vmcs); - kfree(vmx->guest_msrs); - kvm_vcpu_uninit(vcpu); - kmem_cache_free(kvm_vcpu_cache, vmx); -} - -static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id) -{ - int err; - struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); - unsigned long *msr_bitmap; - int cpu; - - if (!vmx) - return ERR_PTR(-ENOMEM); - - vmx->vpid = allocate_vpid(); - - err = kvm_vcpu_init(&vmx->vcpu, kvm, id); - if (err) - goto free_vcpu; - - err = -ENOMEM; - - /* - * If PML is turned on, failure on enabling PML just results in failure - * of creating the vcpu, therefore we can simplify PML logic (by - * avoiding dealing with cases, such as enabling PML partially on vcpus - * for the guest, etc. - */ - if (enable_pml) { - vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO); - if (!vmx->pml_pg) - goto uninit_vcpu; - } - - vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL); - BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0]) - > PAGE_SIZE); - - if (!vmx->guest_msrs) - goto free_pml; - - err = alloc_loaded_vmcs(&vmx->vmcs01); - if (err < 0) - goto free_msrs; - - msr_bitmap = vmx->vmcs01.msr_bitmap; - vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW); - vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW); - vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); - vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); - vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); - vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); - vmx->msr_bitmap_mode = 0; - - vmx->loaded_vmcs = &vmx->vmcs01; - cpu = get_cpu(); - vmx_vcpu_load(&vmx->vcpu, cpu); - vmx->vcpu.cpu = cpu; - vmx_vcpu_setup(vmx); - vmx_vcpu_put(&vmx->vcpu); - put_cpu(); - if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) { - err = alloc_apic_access_page(kvm); - if (err) - goto free_vmcs; - } - - if (enable_ept && !enable_unrestricted_guest) { - err = init_rmode_identity_map(kvm); - if (err) - goto free_vmcs; - } - - if (nested) - nested_vmx_setup_ctls_msrs(&vmx->nested.msrs, - kvm_vcpu_apicv_active(&vmx->vcpu)); - - vmx->nested.posted_intr_nv = -1; - vmx->nested.current_vmptr = -1ull; - - vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED; - - /* - * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR - * or POSTED_INTR_WAKEUP_VECTOR. - */ - vmx->pi_desc.nv = POSTED_INTR_VECTOR; - vmx->pi_desc.sn = 1; - - return &vmx->vcpu; - -free_vmcs: - free_loaded_vmcs(vmx->loaded_vmcs); -free_msrs: - kfree(vmx->guest_msrs); -free_pml: - vmx_destroy_pml_buffer(vmx); -uninit_vcpu: - kvm_vcpu_uninit(&vmx->vcpu); -free_vcpu: - free_vpid(vmx->vpid); - kmem_cache_free(kvm_vcpu_cache, vmx); - return ERR_PTR(err); -} - -#define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html for details.\n" -#define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html for details.\n" - -static int vmx_vm_init(struct kvm *kvm) -{ - spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock); - - if (!ple_gap) - kvm->arch.pause_in_guest = true; - - if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { - switch (l1tf_mitigation) { - case L1TF_MITIGATION_OFF: - case L1TF_MITIGATION_FLUSH_NOWARN: - /* 'I explicitly don't care' is set */ - break; - case L1TF_MITIGATION_FLUSH: - case L1TF_MITIGATION_FLUSH_NOSMT: - case L1TF_MITIGATION_FULL: - /* - * Warn upon starting the first VM in a potentially - * insecure environment. - */ - if (cpu_smt_control == CPU_SMT_ENABLED) - pr_warn_once(L1TF_MSG_SMT); - if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) - pr_warn_once(L1TF_MSG_L1D); - break; - case L1TF_MITIGATION_FULL_FORCE: - /* Flush is enforced */ - break; - } - } - return 0; -} - -static void __init vmx_check_processor_compat(void *rtn) -{ - struct vmcs_config vmcs_conf; - - *(int *)rtn = 0; - if (setup_vmcs_config(&vmcs_conf) < 0) - *(int *)rtn = -EIO; - nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, enable_apicv); - if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { - printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", - smp_processor_id()); - *(int *)rtn = -EIO; - } -} - -static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) -{ - u8 cache; - u64 ipat = 0; - - /* For VT-d and EPT combination - * 1. MMIO: always map as UC - * 2. EPT with VT-d: - * a. VT-d without snooping control feature: can't guarantee the - * result, try to trust guest. - * b. VT-d with snooping control feature: snooping control feature of - * VT-d engine can guarantee the cache correctness. Just set it - * to WB to keep consistent with host. So the same as item 3. - * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep - * consistent with host MTRR - */ - if (is_mmio) { - cache = MTRR_TYPE_UNCACHABLE; - goto exit; - } - - if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) { - ipat = VMX_EPT_IPAT_BIT; - cache = MTRR_TYPE_WRBACK; - goto exit; - } - - if (kvm_read_cr0(vcpu) & X86_CR0_CD) { - ipat = VMX_EPT_IPAT_BIT; - if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) - cache = MTRR_TYPE_WRBACK; - else - cache = MTRR_TYPE_UNCACHABLE; - goto exit; - } - - cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn); - -exit: - return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat; -} - -static int vmx_get_lpage_level(void) -{ - if (enable_ept && !cpu_has_vmx_ept_1g_page()) - return PT_DIRECTORY_LEVEL; - else - /* For shadow and EPT supported 1GB page */ - return PT_PDPE_LEVEL; -} - -static void vmcs_set_secondary_exec_control(u32 new_ctl) -{ - /* - * These bits in the secondary execution controls field - * are dynamic, the others are mostly based on the hypervisor - * architecture and the guest's CPUID. Do not touch the - * dynamic bits. - */ - u32 mask = - SECONDARY_EXEC_SHADOW_VMCS | - SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | - SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | - SECONDARY_EXEC_DESC; - - u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); - - vmcs_write32(SECONDARY_VM_EXEC_CONTROL, - (new_ctl & ~mask) | (cur_ctl & mask)); -} - -/* - * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits - * (indicating "allowed-1") if they are supported in the guest's CPUID. - */ -static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct kvm_cpuid_entry2 *entry; - - vmx->nested.msrs.cr0_fixed1 = 0xffffffff; - vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; - -#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ - if (entry && (entry->_reg & (_cpuid_mask))) \ - vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ -} while (0) - - entry = kvm_find_cpuid_entry(vcpu, 0x1, 0); - cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME)); - cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME)); - cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC)); - cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE)); - cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE)); - cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE)); - cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE)); - cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE)); - cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR)); - cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM)); - cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX)); - cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX)); - cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID)); - cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE)); - - entry = kvm_find_cpuid_entry(vcpu, 0x7, 0); - cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE)); - cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP)); - cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP)); - cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU)); - cr4_fixed1_update(X86_CR4_UMIP, ecx, bit(X86_FEATURE_UMIP)); - -#undef cr4_fixed1_update -} - -static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - if (kvm_mpx_supported()) { - bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX); - - if (mpx_enabled) { - vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS; - vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS; - } else { - vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS; - vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS; - } - } -} - -static void vmx_cpuid_update(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - if (cpu_has_secondary_exec_ctrls()) { - vmx_compute_secondary_exec_control(vmx); - vmcs_set_secondary_exec_control(vmx->secondary_exec_control); - } - - if (nested_vmx_allowed(vcpu)) - to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= - FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; - else - to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= - ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; - - if (nested_vmx_allowed(vcpu)) { - nested_vmx_cr_fixed1_bits_update(vcpu); - nested_vmx_entry_exit_ctls_update(vcpu); - } -} - -static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry) -{ - if (func == 1 && nested) - entry->ecx |= bit(X86_FEATURE_VMX); -} - -static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu, - struct x86_exception *fault) -{ - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - struct vcpu_vmx *vmx = to_vmx(vcpu); - u32 exit_reason; - unsigned long exit_qualification = vcpu->arch.exit_qualification; - - if (vmx->nested.pml_full) { - exit_reason = EXIT_REASON_PML_FULL; - vmx->nested.pml_full = false; - exit_qualification &= INTR_INFO_UNBLOCK_NMI; - } else if (fault->error_code & PFERR_RSVD_MASK) - exit_reason = EXIT_REASON_EPT_MISCONFIG; - else - exit_reason = EXIT_REASON_EPT_VIOLATION; - - nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification); - vmcs12->guest_physical_address = fault->address; -} - -static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu) -{ - return nested_ept_get_cr3(vcpu) & VMX_EPTP_AD_ENABLE_BIT; -} - -/* Callbacks for nested_ept_init_mmu_context: */ - -static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu) -{ - /* return the page table to be shadowed - in our case, EPT12 */ - return get_vmcs12(vcpu)->ept_pointer; -} - -static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu) -{ - WARN_ON(mmu_is_nested(vcpu)); - - vcpu->arch.mmu = &vcpu->arch.guest_mmu; - kvm_init_shadow_ept_mmu(vcpu, - to_vmx(vcpu)->nested.msrs.ept_caps & - VMX_EPT_EXECUTE_ONLY_BIT, - nested_ept_ad_enabled(vcpu), - nested_ept_get_cr3(vcpu)); - vcpu->arch.mmu->set_cr3 = vmx_set_cr3; - vcpu->arch.mmu->get_cr3 = nested_ept_get_cr3; - vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault; - vcpu->arch.mmu->get_pdptr = kvm_pdptr_read; - - vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu; -} - -static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu) -{ - vcpu->arch.mmu = &vcpu->arch.root_mmu; - vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; -} - -static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12, - u16 error_code) -{ - bool inequality, bit; - - bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0; - inequality = - (error_code & vmcs12->page_fault_error_code_mask) != - vmcs12->page_fault_error_code_match; - return inequality ^ bit; -} - -static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu, - struct x86_exception *fault) -{ - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - - WARN_ON(!is_guest_mode(vcpu)); - - if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) && - !to_vmx(vcpu)->nested.nested_run_pending) { - vmcs12->vm_exit_intr_error_code = fault->error_code; - nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, - PF_VECTOR | INTR_TYPE_HARD_EXCEPTION | - INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK, - fault->address); - } else { - kvm_inject_page_fault(vcpu, fault); - } -} - -static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12); - -static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu) -{ - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct page *page; - u64 hpa; - - if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) { - /* - * Translate L1 physical address to host physical - * address for vmcs02. Keep the page pinned, so this - * physical address remains valid. We keep a reference - * to it so we can release it later. - */ - if (vmx->nested.apic_access_page) { /* shouldn't happen */ - kvm_release_page_dirty(vmx->nested.apic_access_page); - vmx->nested.apic_access_page = NULL; - } - page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr); - /* - * If translation failed, no matter: This feature asks - * to exit when accessing the given address, and if it - * can never be accessed, this feature won't do - * anything anyway. - */ - if (!is_error_page(page)) { - vmx->nested.apic_access_page = page; - hpa = page_to_phys(vmx->nested.apic_access_page); - vmcs_write64(APIC_ACCESS_ADDR, hpa); - } else { - vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, - SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES); - } - } - - if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) { - if (vmx->nested.virtual_apic_page) { /* shouldn't happen */ - kvm_release_page_dirty(vmx->nested.virtual_apic_page); - vmx->nested.virtual_apic_page = NULL; - } - page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr); - - /* - * If translation failed, VM entry will fail because - * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull. - * Failing the vm entry is _not_ what the processor - * does but it's basically the only possibility we - * have. We could still enter the guest if CR8 load - * exits are enabled, CR8 store exits are enabled, and - * virtualize APIC access is disabled; in this case - * the processor would never use the TPR shadow and we - * could simply clear the bit from the execution - * control. But such a configuration is useless, so - * let's keep the code simple. - */ - if (!is_error_page(page)) { - vmx->nested.virtual_apic_page = page; - hpa = page_to_phys(vmx->nested.virtual_apic_page); - vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa); - } - } - - if (nested_cpu_has_posted_intr(vmcs12)) { - if (vmx->nested.pi_desc_page) { /* shouldn't happen */ - kunmap(vmx->nested.pi_desc_page); - kvm_release_page_dirty(vmx->nested.pi_desc_page); - vmx->nested.pi_desc_page = NULL; - vmx->nested.pi_desc = NULL; - vmcs_write64(POSTED_INTR_DESC_ADDR, -1ull); - } - page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr); - if (is_error_page(page)) - return; - vmx->nested.pi_desc_page = page; - vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page); - vmx->nested.pi_desc = - (struct pi_desc *)((void *)vmx->nested.pi_desc + - (unsigned long)(vmcs12->posted_intr_desc_addr & - (PAGE_SIZE - 1))); - vmcs_write64(POSTED_INTR_DESC_ADDR, - page_to_phys(vmx->nested.pi_desc_page) + - (unsigned long)(vmcs12->posted_intr_desc_addr & - (PAGE_SIZE - 1))); - } - if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12)) - vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, - CPU_BASED_USE_MSR_BITMAPS); - else - vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, - CPU_BASED_USE_MSR_BITMAPS); -} - -static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu) -{ - u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value; - struct vcpu_vmx *vmx = to_vmx(vcpu); - - /* - * A timer value of zero is architecturally guaranteed to cause - * a VMExit prior to executing any instructions in the guest. - */ - if (preemption_timeout == 0) { - vmx_preemption_timer_fn(&vmx->nested.preemption_timer); - return; - } - - if (vcpu->arch.virtual_tsc_khz == 0) - return; - - preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE; - preemption_timeout *= 1000000; - do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz); - hrtimer_start(&vmx->nested.preemption_timer, - ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL); -} - -static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) -{ - if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) - return 0; - - if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) || - !page_address_valid(vcpu, vmcs12->io_bitmap_b)) - return -EINVAL; - - return 0; -} - -static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) -{ - if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) - return 0; - - if (!page_address_valid(vcpu, vmcs12->msr_bitmap)) - return -EINVAL; - - return 0; -} - -static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) -{ - if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) - return 0; - - if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)) - return -EINVAL; - - return 0; -} - -/* - * Merge L0's and L1's MSR bitmap, return false to indicate that - * we do not use the hardware. - */ -static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) -{ - int msr; - struct page *page; - unsigned long *msr_bitmap_l1; - unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap; - /* - * pred_cmd & spec_ctrl are trying to verify two things: - * - * 1. L0 gave a permission to L1 to actually passthrough the MSR. This - * ensures that we do not accidentally generate an L02 MSR bitmap - * from the L12 MSR bitmap that is too permissive. - * 2. That L1 or L2s have actually used the MSR. This avoids - * unnecessarily merging of the bitmap if the MSR is unused. This - * works properly because we only update the L01 MSR bitmap lazily. - * So even if L0 should pass L1 these MSRs, the L01 bitmap is only - * updated to reflect this when L1 (or its L2s) actually write to - * the MSR. - */ - bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD); - bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL); - - /* Nothing to do if the MSR bitmap is not in use. */ - if (!cpu_has_vmx_msr_bitmap() || - !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) - return false; - - if (!nested_cpu_has_virt_x2apic_mode(vmcs12) && - !pred_cmd && !spec_ctrl) - return false; - - page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap); - if (is_error_page(page)) - return false; - - msr_bitmap_l1 = (unsigned long *)kmap(page); - if (nested_cpu_has_apic_reg_virt(vmcs12)) { - /* - * L0 need not intercept reads for MSRs between 0x800 and 0x8ff, it - * just lets the processor take the value from the virtual-APIC page; - * take those 256 bits directly from the L1 bitmap. - */ - for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { - unsigned word = msr / BITS_PER_LONG; - msr_bitmap_l0[word] = msr_bitmap_l1[word]; - msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0; - } - } else { - for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { - unsigned word = msr / BITS_PER_LONG; - msr_bitmap_l0[word] = ~0; - msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0; - } - } - - nested_vmx_disable_intercept_for_msr( - msr_bitmap_l1, msr_bitmap_l0, - X2APIC_MSR(APIC_TASKPRI), - MSR_TYPE_W); - - if (nested_cpu_has_vid(vmcs12)) { - nested_vmx_disable_intercept_for_msr( - msr_bitmap_l1, msr_bitmap_l0, - X2APIC_MSR(APIC_EOI), - MSR_TYPE_W); - nested_vmx_disable_intercept_for_msr( - msr_bitmap_l1, msr_bitmap_l0, - X2APIC_MSR(APIC_SELF_IPI), - MSR_TYPE_W); - } - - if (spec_ctrl) - nested_vmx_disable_intercept_for_msr( - msr_bitmap_l1, msr_bitmap_l0, - MSR_IA32_SPEC_CTRL, - MSR_TYPE_R | MSR_TYPE_W); - - if (pred_cmd) - nested_vmx_disable_intercept_for_msr( - msr_bitmap_l1, msr_bitmap_l0, - MSR_IA32_PRED_CMD, - MSR_TYPE_W); - - kunmap(page); - kvm_release_page_clean(page); - - return true; -} - -static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) -{ - struct vmcs12 *shadow; - struct page *page; - - if (!nested_cpu_has_shadow_vmcs(vmcs12) || - vmcs12->vmcs_link_pointer == -1ull) - return; - - shadow = get_shadow_vmcs12(vcpu); - page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer); - - memcpy(shadow, kmap(page), VMCS12_SIZE); - - kunmap(page); - kvm_release_page_clean(page); -} - -static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - if (!nested_cpu_has_shadow_vmcs(vmcs12) || - vmcs12->vmcs_link_pointer == -1ull) - return; - - kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer, - get_shadow_vmcs12(vcpu), VMCS12_SIZE); -} - -static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) -{ - if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) && - !page_address_valid(vcpu, vmcs12->apic_access_addr)) - return -EINVAL; - else - return 0; -} - -static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) -{ - if (!nested_cpu_has_virt_x2apic_mode(vmcs12) && - !nested_cpu_has_apic_reg_virt(vmcs12) && - !nested_cpu_has_vid(vmcs12) && - !nested_cpu_has_posted_intr(vmcs12)) - return 0; - - /* - * If virtualize x2apic mode is enabled, - * virtualize apic access must be disabled. - */ - if (nested_cpu_has_virt_x2apic_mode(vmcs12) && - nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) - return -EINVAL; - - /* - * If virtual interrupt delivery is enabled, - * we must exit on external interrupts. - */ - if (nested_cpu_has_vid(vmcs12) && - !nested_exit_on_intr(vcpu)) - return -EINVAL; - - /* - * bits 15:8 should be zero in posted_intr_nv, - * the descriptor address has been already checked - * in nested_get_vmcs12_pages. - * - * bits 5:0 of posted_intr_desc_addr should be zero. - */ - if (nested_cpu_has_posted_intr(vmcs12) && - (!nested_cpu_has_vid(vmcs12) || - !nested_exit_intr_ack_set(vcpu) || - (vmcs12->posted_intr_nv & 0xff00) || - (vmcs12->posted_intr_desc_addr & 0x3f) || - (vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))) - return -EINVAL; - - /* tpr shadow is needed by all apicv features. */ - if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) - return -EINVAL; - - return 0; -} - -static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu, - unsigned long count_field, - unsigned long addr_field) -{ - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - int maxphyaddr; - u64 count, addr; - - if (vmcs12_read_any(vmcs12, count_field, &count) || - vmcs12_read_any(vmcs12, addr_field, &addr)) { - WARN_ON(1); - return -EINVAL; - } - if (count == 0) - return 0; - maxphyaddr = cpuid_maxphyaddr(vcpu); - if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr || - (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) { - pr_debug_ratelimited( - "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)", - addr_field, maxphyaddr, count, addr); - return -EINVAL; - } - return 0; -} - -static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) -{ - if (vmcs12->vm_exit_msr_load_count == 0 && - vmcs12->vm_exit_msr_store_count == 0 && - vmcs12->vm_entry_msr_load_count == 0) - return 0; /* Fast path */ - if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT, - VM_EXIT_MSR_LOAD_ADDR) || - nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT, - VM_EXIT_MSR_STORE_ADDR) || - nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT, - VM_ENTRY_MSR_LOAD_ADDR)) - return -EINVAL; - return 0; -} - -static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) -{ - if (!nested_cpu_has_pml(vmcs12)) - return 0; - - if (!nested_cpu_has_ept(vmcs12) || - !page_address_valid(vcpu, vmcs12->pml_address)) - return -EINVAL; - - return 0; -} - -static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) -{ - if (!nested_cpu_has_shadow_vmcs(vmcs12)) - return 0; - - if (!page_address_valid(vcpu, vmcs12->vmread_bitmap) || - !page_address_valid(vcpu, vmcs12->vmwrite_bitmap)) - return -EINVAL; - - return 0; -} - -static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu, - struct vmx_msr_entry *e) -{ - /* x2APIC MSR accesses are not allowed */ - if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8) - return -EINVAL; - if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */ - e->index == MSR_IA32_UCODE_REV) - return -EINVAL; - if (e->reserved != 0) - return -EINVAL; - return 0; -} - -static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu, - struct vmx_msr_entry *e) -{ - if (e->index == MSR_FS_BASE || - e->index == MSR_GS_BASE || - e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */ - nested_vmx_msr_check_common(vcpu, e)) - return -EINVAL; - return 0; -} - -static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu, - struct vmx_msr_entry *e) -{ - if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */ - nested_vmx_msr_check_common(vcpu, e)) - return -EINVAL; - return 0; -} - -/* - * Load guest's/host's msr at nested entry/exit. - * return 0 for success, entry index for failure. - */ -static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count) -{ - u32 i; - struct vmx_msr_entry e; - struct msr_data msr; - - msr.host_initiated = false; - for (i = 0; i < count; i++) { - if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e), - &e, sizeof(e))) { - pr_debug_ratelimited( - "%s cannot read MSR entry (%u, 0x%08llx)\n", - __func__, i, gpa + i * sizeof(e)); - goto fail; - } - if (nested_vmx_load_msr_check(vcpu, &e)) { - pr_debug_ratelimited( - "%s check failed (%u, 0x%x, 0x%x)\n", - __func__, i, e.index, e.reserved); - goto fail; - } - msr.index = e.index; - msr.data = e.value; - if (kvm_set_msr(vcpu, &msr)) { - pr_debug_ratelimited( - "%s cannot write MSR (%u, 0x%x, 0x%llx)\n", - __func__, i, e.index, e.value); - goto fail; - } - } - return 0; -fail: - return i + 1; -} - -static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count) -{ - u32 i; - struct vmx_msr_entry e; - - for (i = 0; i < count; i++) { - struct msr_data msr_info; - if (kvm_vcpu_read_guest(vcpu, - gpa + i * sizeof(e), - &e, 2 * sizeof(u32))) { - pr_debug_ratelimited( - "%s cannot read MSR entry (%u, 0x%08llx)\n", - __func__, i, gpa + i * sizeof(e)); - return -EINVAL; - } - if (nested_vmx_store_msr_check(vcpu, &e)) { - pr_debug_ratelimited( - "%s check failed (%u, 0x%x, 0x%x)\n", - __func__, i, e.index, e.reserved); - return -EINVAL; - } - msr_info.host_initiated = false; - msr_info.index = e.index; - if (kvm_get_msr(vcpu, &msr_info)) { - pr_debug_ratelimited( - "%s cannot read MSR (%u, 0x%x)\n", - __func__, i, e.index); - return -EINVAL; - } - if (kvm_vcpu_write_guest(vcpu, - gpa + i * sizeof(e) + - offsetof(struct vmx_msr_entry, value), - &msr_info.data, sizeof(msr_info.data))) { - pr_debug_ratelimited( - "%s cannot write MSR (%u, 0x%x, 0x%llx)\n", - __func__, i, e.index, msr_info.data); - return -EINVAL; - } - } - return 0; -} - -static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val) -{ - unsigned long invalid_mask; - - invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu); - return (val & invalid_mask) == 0; -} - -/* - * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are - * emulating VM entry into a guest with EPT enabled. - * Returns 0 on success, 1 on failure. Invalid state exit qualification code - * is assigned to entry_failure_code on failure. - */ -static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept, - u32 *entry_failure_code) -{ - if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) { - if (!nested_cr3_valid(vcpu, cr3)) { - *entry_failure_code = ENTRY_FAIL_DEFAULT; - return 1; - } - - /* - * If PAE paging and EPT are both on, CR3 is not used by the CPU and - * must not be dereferenced. - */ - if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) && - !nested_ept) { - if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) { - *entry_failure_code = ENTRY_FAIL_PDPTE; - return 1; - } - } - } - - if (!nested_ept) - kvm_mmu_new_cr3(vcpu, cr3, false); - - vcpu->arch.cr3 = cr3; - __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); - - kvm_init_mmu(vcpu, false); - - return 0; -} - -/* - * Returns if KVM is able to config CPU to tag TLB entries - * populated by L2 differently than TLB entries populated - * by L1. - * - * If L1 uses EPT, then TLB entries are tagged with different EPTP. - * - * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged - * with different VPID (L1 entries are tagged with vmx->vpid - * while L2 entries are tagged with vmx->nested.vpid02). - */ -static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu) -{ - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - - return nested_cpu_has_ept(vmcs12) || - (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02); -} - -static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) -{ - if (vmx->nested.nested_run_pending && - (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) - return vmcs12->guest_ia32_efer; - else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) - return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME); - else - return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME); -} - -static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx) -{ - /* - * If vmcs02 hasn't been initialized, set the constant vmcs02 state - * according to L0's settings (vmcs12 is irrelevant here). Host - * fields that come from L0 and are not constant, e.g. HOST_CR3, - * will be set as needed prior to VMLAUNCH/VMRESUME. - */ - if (vmx->nested.vmcs02_initialized) - return; - vmx->nested.vmcs02_initialized = true; - - /* - * We don't care what the EPTP value is we just need to guarantee - * it's valid so we don't get a false positive when doing early - * consistency checks. - */ - if (enable_ept && nested_early_check) - vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0)); - - /* All VMFUNCs are currently emulated through L0 vmexits. */ - if (cpu_has_vmx_vmfunc()) - vmcs_write64(VM_FUNCTION_CONTROL, 0); - - if (cpu_has_vmx_posted_intr()) - vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR); - - if (cpu_has_vmx_msr_bitmap()) - vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap)); - - if (enable_pml) - vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); - - /* - * Set the MSR load/store lists to match L0's settings. Only the - * addresses are constant (for vmcs02), the counts can change based - * on L2's behavior, e.g. switching to/from long mode. - */ - vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); - vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); - vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); - - vmx_set_constant_host_state(vmx); -} - -static void prepare_vmcs02_early_full(struct vcpu_vmx *vmx, - struct vmcs12 *vmcs12) -{ - prepare_vmcs02_constant_state(vmx); - - vmcs_write64(VMCS_LINK_POINTER, -1ull); - - if (enable_vpid) { - if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) - vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02); - else - vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); - } -} - -static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) -{ - u32 exec_control, vmcs12_exec_ctrl; - u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12); - - if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs) - prepare_vmcs02_early_full(vmx, vmcs12); - - /* - * HOST_RSP is normally set correctly in vmx_vcpu_run() just before - * entry, but only if the current (host) sp changed from the value - * we wrote last (vmx->host_rsp). This cache is no longer relevant - * if we switch vmcs, and rather than hold a separate cache per vmcs, - * here we just force the write to happen on entry. host_rsp will - * also be written unconditionally by nested_vmx_check_vmentry_hw() - * if we are doing early consistency checks via hardware. - */ - vmx->host_rsp = 0; - - /* - * PIN CONTROLS - */ - exec_control = vmcs12->pin_based_vm_exec_control; - - /* Preemption timer setting is computed directly in vmx_vcpu_run. */ - exec_control |= vmcs_config.pin_based_exec_ctrl; - exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; - vmx->loaded_vmcs->hv_timer_armed = false; - - /* Posted interrupts setting is only taken from vmcs12. */ - if (nested_cpu_has_posted_intr(vmcs12)) { - vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv; - vmx->nested.pi_pending = false; - } else { - exec_control &= ~PIN_BASED_POSTED_INTR; - } - vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control); - - /* - * EXEC CONTROLS - */ - exec_control = vmx_exec_control(vmx); /* L0's desires */ - exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING; - exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING; - exec_control &= ~CPU_BASED_TPR_SHADOW; - exec_control |= vmcs12->cpu_based_vm_exec_control; - - /* - * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if - * nested_get_vmcs12_pages can't fix it up, the illegal value - * will result in a VM entry failure. - */ - if (exec_control & CPU_BASED_TPR_SHADOW) { - vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull); - vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold); - } else { -#ifdef CONFIG_X86_64 - exec_control |= CPU_BASED_CR8_LOAD_EXITING | - CPU_BASED_CR8_STORE_EXITING; -#endif - } - - /* - * A vmexit (to either L1 hypervisor or L0 userspace) is always needed - * for I/O port accesses. - */ - exec_control &= ~CPU_BASED_USE_IO_BITMAPS; - exec_control |= CPU_BASED_UNCOND_IO_EXITING; - vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control); - - /* - * SECONDARY EXEC CONTROLS - */ - if (cpu_has_secondary_exec_ctrls()) { - exec_control = vmx->secondary_exec_control; - - /* Take the following fields only from vmcs12 */ - exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | - SECONDARY_EXEC_ENABLE_INVPCID | - SECONDARY_EXEC_RDTSCP | - SECONDARY_EXEC_XSAVES | - SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | - SECONDARY_EXEC_APIC_REGISTER_VIRT | - SECONDARY_EXEC_ENABLE_VMFUNC); - if (nested_cpu_has(vmcs12, - CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) { - vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control & - ~SECONDARY_EXEC_ENABLE_PML; - exec_control |= vmcs12_exec_ctrl; - } - - /* VMCS shadowing for L2 is emulated for now */ - exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; - - if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) - vmcs_write16(GUEST_INTR_STATUS, - vmcs12->guest_intr_status); - - /* - * Write an illegal value to APIC_ACCESS_ADDR. Later, - * nested_get_vmcs12_pages will either fix it up or - * remove the VM execution control. - */ - if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) - vmcs_write64(APIC_ACCESS_ADDR, -1ull); - - if (exec_control & SECONDARY_EXEC_ENCLS_EXITING) - vmcs_write64(ENCLS_EXITING_BITMAP, -1ull); - - vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control); - } - - /* - * ENTRY CONTROLS - * - * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE - * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate - * on the related bits (if supported by the CPU) in the hope that - * we can avoid VMWrites during vmx_set_efer(). - */ - exec_control = (vmcs12->vm_entry_controls | vmcs_config.vmentry_ctrl) & - ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER; - if (cpu_has_load_ia32_efer) { - if (guest_efer & EFER_LMA) - exec_control |= VM_ENTRY_IA32E_MODE; - if (guest_efer != host_efer) - exec_control |= VM_ENTRY_LOAD_IA32_EFER; - } - vm_entry_controls_init(vmx, exec_control); - - /* - * EXIT CONTROLS - * - * L2->L1 exit controls are emulated - the hardware exit is to L0 so - * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER - * bits may be modified by vmx_set_efer() in prepare_vmcs02(). - */ - exec_control = vmcs_config.vmexit_ctrl; - if (cpu_has_load_ia32_efer && guest_efer != host_efer) - exec_control |= VM_EXIT_LOAD_IA32_EFER; - vm_exit_controls_init(vmx, exec_control); - - /* - * Conceptually we want to copy the PML address and index from - * vmcs01 here, and then back to vmcs01 on nested vmexit. But, - * since we always flush the log on each vmexit and never change - * the PML address (once set), this happens to be equivalent to - * simply resetting the index in vmcs02. - */ - if (enable_pml) - vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); - - /* - * Interrupt/Exception Fields - */ - if (vmx->nested.nested_run_pending) { - vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, - vmcs12->vm_entry_intr_info_field); - vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, - vmcs12->vm_entry_exception_error_code); - vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, - vmcs12->vm_entry_instruction_len); - vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, - vmcs12->guest_interruptibility_info); - vmx->loaded_vmcs->nmi_known_unmasked = - !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI); - } else { - vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); - } -} - -static void prepare_vmcs02_full(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) -{ - struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs; - - if (!hv_evmcs || !(hv_evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) { - vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector); - vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector); - vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector); - vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector); - vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector); - vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector); - vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector); - vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector); - vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit); - vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit); - vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit); - vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit); - vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit); - vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit); - vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit); - vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit); - vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit); - vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit); - vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes); - vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes); - vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes); - vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes); - vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes); - vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes); - vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base); - vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base); - vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base); - vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base); - vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base); - vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base); - vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base); - vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base); - vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base); - vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base); - } - - if (!hv_evmcs || !(hv_evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) { - vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs); - vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, - vmcs12->guest_pending_dbg_exceptions); - vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp); - vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip); - - /* - * L1 may access the L2's PDPTR, so save them to construct - * vmcs12 - */ - if (enable_ept) { - vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0); - vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1); - vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2); - vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3); - } - } - - if (nested_cpu_has_xsaves(vmcs12)) - vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap); - - /* - * Whether page-faults are trapped is determined by a combination of - * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. - * If enable_ept, L0 doesn't care about page faults and we should - * set all of these to L1's desires. However, if !enable_ept, L0 does - * care about (at least some) page faults, and because it is not easy - * (if at all possible?) to merge L0 and L1's desires, we simply ask - * to exit on each and every L2 page fault. This is done by setting - * MASK=MATCH=0 and (see below) EB.PF=1. - * Note that below we don't need special code to set EB.PF beyond the - * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept, - * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when - * !enable_ept, EB.PF is 1, so the "or" will always be 1. - */ - vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, - enable_ept ? vmcs12->page_fault_error_code_mask : 0); - vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, - enable_ept ? vmcs12->page_fault_error_code_match : 0); - - if (cpu_has_vmx_apicv()) { - vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0); - vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1); - vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2); - vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3); - } - - vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr); - vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr); - - set_cr4_guest_host_mask(vmx); - - if (kvm_mpx_supported()) { - if (vmx->nested.nested_run_pending && - (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)) - vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs); - else - vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs); - } -} - -/* - * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested - * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it - * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2 - * guest in a way that will both be appropriate to L1's requests, and our - * needs. In addition to modifying the active vmcs (which is vmcs02), this - * function also has additional necessary side-effects, like setting various - * vcpu->arch fields. - * Returns 0 on success, 1 on failure. Invalid state exit qualification code - * is assigned to entry_failure_code on failure. - */ -static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, - u32 *entry_failure_code) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs; - - if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs) { - prepare_vmcs02_full(vmx, vmcs12); - vmx->nested.dirty_vmcs12 = false; - } - - /* - * First, the fields that are shadowed. This must be kept in sync - * with vmx_shadow_fields.h. - */ - if (!hv_evmcs || !(hv_evmcs->hv_clean_fields & - HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) { - vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes); - vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes); - } - - if (vmx->nested.nested_run_pending && - (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) { - kvm_set_dr(vcpu, 7, vmcs12->guest_dr7); - vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl); - } else { - kvm_set_dr(vcpu, 7, vcpu->arch.dr7); - vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl); - } - vmx_set_rflags(vcpu, vmcs12->guest_rflags); - - vmx->nested.preemption_timer_expired = false; - if (nested_cpu_has_preemption_timer(vmcs12)) - vmx_start_preemption_timer(vcpu); - - /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the - * bitwise-or of what L1 wants to trap for L2, and what we want to - * trap. Note that CR0.TS also needs updating - we do this later. - */ - update_exception_bitmap(vcpu); - vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask; - vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits); - - if (vmx->nested.nested_run_pending && - (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) { - vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat); - vcpu->arch.pat = vmcs12->guest_ia32_pat; - } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { - vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); - } - - vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); - - if (kvm_has_tsc_control) - decache_tsc_multiplier(vmx); - - if (enable_vpid) { - /* - * There is no direct mapping between vpid02 and vpid12, the - * vpid02 is per-vCPU for L0 and reused while the value of - * vpid12 is changed w/ one invvpid during nested vmentry. - * The vpid12 is allocated by L1 for L2, so it will not - * influence global bitmap(for vpid01 and vpid02 allocation) - * even if spawn a lot of nested vCPUs. - */ - if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) { - if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) { - vmx->nested.last_vpid = vmcs12->virtual_processor_id; - __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false); - } - } else { - /* - * If L1 use EPT, then L0 needs to execute INVEPT on - * EPTP02 instead of EPTP01. Therefore, delay TLB - * flush until vmcs02->eptp is fully updated by - * KVM_REQ_LOAD_CR3. Note that this assumes - * KVM_REQ_TLB_FLUSH is evaluated after - * KVM_REQ_LOAD_CR3 in vcpu_enter_guest(). - */ - kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); - } - } - - if (nested_cpu_has_ept(vmcs12)) - nested_ept_init_mmu_context(vcpu); - else if (nested_cpu_has2(vmcs12, - SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) - vmx_flush_tlb(vcpu, true); - - /* - * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those - * bits which we consider mandatory enabled. - * The CR0_READ_SHADOW is what L2 should have expected to read given - * the specifications by L1; It's not enough to take - * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we - * have more bits than L1 expected. - */ - vmx_set_cr0(vcpu, vmcs12->guest_cr0); - vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12)); - - vmx_set_cr4(vcpu, vmcs12->guest_cr4); - vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12)); - - vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12); - /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */ - vmx_set_efer(vcpu, vcpu->arch.efer); - - /* - * Guest state is invalid and unrestricted guest is disabled, - * which means L1 attempted VMEntry to L2 with invalid state. - * Fail the VMEntry. - */ - if (vmx->emulation_required) { - *entry_failure_code = ENTRY_FAIL_DEFAULT; - return 1; - } - - /* Shadow page tables on either EPT or shadow page tables. */ - if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12), - entry_failure_code)) - return 1; - - if (!enable_ept) - vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested; - - kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp); - kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip); - return 0; -} - -static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12) -{ - if (!nested_cpu_has_nmi_exiting(vmcs12) && - nested_cpu_has_virtual_nmis(vmcs12)) - return -EINVAL; - - if (!nested_cpu_has_virtual_nmis(vmcs12) && - nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING)) - return -EINVAL; - - return 0; -} - -static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - bool ia32e; - - if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE && - vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - if (nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12)) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - if (nested_vmx_check_apic_access_controls(vcpu, vmcs12)) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - if (nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12)) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - if (nested_vmx_check_pml_controls(vcpu, vmcs12)) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - if (nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12)) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control, - vmx->nested.msrs.procbased_ctls_low, - vmx->nested.msrs.procbased_ctls_high) || - (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) && - !vmx_control_verify(vmcs12->secondary_vm_exec_control, - vmx->nested.msrs.secondary_ctls_low, - vmx->nested.msrs.secondary_ctls_high)) || - !vmx_control_verify(vmcs12->pin_based_vm_exec_control, - vmx->nested.msrs.pinbased_ctls_low, - vmx->nested.msrs.pinbased_ctls_high) || - !vmx_control_verify(vmcs12->vm_exit_controls, - vmx->nested.msrs.exit_ctls_low, - vmx->nested.msrs.exit_ctls_high) || - !vmx_control_verify(vmcs12->vm_entry_controls, - vmx->nested.msrs.entry_ctls_low, - vmx->nested.msrs.entry_ctls_high)) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - if (nested_vmx_check_nmi_controls(vmcs12)) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - if (nested_cpu_has_vmfunc(vmcs12)) { - if (vmcs12->vm_function_control & - ~vmx->nested.msrs.vmfunc_controls) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - if (nested_cpu_has_eptp_switching(vmcs12)) { - if (!nested_cpu_has_ept(vmcs12) || - !page_address_valid(vcpu, vmcs12->eptp_list_address)) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - } - } - - if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) || - !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) || - !nested_cr3_valid(vcpu, vmcs12->host_cr3)) - return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD; - - /* - * If the load IA32_EFER VM-exit control is 1, bits reserved in the - * IA32_EFER MSR must be 0 in the field for that register. In addition, - * the values of the LMA and LME bits in the field must each be that of - * the host address-space size VM-exit control. - */ - if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) { - ia32e = (vmcs12->vm_exit_controls & - VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0; - if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) || - ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) || - ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) - return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD; - } - - /* - * From the Intel SDM, volume 3: - * Fields relevant to VM-entry event injection must be set properly. - * These fields are the VM-entry interruption-information field, the - * VM-entry exception error code, and the VM-entry instruction length. - */ - if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) { - u32 intr_info = vmcs12->vm_entry_intr_info_field; - u8 vector = intr_info & INTR_INFO_VECTOR_MASK; - u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK; - bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK; - bool should_have_error_code; - bool urg = nested_cpu_has2(vmcs12, - SECONDARY_EXEC_UNRESTRICTED_GUEST); - bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE; - - /* VM-entry interruption-info field: interruption type */ - if (intr_type == INTR_TYPE_RESERVED || - (intr_type == INTR_TYPE_OTHER_EVENT && - !nested_cpu_supports_monitor_trap_flag(vcpu))) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - /* VM-entry interruption-info field: vector */ - if ((intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) || - (intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) || - (intr_type == INTR_TYPE_OTHER_EVENT && vector != 0)) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - /* VM-entry interruption-info field: deliver error code */ - should_have_error_code = - intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode && - x86_exception_has_error_code(vector); - if (has_error_code != should_have_error_code) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - /* VM-entry exception error code */ - if (has_error_code && - vmcs12->vm_entry_exception_error_code & GENMASK(31, 15)) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - /* VM-entry interruption-info field: reserved bits */ - if (intr_info & INTR_INFO_RESVD_BITS_MASK) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - /* VM-entry instruction length */ - switch (intr_type) { - case INTR_TYPE_SOFT_EXCEPTION: - case INTR_TYPE_SOFT_INTR: - case INTR_TYPE_PRIV_SW_EXCEPTION: - if ((vmcs12->vm_entry_instruction_len > 15) || - (vmcs12->vm_entry_instruction_len == 0 && - !nested_cpu_has_zero_length_injection(vcpu))) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - } - } - - if (nested_cpu_has_ept(vmcs12) && - !valid_ept_address(vcpu, vmcs12->ept_pointer)) - return VMXERR_ENTRY_INVALID_CONTROL_FIELD; - - return 0; -} - -static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) -{ - int r; - struct page *page; - struct vmcs12 *shadow; - - if (vmcs12->vmcs_link_pointer == -1ull) - return 0; - - if (!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)) - return -EINVAL; - - page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer); - if (is_error_page(page)) - return -EINVAL; - - r = 0; - shadow = kmap(page); - if (shadow->hdr.revision_id != VMCS12_REVISION || - shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)) - r = -EINVAL; - kunmap(page); - kvm_release_page_clean(page); - return r; -} - -static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, - u32 *exit_qual) -{ - bool ia32e; - - *exit_qual = ENTRY_FAIL_DEFAULT; - - if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) || - !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)) - return 1; - - if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) { - *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR; - return 1; - } - - /* - * If the load IA32_EFER VM-entry control is 1, the following checks - * are performed on the field for the IA32_EFER MSR: - * - Bits reserved in the IA32_EFER MSR must be 0. - * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of - * the IA-32e mode guest VM-exit control. It must also be identical - * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to - * CR0.PG) is 1. - */ - if (to_vmx(vcpu)->nested.nested_run_pending && - (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) { - ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0; - if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) || - ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) || - ((vmcs12->guest_cr0 & X86_CR0_PG) && - ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) - return 1; - } - - if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) && - (is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) || - (vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))) - return 1; - - return 0; -} - -static int __noclone nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - unsigned long cr3, cr4; - - if (!nested_early_check) - return 0; - - if (vmx->msr_autoload.host.nr) - vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); - if (vmx->msr_autoload.guest.nr) - vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); - - preempt_disable(); - - vmx_prepare_switch_to_guest(vcpu); - - /* - * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS, - * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to - * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e. - * there is no need to preserve other bits or save/restore the field. - */ - vmcs_writel(GUEST_RFLAGS, 0); - - vmcs_writel(HOST_RIP, vmx_early_consistency_check_return); - - cr3 = __get_current_cr3_fast(); - if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { - vmcs_writel(HOST_CR3, cr3); - vmx->loaded_vmcs->host_state.cr3 = cr3; - } - - cr4 = cr4_read_shadow(); - if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { - vmcs_writel(HOST_CR4, cr4); - vmx->loaded_vmcs->host_state.cr4 = cr4; - } - - vmx->__launched = vmx->loaded_vmcs->launched; - - asm( - /* Set HOST_RSP */ - __ex("vmwrite %%" _ASM_SP ", %%" _ASM_DX) "\n\t" - "mov %%" _ASM_SP ", %c[host_rsp](%0)\n\t" - - /* Check if vmlaunch of vmresume is needed */ - "cmpl $0, %c[launched](%0)\n\t" - "je 1f\n\t" - __ex("vmresume") "\n\t" - "jmp 2f\n\t" - "1: " __ex("vmlaunch") "\n\t" - "jmp 2f\n\t" - "2: " - - /* Set vmx->fail accordingly */ - "setbe %c[fail](%0)\n\t" - - ".pushsection .rodata\n\t" - ".global vmx_early_consistency_check_return\n\t" - "vmx_early_consistency_check_return: " _ASM_PTR " 2b\n\t" - ".popsection" - : - : "c"(vmx), "d"((unsigned long)HOST_RSP), - [launched]"i"(offsetof(struct vcpu_vmx, __launched)), - [fail]"i"(offsetof(struct vcpu_vmx, fail)), - [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)) - : "rax", "cc", "memory" - ); - - vmcs_writel(HOST_RIP, vmx_return); - - preempt_enable(); - - if (vmx->msr_autoload.host.nr) - vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr); - if (vmx->msr_autoload.guest.nr) - vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr); - - if (vmx->fail) { - WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) != - VMXERR_ENTRY_INVALID_CONTROL_FIELD); - vmx->fail = 0; - return 1; - } - - /* - * VMExit clears RFLAGS.IF and DR7, even on a consistency check. - */ - local_irq_enable(); - if (hw_breakpoint_active()) - set_debugreg(__this_cpu_read(cpu_dr7), 7); - - /* - * A non-failing VMEntry means we somehow entered guest mode with - * an illegal RIP, and that's just the tip of the iceberg. There - * is no telling what memory has been modified or what state has - * been exposed to unknown code. Hitting this all but guarantees - * a (very critical) hardware issue. - */ - WARN_ON(!(vmcs_read32(VM_EXIT_REASON) & - VMX_EXIT_REASONS_FAILED_VMENTRY)); - - return 0; -} -STACK_FRAME_NON_STANDARD(nested_vmx_check_vmentry_hw); - -static void load_vmcs12_host_state(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12); - -/* - * If from_vmentry is false, this is being called from state restore (either RSM - * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume. -+ * -+ * Returns: -+ * 0 - success, i.e. proceed with actual VMEnter -+ * 1 - consistency check VMExit -+ * -1 - consistency check VMFail - */ -static int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, - bool from_vmentry) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - bool evaluate_pending_interrupts; - u32 exit_reason = EXIT_REASON_INVALID_STATE; - u32 exit_qual; - - evaluate_pending_interrupts = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) & - (CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING); - if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu)) - evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu); - - if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) - vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL); - if (kvm_mpx_supported() && - !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)) - vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS); - - vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02); - - prepare_vmcs02_early(vmx, vmcs12); - - if (from_vmentry) { - nested_get_vmcs12_pages(vcpu); - - if (nested_vmx_check_vmentry_hw(vcpu)) { - vmx_switch_vmcs(vcpu, &vmx->vmcs01); - return -1; - } - - if (check_vmentry_postreqs(vcpu, vmcs12, &exit_qual)) - goto vmentry_fail_vmexit; - } - - enter_guest_mode(vcpu); - if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING) - vcpu->arch.tsc_offset += vmcs12->tsc_offset; - - if (prepare_vmcs02(vcpu, vmcs12, &exit_qual)) - goto vmentry_fail_vmexit_guest_mode; - - if (from_vmentry) { - exit_reason = EXIT_REASON_MSR_LOAD_FAIL; - exit_qual = nested_vmx_load_msr(vcpu, - vmcs12->vm_entry_msr_load_addr, - vmcs12->vm_entry_msr_load_count); - if (exit_qual) - goto vmentry_fail_vmexit_guest_mode; - } else { - /* - * The MMU is not initialized to point at the right entities yet and - * "get pages" would need to read data from the guest (i.e. we will - * need to perform gpa to hpa translation). Request a call - * to nested_get_vmcs12_pages before the next VM-entry. The MSRs - * have already been set at vmentry time and should not be reset. - */ - kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu); - } - - /* - * If L1 had a pending IRQ/NMI until it executed - * VMLAUNCH/VMRESUME which wasn't delivered because it was - * disallowed (e.g. interrupts disabled), L0 needs to - * evaluate if this pending event should cause an exit from L2 - * to L1 or delivered directly to L2 (e.g. In case L1 don't - * intercept EXTERNAL_INTERRUPT). - * - * Usually this would be handled by the processor noticing an - * IRQ/NMI window request, or checking RVI during evaluation of - * pending virtual interrupts. However, this setting was done - * on VMCS01 and now VMCS02 is active instead. Thus, we force L0 - * to perform pending event evaluation by requesting a KVM_REQ_EVENT. - */ - if (unlikely(evaluate_pending_interrupts)) - kvm_make_request(KVM_REQ_EVENT, vcpu); - - /* - * Note no nested_vmx_succeed or nested_vmx_fail here. At this point - * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet - * returned as far as L1 is concerned. It will only return (and set - * the success flag) when L2 exits (see nested_vmx_vmexit()). - */ - return 0; - - /* - * A failed consistency check that leads to a VMExit during L1's - * VMEnter to L2 is a variation of a normal VMexit, as explained in - * 26.7 "VM-entry failures during or after loading guest state". - */ -vmentry_fail_vmexit_guest_mode: - if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING) - vcpu->arch.tsc_offset -= vmcs12->tsc_offset; - leave_guest_mode(vcpu); - -vmentry_fail_vmexit: - vmx_switch_vmcs(vcpu, &vmx->vmcs01); - - if (!from_vmentry) - return 1; - - load_vmcs12_host_state(vcpu, vmcs12); - vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY; - vmcs12->exit_qualification = exit_qual; - if (enable_shadow_vmcs || vmx->nested.hv_evmcs) - vmx->nested.need_vmcs12_sync = true; - return 1; -} - -/* - * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1 - * for running an L2 nested guest. - */ -static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch) -{ - struct vmcs12 *vmcs12; - struct vcpu_vmx *vmx = to_vmx(vcpu); - u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu); - int ret; - - if (!nested_vmx_check_permission(vcpu)) - return 1; - - if (!nested_vmx_handle_enlightened_vmptrld(vcpu, true)) - return 1; - - if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull) - return nested_vmx_failInvalid(vcpu); - - vmcs12 = get_vmcs12(vcpu); - - /* - * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact - * that there *is* a valid VMCS pointer, RFLAGS.CF is set - * rather than RFLAGS.ZF, and no error number is stored to the - * VM-instruction error field. - */ - if (vmcs12->hdr.shadow_vmcs) - return nested_vmx_failInvalid(vcpu); - - if (vmx->nested.hv_evmcs) { - copy_enlightened_to_vmcs12(vmx); - /* Enlightened VMCS doesn't have launch state */ - vmcs12->launch_state = !launch; - } else if (enable_shadow_vmcs) { - copy_shadow_to_vmcs12(vmx); - } - - /* - * The nested entry process starts with enforcing various prerequisites - * on vmcs12 as required by the Intel SDM, and act appropriately when - * they fail: As the SDM explains, some conditions should cause the - * instruction to fail, while others will cause the instruction to seem - * to succeed, but return an EXIT_REASON_INVALID_STATE. - * To speed up the normal (success) code path, we should avoid checking - * for misconfigurations which will anyway be caught by the processor - * when using the merged vmcs02. - */ - if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) - return nested_vmx_failValid(vcpu, - VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS); - - if (vmcs12->launch_state == launch) - return nested_vmx_failValid(vcpu, - launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS - : VMXERR_VMRESUME_NONLAUNCHED_VMCS); - - ret = check_vmentry_prereqs(vcpu, vmcs12); - if (ret) - return nested_vmx_failValid(vcpu, ret); - - /* - * We're finally done with prerequisite checking, and can start with - * the nested entry. - */ - vmx->nested.nested_run_pending = 1; - ret = nested_vmx_enter_non_root_mode(vcpu, true); - vmx->nested.nested_run_pending = !ret; - if (ret > 0) - return 1; - else if (ret) - return nested_vmx_failValid(vcpu, - VMXERR_ENTRY_INVALID_CONTROL_FIELD); - - /* Hide L1D cache contents from the nested guest. */ - vmx->vcpu.arch.l1tf_flush_l1d = true; - - /* - * Must happen outside of nested_vmx_enter_non_root_mode() as it will - * also be used as part of restoring nVMX state for - * snapshot restore (migration). - * - * In this flow, it is assumed that vmcs12 cache was - * trasferred as part of captured nVMX state and should - * therefore not be read from guest memory (which may not - * exist on destination host yet). - */ - nested_cache_shadow_vmcs12(vcpu, vmcs12); - - /* - * If we're entering a halted L2 vcpu and the L2 vcpu won't be woken - * by event injection, halt vcpu. - */ - if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) && - !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK)) { - vmx->nested.nested_run_pending = 0; - return kvm_vcpu_halt(vcpu); - } - return 1; -} - -/* - * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date - * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK). - * This function returns the new value we should put in vmcs12.guest_cr0. - * It's not enough to just return the vmcs02 GUEST_CR0. Rather, - * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now - * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0 - * didn't trap the bit, because if L1 did, so would L0). - * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have - * been modified by L2, and L1 knows it. So just leave the old value of - * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0 - * isn't relevant, because if L0 traps this bit it can set it to anything. - * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have - * changed these bits, and therefore they need to be updated, but L0 - * didn't necessarily allow them to be changed in GUEST_CR0 - and rather - * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there. - */ -static inline unsigned long -vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) -{ - return - /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) | - /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) | - /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask | - vcpu->arch.cr0_guest_owned_bits)); -} - -static inline unsigned long -vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) -{ - return - /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) | - /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) | - /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask | - vcpu->arch.cr4_guest_owned_bits)); -} - -static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) -{ - u32 idt_vectoring; - unsigned int nr; - - if (vcpu->arch.exception.injected) { - nr = vcpu->arch.exception.nr; - idt_vectoring = nr | VECTORING_INFO_VALID_MASK; - - if (kvm_exception_is_soft(nr)) { - vmcs12->vm_exit_instruction_len = - vcpu->arch.event_exit_inst_len; - idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION; - } else - idt_vectoring |= INTR_TYPE_HARD_EXCEPTION; - - if (vcpu->arch.exception.has_error_code) { - idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK; - vmcs12->idt_vectoring_error_code = - vcpu->arch.exception.error_code; - } - - vmcs12->idt_vectoring_info_field = idt_vectoring; - } else if (vcpu->arch.nmi_injected) { - vmcs12->idt_vectoring_info_field = - INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR; - } else if (vcpu->arch.interrupt.injected) { - nr = vcpu->arch.interrupt.nr; - idt_vectoring = nr | VECTORING_INFO_VALID_MASK; - - if (vcpu->arch.interrupt.soft) { - idt_vectoring |= INTR_TYPE_SOFT_INTR; - vmcs12->vm_entry_instruction_len = - vcpu->arch.event_exit_inst_len; - } else - idt_vectoring |= INTR_TYPE_EXT_INTR; - - vmcs12->idt_vectoring_info_field = idt_vectoring; - } -} - -static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - unsigned long exit_qual; - bool block_nested_events = - vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu); - - if (vcpu->arch.exception.pending && - nested_vmx_check_exception(vcpu, &exit_qual)) { - if (block_nested_events) - return -EBUSY; - nested_vmx_inject_exception_vmexit(vcpu, exit_qual); - return 0; - } - - if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) && - vmx->nested.preemption_timer_expired) { - if (block_nested_events) - return -EBUSY; - nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0); - return 0; - } - - if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) { - if (block_nested_events) - return -EBUSY; - nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, - NMI_VECTOR | INTR_TYPE_NMI_INTR | - INTR_INFO_VALID_MASK, 0); - /* - * The NMI-triggered VM exit counts as injection: - * clear this one and block further NMIs. - */ - vcpu->arch.nmi_pending = 0; - vmx_set_nmi_mask(vcpu, true); - return 0; - } - - if ((kvm_cpu_has_interrupt(vcpu) || external_intr) && - nested_exit_on_intr(vcpu)) { - if (block_nested_events) - return -EBUSY; - nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0); - return 0; - } - - vmx_complete_nested_posted_interrupt(vcpu); - return 0; -} - -static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) -{ - to_vmx(vcpu)->req_immediate_exit = true; -} - -static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu) -{ - ktime_t remaining = - hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer); - u64 value; - - if (ktime_to_ns(remaining) <= 0) - return 0; - - value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz; - do_div(value, 1000000); - return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE; -} - -/* - * Update the guest state fields of vmcs12 to reflect changes that - * occurred while L2 was running. (The "IA-32e mode guest" bit of the - * VM-entry controls is also updated, since this is really a guest - * state bit.) - */ -static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) -{ - vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12); - vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12); - - vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); - vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP); - vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS); - - vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR); - vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR); - vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR); - vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR); - vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR); - vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR); - vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR); - vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR); - vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT); - vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT); - vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT); - vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT); - vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT); - vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT); - vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT); - vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT); - vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT); - vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT); - vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES); - vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES); - vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES); - vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES); - vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES); - vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES); - vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES); - vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES); - vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE); - vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE); - vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE); - vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE); - vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE); - vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE); - vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE); - vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE); - vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE); - vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE); - - vmcs12->guest_interruptibility_info = - vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); - vmcs12->guest_pending_dbg_exceptions = - vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS); - if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) - vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT; - else - vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE; - - if (nested_cpu_has_preemption_timer(vmcs12)) { - if (vmcs12->vm_exit_controls & - VM_EXIT_SAVE_VMX_PREEMPTION_TIMER) - vmcs12->vmx_preemption_timer_value = - vmx_get_preemption_timer_value(vcpu); - hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer); - } - - /* - * In some cases (usually, nested EPT), L2 is allowed to change its - * own CR3 without exiting. If it has changed it, we must keep it. - * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined - * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12. - * - * Additionally, restore L2's PDPTR to vmcs12. - */ - if (enable_ept) { - vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3); - vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0); - vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1); - vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2); - vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3); - } - - vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS); - - if (nested_cpu_has_vid(vmcs12)) - vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS); - - vmcs12->vm_entry_controls = - (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) | - (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE); - - if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) { - kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7); - vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL); - } - - /* TODO: These cannot have changed unless we have MSR bitmaps and - * the relevant bit asks not to trap the change */ - if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) - vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT); - if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER) - vmcs12->guest_ia32_efer = vcpu->arch.efer; - vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS); - vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP); - vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP); - if (kvm_mpx_supported()) - vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS); -} - -/* - * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits - * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12), - * and this function updates it to reflect the changes to the guest state while - * L2 was running (and perhaps made some exits which were handled directly by L0 - * without going back to L1), and to reflect the exit reason. - * Note that we do not have to copy here all VMCS fields, just those that - * could have changed by the L2 guest or the exit - i.e., the guest-state and - * exit-information fields only. Other fields are modified by L1 with VMWRITE, - * which already writes to vmcs12 directly. - */ -static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, - u32 exit_reason, u32 exit_intr_info, - unsigned long exit_qualification) -{ - /* update guest state fields: */ - sync_vmcs12(vcpu, vmcs12); - - /* update exit information fields: */ - - vmcs12->vm_exit_reason = exit_reason; - vmcs12->exit_qualification = exit_qualification; - vmcs12->vm_exit_intr_info = exit_intr_info; - - vmcs12->idt_vectoring_info_field = 0; - vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); - vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); - - if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) { - vmcs12->launch_state = 1; - - /* vm_entry_intr_info_field is cleared on exit. Emulate this - * instead of reading the real value. */ - vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK; - - /* - * Transfer the event that L0 or L1 may wanted to inject into - * L2 to IDT_VECTORING_INFO_FIELD. - */ - vmcs12_save_pending_event(vcpu, vmcs12); - } - - /* - * Drop what we picked up for L2 via vmx_complete_interrupts. It is - * preserved above and would only end up incorrectly in L1. - */ - vcpu->arch.nmi_injected = false; - kvm_clear_exception_queue(vcpu); - kvm_clear_interrupt_queue(vcpu); -} - -/* - * A part of what we need to when the nested L2 guest exits and we want to - * run its L1 parent, is to reset L1's guest state to the host state specified - * in vmcs12. - * This function is to be called not only on normal nested exit, but also on - * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry - * Failures During or After Loading Guest State"). - * This function should be called when the active VMCS is L1's (vmcs01). - */ -static void load_vmcs12_host_state(struct kvm_vcpu *vcpu, - struct vmcs12 *vmcs12) -{ - struct kvm_segment seg; - u32 entry_failure_code; - - if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) - vcpu->arch.efer = vmcs12->host_ia32_efer; - else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) - vcpu->arch.efer |= (EFER_LMA | EFER_LME); - else - vcpu->arch.efer &= ~(EFER_LMA | EFER_LME); - vmx_set_efer(vcpu, vcpu->arch.efer); - - kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp); - kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip); - vmx_set_rflags(vcpu, X86_EFLAGS_FIXED); - vmx_set_interrupt_shadow(vcpu, 0); - - /* - * Note that calling vmx_set_cr0 is important, even if cr0 hasn't - * actually changed, because vmx_set_cr0 refers to efer set above. - * - * CR0_GUEST_HOST_MASK is already set in the original vmcs01 - * (KVM doesn't change it); - */ - vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS; - vmx_set_cr0(vcpu, vmcs12->host_cr0); - - /* Same as above - no reason to call set_cr4_guest_host_mask(). */ - vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK); - vmx_set_cr4(vcpu, vmcs12->host_cr4); - - nested_ept_uninit_mmu_context(vcpu); - - /* - * Only PDPTE load can fail as the value of cr3 was checked on entry and - * couldn't have changed. - */ - if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code)) - nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL); - - if (!enable_ept) - vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault; - - /* - * If vmcs01 doesn't use VPID, CPU flushes TLB on every - * VMEntry/VMExit. Thus, no need to flush TLB. - * - * If vmcs12 doesn't use VPID, L1 expects TLB to be - * flushed on every VMEntry/VMExit. - * - * Otherwise, we can preserve TLB entries as long as we are - * able to tag L1 TLB entries differently than L2 TLB entries. - * - * If vmcs12 uses EPT, we need to execute this flush on EPTP01 - * and therefore we request the TLB flush to happen only after VMCS EPTP - * has been set by KVM_REQ_LOAD_CR3. - */ - if (enable_vpid && - (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) { - kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); - } - - vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs); - vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp); - vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip); - vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base); - vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base); - vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF); - vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF); - - /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */ - if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS) - vmcs_write64(GUEST_BNDCFGS, 0); - - if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) { - vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat); - vcpu->arch.pat = vmcs12->host_ia32_pat; - } - if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) - vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL, - vmcs12->host_ia32_perf_global_ctrl); - - /* Set L1 segment info according to Intel SDM - 27.5.2 Loading Host Segment and Descriptor-Table Registers */ - seg = (struct kvm_segment) { - .base = 0, - .limit = 0xFFFFFFFF, - .selector = vmcs12->host_cs_selector, - .type = 11, - .present = 1, - .s = 1, - .g = 1 - }; - if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) - seg.l = 1; - else - seg.db = 1; - vmx_set_segment(vcpu, &seg, VCPU_SREG_CS); - seg = (struct kvm_segment) { - .base = 0, - .limit = 0xFFFFFFFF, - .type = 3, - .present = 1, - .s = 1, - .db = 1, - .g = 1 - }; - seg.selector = vmcs12->host_ds_selector; - vmx_set_segment(vcpu, &seg, VCPU_SREG_DS); - seg.selector = vmcs12->host_es_selector; - vmx_set_segment(vcpu, &seg, VCPU_SREG_ES); - seg.selector = vmcs12->host_ss_selector; - vmx_set_segment(vcpu, &seg, VCPU_SREG_SS); - seg.selector = vmcs12->host_fs_selector; - seg.base = vmcs12->host_fs_base; - vmx_set_segment(vcpu, &seg, VCPU_SREG_FS); - seg.selector = vmcs12->host_gs_selector; - seg.base = vmcs12->host_gs_base; - vmx_set_segment(vcpu, &seg, VCPU_SREG_GS); - seg = (struct kvm_segment) { - .base = vmcs12->host_tr_base, - .limit = 0x67, - .selector = vmcs12->host_tr_selector, - .type = 11, - .present = 1 - }; - vmx_set_segment(vcpu, &seg, VCPU_SREG_TR); - - kvm_set_dr(vcpu, 7, 0x400); - vmcs_write64(GUEST_IA32_DEBUGCTL, 0); - - if (cpu_has_vmx_msr_bitmap()) - vmx_update_msr_bitmap(vcpu); - - if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr, - vmcs12->vm_exit_msr_load_count)) - nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL); -} - -static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx) -{ - struct shared_msr_entry *efer_msr; - unsigned int i; - - if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER) - return vmcs_read64(GUEST_IA32_EFER); - - if (cpu_has_load_ia32_efer) - return host_efer; - - for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) { - if (vmx->msr_autoload.guest.val[i].index == MSR_EFER) - return vmx->msr_autoload.guest.val[i].value; - } - - efer_msr = find_msr_entry(vmx, MSR_EFER); - if (efer_msr) - return efer_msr->data; - - return host_efer; -} - -static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu) -{ - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct vmx_msr_entry g, h; - struct msr_data msr; - gpa_t gpa; - u32 i, j; - - vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT); - - if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) { - /* - * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set - * as vmcs01.GUEST_DR7 contains a userspace defined value - * and vcpu->arch.dr7 is not squirreled away before the - * nested VMENTER (not worth adding a variable in nested_vmx). - */ - if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) - kvm_set_dr(vcpu, 7, DR7_FIXED_1); - else - WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7))); - } - - /* - * Note that calling vmx_set_{efer,cr0,cr4} is important as they - * handle a variety of side effects to KVM's software model. - */ - vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx)); - - vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS; - vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW)); - - vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK); - vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW)); - - nested_ept_uninit_mmu_context(vcpu); - vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); - __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); - - /* - * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs - * from vmcs01 (if necessary). The PDPTRs are not loaded on - * VMFail, like everything else we just need to ensure our - * software model is up-to-date. - */ - ept_save_pdptrs(vcpu); - - kvm_mmu_reset_context(vcpu); - - if (cpu_has_vmx_msr_bitmap()) - vmx_update_msr_bitmap(vcpu); - - /* - * This nasty bit of open coding is a compromise between blindly - * loading L1's MSRs using the exit load lists (incorrect emulation - * of VMFail), leaving the nested VM's MSRs in the software model - * (incorrect behavior) and snapshotting the modified MSRs (too - * expensive since the lists are unbound by hardware). For each - * MSR that was (prematurely) loaded from the nested VMEntry load - * list, reload it from the exit load list if it exists and differs - * from the guest value. The intent is to stuff host state as - * silently as possible, not to fully process the exit load list. - */ - msr.host_initiated = false; - for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) { - gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g)); - if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) { - pr_debug_ratelimited( - "%s read MSR index failed (%u, 0x%08llx)\n", - __func__, i, gpa); - goto vmabort; - } - - for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) { - gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h)); - if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) { - pr_debug_ratelimited( - "%s read MSR failed (%u, 0x%08llx)\n", - __func__, j, gpa); - goto vmabort; - } - if (h.index != g.index) - continue; - if (h.value == g.value) - break; - - if (nested_vmx_load_msr_check(vcpu, &h)) { - pr_debug_ratelimited( - "%s check failed (%u, 0x%x, 0x%x)\n", - __func__, j, h.index, h.reserved); - goto vmabort; - } - - msr.index = h.index; - msr.data = h.value; - if (kvm_set_msr(vcpu, &msr)) { - pr_debug_ratelimited( - "%s WRMSR failed (%u, 0x%x, 0x%llx)\n", - __func__, j, h.index, h.value); - goto vmabort; - } - } - } - - return; - -vmabort: - nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL); -} - -/* - * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1 - * and modify vmcs12 to make it see what it would expect to see there if - * L2 was its real guest. Must only be called when in L2 (is_guest_mode()) - */ -static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason, - u32 exit_intr_info, - unsigned long exit_qualification) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - - /* trying to cancel vmlaunch/vmresume is a bug */ - WARN_ON_ONCE(vmx->nested.nested_run_pending); - - leave_guest_mode(vcpu); - - if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING) - vcpu->arch.tsc_offset -= vmcs12->tsc_offset; - - if (likely(!vmx->fail)) { - if (exit_reason == -1) - sync_vmcs12(vcpu, vmcs12); - else - prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info, - exit_qualification); - - /* - * Must happen outside of sync_vmcs12() as it will - * also be used to capture vmcs12 cache as part of - * capturing nVMX state for snapshot (migration). - * - * Otherwise, this flush will dirty guest memory at a - * point it is already assumed by user-space to be - * immutable. - */ - nested_flush_cached_shadow_vmcs12(vcpu, vmcs12); - - if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr, - vmcs12->vm_exit_msr_store_count)) - nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL); - } else { - /* - * The only expected VM-instruction error is "VM entry with - * invalid control field(s)." Anything else indicates a - * problem with L0. And we should never get here with a - * VMFail of any type if early consistency checks are enabled. - */ - WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) != - VMXERR_ENTRY_INVALID_CONTROL_FIELD); - WARN_ON_ONCE(nested_early_check); - } - - vmx_switch_vmcs(vcpu, &vmx->vmcs01); - - /* Update any VMCS fields that might have changed while L2 ran */ - vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr); - vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr); - vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); - - if (kvm_has_tsc_control) - decache_tsc_multiplier(vmx); - - if (vmx->nested.change_vmcs01_virtual_apic_mode) { - vmx->nested.change_vmcs01_virtual_apic_mode = false; - vmx_set_virtual_apic_mode(vcpu); - } else if (!nested_cpu_has_ept(vmcs12) && - nested_cpu_has2(vmcs12, - SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) { - vmx_flush_tlb(vcpu, true); - } - - /* This is needed for same reason as it was needed in prepare_vmcs02 */ - vmx->host_rsp = 0; - - /* Unpin physical memory we referred to in vmcs02 */ - if (vmx->nested.apic_access_page) { - kvm_release_page_dirty(vmx->nested.apic_access_page); - vmx->nested.apic_access_page = NULL; - } - if (vmx->nested.virtual_apic_page) { - kvm_release_page_dirty(vmx->nested.virtual_apic_page); - vmx->nested.virtual_apic_page = NULL; - } - if (vmx->nested.pi_desc_page) { - kunmap(vmx->nested.pi_desc_page); - kvm_release_page_dirty(vmx->nested.pi_desc_page); - vmx->nested.pi_desc_page = NULL; - vmx->nested.pi_desc = NULL; - } - - /* - * We are now running in L2, mmu_notifier will force to reload the - * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1. - */ - kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); - - if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs)) - vmx->nested.need_vmcs12_sync = true; - - /* in case we halted in L2 */ - vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; - - if (likely(!vmx->fail)) { - /* - * TODO: SDM says that with acknowledge interrupt on - * exit, bit 31 of the VM-exit interrupt information - * (valid interrupt) is always set to 1 on - * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't - * need kvm_cpu_has_interrupt(). See the commit - * message for details. - */ - if (nested_exit_intr_ack_set(vcpu) && - exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT && - kvm_cpu_has_interrupt(vcpu)) { - int irq = kvm_cpu_get_interrupt(vcpu); - WARN_ON(irq < 0); - vmcs12->vm_exit_intr_info = irq | - INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR; - } - - if (exit_reason != -1) - trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason, - vmcs12->exit_qualification, - vmcs12->idt_vectoring_info_field, - vmcs12->vm_exit_intr_info, - vmcs12->vm_exit_intr_error_code, - KVM_ISA_VMX); - - load_vmcs12_host_state(vcpu, vmcs12); - - return; - } - - /* - * After an early L2 VM-entry failure, we're now back - * in L1 which thinks it just finished a VMLAUNCH or - * VMRESUME instruction, so we need to set the failure - * flag and the VM-instruction error field of the VMCS - * accordingly, and skip the emulated instruction. - */ - (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); - - /* - * Restore L1's host state to KVM's software model. We're here - * because a consistency check was caught by hardware, which - * means some amount of guest state has been propagated to KVM's - * model and needs to be unwound to the host's state. - */ - nested_vmx_restore_host_state(vcpu); - - vmx->fail = 0; -} - -/* - * Forcibly leave nested mode in order to be able to reset the VCPU later on. - */ -static void vmx_leave_nested(struct kvm_vcpu *vcpu) -{ - if (is_guest_mode(vcpu)) { - to_vmx(vcpu)->nested.nested_run_pending = 0; - nested_vmx_vmexit(vcpu, -1, 0, 0); - } - free_nested(vcpu); -} - -static int vmx_check_intercept(struct kvm_vcpu *vcpu, - struct x86_instruction_info *info, - enum x86_intercept_stage stage) -{ - struct vmcs12 *vmcs12 = get_vmcs12(vcpu); - struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; - - /* - * RDPID causes #UD if disabled through secondary execution controls. - * Because it is marked as EmulateOnUD, we need to intercept it here. - */ - if (info->intercept == x86_intercept_rdtscp && - !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) { - ctxt->exception.vector = UD_VECTOR; - ctxt->exception.error_code_valid = false; - return X86EMUL_PROPAGATE_FAULT; - } - - /* TODO: check more intercepts... */ - return X86EMUL_CONTINUE; -} - -#ifdef CONFIG_X86_64 -/* (a << shift) / divisor, return 1 if overflow otherwise 0 */ -static inline int u64_shl_div_u64(u64 a, unsigned int shift, - u64 divisor, u64 *result) -{ - u64 low = a << shift, high = a >> (64 - shift); - - /* To avoid the overflow on divq */ - if (high >= divisor) - return 1; - - /* Low hold the result, high hold rem which is discarded */ - asm("divq %2\n\t" : "=a" (low), "=d" (high) : - "rm" (divisor), "0" (low), "1" (high)); - *result = low; - - return 0; -} - -static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc) -{ - struct vcpu_vmx *vmx; - u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; - - if (kvm_mwait_in_guest(vcpu->kvm)) - return -EOPNOTSUPP; - - vmx = to_vmx(vcpu); - tscl = rdtsc(); - guest_tscl = kvm_read_l1_tsc(vcpu, tscl); - delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; - lapic_timer_advance_cycles = nsec_to_cycles(vcpu, lapic_timer_advance_ns); - - if (delta_tsc > lapic_timer_advance_cycles) - delta_tsc -= lapic_timer_advance_cycles; - else - delta_tsc = 0; - - /* Convert to host delta tsc if tsc scaling is enabled */ - if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio && - u64_shl_div_u64(delta_tsc, - kvm_tsc_scaling_ratio_frac_bits, - vcpu->arch.tsc_scaling_ratio, - &delta_tsc)) - return -ERANGE; - - /* - * If the delta tsc can't fit in the 32 bit after the multi shift, - * we can't use the preemption timer. - * It's possible that it fits on later vmentries, but checking - * on every vmentry is costly so we just use an hrtimer. - */ - if (delta_tsc >> (cpu_preemption_timer_multi + 32)) - return -ERANGE; - - vmx->hv_deadline_tsc = tscl + delta_tsc; - return delta_tsc == 0; -} - -static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) -{ - to_vmx(vcpu)->hv_deadline_tsc = -1; -} -#endif - -static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) -{ - if (!kvm_pause_in_guest(vcpu->kvm)) - shrink_ple_window(vcpu); -} - -static void vmx_slot_enable_log_dirty(struct kvm *kvm, - struct kvm_memory_slot *slot) -{ - kvm_mmu_slot_leaf_clear_dirty(kvm, slot); - kvm_mmu_slot_largepage_remove_write_access(kvm, slot); -} - -static void vmx_slot_disable_log_dirty(struct kvm *kvm, - struct kvm_memory_slot *slot) -{ - kvm_mmu_slot_set_dirty(kvm, slot); -} - -static void vmx_flush_log_dirty(struct kvm *kvm) -{ - kvm_flush_pml_buffers(kvm); -} - -static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu) -{ - struct vmcs12 *vmcs12; - struct vcpu_vmx *vmx = to_vmx(vcpu); - gpa_t gpa; - struct page *page = NULL; - u64 *pml_address; - - if (is_guest_mode(vcpu)) { - WARN_ON_ONCE(vmx->nested.pml_full); - - /* - * Check if PML is enabled for the nested guest. - * Whether eptp bit 6 is set is already checked - * as part of A/D emulation. - */ - vmcs12 = get_vmcs12(vcpu); - if (!nested_cpu_has_pml(vmcs12)) - return 0; - - if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) { - vmx->nested.pml_full = true; - return 1; - } - - gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull; - - page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address); - if (is_error_page(page)) - return 0; - - pml_address = kmap(page); - pml_address[vmcs12->guest_pml_index--] = gpa; - kunmap(page); - kvm_release_page_clean(page); - } - - return 0; -} - -static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm, - struct kvm_memory_slot *memslot, - gfn_t offset, unsigned long mask) -{ - kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask); -} - -static void __pi_post_block(struct kvm_vcpu *vcpu) -{ - struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); - struct pi_desc old, new; - unsigned int dest; - - do { - old.control = new.control = pi_desc->control; - WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR, - "Wakeup handler not enabled while the VCPU is blocked\n"); - - dest = cpu_physical_id(vcpu->cpu); - - if (x2apic_enabled()) - new.ndst = dest; - else - new.ndst = (dest << 8) & 0xFF00; - - /* set 'NV' to 'notification vector' */ - new.nv = POSTED_INTR_VECTOR; - } while (cmpxchg64(&pi_desc->control, old.control, - new.control) != old.control); - - if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) { - spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); - list_del(&vcpu->blocked_vcpu_list); - spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); - vcpu->pre_pcpu = -1; - } -} - -/* - * This routine does the following things for vCPU which is going - * to be blocked if VT-d PI is enabled. - * - Store the vCPU to the wakeup list, so when interrupts happen - * we can find the right vCPU to wake up. - * - Change the Posted-interrupt descriptor as below: - * 'NDST' <-- vcpu->pre_pcpu - * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR - * - If 'ON' is set during this process, which means at least one - * interrupt is posted for this vCPU, we cannot block it, in - * this case, return 1, otherwise, return 0. - * - */ -static int pi_pre_block(struct kvm_vcpu *vcpu) -{ - unsigned int dest; - struct pi_desc old, new; - struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); - - if (!kvm_arch_has_assigned_device(vcpu->kvm) || - !irq_remapping_cap(IRQ_POSTING_CAP) || - !kvm_vcpu_apicv_active(vcpu)) - return 0; - - WARN_ON(irqs_disabled()); - local_irq_disable(); - if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) { - vcpu->pre_pcpu = vcpu->cpu; - spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); - list_add_tail(&vcpu->blocked_vcpu_list, - &per_cpu(blocked_vcpu_on_cpu, - vcpu->pre_pcpu)); - spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); - } - - do { - old.control = new.control = pi_desc->control; - - WARN((pi_desc->sn == 1), - "Warning: SN field of posted-interrupts " - "is set before blocking\n"); - - /* - * Since vCPU can be preempted during this process, - * vcpu->cpu could be different with pre_pcpu, we - * need to set pre_pcpu as the destination of wakeup - * notification event, then we can find the right vCPU - * to wakeup in wakeup handler if interrupts happen - * when the vCPU is in blocked state. - */ - dest = cpu_physical_id(vcpu->pre_pcpu); - - if (x2apic_enabled()) - new.ndst = dest; - else - new.ndst = (dest << 8) & 0xFF00; - - /* set 'NV' to 'wakeup vector' */ - new.nv = POSTED_INTR_WAKEUP_VECTOR; - } while (cmpxchg64(&pi_desc->control, old.control, - new.control) != old.control); - - /* We should not block the vCPU if an interrupt is posted for it. */ - if (pi_test_on(pi_desc) == 1) - __pi_post_block(vcpu); - - local_irq_enable(); - return (vcpu->pre_pcpu == -1); -} - -static int vmx_pre_block(struct kvm_vcpu *vcpu) -{ - if (pi_pre_block(vcpu)) - return 1; - - if (kvm_lapic_hv_timer_in_use(vcpu)) - kvm_lapic_switch_to_sw_timer(vcpu); - - return 0; -} - -static void pi_post_block(struct kvm_vcpu *vcpu) -{ - if (vcpu->pre_pcpu == -1) - return; - - WARN_ON(irqs_disabled()); - local_irq_disable(); - __pi_post_block(vcpu); - local_irq_enable(); -} - -static void vmx_post_block(struct kvm_vcpu *vcpu) -{ - if (kvm_x86_ops->set_hv_timer) - kvm_lapic_switch_to_hv_timer(vcpu); - - pi_post_block(vcpu); -} - -/* - * vmx_update_pi_irte - set IRTE for Posted-Interrupts - * - * @kvm: kvm - * @host_irq: host irq of the interrupt - * @guest_irq: gsi of the interrupt - * @set: set or unset PI - * returns 0 on success, < 0 on failure - */ -static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq, - uint32_t guest_irq, bool set) -{ - struct kvm_kernel_irq_routing_entry *e; - struct kvm_irq_routing_table *irq_rt; - struct kvm_lapic_irq irq; - struct kvm_vcpu *vcpu; - struct vcpu_data vcpu_info; - int idx, ret = 0; - - if (!kvm_arch_has_assigned_device(kvm) || - !irq_remapping_cap(IRQ_POSTING_CAP) || - !kvm_vcpu_apicv_active(kvm->vcpus[0])) - return 0; - - idx = srcu_read_lock(&kvm->irq_srcu); - irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu); - if (guest_irq >= irq_rt->nr_rt_entries || - hlist_empty(&irq_rt->map[guest_irq])) { - pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n", - guest_irq, irq_rt->nr_rt_entries); - goto out; - } - - hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) { - if (e->type != KVM_IRQ_ROUTING_MSI) - continue; - /* - * VT-d PI cannot support posting multicast/broadcast - * interrupts to a vCPU, we still use interrupt remapping - * for these kind of interrupts. - * - * For lowest-priority interrupts, we only support - * those with single CPU as the destination, e.g. user - * configures the interrupts via /proc/irq or uses - * irqbalance to make the interrupts single-CPU. - * - * We will support full lowest-priority interrupt later. - */ - - kvm_set_msi_irq(kvm, e, &irq); - if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) { - /* - * Make sure the IRTE is in remapped mode if - * we don't handle it in posted mode. - */ - ret = irq_set_vcpu_affinity(host_irq, NULL); - if (ret < 0) { - printk(KERN_INFO - "failed to back to remapped mode, irq: %u\n", - host_irq); - goto out; - } - - continue; - } - - vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu)); - vcpu_info.vector = irq.vector; - - trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi, - vcpu_info.vector, vcpu_info.pi_desc_addr, set); - - if (set) - ret = irq_set_vcpu_affinity(host_irq, &vcpu_info); - else - ret = irq_set_vcpu_affinity(host_irq, NULL); - - if (ret < 0) { - printk(KERN_INFO "%s: failed to update PI IRTE\n", - __func__); - goto out; - } - } - - ret = 0; -out: - srcu_read_unlock(&kvm->irq_srcu, idx); - return ret; -} - -static void vmx_setup_mce(struct kvm_vcpu *vcpu) -{ - if (vcpu->arch.mcg_cap & MCG_LMCE_P) - to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= - FEATURE_CONTROL_LMCE; - else - to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= - ~FEATURE_CONTROL_LMCE; -} - -static int vmx_smi_allowed(struct kvm_vcpu *vcpu) -{ - /* we need a nested vmexit to enter SMM, postpone if run is pending */ - if (to_vmx(vcpu)->nested.nested_run_pending) - return 0; - return 1; -} - -static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - vmx->nested.smm.guest_mode = is_guest_mode(vcpu); - if (vmx->nested.smm.guest_mode) - nested_vmx_vmexit(vcpu, -1, 0, 0); - - vmx->nested.smm.vmxon = vmx->nested.vmxon; - vmx->nested.vmxon = false; - vmx_clear_hlt(vcpu); - return 0; -} - -static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - int ret; - - if (vmx->nested.smm.vmxon) { - vmx->nested.vmxon = true; - vmx->nested.smm.vmxon = false; - } - - if (vmx->nested.smm.guest_mode) { - vcpu->arch.hflags &= ~HF_SMM_MASK; - ret = nested_vmx_enter_non_root_mode(vcpu, false); - vcpu->arch.hflags |= HF_SMM_MASK; - if (ret) - return ret; - - vmx->nested.smm.guest_mode = false; - } - return 0; -} - -static int enable_smi_window(struct kvm_vcpu *vcpu) -{ - return 0; -} - -static inline int vmx_has_valid_vmcs12(struct kvm_vcpu *vcpu) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - - /* - * In case we do two consecutive get/set_nested_state()s while L2 was - * running hv_evmcs may end up not being mapped (we map it from - * nested_vmx_run()/vmx_vcpu_run()). Check is_guest_mode() as we always - * have vmcs12 if it is true. - */ - return is_guest_mode(vcpu) || vmx->nested.current_vmptr != -1ull || - vmx->nested.hv_evmcs; -} - -static int vmx_get_nested_state(struct kvm_vcpu *vcpu, - struct kvm_nested_state __user *user_kvm_nested_state, - u32 user_data_size) -{ - struct vcpu_vmx *vmx; - struct vmcs12 *vmcs12; - struct kvm_nested_state kvm_state = { - .flags = 0, - .format = 0, - .size = sizeof(kvm_state), - .vmx.vmxon_pa = -1ull, - .vmx.vmcs_pa = -1ull, - }; - - if (!vcpu) - return kvm_state.size + 2 * VMCS12_SIZE; - - vmx = to_vmx(vcpu); - vmcs12 = get_vmcs12(vcpu); - - if (nested_vmx_allowed(vcpu) && vmx->nested.enlightened_vmcs_enabled) - kvm_state.flags |= KVM_STATE_NESTED_EVMCS; - - if (nested_vmx_allowed(vcpu) && - (vmx->nested.vmxon || vmx->nested.smm.vmxon)) { - kvm_state.vmx.vmxon_pa = vmx->nested.vmxon_ptr; - kvm_state.vmx.vmcs_pa = vmx->nested.current_vmptr; - - if (vmx_has_valid_vmcs12(vcpu)) { - kvm_state.size += VMCS12_SIZE; - - if (is_guest_mode(vcpu) && - nested_cpu_has_shadow_vmcs(vmcs12) && - vmcs12->vmcs_link_pointer != -1ull) - kvm_state.size += VMCS12_SIZE; - } - - if (vmx->nested.smm.vmxon) - kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON; - - if (vmx->nested.smm.guest_mode) - kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE; - - if (is_guest_mode(vcpu)) { - kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE; - - if (vmx->nested.nested_run_pending) - kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING; - } - } - - if (user_data_size < kvm_state.size) - goto out; - - if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state))) - return -EFAULT; - - if (!vmx_has_valid_vmcs12(vcpu)) - goto out; - - /* - * When running L2, the authoritative vmcs12 state is in the - * vmcs02. When running L1, the authoritative vmcs12 state is - * in the shadow or enlightened vmcs linked to vmcs01, unless - * need_vmcs12_sync is set, in which case, the authoritative - * vmcs12 state is in the vmcs12 already. - */ - if (is_guest_mode(vcpu)) { - sync_vmcs12(vcpu, vmcs12); - } else if (!vmx->nested.need_vmcs12_sync) { - if (vmx->nested.hv_evmcs) - copy_enlightened_to_vmcs12(vmx); - else if (enable_shadow_vmcs) - copy_shadow_to_vmcs12(vmx); - } - - if (copy_to_user(user_kvm_nested_state->data, vmcs12, sizeof(*vmcs12))) - return -EFAULT; - - if (nested_cpu_has_shadow_vmcs(vmcs12) && - vmcs12->vmcs_link_pointer != -1ull) { - if (copy_to_user(user_kvm_nested_state->data + VMCS12_SIZE, - get_shadow_vmcs12(vcpu), sizeof(*vmcs12))) - return -EFAULT; - } - -out: - return kvm_state.size; -} - -static int vmx_set_nested_state(struct kvm_vcpu *vcpu, - struct kvm_nested_state __user *user_kvm_nested_state, - struct kvm_nested_state *kvm_state) -{ - struct vcpu_vmx *vmx = to_vmx(vcpu); - struct vmcs12 *vmcs12; - u32 exit_qual; - int ret; - - if (kvm_state->format != 0) - return -EINVAL; - - if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) - nested_enable_evmcs(vcpu, NULL); - - if (!nested_vmx_allowed(vcpu)) - return kvm_state->vmx.vmxon_pa == -1ull ? 0 : -EINVAL; - - if (kvm_state->vmx.vmxon_pa == -1ull) { - if (kvm_state->vmx.smm.flags) - return -EINVAL; - - if (kvm_state->vmx.vmcs_pa != -1ull) - return -EINVAL; - - vmx_leave_nested(vcpu); - return 0; - } - - if (!page_address_valid(vcpu, kvm_state->vmx.vmxon_pa)) - return -EINVAL; - - if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) && - (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE)) - return -EINVAL; - - if (kvm_state->vmx.smm.flags & - ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON)) - return -EINVAL; - - /* - * SMM temporarily disables VMX, so we cannot be in guest mode, - * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags - * must be zero. - */ - if (is_smm(vcpu) ? kvm_state->flags : kvm_state->vmx.smm.flags) - return -EINVAL; - - if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) && - !(kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON)) - return -EINVAL; - - vmx_leave_nested(vcpu); - if (kvm_state->vmx.vmxon_pa == -1ull) - return 0; - - vmx->nested.vmxon_ptr = kvm_state->vmx.vmxon_pa; - ret = enter_vmx_operation(vcpu); - if (ret) - return ret; - - /* Empty 'VMXON' state is permitted */ - if (kvm_state->size < sizeof(kvm_state) + sizeof(*vmcs12)) - return 0; - - if (kvm_state->vmx.vmcs_pa != -1ull) { - if (kvm_state->vmx.vmcs_pa == kvm_state->vmx.vmxon_pa || - !page_address_valid(vcpu, kvm_state->vmx.vmcs_pa)) - return -EINVAL; - - set_current_vmptr(vmx, kvm_state->vmx.vmcs_pa); - } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) { - /* - * Sync eVMCS upon entry as we may not have - * HV_X64_MSR_VP_ASSIST_PAGE set up yet. - */ - vmx->nested.need_vmcs12_sync = true; - } else { - return -EINVAL; - } - - if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) { - vmx->nested.smm.vmxon = true; - vmx->nested.vmxon = false; - - if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) - vmx->nested.smm.guest_mode = true; - } - - vmcs12 = get_vmcs12(vcpu); - if (copy_from_user(vmcs12, user_kvm_nested_state->data, sizeof(*vmcs12))) - return -EFAULT; - - if (vmcs12->hdr.revision_id != VMCS12_REVISION) - return -EINVAL; - - if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE)) - return 0; - - vmx->nested.nested_run_pending = - !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING); - - if (nested_cpu_has_shadow_vmcs(vmcs12) && - vmcs12->vmcs_link_pointer != -1ull) { - struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu); - if (kvm_state->size < sizeof(kvm_state) + 2 * sizeof(*vmcs12)) - return -EINVAL; - - if (copy_from_user(shadow_vmcs12, - user_kvm_nested_state->data + VMCS12_SIZE, - sizeof(*vmcs12))) - return -EFAULT; - - if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION || - !shadow_vmcs12->hdr.shadow_vmcs) - return -EINVAL; - } - - if (check_vmentry_prereqs(vcpu, vmcs12) || - check_vmentry_postreqs(vcpu, vmcs12, &exit_qual)) - return -EINVAL; - - vmx->nested.dirty_vmcs12 = true; - ret = nested_vmx_enter_non_root_mode(vcpu, false); - if (ret) - return -EINVAL; - - return 0; -} - -static struct kvm_x86_ops vmx_x86_ops __ro_after_init = { - .cpu_has_kvm_support = cpu_has_kvm_support, - .disabled_by_bios = vmx_disabled_by_bios, - .hardware_setup = hardware_setup, - .hardware_unsetup = hardware_unsetup, - .check_processor_compatibility = vmx_check_processor_compat, - .hardware_enable = hardware_enable, - .hardware_disable = hardware_disable, - .cpu_has_accelerated_tpr = report_flexpriority, - .has_emulated_msr = vmx_has_emulated_msr, - - .vm_init = vmx_vm_init, - .vm_alloc = vmx_vm_alloc, - .vm_free = vmx_vm_free, - - .vcpu_create = vmx_create_vcpu, - .vcpu_free = vmx_free_vcpu, - .vcpu_reset = vmx_vcpu_reset, - - .prepare_guest_switch = vmx_prepare_switch_to_guest, - .vcpu_load = vmx_vcpu_load, - .vcpu_put = vmx_vcpu_put, - - .update_bp_intercept = update_exception_bitmap, - .get_msr_feature = vmx_get_msr_feature, - .get_msr = vmx_get_msr, - .set_msr = vmx_set_msr, - .get_segment_base = vmx_get_segment_base, - .get_segment = vmx_get_segment, - .set_segment = vmx_set_segment, - .get_cpl = vmx_get_cpl, - .get_cs_db_l_bits = vmx_get_cs_db_l_bits, - .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits, - .decache_cr3 = vmx_decache_cr3, - .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits, - .set_cr0 = vmx_set_cr0, - .set_cr3 = vmx_set_cr3, - .set_cr4 = vmx_set_cr4, - .set_efer = vmx_set_efer, - .get_idt = vmx_get_idt, - .set_idt = vmx_set_idt, - .get_gdt = vmx_get_gdt, - .set_gdt = vmx_set_gdt, - .get_dr6 = vmx_get_dr6, - .set_dr6 = vmx_set_dr6, - .set_dr7 = vmx_set_dr7, - .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, - .cache_reg = vmx_cache_reg, - .get_rflags = vmx_get_rflags, - .set_rflags = vmx_set_rflags, - - .tlb_flush = vmx_flush_tlb, - .tlb_flush_gva = vmx_flush_tlb_gva, - - .run = vmx_vcpu_run, - .handle_exit = vmx_handle_exit, - .skip_emulated_instruction = skip_emulated_instruction, - .set_interrupt_shadow = vmx_set_interrupt_shadow, - .get_interrupt_shadow = vmx_get_interrupt_shadow, - .patch_hypercall = vmx_patch_hypercall, - .set_irq = vmx_inject_irq, - .set_nmi = vmx_inject_nmi, - .queue_exception = vmx_queue_exception, - .cancel_injection = vmx_cancel_injection, - .interrupt_allowed = vmx_interrupt_allowed, - .nmi_allowed = vmx_nmi_allowed, - .get_nmi_mask = vmx_get_nmi_mask, - .set_nmi_mask = vmx_set_nmi_mask, - .enable_nmi_window = enable_nmi_window, - .enable_irq_window = enable_irq_window, - .update_cr8_intercept = update_cr8_intercept, - .set_virtual_apic_mode = vmx_set_virtual_apic_mode, - .set_apic_access_page_addr = vmx_set_apic_access_page_addr, - .get_enable_apicv = vmx_get_enable_apicv, - .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, - .load_eoi_exitmap = vmx_load_eoi_exitmap, - .apicv_post_state_restore = vmx_apicv_post_state_restore, - .hwapic_irr_update = vmx_hwapic_irr_update, - .hwapic_isr_update = vmx_hwapic_isr_update, - .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, - .sync_pir_to_irr = vmx_sync_pir_to_irr, - .deliver_posted_interrupt = vmx_deliver_posted_interrupt, - - .set_tss_addr = vmx_set_tss_addr, - .set_identity_map_addr = vmx_set_identity_map_addr, - .get_tdp_level = get_ept_level, - .get_mt_mask = vmx_get_mt_mask, - - .get_exit_info = vmx_get_exit_info, - - .get_lpage_level = vmx_get_lpage_level, - - .cpuid_update = vmx_cpuid_update, - - .rdtscp_supported = vmx_rdtscp_supported, - .invpcid_supported = vmx_invpcid_supported, - - .set_supported_cpuid = vmx_set_supported_cpuid, - - .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, - - .read_l1_tsc_offset = vmx_read_l1_tsc_offset, - .write_l1_tsc_offset = vmx_write_l1_tsc_offset, - - .set_tdp_cr3 = vmx_set_cr3, - - .check_intercept = vmx_check_intercept, - .handle_external_intr = vmx_handle_external_intr, - .mpx_supported = vmx_mpx_supported, - .xsaves_supported = vmx_xsaves_supported, - .umip_emulated = vmx_umip_emulated, - - .check_nested_events = vmx_check_nested_events, - .request_immediate_exit = vmx_request_immediate_exit, - - .sched_in = vmx_sched_in, - - .slot_enable_log_dirty = vmx_slot_enable_log_dirty, - .slot_disable_log_dirty = vmx_slot_disable_log_dirty, - .flush_log_dirty = vmx_flush_log_dirty, - .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked, - .write_log_dirty = vmx_write_pml_buffer, - - .pre_block = vmx_pre_block, - .post_block = vmx_post_block, - - .pmu_ops = &intel_pmu_ops, - - .update_pi_irte = vmx_update_pi_irte, - -#ifdef CONFIG_X86_64 - .set_hv_timer = vmx_set_hv_timer, - .cancel_hv_timer = vmx_cancel_hv_timer, -#endif - - .setup_mce = vmx_setup_mce, - - .get_nested_state = vmx_get_nested_state, - .set_nested_state = vmx_set_nested_state, - .get_vmcs12_pages = nested_get_vmcs12_pages, - - .smi_allowed = vmx_smi_allowed, - .pre_enter_smm = vmx_pre_enter_smm, - .pre_leave_smm = vmx_pre_leave_smm, - .enable_smi_window = enable_smi_window, - - .nested_enable_evmcs = nested_enable_evmcs, -}; - -static void vmx_cleanup_l1d_flush(void) -{ - if (vmx_l1d_flush_pages) { - free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); - vmx_l1d_flush_pages = NULL; - } - /* Restore state so sysfs ignores VMX */ - l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; -} - -static void vmx_exit(void) -{ -#ifdef CONFIG_KEXEC_CORE - RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL); - synchronize_rcu(); -#endif - - kvm_exit(); - -#if IS_ENABLED(CONFIG_HYPERV) - if (static_branch_unlikely(&enable_evmcs)) { - int cpu; - struct hv_vp_assist_page *vp_ap; - /* - * Reset everything to support using non-enlightened VMCS - * access later (e.g. when we reload the module with - * enlightened_vmcs=0) - */ - for_each_online_cpu(cpu) { - vp_ap = hv_get_vp_assist_page(cpu); - - if (!vp_ap) - continue; - - vp_ap->current_nested_vmcs = 0; - vp_ap->enlighten_vmentry = 0; - } - - static_branch_disable(&enable_evmcs); - } -#endif - vmx_cleanup_l1d_flush(); -} -module_exit(vmx_exit); - -static int __init vmx_init(void) -{ - int r; - -#if IS_ENABLED(CONFIG_HYPERV) - /* - * Enlightened VMCS usage should be recommended and the host needs - * to support eVMCS v1 or above. We can also disable eVMCS support - * with module parameter. - */ - if (enlightened_vmcs && - ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && - (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= - KVM_EVMCS_VERSION) { - int cpu; - - /* Check that we have assist pages on all online CPUs */ - for_each_online_cpu(cpu) { - if (!hv_get_vp_assist_page(cpu)) { - enlightened_vmcs = false; - break; - } - } - - if (enlightened_vmcs) { - pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n"); - static_branch_enable(&enable_evmcs); - } - } else { - enlightened_vmcs = false; - } -#endif - - r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), - __alignof__(struct vcpu_vmx), THIS_MODULE); - if (r) - return r; - - /* - * Must be called after kvm_init() so enable_ept is properly set - * up. Hand the parameter mitigation value in which was stored in - * the pre module init parser. If no parameter was given, it will - * contain 'auto' which will be turned into the default 'cond' - * mitigation mode. - */ - if (boot_cpu_has(X86_BUG_L1TF)) { - r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); - if (r) { - vmx_exit(); - return r; - } - } - -#ifdef CONFIG_KEXEC_CORE - rcu_assign_pointer(crash_vmclear_loaded_vmcss, - crash_vmclear_local_loaded_vmcss); -#endif - vmx_check_vmcs12_offsets(); - - return 0; -} -module_init(vmx_init); diff --git a/arch/x86/kvm/vmx/capabilities.h b/arch/x86/kvm/vmx/capabilities.h new file mode 100644 index 000000000000..854e144131c6 --- /dev/null +++ b/arch/x86/kvm/vmx/capabilities.h @@ -0,0 +1,343 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef __KVM_X86_VMX_CAPS_H +#define __KVM_X86_VMX_CAPS_H + +#include "lapic.h" + +extern bool __read_mostly enable_vpid; +extern bool __read_mostly flexpriority_enabled; +extern bool __read_mostly enable_ept; +extern bool __read_mostly enable_unrestricted_guest; +extern bool __read_mostly enable_ept_ad_bits; +extern bool __read_mostly enable_pml; +extern int __read_mostly pt_mode; + +#define PT_MODE_SYSTEM 0 +#define PT_MODE_HOST_GUEST 1 + +struct nested_vmx_msrs { + /* + * We only store the "true" versions of the VMX capability MSRs. We + * generate the "non-true" versions by setting the must-be-1 bits + * according to the SDM. + */ + u32 procbased_ctls_low; + u32 procbased_ctls_high; + u32 secondary_ctls_low; + u32 secondary_ctls_high; + u32 pinbased_ctls_low; + u32 pinbased_ctls_high; + u32 exit_ctls_low; + u32 exit_ctls_high; + u32 entry_ctls_low; + u32 entry_ctls_high; + u32 misc_low; + u32 misc_high; + u32 ept_caps; + u32 vpid_caps; + u64 basic; + u64 cr0_fixed0; + u64 cr0_fixed1; + u64 cr4_fixed0; + u64 cr4_fixed1; + u64 vmcs_enum; + u64 vmfunc_controls; +}; + +struct vmcs_config { + int size; + int order; + u32 basic_cap; + u32 revision_id; + u32 pin_based_exec_ctrl; + u32 cpu_based_exec_ctrl; + u32 cpu_based_2nd_exec_ctrl; + u32 vmexit_ctrl; + u32 vmentry_ctrl; + struct nested_vmx_msrs nested; +}; +extern struct vmcs_config vmcs_config; + +struct vmx_capability { + u32 ept; + u32 vpid; +}; +extern struct vmx_capability vmx_capability; + +static inline bool cpu_has_vmx_basic_inout(void) +{ + return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT); +} + +static inline bool cpu_has_virtual_nmis(void) +{ + return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS; +} + +static inline bool cpu_has_vmx_preemption_timer(void) +{ + return vmcs_config.pin_based_exec_ctrl & + PIN_BASED_VMX_PREEMPTION_TIMER; +} + +static inline bool cpu_has_vmx_posted_intr(void) +{ + return IS_ENABLED(CONFIG_X86_LOCAL_APIC) && + vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR; +} + +static inline bool cpu_has_load_ia32_efer(void) +{ + return (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_EFER) && + (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_EFER); +} + +static inline bool cpu_has_load_perf_global_ctrl(void) +{ + return (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) && + (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); +} + +static inline bool vmx_mpx_supported(void) +{ + return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) && + (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS); +} + +static inline bool cpu_has_vmx_tpr_shadow(void) +{ + return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW; +} + +static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu) +{ + return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu); +} + +static inline bool cpu_has_vmx_msr_bitmap(void) +{ + return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS; +} + +static inline bool cpu_has_secondary_exec_ctrls(void) +{ + return vmcs_config.cpu_based_exec_ctrl & + CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; +} + +static inline bool cpu_has_vmx_virtualize_apic_accesses(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; +} + +static inline bool cpu_has_vmx_ept(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_ENABLE_EPT; +} + +static inline bool vmx_umip_emulated(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_DESC; +} + +static inline bool cpu_has_vmx_rdtscp(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_RDTSCP; +} + +static inline bool cpu_has_vmx_virtualize_x2apic_mode(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; +} + +static inline bool cpu_has_vmx_vpid(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_ENABLE_VPID; +} + +static inline bool cpu_has_vmx_wbinvd_exit(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_WBINVD_EXITING; +} + +static inline bool cpu_has_vmx_unrestricted_guest(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_UNRESTRICTED_GUEST; +} + +static inline bool cpu_has_vmx_apic_register_virt(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_APIC_REGISTER_VIRT; +} + +static inline bool cpu_has_vmx_virtual_intr_delivery(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY; +} + +static inline bool cpu_has_vmx_ple(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_PAUSE_LOOP_EXITING; +} + +static inline bool vmx_rdrand_supported(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_RDRAND_EXITING; +} + +static inline bool cpu_has_vmx_invpcid(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_ENABLE_INVPCID; +} + +static inline bool cpu_has_vmx_vmfunc(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_ENABLE_VMFUNC; +} + +static inline bool cpu_has_vmx_shadow_vmcs(void) +{ + u64 vmx_msr; + + /* check if the cpu supports writing r/o exit information fields */ + rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); + if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS)) + return false; + + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_SHADOW_VMCS; +} + +static inline bool cpu_has_vmx_encls_vmexit(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_ENCLS_EXITING; +} + +static inline bool vmx_rdseed_supported(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_RDSEED_EXITING; +} + +static inline bool cpu_has_vmx_pml(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML; +} + +static inline bool vmx_xsaves_supported(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_XSAVES; +} + +static inline bool cpu_has_vmx_tsc_scaling(void) +{ + return vmcs_config.cpu_based_2nd_exec_ctrl & + SECONDARY_EXEC_TSC_SCALING; +} + +static inline bool cpu_has_vmx_apicv(void) +{ + return cpu_has_vmx_apic_register_virt() && + cpu_has_vmx_virtual_intr_delivery() && + cpu_has_vmx_posted_intr(); +} + +static inline bool cpu_has_vmx_flexpriority(void) +{ + return cpu_has_vmx_tpr_shadow() && + cpu_has_vmx_virtualize_apic_accesses(); +} + +static inline bool cpu_has_vmx_ept_execute_only(void) +{ + return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT; +} + +static inline bool cpu_has_vmx_ept_4levels(void) +{ + return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT; +} + +static inline bool cpu_has_vmx_ept_5levels(void) +{ + return vmx_capability.ept & VMX_EPT_PAGE_WALK_5_BIT; +} + +static inline bool cpu_has_vmx_ept_mt_wb(void) +{ + return vmx_capability.ept & VMX_EPTP_WB_BIT; +} + +static inline bool cpu_has_vmx_ept_2m_page(void) +{ + return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT; +} + +static inline bool cpu_has_vmx_ept_1g_page(void) +{ + return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT; +} + +static inline bool cpu_has_vmx_ept_ad_bits(void) +{ + return vmx_capability.ept & VMX_EPT_AD_BIT; +} + +static inline bool cpu_has_vmx_invept_context(void) +{ + return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT; +} + +static inline bool cpu_has_vmx_invept_global(void) +{ + return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT; +} + +static inline bool cpu_has_vmx_invvpid(void) +{ + return vmx_capability.vpid & VMX_VPID_INVVPID_BIT; +} + +static inline bool cpu_has_vmx_invvpid_individual_addr(void) +{ + return vmx_capability.vpid & VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT; +} + +static inline bool cpu_has_vmx_invvpid_single(void) +{ + return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT; +} + +static inline bool cpu_has_vmx_invvpid_global(void) +{ + return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT; +} + +static inline bool cpu_has_vmx_intel_pt(void) +{ + u64 vmx_msr; + + rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); + return (vmx_msr & MSR_IA32_VMX_MISC_INTEL_PT) && + (vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_PT_USE_GPA) && + (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_IA32_RTIT_CTL) && + (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_RTIT_CTL); +} + +#endif /* __KVM_X86_VMX_CAPS_H */ diff --git a/arch/x86/kvm/vmx_evmcs.h b/arch/x86/kvm/vmx/evmcs.c index 210a884090ad..95bc2247478d 100644 --- a/arch/x86/kvm/vmx_evmcs.h +++ b/arch/x86/kvm/vmx/evmcs.c @@ -1,20 +1,22 @@ -/* SPDX-License-Identifier: GPL-2.0 */ -#ifndef __KVM_X86_VMX_EVMCS_H -#define __KVM_X86_VMX_EVMCS_H +// SPDX-License-Identifier: GPL-2.0 -#include <asm/hyperv-tlfs.h> +#include <linux/errno.h> +#include <linux/smp.h> + +#include "evmcs.h" +#include "vmcs.h" +#include "vmx.h" + +DEFINE_STATIC_KEY_FALSE(enable_evmcs); + +#if IS_ENABLED(CONFIG_HYPERV) #define ROL16(val, n) ((u16)(((u16)(val) << (n)) | ((u16)(val) >> (16 - (n))))) #define EVMCS1_OFFSET(x) offsetof(struct hv_enlightened_vmcs, x) #define EVMCS1_FIELD(number, name, clean_field)[ROL16(number, 6)] = \ {EVMCS1_OFFSET(name), clean_field} -struct evmcs_field { - u16 offset; - u16 clean_field; -}; - -static const struct evmcs_field vmcs_field_to_evmcs_1[] = { +const struct evmcs_field vmcs_field_to_evmcs_1[] = { /* 64 bit rw */ EVMCS1_FIELD(GUEST_RIP, guest_rip, HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE), @@ -298,27 +300,53 @@ static const struct evmcs_field vmcs_field_to_evmcs_1[] = { EVMCS1_FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id, HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT), }; +const unsigned int nr_evmcs_1_fields = ARRAY_SIZE(vmcs_field_to_evmcs_1); -static __always_inline int get_evmcs_offset(unsigned long field, - u16 *clean_field) +void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf) { - unsigned int index = ROL16(field, 6); - const struct evmcs_field *evmcs_field; + vmcs_conf->pin_based_exec_ctrl &= ~EVMCS1_UNSUPPORTED_PINCTRL; + vmcs_conf->cpu_based_2nd_exec_ctrl &= ~EVMCS1_UNSUPPORTED_2NDEXEC; - if (unlikely(index >= ARRAY_SIZE(vmcs_field_to_evmcs_1))) { - WARN_ONCE(1, "KVM: accessing unsupported EVMCS field %lx\n", - field); - return -ENOENT; - } + vmcs_conf->vmexit_ctrl &= ~EVMCS1_UNSUPPORTED_VMEXIT_CTRL; + vmcs_conf->vmentry_ctrl &= ~EVMCS1_UNSUPPORTED_VMENTRY_CTRL; - evmcs_field = &vmcs_field_to_evmcs_1[index]; +} +#endif - if (clean_field) - *clean_field = evmcs_field->clean_field; +uint16_t nested_get_evmcs_version(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + /* + * vmcs_version represents the range of supported Enlightened VMCS + * versions: lower 8 bits is the minimal version, higher 8 bits is the + * maximum supported version. KVM supports versions from 1 to + * KVM_EVMCS_VERSION. + */ + if (vmx->nested.enlightened_vmcs_enabled) + return (KVM_EVMCS_VERSION << 8) | 1; - return evmcs_field->offset; + return 0; } -#undef ROL16 +int nested_enable_evmcs(struct kvm_vcpu *vcpu, + uint16_t *vmcs_version) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (vmcs_version) + *vmcs_version = nested_get_evmcs_version(vcpu); + + /* We don't support disabling the feature for simplicity. */ + if (vmx->nested.enlightened_vmcs_enabled) + return 0; -#endif /* __KVM_X86_VMX_EVMCS_H */ + vmx->nested.enlightened_vmcs_enabled = true; + + vmx->nested.msrs.pinbased_ctls_high &= ~EVMCS1_UNSUPPORTED_PINCTRL; + vmx->nested.msrs.entry_ctls_high &= ~EVMCS1_UNSUPPORTED_VMENTRY_CTRL; + vmx->nested.msrs.exit_ctls_high &= ~EVMCS1_UNSUPPORTED_VMEXIT_CTRL; + vmx->nested.msrs.secondary_ctls_high &= ~EVMCS1_UNSUPPORTED_2NDEXEC; + vmx->nested.msrs.vmfunc_controls &= ~EVMCS1_UNSUPPORTED_VMFUNC; + + return 0; +} diff --git a/arch/x86/kvm/vmx/evmcs.h b/arch/x86/kvm/vmx/evmcs.h new file mode 100644 index 000000000000..e0fcef85b332 --- /dev/null +++ b/arch/x86/kvm/vmx/evmcs.h @@ -0,0 +1,202 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef __KVM_X86_VMX_EVMCS_H +#define __KVM_X86_VMX_EVMCS_H + +#include <linux/jump_label.h> + +#include <asm/hyperv-tlfs.h> +#include <asm/mshyperv.h> +#include <asm/vmx.h> + +#include "capabilities.h" +#include "vmcs.h" + +struct vmcs_config; + +DECLARE_STATIC_KEY_FALSE(enable_evmcs); + +#define current_evmcs ((struct hv_enlightened_vmcs *)this_cpu_read(current_vmcs)) + +#define KVM_EVMCS_VERSION 1 + +/* + * Enlightened VMCSv1 doesn't support these: + * + * POSTED_INTR_NV = 0x00000002, + * GUEST_INTR_STATUS = 0x00000810, + * APIC_ACCESS_ADDR = 0x00002014, + * POSTED_INTR_DESC_ADDR = 0x00002016, + * EOI_EXIT_BITMAP0 = 0x0000201c, + * EOI_EXIT_BITMAP1 = 0x0000201e, + * EOI_EXIT_BITMAP2 = 0x00002020, + * EOI_EXIT_BITMAP3 = 0x00002022, + * GUEST_PML_INDEX = 0x00000812, + * PML_ADDRESS = 0x0000200e, + * VM_FUNCTION_CONTROL = 0x00002018, + * EPTP_LIST_ADDRESS = 0x00002024, + * VMREAD_BITMAP = 0x00002026, + * VMWRITE_BITMAP = 0x00002028, + * + * TSC_MULTIPLIER = 0x00002032, + * PLE_GAP = 0x00004020, + * PLE_WINDOW = 0x00004022, + * VMX_PREEMPTION_TIMER_VALUE = 0x0000482E, + * GUEST_IA32_PERF_GLOBAL_CTRL = 0x00002808, + * HOST_IA32_PERF_GLOBAL_CTRL = 0x00002c04, + * + * Currently unsupported in KVM: + * GUEST_IA32_RTIT_CTL = 0x00002814, + */ +#define EVMCS1_UNSUPPORTED_PINCTRL (PIN_BASED_POSTED_INTR | \ + PIN_BASED_VMX_PREEMPTION_TIMER) +#define EVMCS1_UNSUPPORTED_2NDEXEC \ + (SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | \ + SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | \ + SECONDARY_EXEC_APIC_REGISTER_VIRT | \ + SECONDARY_EXEC_ENABLE_PML | \ + SECONDARY_EXEC_ENABLE_VMFUNC | \ + SECONDARY_EXEC_SHADOW_VMCS | \ + SECONDARY_EXEC_TSC_SCALING | \ + SECONDARY_EXEC_PAUSE_LOOP_EXITING) +#define EVMCS1_UNSUPPORTED_VMEXIT_CTRL (VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) +#define EVMCS1_UNSUPPORTED_VMENTRY_CTRL (VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) +#define EVMCS1_UNSUPPORTED_VMFUNC (VMX_VMFUNC_EPTP_SWITCHING) + +#if IS_ENABLED(CONFIG_HYPERV) + +struct evmcs_field { + u16 offset; + u16 clean_field; +}; + +extern const struct evmcs_field vmcs_field_to_evmcs_1[]; +extern const unsigned int nr_evmcs_1_fields; + +#define ROL16(val, n) ((u16)(((u16)(val) << (n)) | ((u16)(val) >> (16 - (n))))) + +static __always_inline int get_evmcs_offset(unsigned long field, + u16 *clean_field) +{ + unsigned int index = ROL16(field, 6); + const struct evmcs_field *evmcs_field; + + if (unlikely(index >= nr_evmcs_1_fields)) { + WARN_ONCE(1, "KVM: accessing unsupported EVMCS field %lx\n", + field); + return -ENOENT; + } + + evmcs_field = &vmcs_field_to_evmcs_1[index]; + + if (clean_field) + *clean_field = evmcs_field->clean_field; + + return evmcs_field->offset; +} + +#undef ROL16 + +static inline void evmcs_write64(unsigned long field, u64 value) +{ + u16 clean_field; + int offset = get_evmcs_offset(field, &clean_field); + + if (offset < 0) + return; + + *(u64 *)((char *)current_evmcs + offset) = value; + + current_evmcs->hv_clean_fields &= ~clean_field; +} + +static inline void evmcs_write32(unsigned long field, u32 value) +{ + u16 clean_field; + int offset = get_evmcs_offset(field, &clean_field); + + if (offset < 0) + return; + + *(u32 *)((char *)current_evmcs + offset) = value; + current_evmcs->hv_clean_fields &= ~clean_field; +} + +static inline void evmcs_write16(unsigned long field, u16 value) +{ + u16 clean_field; + int offset = get_evmcs_offset(field, &clean_field); + + if (offset < 0) + return; + + *(u16 *)((char *)current_evmcs + offset) = value; + current_evmcs->hv_clean_fields &= ~clean_field; +} + +static inline u64 evmcs_read64(unsigned long field) +{ + int offset = get_evmcs_offset(field, NULL); + + if (offset < 0) + return 0; + + return *(u64 *)((char *)current_evmcs + offset); +} + +static inline u32 evmcs_read32(unsigned long field) +{ + int offset = get_evmcs_offset(field, NULL); + + if (offset < 0) + return 0; + + return *(u32 *)((char *)current_evmcs + offset); +} + +static inline u16 evmcs_read16(unsigned long field) +{ + int offset = get_evmcs_offset(field, NULL); + + if (offset < 0) + return 0; + + return *(u16 *)((char *)current_evmcs + offset); +} + +static inline void evmcs_touch_msr_bitmap(void) +{ + if (unlikely(!current_evmcs)) + return; + + if (current_evmcs->hv_enlightenments_control.msr_bitmap) + current_evmcs->hv_clean_fields &= + ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP; +} + +static inline void evmcs_load(u64 phys_addr) +{ + struct hv_vp_assist_page *vp_ap = + hv_get_vp_assist_page(smp_processor_id()); + + vp_ap->current_nested_vmcs = phys_addr; + vp_ap->enlighten_vmentry = 1; +} + +void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf); +#else /* !IS_ENABLED(CONFIG_HYPERV) */ +static inline void evmcs_write64(unsigned long field, u64 value) {} +static inline void evmcs_write32(unsigned long field, u32 value) {} +static inline void evmcs_write16(unsigned long field, u16 value) {} +static inline u64 evmcs_read64(unsigned long field) { return 0; } +static inline u32 evmcs_read32(unsigned long field) { return 0; } +static inline u16 evmcs_read16(unsigned long field) { return 0; } +static inline void evmcs_load(u64 phys_addr) {} +static inline void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf) {} +static inline void evmcs_touch_msr_bitmap(void) {} +#endif /* IS_ENABLED(CONFIG_HYPERV) */ + +uint16_t nested_get_evmcs_version(struct kvm_vcpu *vcpu); +int nested_enable_evmcs(struct kvm_vcpu *vcpu, + uint16_t *vmcs_version); + +#endif /* __KVM_X86_VMX_EVMCS_H */ diff --git a/arch/x86/kvm/vmx/nested.c b/arch/x86/kvm/vmx/nested.c new file mode 100644 index 000000000000..3170e291215d --- /dev/null +++ b/arch/x86/kvm/vmx/nested.c @@ -0,0 +1,5721 @@ +// SPDX-License-Identifier: GPL-2.0 + +#include <linux/frame.h> +#include <linux/percpu.h> + +#include <asm/debugreg.h> +#include <asm/mmu_context.h> + +#include "cpuid.h" +#include "hyperv.h" +#include "mmu.h" +#include "nested.h" +#include "trace.h" +#include "x86.h" + +static bool __read_mostly enable_shadow_vmcs = 1; +module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO); + +static bool __read_mostly nested_early_check = 0; +module_param(nested_early_check, bool, S_IRUGO); + +/* + * Hyper-V requires all of these, so mark them as supported even though + * they are just treated the same as all-context. + */ +#define VMX_VPID_EXTENT_SUPPORTED_MASK \ + (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \ + VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \ + VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \ + VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT) + +#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5 + +enum { + VMX_VMREAD_BITMAP, + VMX_VMWRITE_BITMAP, + VMX_BITMAP_NR +}; +static unsigned long *vmx_bitmap[VMX_BITMAP_NR]; + +#define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP]) +#define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP]) + +static u16 shadow_read_only_fields[] = { +#define SHADOW_FIELD_RO(x) x, +#include "vmcs_shadow_fields.h" +}; +static int max_shadow_read_only_fields = + ARRAY_SIZE(shadow_read_only_fields); + +static u16 shadow_read_write_fields[] = { +#define SHADOW_FIELD_RW(x) x, +#include "vmcs_shadow_fields.h" +}; +static int max_shadow_read_write_fields = + ARRAY_SIZE(shadow_read_write_fields); + +void init_vmcs_shadow_fields(void) +{ + int i, j; + + memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE); + memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE); + + for (i = j = 0; i < max_shadow_read_only_fields; i++) { + u16 field = shadow_read_only_fields[i]; + + if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 && + (i + 1 == max_shadow_read_only_fields || + shadow_read_only_fields[i + 1] != field + 1)) + pr_err("Missing field from shadow_read_only_field %x\n", + field + 1); + + clear_bit(field, vmx_vmread_bitmap); +#ifdef CONFIG_X86_64 + if (field & 1) + continue; +#endif + if (j < i) + shadow_read_only_fields[j] = field; + j++; + } + max_shadow_read_only_fields = j; + + for (i = j = 0; i < max_shadow_read_write_fields; i++) { + u16 field = shadow_read_write_fields[i]; + + if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 && + (i + 1 == max_shadow_read_write_fields || + shadow_read_write_fields[i + 1] != field + 1)) + pr_err("Missing field from shadow_read_write_field %x\n", + field + 1); + + /* + * PML and the preemption timer can be emulated, but the + * processor cannot vmwrite to fields that don't exist + * on bare metal. + */ + switch (field) { + case GUEST_PML_INDEX: + if (!cpu_has_vmx_pml()) + continue; + break; + case VMX_PREEMPTION_TIMER_VALUE: + if (!cpu_has_vmx_preemption_timer()) + continue; + break; + case GUEST_INTR_STATUS: + if (!cpu_has_vmx_apicv()) + continue; + break; + default: + break; + } + + clear_bit(field, vmx_vmwrite_bitmap); + clear_bit(field, vmx_vmread_bitmap); +#ifdef CONFIG_X86_64 + if (field & 1) + continue; +#endif + if (j < i) + shadow_read_write_fields[j] = field; + j++; + } + max_shadow_read_write_fields = j; +} + +/* + * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(), + * set the success or error code of an emulated VMX instruction (as specified + * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated + * instruction. + */ +static int nested_vmx_succeed(struct kvm_vcpu *vcpu) +{ + vmx_set_rflags(vcpu, vmx_get_rflags(vcpu) + & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | + X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF)); + return kvm_skip_emulated_instruction(vcpu); +} + +static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu) +{ + vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu) + & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF | + X86_EFLAGS_SF | X86_EFLAGS_OF)) + | X86_EFLAGS_CF); + return kvm_skip_emulated_instruction(vcpu); +} + +static int nested_vmx_failValid(struct kvm_vcpu *vcpu, + u32 vm_instruction_error) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + /* + * failValid writes the error number to the current VMCS, which + * can't be done if there isn't a current VMCS. + */ + if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs) + return nested_vmx_failInvalid(vcpu); + + vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu) + & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | + X86_EFLAGS_SF | X86_EFLAGS_OF)) + | X86_EFLAGS_ZF); + get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error; + /* + * We don't need to force a shadow sync because + * VM_INSTRUCTION_ERROR is not shadowed + */ + return kvm_skip_emulated_instruction(vcpu); +} + +static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator) +{ + /* TODO: not to reset guest simply here. */ + kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); + pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator); +} + +static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx) +{ + vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS); + vmcs_write64(VMCS_LINK_POINTER, -1ull); +} + +static inline void nested_release_evmcs(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (!vmx->nested.hv_evmcs) + return; + + kunmap(vmx->nested.hv_evmcs_page); + kvm_release_page_dirty(vmx->nested.hv_evmcs_page); + vmx->nested.hv_evmcs_vmptr = -1ull; + vmx->nested.hv_evmcs_page = NULL; + vmx->nested.hv_evmcs = NULL; +} + +/* + * Free whatever needs to be freed from vmx->nested when L1 goes down, or + * just stops using VMX. + */ +static void free_nested(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon) + return; + + vmx->nested.vmxon = false; + vmx->nested.smm.vmxon = false; + free_vpid(vmx->nested.vpid02); + vmx->nested.posted_intr_nv = -1; + vmx->nested.current_vmptr = -1ull; + if (enable_shadow_vmcs) { + vmx_disable_shadow_vmcs(vmx); + vmcs_clear(vmx->vmcs01.shadow_vmcs); + free_vmcs(vmx->vmcs01.shadow_vmcs); + vmx->vmcs01.shadow_vmcs = NULL; + } + kfree(vmx->nested.cached_vmcs12); + kfree(vmx->nested.cached_shadow_vmcs12); + /* Unpin physical memory we referred to in the vmcs02 */ + if (vmx->nested.apic_access_page) { + kvm_release_page_dirty(vmx->nested.apic_access_page); + vmx->nested.apic_access_page = NULL; + } + if (vmx->nested.virtual_apic_page) { + kvm_release_page_dirty(vmx->nested.virtual_apic_page); + vmx->nested.virtual_apic_page = NULL; + } + if (vmx->nested.pi_desc_page) { + kunmap(vmx->nested.pi_desc_page); + kvm_release_page_dirty(vmx->nested.pi_desc_page); + vmx->nested.pi_desc_page = NULL; + vmx->nested.pi_desc = NULL; + } + + kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); + + nested_release_evmcs(vcpu); + + free_loaded_vmcs(&vmx->nested.vmcs02); +} + +static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + int cpu; + + if (vmx->loaded_vmcs == vmcs) + return; + + cpu = get_cpu(); + vmx_vcpu_put(vcpu); + vmx->loaded_vmcs = vmcs; + vmx_vcpu_load(vcpu, cpu); + put_cpu(); + + vm_entry_controls_reset_shadow(vmx); + vm_exit_controls_reset_shadow(vmx); + vmx_segment_cache_clear(vmx); +} + +/* + * Ensure that the current vmcs of the logical processor is the + * vmcs01 of the vcpu before calling free_nested(). + */ +void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu) +{ + vcpu_load(vcpu); + vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01); + free_nested(vcpu); + vcpu_put(vcpu); +} + +static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu, + struct x86_exception *fault) +{ + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + struct vcpu_vmx *vmx = to_vmx(vcpu); + u32 exit_reason; + unsigned long exit_qualification = vcpu->arch.exit_qualification; + + if (vmx->nested.pml_full) { + exit_reason = EXIT_REASON_PML_FULL; + vmx->nested.pml_full = false; + exit_qualification &= INTR_INFO_UNBLOCK_NMI; + } else if (fault->error_code & PFERR_RSVD_MASK) + exit_reason = EXIT_REASON_EPT_MISCONFIG; + else + exit_reason = EXIT_REASON_EPT_VIOLATION; + + nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification); + vmcs12->guest_physical_address = fault->address; +} + +static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu) +{ + WARN_ON(mmu_is_nested(vcpu)); + + vcpu->arch.mmu = &vcpu->arch.guest_mmu; + kvm_init_shadow_ept_mmu(vcpu, + to_vmx(vcpu)->nested.msrs.ept_caps & + VMX_EPT_EXECUTE_ONLY_BIT, + nested_ept_ad_enabled(vcpu), + nested_ept_get_cr3(vcpu)); + vcpu->arch.mmu->set_cr3 = vmx_set_cr3; + vcpu->arch.mmu->get_cr3 = nested_ept_get_cr3; + vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault; + vcpu->arch.mmu->get_pdptr = kvm_pdptr_read; + + vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu; +} + +static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu) +{ + vcpu->arch.mmu = &vcpu->arch.root_mmu; + vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; +} + +static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12, + u16 error_code) +{ + bool inequality, bit; + + bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0; + inequality = + (error_code & vmcs12->page_fault_error_code_mask) != + vmcs12->page_fault_error_code_match; + return inequality ^ bit; +} + + +/* + * KVM wants to inject page-faults which it got to the guest. This function + * checks whether in a nested guest, we need to inject them to L1 or L2. + */ +static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual) +{ + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + unsigned int nr = vcpu->arch.exception.nr; + bool has_payload = vcpu->arch.exception.has_payload; + unsigned long payload = vcpu->arch.exception.payload; + + if (nr == PF_VECTOR) { + if (vcpu->arch.exception.nested_apf) { + *exit_qual = vcpu->arch.apf.nested_apf_token; + return 1; + } + if (nested_vmx_is_page_fault_vmexit(vmcs12, + vcpu->arch.exception.error_code)) { + *exit_qual = has_payload ? payload : vcpu->arch.cr2; + return 1; + } + } else if (vmcs12->exception_bitmap & (1u << nr)) { + if (nr == DB_VECTOR) { + if (!has_payload) { + payload = vcpu->arch.dr6; + payload &= ~(DR6_FIXED_1 | DR6_BT); + payload ^= DR6_RTM; + } + *exit_qual = payload; + } else + *exit_qual = 0; + return 1; + } + + return 0; +} + + +static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu, + struct x86_exception *fault) +{ + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + + WARN_ON(!is_guest_mode(vcpu)); + + if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) && + !to_vmx(vcpu)->nested.nested_run_pending) { + vmcs12->vm_exit_intr_error_code = fault->error_code; + nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, + PF_VECTOR | INTR_TYPE_HARD_EXCEPTION | + INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK, + fault->address); + } else { + kvm_inject_page_fault(vcpu, fault); + } +} + +static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa) +{ + return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu)); +} + +static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) + return 0; + + if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) || + !page_address_valid(vcpu, vmcs12->io_bitmap_b)) + return -EINVAL; + + return 0; +} + +static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) + return 0; + + if (!page_address_valid(vcpu, vmcs12->msr_bitmap)) + return -EINVAL; + + return 0; +} + +static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) + return 0; + + if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)) + return -EINVAL; + + return 0; +} + +/* + * Check if MSR is intercepted for L01 MSR bitmap. + */ +static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr) +{ + unsigned long *msr_bitmap; + int f = sizeof(unsigned long); + + if (!cpu_has_vmx_msr_bitmap()) + return true; + + msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap; + + if (msr <= 0x1fff) { + return !!test_bit(msr, msr_bitmap + 0x800 / f); + } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { + msr &= 0x1fff; + return !!test_bit(msr, msr_bitmap + 0xc00 / f); + } + + return true; +} + +/* + * If a msr is allowed by L0, we should check whether it is allowed by L1. + * The corresponding bit will be cleared unless both of L0 and L1 allow it. + */ +static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1, + unsigned long *msr_bitmap_nested, + u32 msr, int type) +{ + int f = sizeof(unsigned long); + + /* + * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals + * have the write-low and read-high bitmap offsets the wrong way round. + * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. + */ + if (msr <= 0x1fff) { + if (type & MSR_TYPE_R && + !test_bit(msr, msr_bitmap_l1 + 0x000 / f)) + /* read-low */ + __clear_bit(msr, msr_bitmap_nested + 0x000 / f); + + if (type & MSR_TYPE_W && + !test_bit(msr, msr_bitmap_l1 + 0x800 / f)) + /* write-low */ + __clear_bit(msr, msr_bitmap_nested + 0x800 / f); + + } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { + msr &= 0x1fff; + if (type & MSR_TYPE_R && + !test_bit(msr, msr_bitmap_l1 + 0x400 / f)) + /* read-high */ + __clear_bit(msr, msr_bitmap_nested + 0x400 / f); + + if (type & MSR_TYPE_W && + !test_bit(msr, msr_bitmap_l1 + 0xc00 / f)) + /* write-high */ + __clear_bit(msr, msr_bitmap_nested + 0xc00 / f); + + } +} + +/* + * Merge L0's and L1's MSR bitmap, return false to indicate that + * we do not use the hardware. + */ +static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + int msr; + struct page *page; + unsigned long *msr_bitmap_l1; + unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap; + /* + * pred_cmd & spec_ctrl are trying to verify two things: + * + * 1. L0 gave a permission to L1 to actually passthrough the MSR. This + * ensures that we do not accidentally generate an L02 MSR bitmap + * from the L12 MSR bitmap that is too permissive. + * 2. That L1 or L2s have actually used the MSR. This avoids + * unnecessarily merging of the bitmap if the MSR is unused. This + * works properly because we only update the L01 MSR bitmap lazily. + * So even if L0 should pass L1 these MSRs, the L01 bitmap is only + * updated to reflect this when L1 (or its L2s) actually write to + * the MSR. + */ + bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD); + bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL); + + /* Nothing to do if the MSR bitmap is not in use. */ + if (!cpu_has_vmx_msr_bitmap() || + !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) + return false; + + if (!nested_cpu_has_virt_x2apic_mode(vmcs12) && + !pred_cmd && !spec_ctrl) + return false; + + page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap); + if (is_error_page(page)) + return false; + + msr_bitmap_l1 = (unsigned long *)kmap(page); + if (nested_cpu_has_apic_reg_virt(vmcs12)) { + /* + * L0 need not intercept reads for MSRs between 0x800 and 0x8ff, it + * just lets the processor take the value from the virtual-APIC page; + * take those 256 bits directly from the L1 bitmap. + */ + for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { + unsigned word = msr / BITS_PER_LONG; + msr_bitmap_l0[word] = msr_bitmap_l1[word]; + msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0; + } + } else { + for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { + unsigned word = msr / BITS_PER_LONG; + msr_bitmap_l0[word] = ~0; + msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0; + } + } + + nested_vmx_disable_intercept_for_msr( + msr_bitmap_l1, msr_bitmap_l0, + X2APIC_MSR(APIC_TASKPRI), + MSR_TYPE_W); + + if (nested_cpu_has_vid(vmcs12)) { + nested_vmx_disable_intercept_for_msr( + msr_bitmap_l1, msr_bitmap_l0, + X2APIC_MSR(APIC_EOI), + MSR_TYPE_W); + nested_vmx_disable_intercept_for_msr( + msr_bitmap_l1, msr_bitmap_l0, + X2APIC_MSR(APIC_SELF_IPI), + MSR_TYPE_W); + } + + if (spec_ctrl) + nested_vmx_disable_intercept_for_msr( + msr_bitmap_l1, msr_bitmap_l0, + MSR_IA32_SPEC_CTRL, + MSR_TYPE_R | MSR_TYPE_W); + + if (pred_cmd) + nested_vmx_disable_intercept_for_msr( + msr_bitmap_l1, msr_bitmap_l0, + MSR_IA32_PRED_CMD, + MSR_TYPE_W); + + kunmap(page); + kvm_release_page_clean(page); + + return true; +} + +static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + struct vmcs12 *shadow; + struct page *page; + + if (!nested_cpu_has_shadow_vmcs(vmcs12) || + vmcs12->vmcs_link_pointer == -1ull) + return; + + shadow = get_shadow_vmcs12(vcpu); + page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer); + + memcpy(shadow, kmap(page), VMCS12_SIZE); + + kunmap(page); + kvm_release_page_clean(page); +} + +static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (!nested_cpu_has_shadow_vmcs(vmcs12) || + vmcs12->vmcs_link_pointer == -1ull) + return; + + kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer, + get_shadow_vmcs12(vcpu), VMCS12_SIZE); +} + +/* + * In nested virtualization, check if L1 has set + * VM_EXIT_ACK_INTR_ON_EXIT + */ +static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu) +{ + return get_vmcs12(vcpu)->vm_exit_controls & + VM_EXIT_ACK_INTR_ON_EXIT; +} + +static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu) +{ + return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu)); +} + +static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) && + !page_address_valid(vcpu, vmcs12->apic_access_addr)) + return -EINVAL; + else + return 0; +} + +static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + if (!nested_cpu_has_virt_x2apic_mode(vmcs12) && + !nested_cpu_has_apic_reg_virt(vmcs12) && + !nested_cpu_has_vid(vmcs12) && + !nested_cpu_has_posted_intr(vmcs12)) + return 0; + + /* + * If virtualize x2apic mode is enabled, + * virtualize apic access must be disabled. + */ + if (nested_cpu_has_virt_x2apic_mode(vmcs12) && + nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) + return -EINVAL; + + /* + * If virtual interrupt delivery is enabled, + * we must exit on external interrupts. + */ + if (nested_cpu_has_vid(vmcs12) && + !nested_exit_on_intr(vcpu)) + return -EINVAL; + + /* + * bits 15:8 should be zero in posted_intr_nv, + * the descriptor address has been already checked + * in nested_get_vmcs12_pages. + * + * bits 5:0 of posted_intr_desc_addr should be zero. + */ + if (nested_cpu_has_posted_intr(vmcs12) && + (!nested_cpu_has_vid(vmcs12) || + !nested_exit_intr_ack_set(vcpu) || + (vmcs12->posted_intr_nv & 0xff00) || + (vmcs12->posted_intr_desc_addr & 0x3f) || + (vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))) + return -EINVAL; + + /* tpr shadow is needed by all apicv features. */ + if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) + return -EINVAL; + + return 0; +} + +static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu, + u32 count, u64 addr) +{ + int maxphyaddr; + + if (count == 0) + return 0; + maxphyaddr = cpuid_maxphyaddr(vcpu); + if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr || + (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) + return -EINVAL; + + return 0; +} + +static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_load_count, + vmcs12->vm_exit_msr_load_addr) || + nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_store_count, + vmcs12->vm_exit_msr_store_addr)) + return -EINVAL; + + return 0; +} + +static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_entry_msr_load_count, + vmcs12->vm_entry_msr_load_addr)) + return -EINVAL; + + return 0; +} + +static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + if (!nested_cpu_has_pml(vmcs12)) + return 0; + + if (!nested_cpu_has_ept(vmcs12) || + !page_address_valid(vcpu, vmcs12->pml_address)) + return -EINVAL; + + return 0; +} + +static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) && + !nested_cpu_has_ept(vmcs12)) + return -EINVAL; + return 0; +} + +static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) && + !nested_cpu_has_ept(vmcs12)) + return -EINVAL; + return 0; +} + +static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + if (!nested_cpu_has_shadow_vmcs(vmcs12)) + return 0; + + if (!page_address_valid(vcpu, vmcs12->vmread_bitmap) || + !page_address_valid(vcpu, vmcs12->vmwrite_bitmap)) + return -EINVAL; + + return 0; +} + +static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu, + struct vmx_msr_entry *e) +{ + /* x2APIC MSR accesses are not allowed */ + if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8) + return -EINVAL; + if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */ + e->index == MSR_IA32_UCODE_REV) + return -EINVAL; + if (e->reserved != 0) + return -EINVAL; + return 0; +} + +static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu, + struct vmx_msr_entry *e) +{ + if (e->index == MSR_FS_BASE || + e->index == MSR_GS_BASE || + e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */ + nested_vmx_msr_check_common(vcpu, e)) + return -EINVAL; + return 0; +} + +static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu, + struct vmx_msr_entry *e) +{ + if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */ + nested_vmx_msr_check_common(vcpu, e)) + return -EINVAL; + return 0; +} + +/* + * Load guest's/host's msr at nested entry/exit. + * return 0 for success, entry index for failure. + */ +static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count) +{ + u32 i; + struct vmx_msr_entry e; + struct msr_data msr; + + msr.host_initiated = false; + for (i = 0; i < count; i++) { + if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e), + &e, sizeof(e))) { + pr_debug_ratelimited( + "%s cannot read MSR entry (%u, 0x%08llx)\n", + __func__, i, gpa + i * sizeof(e)); + goto fail; + } + if (nested_vmx_load_msr_check(vcpu, &e)) { + pr_debug_ratelimited( + "%s check failed (%u, 0x%x, 0x%x)\n", + __func__, i, e.index, e.reserved); + goto fail; + } + msr.index = e.index; + msr.data = e.value; + if (kvm_set_msr(vcpu, &msr)) { + pr_debug_ratelimited( + "%s cannot write MSR (%u, 0x%x, 0x%llx)\n", + __func__, i, e.index, e.value); + goto fail; + } + } + return 0; +fail: + return i + 1; +} + +static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count) +{ + u32 i; + struct vmx_msr_entry e; + + for (i = 0; i < count; i++) { + struct msr_data msr_info; + if (kvm_vcpu_read_guest(vcpu, + gpa + i * sizeof(e), + &e, 2 * sizeof(u32))) { + pr_debug_ratelimited( + "%s cannot read MSR entry (%u, 0x%08llx)\n", + __func__, i, gpa + i * sizeof(e)); + return -EINVAL; + } + if (nested_vmx_store_msr_check(vcpu, &e)) { + pr_debug_ratelimited( + "%s check failed (%u, 0x%x, 0x%x)\n", + __func__, i, e.index, e.reserved); + return -EINVAL; + } + msr_info.host_initiated = false; + msr_info.index = e.index; + if (kvm_get_msr(vcpu, &msr_info)) { + pr_debug_ratelimited( + "%s cannot read MSR (%u, 0x%x)\n", + __func__, i, e.index); + return -EINVAL; + } + if (kvm_vcpu_write_guest(vcpu, + gpa + i * sizeof(e) + + offsetof(struct vmx_msr_entry, value), + &msr_info.data, sizeof(msr_info.data))) { + pr_debug_ratelimited( + "%s cannot write MSR (%u, 0x%x, 0x%llx)\n", + __func__, i, e.index, msr_info.data); + return -EINVAL; + } + } + return 0; +} + +static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val) +{ + unsigned long invalid_mask; + + invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu); + return (val & invalid_mask) == 0; +} + +/* + * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are + * emulating VM entry into a guest with EPT enabled. + * Returns 0 on success, 1 on failure. Invalid state exit qualification code + * is assigned to entry_failure_code on failure. + */ +static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept, + u32 *entry_failure_code) +{ + if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) { + if (!nested_cr3_valid(vcpu, cr3)) { + *entry_failure_code = ENTRY_FAIL_DEFAULT; + return 1; + } + + /* + * If PAE paging and EPT are both on, CR3 is not used by the CPU and + * must not be dereferenced. + */ + if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) && + !nested_ept) { + if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) { + *entry_failure_code = ENTRY_FAIL_PDPTE; + return 1; + } + } + } + + if (!nested_ept) + kvm_mmu_new_cr3(vcpu, cr3, false); + + vcpu->arch.cr3 = cr3; + __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); + + kvm_init_mmu(vcpu, false); + + return 0; +} + +/* + * Returns if KVM is able to config CPU to tag TLB entries + * populated by L2 differently than TLB entries populated + * by L1. + * + * If L1 uses EPT, then TLB entries are tagged with different EPTP. + * + * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged + * with different VPID (L1 entries are tagged with vmx->vpid + * while L2 entries are tagged with vmx->nested.vpid02). + */ +static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu) +{ + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + + return nested_cpu_has_ept(vmcs12) || + (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02); +} + +static u16 nested_get_vpid02(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid; +} + + +static inline bool vmx_control_verify(u32 control, u32 low, u32 high) +{ + return fixed_bits_valid(control, low, high); +} + +static inline u64 vmx_control_msr(u32 low, u32 high) +{ + return low | ((u64)high << 32); +} + +static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask) +{ + superset &= mask; + subset &= mask; + + return (superset | subset) == superset; +} + +static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data) +{ + const u64 feature_and_reserved = + /* feature (except bit 48; see below) */ + BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) | + /* reserved */ + BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56); + u64 vmx_basic = vmx->nested.msrs.basic; + + if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved)) + return -EINVAL; + + /* + * KVM does not emulate a version of VMX that constrains physical + * addresses of VMX structures (e.g. VMCS) to 32-bits. + */ + if (data & BIT_ULL(48)) + return -EINVAL; + + if (vmx_basic_vmcs_revision_id(vmx_basic) != + vmx_basic_vmcs_revision_id(data)) + return -EINVAL; + + if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data)) + return -EINVAL; + + vmx->nested.msrs.basic = data; + return 0; +} + +static int +vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data) +{ + u64 supported; + u32 *lowp, *highp; + + switch (msr_index) { + case MSR_IA32_VMX_TRUE_PINBASED_CTLS: + lowp = &vmx->nested.msrs.pinbased_ctls_low; + highp = &vmx->nested.msrs.pinbased_ctls_high; + break; + case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: + lowp = &vmx->nested.msrs.procbased_ctls_low; + highp = &vmx->nested.msrs.procbased_ctls_high; + break; + case MSR_IA32_VMX_TRUE_EXIT_CTLS: + lowp = &vmx->nested.msrs.exit_ctls_low; + highp = &vmx->nested.msrs.exit_ctls_high; + break; + case MSR_IA32_VMX_TRUE_ENTRY_CTLS: + lowp = &vmx->nested.msrs.entry_ctls_low; + highp = &vmx->nested.msrs.entry_ctls_high; + break; + case MSR_IA32_VMX_PROCBASED_CTLS2: + lowp = &vmx->nested.msrs.secondary_ctls_low; + highp = &vmx->nested.msrs.secondary_ctls_high; + break; + default: + BUG(); + } + + supported = vmx_control_msr(*lowp, *highp); + + /* Check must-be-1 bits are still 1. */ + if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0))) + return -EINVAL; + + /* Check must-be-0 bits are still 0. */ + if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32))) + return -EINVAL; + + *lowp = data; + *highp = data >> 32; + return 0; +} + +static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data) +{ + const u64 feature_and_reserved_bits = + /* feature */ + BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) | + BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) | + /* reserved */ + GENMASK_ULL(13, 9) | BIT_ULL(31); + u64 vmx_misc; + + vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low, + vmx->nested.msrs.misc_high); + + if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits)) + return -EINVAL; + + if ((vmx->nested.msrs.pinbased_ctls_high & + PIN_BASED_VMX_PREEMPTION_TIMER) && + vmx_misc_preemption_timer_rate(data) != + vmx_misc_preemption_timer_rate(vmx_misc)) + return -EINVAL; + + if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc)) + return -EINVAL; + + if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc)) + return -EINVAL; + + if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc)) + return -EINVAL; + + vmx->nested.msrs.misc_low = data; + vmx->nested.msrs.misc_high = data >> 32; + + /* + * If L1 has read-only VM-exit information fields, use the + * less permissive vmx_vmwrite_bitmap to specify write + * permissions for the shadow VMCS. + */ + if (enable_shadow_vmcs && !nested_cpu_has_vmwrite_any_field(&vmx->vcpu)) + vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap)); + + return 0; +} + +static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data) +{ + u64 vmx_ept_vpid_cap; + + vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps, + vmx->nested.msrs.vpid_caps); + + /* Every bit is either reserved or a feature bit. */ + if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL)) + return -EINVAL; + + vmx->nested.msrs.ept_caps = data; + vmx->nested.msrs.vpid_caps = data >> 32; + return 0; +} + +static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data) +{ + u64 *msr; + + switch (msr_index) { + case MSR_IA32_VMX_CR0_FIXED0: + msr = &vmx->nested.msrs.cr0_fixed0; + break; + case MSR_IA32_VMX_CR4_FIXED0: + msr = &vmx->nested.msrs.cr4_fixed0; + break; + default: + BUG(); + } + + /* + * 1 bits (which indicates bits which "must-be-1" during VMX operation) + * must be 1 in the restored value. + */ + if (!is_bitwise_subset(data, *msr, -1ULL)) + return -EINVAL; + + *msr = data; + return 0; +} + +/* + * Called when userspace is restoring VMX MSRs. + * + * Returns 0 on success, non-0 otherwise. + */ +int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + /* + * Don't allow changes to the VMX capability MSRs while the vCPU + * is in VMX operation. + */ + if (vmx->nested.vmxon) + return -EBUSY; + + switch (msr_index) { + case MSR_IA32_VMX_BASIC: + return vmx_restore_vmx_basic(vmx, data); + case MSR_IA32_VMX_PINBASED_CTLS: + case MSR_IA32_VMX_PROCBASED_CTLS: + case MSR_IA32_VMX_EXIT_CTLS: + case MSR_IA32_VMX_ENTRY_CTLS: + /* + * The "non-true" VMX capability MSRs are generated from the + * "true" MSRs, so we do not support restoring them directly. + * + * If userspace wants to emulate VMX_BASIC[55]=0, userspace + * should restore the "true" MSRs with the must-be-1 bits + * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND + * DEFAULT SETTINGS". + */ + return -EINVAL; + case MSR_IA32_VMX_TRUE_PINBASED_CTLS: + case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: + case MSR_IA32_VMX_TRUE_EXIT_CTLS: + case MSR_IA32_VMX_TRUE_ENTRY_CTLS: + case MSR_IA32_VMX_PROCBASED_CTLS2: + return vmx_restore_control_msr(vmx, msr_index, data); + case MSR_IA32_VMX_MISC: + return vmx_restore_vmx_misc(vmx, data); + case MSR_IA32_VMX_CR0_FIXED0: + case MSR_IA32_VMX_CR4_FIXED0: + return vmx_restore_fixed0_msr(vmx, msr_index, data); + case MSR_IA32_VMX_CR0_FIXED1: + case MSR_IA32_VMX_CR4_FIXED1: + /* + * These MSRs are generated based on the vCPU's CPUID, so we + * do not support restoring them directly. + */ + return -EINVAL; + case MSR_IA32_VMX_EPT_VPID_CAP: + return vmx_restore_vmx_ept_vpid_cap(vmx, data); + case MSR_IA32_VMX_VMCS_ENUM: + vmx->nested.msrs.vmcs_enum = data; + return 0; + default: + /* + * The rest of the VMX capability MSRs do not support restore. + */ + return -EINVAL; + } +} + +/* Returns 0 on success, non-0 otherwise. */ +int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata) +{ + switch (msr_index) { + case MSR_IA32_VMX_BASIC: + *pdata = msrs->basic; + break; + case MSR_IA32_VMX_TRUE_PINBASED_CTLS: + case MSR_IA32_VMX_PINBASED_CTLS: + *pdata = vmx_control_msr( + msrs->pinbased_ctls_low, + msrs->pinbased_ctls_high); + if (msr_index == MSR_IA32_VMX_PINBASED_CTLS) + *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR; + break; + case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: + case MSR_IA32_VMX_PROCBASED_CTLS: + *pdata = vmx_control_msr( + msrs->procbased_ctls_low, + msrs->procbased_ctls_high); + if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS) + *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR; + break; + case MSR_IA32_VMX_TRUE_EXIT_CTLS: + case MSR_IA32_VMX_EXIT_CTLS: + *pdata = vmx_control_msr( + msrs->exit_ctls_low, + msrs->exit_ctls_high); + if (msr_index == MSR_IA32_VMX_EXIT_CTLS) + *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR; + break; + case MSR_IA32_VMX_TRUE_ENTRY_CTLS: + case MSR_IA32_VMX_ENTRY_CTLS: + *pdata = vmx_control_msr( + msrs->entry_ctls_low, + msrs->entry_ctls_high); + if (msr_index == MSR_IA32_VMX_ENTRY_CTLS) + *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR; + break; + case MSR_IA32_VMX_MISC: + *pdata = vmx_control_msr( + msrs->misc_low, + msrs->misc_high); + break; + case MSR_IA32_VMX_CR0_FIXED0: + *pdata = msrs->cr0_fixed0; + break; + case MSR_IA32_VMX_CR0_FIXED1: + *pdata = msrs->cr0_fixed1; + break; + case MSR_IA32_VMX_CR4_FIXED0: + *pdata = msrs->cr4_fixed0; + break; + case MSR_IA32_VMX_CR4_FIXED1: + *pdata = msrs->cr4_fixed1; + break; + case MSR_IA32_VMX_VMCS_ENUM: + *pdata = msrs->vmcs_enum; + break; + case MSR_IA32_VMX_PROCBASED_CTLS2: + *pdata = vmx_control_msr( + msrs->secondary_ctls_low, + msrs->secondary_ctls_high); + break; + case MSR_IA32_VMX_EPT_VPID_CAP: + *pdata = msrs->ept_caps | + ((u64)msrs->vpid_caps << 32); + break; + case MSR_IA32_VMX_VMFUNC: + *pdata = msrs->vmfunc_controls; + break; + default: + return 1; + } + + return 0; +} + +/* + * Copy the writable VMCS shadow fields back to the VMCS12, in case + * they have been modified by the L1 guest. Note that the "read-only" + * VM-exit information fields are actually writable if the vCPU is + * configured to support "VMWRITE to any supported field in the VMCS." + */ +static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx) +{ + const u16 *fields[] = { + shadow_read_write_fields, + shadow_read_only_fields + }; + const int max_fields[] = { + max_shadow_read_write_fields, + max_shadow_read_only_fields + }; + int i, q; + unsigned long field; + u64 field_value; + struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs; + + preempt_disable(); + + vmcs_load(shadow_vmcs); + + for (q = 0; q < ARRAY_SIZE(fields); q++) { + for (i = 0; i < max_fields[q]; i++) { + field = fields[q][i]; + field_value = __vmcs_readl(field); + vmcs12_write_any(get_vmcs12(&vmx->vcpu), field, field_value); + } + /* + * Skip the VM-exit information fields if they are read-only. + */ + if (!nested_cpu_has_vmwrite_any_field(&vmx->vcpu)) + break; + } + + vmcs_clear(shadow_vmcs); + vmcs_load(vmx->loaded_vmcs->vmcs); + + preempt_enable(); +} + +static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx) +{ + const u16 *fields[] = { + shadow_read_write_fields, + shadow_read_only_fields + }; + const int max_fields[] = { + max_shadow_read_write_fields, + max_shadow_read_only_fields + }; + int i, q; + unsigned long field; + u64 field_value = 0; + struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs; + + vmcs_load(shadow_vmcs); + + for (q = 0; q < ARRAY_SIZE(fields); q++) { + for (i = 0; i < max_fields[q]; i++) { + field = fields[q][i]; + vmcs12_read_any(get_vmcs12(&vmx->vcpu), field, &field_value); + __vmcs_writel(field, field_value); + } + } + + vmcs_clear(shadow_vmcs); + vmcs_load(vmx->loaded_vmcs->vmcs); +} + +static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx) +{ + struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12; + struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs; + + /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */ + vmcs12->tpr_threshold = evmcs->tpr_threshold; + vmcs12->guest_rip = evmcs->guest_rip; + + if (unlikely(!(evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) { + vmcs12->guest_rsp = evmcs->guest_rsp; + vmcs12->guest_rflags = evmcs->guest_rflags; + vmcs12->guest_interruptibility_info = + evmcs->guest_interruptibility_info; + } + + if (unlikely(!(evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) { + vmcs12->cpu_based_vm_exec_control = + evmcs->cpu_based_vm_exec_control; + } + + if (unlikely(!(evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) { + vmcs12->exception_bitmap = evmcs->exception_bitmap; + } + + if (unlikely(!(evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) { + vmcs12->vm_entry_controls = evmcs->vm_entry_controls; + } + + if (unlikely(!(evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) { + vmcs12->vm_entry_intr_info_field = + evmcs->vm_entry_intr_info_field; + vmcs12->vm_entry_exception_error_code = + evmcs->vm_entry_exception_error_code; + vmcs12->vm_entry_instruction_len = + evmcs->vm_entry_instruction_len; + } + + if (unlikely(!(evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) { + vmcs12->host_ia32_pat = evmcs->host_ia32_pat; + vmcs12->host_ia32_efer = evmcs->host_ia32_efer; + vmcs12->host_cr0 = evmcs->host_cr0; + vmcs12->host_cr3 = evmcs->host_cr3; + vmcs12->host_cr4 = evmcs->host_cr4; + vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp; + vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip; + vmcs12->host_rip = evmcs->host_rip; + vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs; + vmcs12->host_es_selector = evmcs->host_es_selector; + vmcs12->host_cs_selector = evmcs->host_cs_selector; + vmcs12->host_ss_selector = evmcs->host_ss_selector; + vmcs12->host_ds_selector = evmcs->host_ds_selector; + vmcs12->host_fs_selector = evmcs->host_fs_selector; + vmcs12->host_gs_selector = evmcs->host_gs_selector; + vmcs12->host_tr_selector = evmcs->host_tr_selector; + } + + if (unlikely(!(evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) { + vmcs12->pin_based_vm_exec_control = + evmcs->pin_based_vm_exec_control; + vmcs12->vm_exit_controls = evmcs->vm_exit_controls; + vmcs12->secondary_vm_exec_control = + evmcs->secondary_vm_exec_control; + } + + if (unlikely(!(evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) { + vmcs12->io_bitmap_a = evmcs->io_bitmap_a; + vmcs12->io_bitmap_b = evmcs->io_bitmap_b; + } + + if (unlikely(!(evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) { + vmcs12->msr_bitmap = evmcs->msr_bitmap; + } + + if (unlikely(!(evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) { + vmcs12->guest_es_base = evmcs->guest_es_base; + vmcs12->guest_cs_base = evmcs->guest_cs_base; + vmcs12->guest_ss_base = evmcs->guest_ss_base; + vmcs12->guest_ds_base = evmcs->guest_ds_base; + vmcs12->guest_fs_base = evmcs->guest_fs_base; + vmcs12->guest_gs_base = evmcs->guest_gs_base; + vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base; + vmcs12->guest_tr_base = evmcs->guest_tr_base; + vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base; + vmcs12->guest_idtr_base = evmcs->guest_idtr_base; + vmcs12->guest_es_limit = evmcs->guest_es_limit; + vmcs12->guest_cs_limit = evmcs->guest_cs_limit; + vmcs12->guest_ss_limit = evmcs->guest_ss_limit; + vmcs12->guest_ds_limit = evmcs->guest_ds_limit; + vmcs12->guest_fs_limit = evmcs->guest_fs_limit; + vmcs12->guest_gs_limit = evmcs->guest_gs_limit; + vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit; + vmcs12->guest_tr_limit = evmcs->guest_tr_limit; + vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit; + vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit; + vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes; + vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes; + vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes; + vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes; + vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes; + vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes; + vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes; + vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes; + vmcs12->guest_es_selector = evmcs->guest_es_selector; + vmcs12->guest_cs_selector = evmcs->guest_cs_selector; + vmcs12->guest_ss_selector = evmcs->guest_ss_selector; + vmcs12->guest_ds_selector = evmcs->guest_ds_selector; + vmcs12->guest_fs_selector = evmcs->guest_fs_selector; + vmcs12->guest_gs_selector = evmcs->guest_gs_selector; + vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector; + vmcs12->guest_tr_selector = evmcs->guest_tr_selector; + } + + if (unlikely(!(evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) { + vmcs12->tsc_offset = evmcs->tsc_offset; + vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr; + vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap; + } + + if (unlikely(!(evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) { + vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask; + vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask; + vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow; + vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow; + vmcs12->guest_cr0 = evmcs->guest_cr0; + vmcs12->guest_cr3 = evmcs->guest_cr3; + vmcs12->guest_cr4 = evmcs->guest_cr4; + vmcs12->guest_dr7 = evmcs->guest_dr7; + } + + if (unlikely(!(evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) { + vmcs12->host_fs_base = evmcs->host_fs_base; + vmcs12->host_gs_base = evmcs->host_gs_base; + vmcs12->host_tr_base = evmcs->host_tr_base; + vmcs12->host_gdtr_base = evmcs->host_gdtr_base; + vmcs12->host_idtr_base = evmcs->host_idtr_base; + vmcs12->host_rsp = evmcs->host_rsp; + } + + if (unlikely(!(evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) { + vmcs12->ept_pointer = evmcs->ept_pointer; + vmcs12->virtual_processor_id = evmcs->virtual_processor_id; + } + + if (unlikely(!(evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) { + vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer; + vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl; + vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat; + vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer; + vmcs12->guest_pdptr0 = evmcs->guest_pdptr0; + vmcs12->guest_pdptr1 = evmcs->guest_pdptr1; + vmcs12->guest_pdptr2 = evmcs->guest_pdptr2; + vmcs12->guest_pdptr3 = evmcs->guest_pdptr3; + vmcs12->guest_pending_dbg_exceptions = + evmcs->guest_pending_dbg_exceptions; + vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp; + vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip; + vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs; + vmcs12->guest_activity_state = evmcs->guest_activity_state; + vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs; + } + + /* + * Not used? + * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr; + * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr; + * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr; + * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0; + * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1; + * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2; + * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3; + * vmcs12->page_fault_error_code_mask = + * evmcs->page_fault_error_code_mask; + * vmcs12->page_fault_error_code_match = + * evmcs->page_fault_error_code_match; + * vmcs12->cr3_target_count = evmcs->cr3_target_count; + * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count; + * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count; + * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count; + */ + + /* + * Read only fields: + * vmcs12->guest_physical_address = evmcs->guest_physical_address; + * vmcs12->vm_instruction_error = evmcs->vm_instruction_error; + * vmcs12->vm_exit_reason = evmcs->vm_exit_reason; + * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info; + * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code; + * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field; + * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code; + * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len; + * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info; + * vmcs12->exit_qualification = evmcs->exit_qualification; + * vmcs12->guest_linear_address = evmcs->guest_linear_address; + * + * Not present in struct vmcs12: + * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx; + * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi; + * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi; + * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip; + */ + + return 0; +} + +static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx) +{ + struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12; + struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs; + + /* + * Should not be changed by KVM: + * + * evmcs->host_es_selector = vmcs12->host_es_selector; + * evmcs->host_cs_selector = vmcs12->host_cs_selector; + * evmcs->host_ss_selector = vmcs12->host_ss_selector; + * evmcs->host_ds_selector = vmcs12->host_ds_selector; + * evmcs->host_fs_selector = vmcs12->host_fs_selector; + * evmcs->host_gs_selector = vmcs12->host_gs_selector; + * evmcs->host_tr_selector = vmcs12->host_tr_selector; + * evmcs->host_ia32_pat = vmcs12->host_ia32_pat; + * evmcs->host_ia32_efer = vmcs12->host_ia32_efer; + * evmcs->host_cr0 = vmcs12->host_cr0; + * evmcs->host_cr3 = vmcs12->host_cr3; + * evmcs->host_cr4 = vmcs12->host_cr4; + * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp; + * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip; + * evmcs->host_rip = vmcs12->host_rip; + * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs; + * evmcs->host_fs_base = vmcs12->host_fs_base; + * evmcs->host_gs_base = vmcs12->host_gs_base; + * evmcs->host_tr_base = vmcs12->host_tr_base; + * evmcs->host_gdtr_base = vmcs12->host_gdtr_base; + * evmcs->host_idtr_base = vmcs12->host_idtr_base; + * evmcs->host_rsp = vmcs12->host_rsp; + * sync_vmcs12() doesn't read these: + * evmcs->io_bitmap_a = vmcs12->io_bitmap_a; + * evmcs->io_bitmap_b = vmcs12->io_bitmap_b; + * evmcs->msr_bitmap = vmcs12->msr_bitmap; + * evmcs->ept_pointer = vmcs12->ept_pointer; + * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap; + * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr; + * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr; + * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr; + * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0; + * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1; + * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2; + * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3; + * evmcs->tpr_threshold = vmcs12->tpr_threshold; + * evmcs->virtual_processor_id = vmcs12->virtual_processor_id; + * evmcs->exception_bitmap = vmcs12->exception_bitmap; + * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer; + * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control; + * evmcs->vm_exit_controls = vmcs12->vm_exit_controls; + * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control; + * evmcs->page_fault_error_code_mask = + * vmcs12->page_fault_error_code_mask; + * evmcs->page_fault_error_code_match = + * vmcs12->page_fault_error_code_match; + * evmcs->cr3_target_count = vmcs12->cr3_target_count; + * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr; + * evmcs->tsc_offset = vmcs12->tsc_offset; + * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl; + * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask; + * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask; + * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow; + * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow; + * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count; + * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count; + * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count; + * + * Not present in struct vmcs12: + * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx; + * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi; + * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi; + * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip; + */ + + evmcs->guest_es_selector = vmcs12->guest_es_selector; + evmcs->guest_cs_selector = vmcs12->guest_cs_selector; + evmcs->guest_ss_selector = vmcs12->guest_ss_selector; + evmcs->guest_ds_selector = vmcs12->guest_ds_selector; + evmcs->guest_fs_selector = vmcs12->guest_fs_selector; + evmcs->guest_gs_selector = vmcs12->guest_gs_selector; + evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector; + evmcs->guest_tr_selector = vmcs12->guest_tr_selector; + + evmcs->guest_es_limit = vmcs12->guest_es_limit; + evmcs->guest_cs_limit = vmcs12->guest_cs_limit; + evmcs->guest_ss_limit = vmcs12->guest_ss_limit; + evmcs->guest_ds_limit = vmcs12->guest_ds_limit; + evmcs->guest_fs_limit = vmcs12->guest_fs_limit; + evmcs->guest_gs_limit = vmcs12->guest_gs_limit; + evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit; + evmcs->guest_tr_limit = vmcs12->guest_tr_limit; + evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit; + evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit; + + evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes; + evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes; + evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes; + evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes; + evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes; + evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes; + evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes; + evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes; + + evmcs->guest_es_base = vmcs12->guest_es_base; + evmcs->guest_cs_base = vmcs12->guest_cs_base; + evmcs->guest_ss_base = vmcs12->guest_ss_base; + evmcs->guest_ds_base = vmcs12->guest_ds_base; + evmcs->guest_fs_base = vmcs12->guest_fs_base; + evmcs->guest_gs_base = vmcs12->guest_gs_base; + evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base; + evmcs->guest_tr_base = vmcs12->guest_tr_base; + evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base; + evmcs->guest_idtr_base = vmcs12->guest_idtr_base; + + evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat; + evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer; + + evmcs->guest_pdptr0 = vmcs12->guest_pdptr0; + evmcs->guest_pdptr1 = vmcs12->guest_pdptr1; + evmcs->guest_pdptr2 = vmcs12->guest_pdptr2; + evmcs->guest_pdptr3 = vmcs12->guest_pdptr3; + + evmcs->guest_pending_dbg_exceptions = + vmcs12->guest_pending_dbg_exceptions; + evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp; + evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip; + + evmcs->guest_activity_state = vmcs12->guest_activity_state; + evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs; + + evmcs->guest_cr0 = vmcs12->guest_cr0; + evmcs->guest_cr3 = vmcs12->guest_cr3; + evmcs->guest_cr4 = vmcs12->guest_cr4; + evmcs->guest_dr7 = vmcs12->guest_dr7; + + evmcs->guest_physical_address = vmcs12->guest_physical_address; + + evmcs->vm_instruction_error = vmcs12->vm_instruction_error; + evmcs->vm_exit_reason = vmcs12->vm_exit_reason; + evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info; + evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code; + evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field; + evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code; + evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len; + evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info; + + evmcs->exit_qualification = vmcs12->exit_qualification; + + evmcs->guest_linear_address = vmcs12->guest_linear_address; + evmcs->guest_rsp = vmcs12->guest_rsp; + evmcs->guest_rflags = vmcs12->guest_rflags; + + evmcs->guest_interruptibility_info = + vmcs12->guest_interruptibility_info; + evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control; + evmcs->vm_entry_controls = vmcs12->vm_entry_controls; + evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field; + evmcs->vm_entry_exception_error_code = + vmcs12->vm_entry_exception_error_code; + evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len; + + evmcs->guest_rip = vmcs12->guest_rip; + + evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs; + + return 0; +} + +/* + * This is an equivalent of the nested hypervisor executing the vmptrld + * instruction. + */ +static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu, + bool from_launch) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct hv_vp_assist_page assist_page; + + if (likely(!vmx->nested.enlightened_vmcs_enabled)) + return 1; + + if (unlikely(!kvm_hv_get_assist_page(vcpu, &assist_page))) + return 1; + + if (unlikely(!assist_page.enlighten_vmentry)) + return 1; + + if (unlikely(assist_page.current_nested_vmcs != + vmx->nested.hv_evmcs_vmptr)) { + + if (!vmx->nested.hv_evmcs) + vmx->nested.current_vmptr = -1ull; + + nested_release_evmcs(vcpu); + + vmx->nested.hv_evmcs_page = kvm_vcpu_gpa_to_page( + vcpu, assist_page.current_nested_vmcs); + + if (unlikely(is_error_page(vmx->nested.hv_evmcs_page))) + return 0; + + vmx->nested.hv_evmcs = kmap(vmx->nested.hv_evmcs_page); + + /* + * Currently, KVM only supports eVMCS version 1 + * (== KVM_EVMCS_VERSION) and thus we expect guest to set this + * value to first u32 field of eVMCS which should specify eVMCS + * VersionNumber. + * + * Guest should be aware of supported eVMCS versions by host by + * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is + * expected to set this CPUID leaf according to the value + * returned in vmcs_version from nested_enable_evmcs(). + * + * However, it turns out that Microsoft Hyper-V fails to comply + * to their own invented interface: When Hyper-V use eVMCS, it + * just sets first u32 field of eVMCS to revision_id specified + * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number + * which is one of the supported versions specified in + * CPUID.0x4000000A.EAX[0:15]. + * + * To overcome Hyper-V bug, we accept here either a supported + * eVMCS version or VMCS12 revision_id as valid values for first + * u32 field of eVMCS. + */ + if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) && + (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) { + nested_release_evmcs(vcpu); + return 0; + } + + vmx->nested.dirty_vmcs12 = true; + /* + * As we keep L2 state for one guest only 'hv_clean_fields' mask + * can't be used when we switch between them. Reset it here for + * simplicity. + */ + vmx->nested.hv_evmcs->hv_clean_fields &= + ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; + vmx->nested.hv_evmcs_vmptr = assist_page.current_nested_vmcs; + + /* + * Unlike normal vmcs12, enlightened vmcs12 is not fully + * reloaded from guest's memory (read only fields, fields not + * present in struct hv_enlightened_vmcs, ...). Make sure there + * are no leftovers. + */ + if (from_launch) { + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + memset(vmcs12, 0, sizeof(*vmcs12)); + vmcs12->hdr.revision_id = VMCS12_REVISION; + } + + } + return 1; +} + +void nested_sync_from_vmcs12(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + /* + * hv_evmcs may end up being not mapped after migration (when + * L2 was running), map it here to make sure vmcs12 changes are + * properly reflected. + */ + if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs) + nested_vmx_handle_enlightened_vmptrld(vcpu, false); + + if (vmx->nested.hv_evmcs) { + copy_vmcs12_to_enlightened(vmx); + /* All fields are clean */ + vmx->nested.hv_evmcs->hv_clean_fields |= + HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; + } else { + copy_vmcs12_to_shadow(vmx); + } + + vmx->nested.need_vmcs12_sync = false; +} + +static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer) +{ + struct vcpu_vmx *vmx = + container_of(timer, struct vcpu_vmx, nested.preemption_timer); + + vmx->nested.preemption_timer_expired = true; + kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu); + kvm_vcpu_kick(&vmx->vcpu); + + return HRTIMER_NORESTART; +} + +static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu) +{ + u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value; + struct vcpu_vmx *vmx = to_vmx(vcpu); + + /* + * A timer value of zero is architecturally guaranteed to cause + * a VMExit prior to executing any instructions in the guest. + */ + if (preemption_timeout == 0) { + vmx_preemption_timer_fn(&vmx->nested.preemption_timer); + return; + } + + if (vcpu->arch.virtual_tsc_khz == 0) + return; + + preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE; + preemption_timeout *= 1000000; + do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz); + hrtimer_start(&vmx->nested.preemption_timer, + ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL); +} + +static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) +{ + if (vmx->nested.nested_run_pending && + (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) + return vmcs12->guest_ia32_efer; + else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) + return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME); + else + return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME); +} + +static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx) +{ + /* + * If vmcs02 hasn't been initialized, set the constant vmcs02 state + * according to L0's settings (vmcs12 is irrelevant here). Host + * fields that come from L0 and are not constant, e.g. HOST_CR3, + * will be set as needed prior to VMLAUNCH/VMRESUME. + */ + if (vmx->nested.vmcs02_initialized) + return; + vmx->nested.vmcs02_initialized = true; + + /* + * We don't care what the EPTP value is we just need to guarantee + * it's valid so we don't get a false positive when doing early + * consistency checks. + */ + if (enable_ept && nested_early_check) + vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0)); + + /* All VMFUNCs are currently emulated through L0 vmexits. */ + if (cpu_has_vmx_vmfunc()) + vmcs_write64(VM_FUNCTION_CONTROL, 0); + + if (cpu_has_vmx_posted_intr()) + vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR); + + if (cpu_has_vmx_msr_bitmap()) + vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap)); + + if (enable_pml) + vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); + + /* + * Set the MSR load/store lists to match L0's settings. Only the + * addresses are constant (for vmcs02), the counts can change based + * on L2's behavior, e.g. switching to/from long mode. + */ + vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); + vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); + vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); + + vmx_set_constant_host_state(vmx); +} + +static void prepare_vmcs02_early_full(struct vcpu_vmx *vmx, + struct vmcs12 *vmcs12) +{ + prepare_vmcs02_constant_state(vmx); + + vmcs_write64(VMCS_LINK_POINTER, -1ull); + + if (enable_vpid) { + if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) + vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02); + else + vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); + } +} + +static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) +{ + u32 exec_control, vmcs12_exec_ctrl; + u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12); + + if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs) + prepare_vmcs02_early_full(vmx, vmcs12); + + /* + * HOST_RSP is normally set correctly in vmx_vcpu_run() just before + * entry, but only if the current (host) sp changed from the value + * we wrote last (vmx->host_rsp). This cache is no longer relevant + * if we switch vmcs, and rather than hold a separate cache per vmcs, + * here we just force the write to happen on entry. host_rsp will + * also be written unconditionally by nested_vmx_check_vmentry_hw() + * if we are doing early consistency checks via hardware. + */ + vmx->host_rsp = 0; + + /* + * PIN CONTROLS + */ + exec_control = vmcs12->pin_based_vm_exec_control; + + /* Preemption timer setting is computed directly in vmx_vcpu_run. */ + exec_control |= vmcs_config.pin_based_exec_ctrl; + exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; + vmx->loaded_vmcs->hv_timer_armed = false; + + /* Posted interrupts setting is only taken from vmcs12. */ + if (nested_cpu_has_posted_intr(vmcs12)) { + vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv; + vmx->nested.pi_pending = false; + } else { + exec_control &= ~PIN_BASED_POSTED_INTR; + } + vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control); + + /* + * EXEC CONTROLS + */ + exec_control = vmx_exec_control(vmx); /* L0's desires */ + exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING; + exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING; + exec_control &= ~CPU_BASED_TPR_SHADOW; + exec_control |= vmcs12->cpu_based_vm_exec_control; + + /* + * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if + * nested_get_vmcs12_pages can't fix it up, the illegal value + * will result in a VM entry failure. + */ + if (exec_control & CPU_BASED_TPR_SHADOW) { + vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull); + vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold); + } else { +#ifdef CONFIG_X86_64 + exec_control |= CPU_BASED_CR8_LOAD_EXITING | + CPU_BASED_CR8_STORE_EXITING; +#endif + } + + /* + * A vmexit (to either L1 hypervisor or L0 userspace) is always needed + * for I/O port accesses. + */ + exec_control &= ~CPU_BASED_USE_IO_BITMAPS; + exec_control |= CPU_BASED_UNCOND_IO_EXITING; + vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control); + + /* + * SECONDARY EXEC CONTROLS + */ + if (cpu_has_secondary_exec_ctrls()) { + exec_control = vmx->secondary_exec_control; + + /* Take the following fields only from vmcs12 */ + exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | + SECONDARY_EXEC_ENABLE_INVPCID | + SECONDARY_EXEC_RDTSCP | + SECONDARY_EXEC_XSAVES | + SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | + SECONDARY_EXEC_APIC_REGISTER_VIRT | + SECONDARY_EXEC_ENABLE_VMFUNC); + if (nested_cpu_has(vmcs12, + CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) { + vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control & + ~SECONDARY_EXEC_ENABLE_PML; + exec_control |= vmcs12_exec_ctrl; + } + + /* VMCS shadowing for L2 is emulated for now */ + exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; + + if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) + vmcs_write16(GUEST_INTR_STATUS, + vmcs12->guest_intr_status); + + /* + * Write an illegal value to APIC_ACCESS_ADDR. Later, + * nested_get_vmcs12_pages will either fix it up or + * remove the VM execution control. + */ + if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) + vmcs_write64(APIC_ACCESS_ADDR, -1ull); + + if (exec_control & SECONDARY_EXEC_ENCLS_EXITING) + vmcs_write64(ENCLS_EXITING_BITMAP, -1ull); + + vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control); + } + + /* + * ENTRY CONTROLS + * + * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE + * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate + * on the related bits (if supported by the CPU) in the hope that + * we can avoid VMWrites during vmx_set_efer(). + */ + exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) & + ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER; + if (cpu_has_load_ia32_efer()) { + if (guest_efer & EFER_LMA) + exec_control |= VM_ENTRY_IA32E_MODE; + if (guest_efer != host_efer) + exec_control |= VM_ENTRY_LOAD_IA32_EFER; + } + vm_entry_controls_init(vmx, exec_control); + + /* + * EXIT CONTROLS + * + * L2->L1 exit controls are emulated - the hardware exit is to L0 so + * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER + * bits may be modified by vmx_set_efer() in prepare_vmcs02(). + */ + exec_control = vmx_vmexit_ctrl(); + if (cpu_has_load_ia32_efer() && guest_efer != host_efer) + exec_control |= VM_EXIT_LOAD_IA32_EFER; + vm_exit_controls_init(vmx, exec_control); + + /* + * Conceptually we want to copy the PML address and index from + * vmcs01 here, and then back to vmcs01 on nested vmexit. But, + * since we always flush the log on each vmexit and never change + * the PML address (once set), this happens to be equivalent to + * simply resetting the index in vmcs02. + */ + if (enable_pml) + vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); + + /* + * Interrupt/Exception Fields + */ + if (vmx->nested.nested_run_pending) { + vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, + vmcs12->vm_entry_intr_info_field); + vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, + vmcs12->vm_entry_exception_error_code); + vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, + vmcs12->vm_entry_instruction_len); + vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, + vmcs12->guest_interruptibility_info); + vmx->loaded_vmcs->nmi_known_unmasked = + !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI); + } else { + vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); + } +} + +static void prepare_vmcs02_full(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) +{ + struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs; + + if (!hv_evmcs || !(hv_evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) { + vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector); + vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector); + vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector); + vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector); + vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector); + vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector); + vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector); + vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector); + vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit); + vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit); + vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit); + vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit); + vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit); + vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit); + vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit); + vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit); + vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit); + vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit); + vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes); + vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes); + vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes); + vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes); + vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes); + vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes); + vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base); + vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base); + vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base); + vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base); + vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base); + vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base); + vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base); + vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base); + vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base); + vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base); + } + + if (!hv_evmcs || !(hv_evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) { + vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs); + vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, + vmcs12->guest_pending_dbg_exceptions); + vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp); + vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip); + + /* + * L1 may access the L2's PDPTR, so save them to construct + * vmcs12 + */ + if (enable_ept) { + vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0); + vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1); + vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2); + vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3); + } + } + + if (nested_cpu_has_xsaves(vmcs12)) + vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap); + + /* + * Whether page-faults are trapped is determined by a combination of + * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. + * If enable_ept, L0 doesn't care about page faults and we should + * set all of these to L1's desires. However, if !enable_ept, L0 does + * care about (at least some) page faults, and because it is not easy + * (if at all possible?) to merge L0 and L1's desires, we simply ask + * to exit on each and every L2 page fault. This is done by setting + * MASK=MATCH=0 and (see below) EB.PF=1. + * Note that below we don't need special code to set EB.PF beyond the + * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept, + * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when + * !enable_ept, EB.PF is 1, so the "or" will always be 1. + */ + vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, + enable_ept ? vmcs12->page_fault_error_code_mask : 0); + vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, + enable_ept ? vmcs12->page_fault_error_code_match : 0); + + if (cpu_has_vmx_apicv()) { + vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0); + vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1); + vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2); + vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3); + } + + vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr); + vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr); + + set_cr4_guest_host_mask(vmx); + + if (kvm_mpx_supported()) { + if (vmx->nested.nested_run_pending && + (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)) + vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs); + else + vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs); + } +} + +/* + * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested + * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it + * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2 + * guest in a way that will both be appropriate to L1's requests, and our + * needs. In addition to modifying the active vmcs (which is vmcs02), this + * function also has additional necessary side-effects, like setting various + * vcpu->arch fields. + * Returns 0 on success, 1 on failure. Invalid state exit qualification code + * is assigned to entry_failure_code on failure. + */ +static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, + u32 *entry_failure_code) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs; + + if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs) { + prepare_vmcs02_full(vmx, vmcs12); + vmx->nested.dirty_vmcs12 = false; + } + + /* + * First, the fields that are shadowed. This must be kept in sync + * with vmcs_shadow_fields.h. + */ + if (!hv_evmcs || !(hv_evmcs->hv_clean_fields & + HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) { + vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes); + vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes); + } + + if (vmx->nested.nested_run_pending && + (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) { + kvm_set_dr(vcpu, 7, vmcs12->guest_dr7); + vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl); + } else { + kvm_set_dr(vcpu, 7, vcpu->arch.dr7); + vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl); + } + vmx_set_rflags(vcpu, vmcs12->guest_rflags); + + vmx->nested.preemption_timer_expired = false; + if (nested_cpu_has_preemption_timer(vmcs12)) + vmx_start_preemption_timer(vcpu); + + /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the + * bitwise-or of what L1 wants to trap for L2, and what we want to + * trap. Note that CR0.TS also needs updating - we do this later. + */ + update_exception_bitmap(vcpu); + vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask; + vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits); + + if (vmx->nested.nested_run_pending && + (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) { + vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat); + vcpu->arch.pat = vmcs12->guest_ia32_pat; + } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { + vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); + } + + vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); + + if (kvm_has_tsc_control) + decache_tsc_multiplier(vmx); + + if (enable_vpid) { + /* + * There is no direct mapping between vpid02 and vpid12, the + * vpid02 is per-vCPU for L0 and reused while the value of + * vpid12 is changed w/ one invvpid during nested vmentry. + * The vpid12 is allocated by L1 for L2, so it will not + * influence global bitmap(for vpid01 and vpid02 allocation) + * even if spawn a lot of nested vCPUs. + */ + if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) { + if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) { + vmx->nested.last_vpid = vmcs12->virtual_processor_id; + __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false); + } + } else { + /* + * If L1 use EPT, then L0 needs to execute INVEPT on + * EPTP02 instead of EPTP01. Therefore, delay TLB + * flush until vmcs02->eptp is fully updated by + * KVM_REQ_LOAD_CR3. Note that this assumes + * KVM_REQ_TLB_FLUSH is evaluated after + * KVM_REQ_LOAD_CR3 in vcpu_enter_guest(). + */ + kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); + } + } + + if (nested_cpu_has_ept(vmcs12)) + nested_ept_init_mmu_context(vcpu); + else if (nested_cpu_has2(vmcs12, + SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) + vmx_flush_tlb(vcpu, true); + + /* + * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those + * bits which we consider mandatory enabled. + * The CR0_READ_SHADOW is what L2 should have expected to read given + * the specifications by L1; It's not enough to take + * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we + * have more bits than L1 expected. + */ + vmx_set_cr0(vcpu, vmcs12->guest_cr0); + vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12)); + + vmx_set_cr4(vcpu, vmcs12->guest_cr4); + vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12)); + + vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12); + /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */ + vmx_set_efer(vcpu, vcpu->arch.efer); + + /* + * Guest state is invalid and unrestricted guest is disabled, + * which means L1 attempted VMEntry to L2 with invalid state. + * Fail the VMEntry. + */ + if (vmx->emulation_required) { + *entry_failure_code = ENTRY_FAIL_DEFAULT; + return 1; + } + + /* Shadow page tables on either EPT or shadow page tables. */ + if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12), + entry_failure_code)) + return 1; + + if (!enable_ept) + vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested; + + kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp); + kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip); + return 0; +} + +static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12) +{ + if (!nested_cpu_has_nmi_exiting(vmcs12) && + nested_cpu_has_virtual_nmis(vmcs12)) + return -EINVAL; + + if (!nested_cpu_has_virtual_nmis(vmcs12) && + nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING)) + return -EINVAL; + + return 0; +} + +static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + int maxphyaddr = cpuid_maxphyaddr(vcpu); + + /* Check for memory type validity */ + switch (address & VMX_EPTP_MT_MASK) { + case VMX_EPTP_MT_UC: + if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)) + return false; + break; + case VMX_EPTP_MT_WB: + if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)) + return false; + break; + default: + return false; + } + + /* only 4 levels page-walk length are valid */ + if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4) + return false; + + /* Reserved bits should not be set */ + if (address >> maxphyaddr || ((address >> 7) & 0x1f)) + return false; + + /* AD, if set, should be supported */ + if (address & VMX_EPTP_AD_ENABLE_BIT) { + if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)) + return false; + } + + return true; +} + +/* + * Checks related to VM-Execution Control Fields + */ +static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (!vmx_control_verify(vmcs12->pin_based_vm_exec_control, + vmx->nested.msrs.pinbased_ctls_low, + vmx->nested.msrs.pinbased_ctls_high) || + !vmx_control_verify(vmcs12->cpu_based_vm_exec_control, + vmx->nested.msrs.procbased_ctls_low, + vmx->nested.msrs.procbased_ctls_high)) + return -EINVAL; + + if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) && + !vmx_control_verify(vmcs12->secondary_vm_exec_control, + vmx->nested.msrs.secondary_ctls_low, + vmx->nested.msrs.secondary_ctls_high)) + return -EINVAL; + + if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu) || + nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) || + nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) || + nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) || + nested_vmx_check_apic_access_controls(vcpu, vmcs12) || + nested_vmx_check_apicv_controls(vcpu, vmcs12) || + nested_vmx_check_nmi_controls(vmcs12) || + nested_vmx_check_pml_controls(vcpu, vmcs12) || + nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) || + nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) || + nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) || + (nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id)) + return -EINVAL; + + if (nested_cpu_has_ept(vmcs12) && + !valid_ept_address(vcpu, vmcs12->ept_pointer)) + return -EINVAL; + + if (nested_cpu_has_vmfunc(vmcs12)) { + if (vmcs12->vm_function_control & + ~vmx->nested.msrs.vmfunc_controls) + return -EINVAL; + + if (nested_cpu_has_eptp_switching(vmcs12)) { + if (!nested_cpu_has_ept(vmcs12) || + !page_address_valid(vcpu, vmcs12->eptp_list_address)) + return -EINVAL; + } + } + + return 0; +} + +/* + * Checks related to VM-Exit Control Fields + */ +static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (!vmx_control_verify(vmcs12->vm_exit_controls, + vmx->nested.msrs.exit_ctls_low, + vmx->nested.msrs.exit_ctls_high) || + nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)) + return -EINVAL; + + return 0; +} + +/* + * Checks related to VM-Entry Control Fields + */ +static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (!vmx_control_verify(vmcs12->vm_entry_controls, + vmx->nested.msrs.entry_ctls_low, + vmx->nested.msrs.entry_ctls_high)) + return -EINVAL; + + /* + * From the Intel SDM, volume 3: + * Fields relevant to VM-entry event injection must be set properly. + * These fields are the VM-entry interruption-information field, the + * VM-entry exception error code, and the VM-entry instruction length. + */ + if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) { + u32 intr_info = vmcs12->vm_entry_intr_info_field; + u8 vector = intr_info & INTR_INFO_VECTOR_MASK; + u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK; + bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK; + bool should_have_error_code; + bool urg = nested_cpu_has2(vmcs12, + SECONDARY_EXEC_UNRESTRICTED_GUEST); + bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE; + + /* VM-entry interruption-info field: interruption type */ + if (intr_type == INTR_TYPE_RESERVED || + (intr_type == INTR_TYPE_OTHER_EVENT && + !nested_cpu_supports_monitor_trap_flag(vcpu))) + return -EINVAL; + + /* VM-entry interruption-info field: vector */ + if ((intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) || + (intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) || + (intr_type == INTR_TYPE_OTHER_EVENT && vector != 0)) + return -EINVAL; + + /* VM-entry interruption-info field: deliver error code */ + should_have_error_code = + intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode && + x86_exception_has_error_code(vector); + if (has_error_code != should_have_error_code) + return -EINVAL; + + /* VM-entry exception error code */ + if (has_error_code && + vmcs12->vm_entry_exception_error_code & GENMASK(31, 15)) + return -EINVAL; + + /* VM-entry interruption-info field: reserved bits */ + if (intr_info & INTR_INFO_RESVD_BITS_MASK) + return -EINVAL; + + /* VM-entry instruction length */ + switch (intr_type) { + case INTR_TYPE_SOFT_EXCEPTION: + case INTR_TYPE_SOFT_INTR: + case INTR_TYPE_PRIV_SW_EXCEPTION: + if ((vmcs12->vm_entry_instruction_len > 15) || + (vmcs12->vm_entry_instruction_len == 0 && + !nested_cpu_has_zero_length_injection(vcpu))) + return -EINVAL; + } + } + + if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12)) + return -EINVAL; + + return 0; +} + +/* + * Checks related to Host Control Registers and MSRs + */ +static int nested_check_host_control_regs(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + bool ia32e; + + if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) || + !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) || + !nested_cr3_valid(vcpu, vmcs12->host_cr3)) + return -EINVAL; + /* + * If the load IA32_EFER VM-exit control is 1, bits reserved in the + * IA32_EFER MSR must be 0 in the field for that register. In addition, + * the values of the LMA and LME bits in the field must each be that of + * the host address-space size VM-exit control. + */ + if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) { + ia32e = (vmcs12->vm_exit_controls & + VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0; + if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) || + ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) || + ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) + return -EINVAL; + } + + return 0; +} + +/* + * Checks related to Guest Non-register State + */ +static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12) +{ + if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE && + vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) + return -EINVAL; + + return 0; +} + +static int nested_vmx_check_vmentry_prereqs(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + if (nested_check_vm_execution_controls(vcpu, vmcs12) || + nested_check_vm_exit_controls(vcpu, vmcs12) || + nested_check_vm_entry_controls(vcpu, vmcs12)) + return VMXERR_ENTRY_INVALID_CONTROL_FIELD; + + if (nested_check_host_control_regs(vcpu, vmcs12)) + return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD; + + if (nested_check_guest_non_reg_state(vmcs12)) + return VMXERR_ENTRY_INVALID_CONTROL_FIELD; + + return 0; +} + +static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + int r; + struct page *page; + struct vmcs12 *shadow; + + if (vmcs12->vmcs_link_pointer == -1ull) + return 0; + + if (!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)) + return -EINVAL; + + page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer); + if (is_error_page(page)) + return -EINVAL; + + r = 0; + shadow = kmap(page); + if (shadow->hdr.revision_id != VMCS12_REVISION || + shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)) + r = -EINVAL; + kunmap(page); + kvm_release_page_clean(page); + return r; +} + +static int nested_vmx_check_vmentry_postreqs(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12, + u32 *exit_qual) +{ + bool ia32e; + + *exit_qual = ENTRY_FAIL_DEFAULT; + + if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) || + !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)) + return 1; + + if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) { + *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR; + return 1; + } + + /* + * If the load IA32_EFER VM-entry control is 1, the following checks + * are performed on the field for the IA32_EFER MSR: + * - Bits reserved in the IA32_EFER MSR must be 0. + * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of + * the IA-32e mode guest VM-exit control. It must also be identical + * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to + * CR0.PG) is 1. + */ + if (to_vmx(vcpu)->nested.nested_run_pending && + (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) { + ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0; + if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) || + ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) || + ((vmcs12->guest_cr0 & X86_CR0_PG) && + ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) + return 1; + } + + if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) && + (is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) || + (vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))) + return 1; + + return 0; +} + +static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + unsigned long cr3, cr4; + + if (!nested_early_check) + return 0; + + if (vmx->msr_autoload.host.nr) + vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); + if (vmx->msr_autoload.guest.nr) + vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); + + preempt_disable(); + + vmx_prepare_switch_to_guest(vcpu); + + /* + * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS, + * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to + * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e. + * there is no need to preserve other bits or save/restore the field. + */ + vmcs_writel(GUEST_RFLAGS, 0); + + cr3 = __get_current_cr3_fast(); + if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { + vmcs_writel(HOST_CR3, cr3); + vmx->loaded_vmcs->host_state.cr3 = cr3; + } + + cr4 = cr4_read_shadow(); + if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { + vmcs_writel(HOST_CR4, cr4); + vmx->loaded_vmcs->host_state.cr4 = cr4; + } + + vmx->__launched = vmx->loaded_vmcs->launched; + + asm( + /* Set HOST_RSP */ + "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */ + __ex("vmwrite %%" _ASM_SP ", %%" _ASM_DX) "\n\t" + "mov %%" _ASM_SP ", %c[host_rsp](%1)\n\t" + "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */ + + /* Check if vmlaunch or vmresume is needed */ + "cmpl $0, %c[launched](%% " _ASM_CX")\n\t" + + "call vmx_vmenter\n\t" + + /* Set vmx->fail accordingly */ + "setbe %c[fail](%% " _ASM_CX")\n\t" + : ASM_CALL_CONSTRAINT + : "c"(vmx), "d"((unsigned long)HOST_RSP), + [launched]"i"(offsetof(struct vcpu_vmx, __launched)), + [fail]"i"(offsetof(struct vcpu_vmx, fail)), + [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)), + [wordsize]"i"(sizeof(ulong)) + : "rax", "cc", "memory" + ); + + preempt_enable(); + + if (vmx->msr_autoload.host.nr) + vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr); + if (vmx->msr_autoload.guest.nr) + vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr); + + if (vmx->fail) { + WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) != + VMXERR_ENTRY_INVALID_CONTROL_FIELD); + vmx->fail = 0; + return 1; + } + + /* + * VMExit clears RFLAGS.IF and DR7, even on a consistency check. + */ + local_irq_enable(); + if (hw_breakpoint_active()) + set_debugreg(__this_cpu_read(cpu_dr7), 7); + + /* + * A non-failing VMEntry means we somehow entered guest mode with + * an illegal RIP, and that's just the tip of the iceberg. There + * is no telling what memory has been modified or what state has + * been exposed to unknown code. Hitting this all but guarantees + * a (very critical) hardware issue. + */ + WARN_ON(!(vmcs_read32(VM_EXIT_REASON) & + VMX_EXIT_REASONS_FAILED_VMENTRY)); + + return 0; +} +STACK_FRAME_NON_STANDARD(nested_vmx_check_vmentry_hw); + + +static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12); + +static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu) +{ + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct page *page; + u64 hpa; + + if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) { + /* + * Translate L1 physical address to host physical + * address for vmcs02. Keep the page pinned, so this + * physical address remains valid. We keep a reference + * to it so we can release it later. + */ + if (vmx->nested.apic_access_page) { /* shouldn't happen */ + kvm_release_page_dirty(vmx->nested.apic_access_page); + vmx->nested.apic_access_page = NULL; + } + page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr); + /* + * If translation failed, no matter: This feature asks + * to exit when accessing the given address, and if it + * can never be accessed, this feature won't do + * anything anyway. + */ + if (!is_error_page(page)) { + vmx->nested.apic_access_page = page; + hpa = page_to_phys(vmx->nested.apic_access_page); + vmcs_write64(APIC_ACCESS_ADDR, hpa); + } else { + vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, + SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES); + } + } + + if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) { + if (vmx->nested.virtual_apic_page) { /* shouldn't happen */ + kvm_release_page_dirty(vmx->nested.virtual_apic_page); + vmx->nested.virtual_apic_page = NULL; + } + page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr); + + /* + * If translation failed, VM entry will fail because + * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull. + * Failing the vm entry is _not_ what the processor + * does but it's basically the only possibility we + * have. We could still enter the guest if CR8 load + * exits are enabled, CR8 store exits are enabled, and + * virtualize APIC access is disabled; in this case + * the processor would never use the TPR shadow and we + * could simply clear the bit from the execution + * control. But such a configuration is useless, so + * let's keep the code simple. + */ + if (!is_error_page(page)) { + vmx->nested.virtual_apic_page = page; + hpa = page_to_phys(vmx->nested.virtual_apic_page); + vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa); + } + } + + if (nested_cpu_has_posted_intr(vmcs12)) { + if (vmx->nested.pi_desc_page) { /* shouldn't happen */ + kunmap(vmx->nested.pi_desc_page); + kvm_release_page_dirty(vmx->nested.pi_desc_page); + vmx->nested.pi_desc_page = NULL; + vmx->nested.pi_desc = NULL; + vmcs_write64(POSTED_INTR_DESC_ADDR, -1ull); + } + page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr); + if (is_error_page(page)) + return; + vmx->nested.pi_desc_page = page; + vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page); + vmx->nested.pi_desc = + (struct pi_desc *)((void *)vmx->nested.pi_desc + + (unsigned long)(vmcs12->posted_intr_desc_addr & + (PAGE_SIZE - 1))); + vmcs_write64(POSTED_INTR_DESC_ADDR, + page_to_phys(vmx->nested.pi_desc_page) + + (unsigned long)(vmcs12->posted_intr_desc_addr & + (PAGE_SIZE - 1))); + } + if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12)) + vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, + CPU_BASED_USE_MSR_BITMAPS); + else + vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, + CPU_BASED_USE_MSR_BITMAPS); +} + +/* + * Intel's VMX Instruction Reference specifies a common set of prerequisites + * for running VMX instructions (except VMXON, whose prerequisites are + * slightly different). It also specifies what exception to inject otherwise. + * Note that many of these exceptions have priority over VM exits, so they + * don't have to be checked again here. + */ +static int nested_vmx_check_permission(struct kvm_vcpu *vcpu) +{ + if (!to_vmx(vcpu)->nested.vmxon) { + kvm_queue_exception(vcpu, UD_VECTOR); + return 0; + } + + if (vmx_get_cpl(vcpu)) { + kvm_inject_gp(vcpu, 0); + return 0; + } + + return 1; +} + +static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu) +{ + u8 rvi = vmx_get_rvi(); + u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI); + + return ((rvi & 0xf0) > (vppr & 0xf0)); +} + +static void load_vmcs12_host_state(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12); + +/* + * If from_vmentry is false, this is being called from state restore (either RSM + * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume. ++ * ++ * Returns: ++ * 0 - success, i.e. proceed with actual VMEnter ++ * 1 - consistency check VMExit ++ * -1 - consistency check VMFail + */ +int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + bool evaluate_pending_interrupts; + u32 exit_reason = EXIT_REASON_INVALID_STATE; + u32 exit_qual; + + evaluate_pending_interrupts = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) & + (CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING); + if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu)) + evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu); + + if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) + vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL); + if (kvm_mpx_supported() && + !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)) + vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS); + + vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02); + + prepare_vmcs02_early(vmx, vmcs12); + + if (from_vmentry) { + nested_get_vmcs12_pages(vcpu); + + if (nested_vmx_check_vmentry_hw(vcpu)) { + vmx_switch_vmcs(vcpu, &vmx->vmcs01); + return -1; + } + + if (nested_vmx_check_vmentry_postreqs(vcpu, vmcs12, &exit_qual)) + goto vmentry_fail_vmexit; + } + + enter_guest_mode(vcpu); + if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING) + vcpu->arch.tsc_offset += vmcs12->tsc_offset; + + if (prepare_vmcs02(vcpu, vmcs12, &exit_qual)) + goto vmentry_fail_vmexit_guest_mode; + + if (from_vmentry) { + exit_reason = EXIT_REASON_MSR_LOAD_FAIL; + exit_qual = nested_vmx_load_msr(vcpu, + vmcs12->vm_entry_msr_load_addr, + vmcs12->vm_entry_msr_load_count); + if (exit_qual) + goto vmentry_fail_vmexit_guest_mode; + } else { + /* + * The MMU is not initialized to point at the right entities yet and + * "get pages" would need to read data from the guest (i.e. we will + * need to perform gpa to hpa translation). Request a call + * to nested_get_vmcs12_pages before the next VM-entry. The MSRs + * have already been set at vmentry time and should not be reset. + */ + kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu); + } + + /* + * If L1 had a pending IRQ/NMI until it executed + * VMLAUNCH/VMRESUME which wasn't delivered because it was + * disallowed (e.g. interrupts disabled), L0 needs to + * evaluate if this pending event should cause an exit from L2 + * to L1 or delivered directly to L2 (e.g. In case L1 don't + * intercept EXTERNAL_INTERRUPT). + * + * Usually this would be handled by the processor noticing an + * IRQ/NMI window request, or checking RVI during evaluation of + * pending virtual interrupts. However, this setting was done + * on VMCS01 and now VMCS02 is active instead. Thus, we force L0 + * to perform pending event evaluation by requesting a KVM_REQ_EVENT. + */ + if (unlikely(evaluate_pending_interrupts)) + kvm_make_request(KVM_REQ_EVENT, vcpu); + + /* + * Note no nested_vmx_succeed or nested_vmx_fail here. At this point + * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet + * returned as far as L1 is concerned. It will only return (and set + * the success flag) when L2 exits (see nested_vmx_vmexit()). + */ + return 0; + + /* + * A failed consistency check that leads to a VMExit during L1's + * VMEnter to L2 is a variation of a normal VMexit, as explained in + * 26.7 "VM-entry failures during or after loading guest state". + */ +vmentry_fail_vmexit_guest_mode: + if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING) + vcpu->arch.tsc_offset -= vmcs12->tsc_offset; + leave_guest_mode(vcpu); + +vmentry_fail_vmexit: + vmx_switch_vmcs(vcpu, &vmx->vmcs01); + + if (!from_vmentry) + return 1; + + load_vmcs12_host_state(vcpu, vmcs12); + vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY; + vmcs12->exit_qualification = exit_qual; + if (enable_shadow_vmcs || vmx->nested.hv_evmcs) + vmx->nested.need_vmcs12_sync = true; + return 1; +} + +/* + * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1 + * for running an L2 nested guest. + */ +static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch) +{ + struct vmcs12 *vmcs12; + struct vcpu_vmx *vmx = to_vmx(vcpu); + u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu); + int ret; + + if (!nested_vmx_check_permission(vcpu)) + return 1; + + if (!nested_vmx_handle_enlightened_vmptrld(vcpu, true)) + return 1; + + if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull) + return nested_vmx_failInvalid(vcpu); + + vmcs12 = get_vmcs12(vcpu); + + /* + * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact + * that there *is* a valid VMCS pointer, RFLAGS.CF is set + * rather than RFLAGS.ZF, and no error number is stored to the + * VM-instruction error field. + */ + if (vmcs12->hdr.shadow_vmcs) + return nested_vmx_failInvalid(vcpu); + + if (vmx->nested.hv_evmcs) { + copy_enlightened_to_vmcs12(vmx); + /* Enlightened VMCS doesn't have launch state */ + vmcs12->launch_state = !launch; + } else if (enable_shadow_vmcs) { + copy_shadow_to_vmcs12(vmx); + } + + /* + * The nested entry process starts with enforcing various prerequisites + * on vmcs12 as required by the Intel SDM, and act appropriately when + * they fail: As the SDM explains, some conditions should cause the + * instruction to fail, while others will cause the instruction to seem + * to succeed, but return an EXIT_REASON_INVALID_STATE. + * To speed up the normal (success) code path, we should avoid checking + * for misconfigurations which will anyway be caught by the processor + * when using the merged vmcs02. + */ + if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) + return nested_vmx_failValid(vcpu, + VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS); + + if (vmcs12->launch_state == launch) + return nested_vmx_failValid(vcpu, + launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS + : VMXERR_VMRESUME_NONLAUNCHED_VMCS); + + ret = nested_vmx_check_vmentry_prereqs(vcpu, vmcs12); + if (ret) + return nested_vmx_failValid(vcpu, ret); + + /* + * We're finally done with prerequisite checking, and can start with + * the nested entry. + */ + vmx->nested.nested_run_pending = 1; + ret = nested_vmx_enter_non_root_mode(vcpu, true); + vmx->nested.nested_run_pending = !ret; + if (ret > 0) + return 1; + else if (ret) + return nested_vmx_failValid(vcpu, + VMXERR_ENTRY_INVALID_CONTROL_FIELD); + + /* Hide L1D cache contents from the nested guest. */ + vmx->vcpu.arch.l1tf_flush_l1d = true; + + /* + * Must happen outside of nested_vmx_enter_non_root_mode() as it will + * also be used as part of restoring nVMX state for + * snapshot restore (migration). + * + * In this flow, it is assumed that vmcs12 cache was + * trasferred as part of captured nVMX state and should + * therefore not be read from guest memory (which may not + * exist on destination host yet). + */ + nested_cache_shadow_vmcs12(vcpu, vmcs12); + + /* + * If we're entering a halted L2 vcpu and the L2 vcpu won't be + * awakened by event injection or by an NMI-window VM-exit or + * by an interrupt-window VM-exit, halt the vcpu. + */ + if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) && + !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) && + !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) && + !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) && + (vmcs12->guest_rflags & X86_EFLAGS_IF))) { + vmx->nested.nested_run_pending = 0; + return kvm_vcpu_halt(vcpu); + } + return 1; +} + +/* + * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date + * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK). + * This function returns the new value we should put in vmcs12.guest_cr0. + * It's not enough to just return the vmcs02 GUEST_CR0. Rather, + * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now + * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0 + * didn't trap the bit, because if L1 did, so would L0). + * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have + * been modified by L2, and L1 knows it. So just leave the old value of + * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0 + * isn't relevant, because if L0 traps this bit it can set it to anything. + * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have + * changed these bits, and therefore they need to be updated, but L0 + * didn't necessarily allow them to be changed in GUEST_CR0 - and rather + * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there. + */ +static inline unsigned long +vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) +{ + return + /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) | + /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) | + /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask | + vcpu->arch.cr0_guest_owned_bits)); +} + +static inline unsigned long +vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) +{ + return + /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) | + /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) | + /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask | + vcpu->arch.cr4_guest_owned_bits)); +} + +static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + u32 idt_vectoring; + unsigned int nr; + + if (vcpu->arch.exception.injected) { + nr = vcpu->arch.exception.nr; + idt_vectoring = nr | VECTORING_INFO_VALID_MASK; + + if (kvm_exception_is_soft(nr)) { + vmcs12->vm_exit_instruction_len = + vcpu->arch.event_exit_inst_len; + idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION; + } else + idt_vectoring |= INTR_TYPE_HARD_EXCEPTION; + + if (vcpu->arch.exception.has_error_code) { + idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK; + vmcs12->idt_vectoring_error_code = + vcpu->arch.exception.error_code; + } + + vmcs12->idt_vectoring_info_field = idt_vectoring; + } else if (vcpu->arch.nmi_injected) { + vmcs12->idt_vectoring_info_field = + INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR; + } else if (vcpu->arch.interrupt.injected) { + nr = vcpu->arch.interrupt.nr; + idt_vectoring = nr | VECTORING_INFO_VALID_MASK; + + if (vcpu->arch.interrupt.soft) { + idt_vectoring |= INTR_TYPE_SOFT_INTR; + vmcs12->vm_entry_instruction_len = + vcpu->arch.event_exit_inst_len; + } else + idt_vectoring |= INTR_TYPE_EXT_INTR; + + vmcs12->idt_vectoring_info_field = idt_vectoring; + } +} + + +static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu) +{ + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + gfn_t gfn; + + /* + * Don't need to mark the APIC access page dirty; it is never + * written to by the CPU during APIC virtualization. + */ + + if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) { + gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT; + kvm_vcpu_mark_page_dirty(vcpu, gfn); + } + + if (nested_cpu_has_posted_intr(vmcs12)) { + gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT; + kvm_vcpu_mark_page_dirty(vcpu, gfn); + } +} + +static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + int max_irr; + void *vapic_page; + u16 status; + + if (!vmx->nested.pi_desc || !vmx->nested.pi_pending) + return; + + vmx->nested.pi_pending = false; + if (!pi_test_and_clear_on(vmx->nested.pi_desc)) + return; + + max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256); + if (max_irr != 256) { + vapic_page = kmap(vmx->nested.virtual_apic_page); + __kvm_apic_update_irr(vmx->nested.pi_desc->pir, + vapic_page, &max_irr); + kunmap(vmx->nested.virtual_apic_page); + + status = vmcs_read16(GUEST_INTR_STATUS); + if ((u8)max_irr > ((u8)status & 0xff)) { + status &= ~0xff; + status |= (u8)max_irr; + vmcs_write16(GUEST_INTR_STATUS, status); + } + } + + nested_mark_vmcs12_pages_dirty(vcpu); +} + +static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu, + unsigned long exit_qual) +{ + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + unsigned int nr = vcpu->arch.exception.nr; + u32 intr_info = nr | INTR_INFO_VALID_MASK; + + if (vcpu->arch.exception.has_error_code) { + vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code; + intr_info |= INTR_INFO_DELIVER_CODE_MASK; + } + + if (kvm_exception_is_soft(nr)) + intr_info |= INTR_TYPE_SOFT_EXCEPTION; + else + intr_info |= INTR_TYPE_HARD_EXCEPTION; + + if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) && + vmx_get_nmi_mask(vcpu)) + intr_info |= INTR_INFO_UNBLOCK_NMI; + + nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual); +} + +static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + unsigned long exit_qual; + bool block_nested_events = + vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu); + + if (vcpu->arch.exception.pending && + nested_vmx_check_exception(vcpu, &exit_qual)) { + if (block_nested_events) + return -EBUSY; + nested_vmx_inject_exception_vmexit(vcpu, exit_qual); + return 0; + } + + if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) && + vmx->nested.preemption_timer_expired) { + if (block_nested_events) + return -EBUSY; + nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0); + return 0; + } + + if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) { + if (block_nested_events) + return -EBUSY; + nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, + NMI_VECTOR | INTR_TYPE_NMI_INTR | + INTR_INFO_VALID_MASK, 0); + /* + * The NMI-triggered VM exit counts as injection: + * clear this one and block further NMIs. + */ + vcpu->arch.nmi_pending = 0; + vmx_set_nmi_mask(vcpu, true); + return 0; + } + + if ((kvm_cpu_has_interrupt(vcpu) || external_intr) && + nested_exit_on_intr(vcpu)) { + if (block_nested_events) + return -EBUSY; + nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0); + return 0; + } + + vmx_complete_nested_posted_interrupt(vcpu); + return 0; +} + +static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu) +{ + ktime_t remaining = + hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer); + u64 value; + + if (ktime_to_ns(remaining) <= 0) + return 0; + + value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz; + do_div(value, 1000000); + return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE; +} + +/* + * Update the guest state fields of vmcs12 to reflect changes that + * occurred while L2 was running. (The "IA-32e mode guest" bit of the + * VM-entry controls is also updated, since this is really a guest + * state bit.) + */ +static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) +{ + vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12); + vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12); + + vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); + vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP); + vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS); + + vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR); + vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR); + vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR); + vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR); + vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR); + vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR); + vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR); + vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR); + vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT); + vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT); + vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT); + vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT); + vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT); + vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT); + vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT); + vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT); + vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT); + vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT); + vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES); + vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES); + vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES); + vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES); + vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES); + vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES); + vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES); + vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES); + vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE); + vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE); + vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE); + vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE); + vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE); + vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE); + vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE); + vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE); + vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE); + vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE); + + vmcs12->guest_interruptibility_info = + vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); + vmcs12->guest_pending_dbg_exceptions = + vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS); + if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) + vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT; + else + vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE; + + if (nested_cpu_has_preemption_timer(vmcs12)) { + if (vmcs12->vm_exit_controls & + VM_EXIT_SAVE_VMX_PREEMPTION_TIMER) + vmcs12->vmx_preemption_timer_value = + vmx_get_preemption_timer_value(vcpu); + hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer); + } + + /* + * In some cases (usually, nested EPT), L2 is allowed to change its + * own CR3 without exiting. If it has changed it, we must keep it. + * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined + * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12. + * + * Additionally, restore L2's PDPTR to vmcs12. + */ + if (enable_ept) { + vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3); + vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0); + vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1); + vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2); + vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3); + } + + vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS); + + if (nested_cpu_has_vid(vmcs12)) + vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS); + + vmcs12->vm_entry_controls = + (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) | + (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE); + + if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) { + kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7); + vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL); + } + + /* TODO: These cannot have changed unless we have MSR bitmaps and + * the relevant bit asks not to trap the change */ + if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) + vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT); + if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER) + vmcs12->guest_ia32_efer = vcpu->arch.efer; + vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS); + vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP); + vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP); + if (kvm_mpx_supported()) + vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS); +} + +/* + * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits + * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12), + * and this function updates it to reflect the changes to the guest state while + * L2 was running (and perhaps made some exits which were handled directly by L0 + * without going back to L1), and to reflect the exit reason. + * Note that we do not have to copy here all VMCS fields, just those that + * could have changed by the L2 guest or the exit - i.e., the guest-state and + * exit-information fields only. Other fields are modified by L1 with VMWRITE, + * which already writes to vmcs12 directly. + */ +static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, + u32 exit_reason, u32 exit_intr_info, + unsigned long exit_qualification) +{ + /* update guest state fields: */ + sync_vmcs12(vcpu, vmcs12); + + /* update exit information fields: */ + + vmcs12->vm_exit_reason = exit_reason; + vmcs12->exit_qualification = exit_qualification; + vmcs12->vm_exit_intr_info = exit_intr_info; + + vmcs12->idt_vectoring_info_field = 0; + vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); + vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); + + if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) { + vmcs12->launch_state = 1; + + /* vm_entry_intr_info_field is cleared on exit. Emulate this + * instead of reading the real value. */ + vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK; + + /* + * Transfer the event that L0 or L1 may wanted to inject into + * L2 to IDT_VECTORING_INFO_FIELD. + */ + vmcs12_save_pending_event(vcpu, vmcs12); + + /* + * According to spec, there's no need to store the guest's + * MSRs if the exit is due to a VM-entry failure that occurs + * during or after loading the guest state. Since this exit + * does not fall in that category, we need to save the MSRs. + */ + if (nested_vmx_store_msr(vcpu, + vmcs12->vm_exit_msr_store_addr, + vmcs12->vm_exit_msr_store_count)) + nested_vmx_abort(vcpu, + VMX_ABORT_SAVE_GUEST_MSR_FAIL); + } + + /* + * Drop what we picked up for L2 via vmx_complete_interrupts. It is + * preserved above and would only end up incorrectly in L1. + */ + vcpu->arch.nmi_injected = false; + kvm_clear_exception_queue(vcpu); + kvm_clear_interrupt_queue(vcpu); +} + +/* + * A part of what we need to when the nested L2 guest exits and we want to + * run its L1 parent, is to reset L1's guest state to the host state specified + * in vmcs12. + * This function is to be called not only on normal nested exit, but also on + * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry + * Failures During or After Loading Guest State"). + * This function should be called when the active VMCS is L1's (vmcs01). + */ +static void load_vmcs12_host_state(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + struct kvm_segment seg; + u32 entry_failure_code; + + if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) + vcpu->arch.efer = vmcs12->host_ia32_efer; + else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) + vcpu->arch.efer |= (EFER_LMA | EFER_LME); + else + vcpu->arch.efer &= ~(EFER_LMA | EFER_LME); + vmx_set_efer(vcpu, vcpu->arch.efer); + + kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp); + kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip); + vmx_set_rflags(vcpu, X86_EFLAGS_FIXED); + vmx_set_interrupt_shadow(vcpu, 0); + + /* + * Note that calling vmx_set_cr0 is important, even if cr0 hasn't + * actually changed, because vmx_set_cr0 refers to efer set above. + * + * CR0_GUEST_HOST_MASK is already set in the original vmcs01 + * (KVM doesn't change it); + */ + vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS; + vmx_set_cr0(vcpu, vmcs12->host_cr0); + + /* Same as above - no reason to call set_cr4_guest_host_mask(). */ + vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK); + vmx_set_cr4(vcpu, vmcs12->host_cr4); + + nested_ept_uninit_mmu_context(vcpu); + + /* + * Only PDPTE load can fail as the value of cr3 was checked on entry and + * couldn't have changed. + */ + if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code)) + nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL); + + if (!enable_ept) + vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault; + + /* + * If vmcs01 doesn't use VPID, CPU flushes TLB on every + * VMEntry/VMExit. Thus, no need to flush TLB. + * + * If vmcs12 doesn't use VPID, L1 expects TLB to be + * flushed on every VMEntry/VMExit. + * + * Otherwise, we can preserve TLB entries as long as we are + * able to tag L1 TLB entries differently than L2 TLB entries. + * + * If vmcs12 uses EPT, we need to execute this flush on EPTP01 + * and therefore we request the TLB flush to happen only after VMCS EPTP + * has been set by KVM_REQ_LOAD_CR3. + */ + if (enable_vpid && + (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) { + kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); + } + + vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs); + vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp); + vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip); + vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base); + vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base); + vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF); + vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF); + + /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */ + if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS) + vmcs_write64(GUEST_BNDCFGS, 0); + + if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) { + vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat); + vcpu->arch.pat = vmcs12->host_ia32_pat; + } + if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) + vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL, + vmcs12->host_ia32_perf_global_ctrl); + + /* Set L1 segment info according to Intel SDM + 27.5.2 Loading Host Segment and Descriptor-Table Registers */ + seg = (struct kvm_segment) { + .base = 0, + .limit = 0xFFFFFFFF, + .selector = vmcs12->host_cs_selector, + .type = 11, + .present = 1, + .s = 1, + .g = 1 + }; + if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) + seg.l = 1; + else + seg.db = 1; + vmx_set_segment(vcpu, &seg, VCPU_SREG_CS); + seg = (struct kvm_segment) { + .base = 0, + .limit = 0xFFFFFFFF, + .type = 3, + .present = 1, + .s = 1, + .db = 1, + .g = 1 + }; + seg.selector = vmcs12->host_ds_selector; + vmx_set_segment(vcpu, &seg, VCPU_SREG_DS); + seg.selector = vmcs12->host_es_selector; + vmx_set_segment(vcpu, &seg, VCPU_SREG_ES); + seg.selector = vmcs12->host_ss_selector; + vmx_set_segment(vcpu, &seg, VCPU_SREG_SS); + seg.selector = vmcs12->host_fs_selector; + seg.base = vmcs12->host_fs_base; + vmx_set_segment(vcpu, &seg, VCPU_SREG_FS); + seg.selector = vmcs12->host_gs_selector; + seg.base = vmcs12->host_gs_base; + vmx_set_segment(vcpu, &seg, VCPU_SREG_GS); + seg = (struct kvm_segment) { + .base = vmcs12->host_tr_base, + .limit = 0x67, + .selector = vmcs12->host_tr_selector, + .type = 11, + .present = 1 + }; + vmx_set_segment(vcpu, &seg, VCPU_SREG_TR); + + kvm_set_dr(vcpu, 7, 0x400); + vmcs_write64(GUEST_IA32_DEBUGCTL, 0); + + if (cpu_has_vmx_msr_bitmap()) + vmx_update_msr_bitmap(vcpu); + + if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr, + vmcs12->vm_exit_msr_load_count)) + nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL); +} + +static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx) +{ + struct shared_msr_entry *efer_msr; + unsigned int i; + + if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER) + return vmcs_read64(GUEST_IA32_EFER); + + if (cpu_has_load_ia32_efer()) + return host_efer; + + for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) { + if (vmx->msr_autoload.guest.val[i].index == MSR_EFER) + return vmx->msr_autoload.guest.val[i].value; + } + + efer_msr = find_msr_entry(vmx, MSR_EFER); + if (efer_msr) + return efer_msr->data; + + return host_efer; +} + +static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu) +{ + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct vmx_msr_entry g, h; + struct msr_data msr; + gpa_t gpa; + u32 i, j; + + vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT); + + if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) { + /* + * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set + * as vmcs01.GUEST_DR7 contains a userspace defined value + * and vcpu->arch.dr7 is not squirreled away before the + * nested VMENTER (not worth adding a variable in nested_vmx). + */ + if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) + kvm_set_dr(vcpu, 7, DR7_FIXED_1); + else + WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7))); + } + + /* + * Note that calling vmx_set_{efer,cr0,cr4} is important as they + * handle a variety of side effects to KVM's software model. + */ + vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx)); + + vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS; + vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW)); + + vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK); + vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW)); + + nested_ept_uninit_mmu_context(vcpu); + vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); + __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); + + /* + * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs + * from vmcs01 (if necessary). The PDPTRs are not loaded on + * VMFail, like everything else we just need to ensure our + * software model is up-to-date. + */ + ept_save_pdptrs(vcpu); + + kvm_mmu_reset_context(vcpu); + + if (cpu_has_vmx_msr_bitmap()) + vmx_update_msr_bitmap(vcpu); + + /* + * This nasty bit of open coding is a compromise between blindly + * loading L1's MSRs using the exit load lists (incorrect emulation + * of VMFail), leaving the nested VM's MSRs in the software model + * (incorrect behavior) and snapshotting the modified MSRs (too + * expensive since the lists are unbound by hardware). For each + * MSR that was (prematurely) loaded from the nested VMEntry load + * list, reload it from the exit load list if it exists and differs + * from the guest value. The intent is to stuff host state as + * silently as possible, not to fully process the exit load list. + */ + msr.host_initiated = false; + for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) { + gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g)); + if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) { + pr_debug_ratelimited( + "%s read MSR index failed (%u, 0x%08llx)\n", + __func__, i, gpa); + goto vmabort; + } + + for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) { + gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h)); + if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) { + pr_debug_ratelimited( + "%s read MSR failed (%u, 0x%08llx)\n", + __func__, j, gpa); + goto vmabort; + } + if (h.index != g.index) + continue; + if (h.value == g.value) + break; + + if (nested_vmx_load_msr_check(vcpu, &h)) { + pr_debug_ratelimited( + "%s check failed (%u, 0x%x, 0x%x)\n", + __func__, j, h.index, h.reserved); + goto vmabort; + } + + msr.index = h.index; + msr.data = h.value; + if (kvm_set_msr(vcpu, &msr)) { + pr_debug_ratelimited( + "%s WRMSR failed (%u, 0x%x, 0x%llx)\n", + __func__, j, h.index, h.value); + goto vmabort; + } + } + } + + return; + +vmabort: + nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL); +} + +/* + * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1 + * and modify vmcs12 to make it see what it would expect to see there if + * L2 was its real guest. Must only be called when in L2 (is_guest_mode()) + */ +void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason, + u32 exit_intr_info, unsigned long exit_qualification) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + + /* trying to cancel vmlaunch/vmresume is a bug */ + WARN_ON_ONCE(vmx->nested.nested_run_pending); + + leave_guest_mode(vcpu); + + if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING) + vcpu->arch.tsc_offset -= vmcs12->tsc_offset; + + if (likely(!vmx->fail)) { + if (exit_reason == -1) + sync_vmcs12(vcpu, vmcs12); + else + prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info, + exit_qualification); + + /* + * Must happen outside of sync_vmcs12() as it will + * also be used to capture vmcs12 cache as part of + * capturing nVMX state for snapshot (migration). + * + * Otherwise, this flush will dirty guest memory at a + * point it is already assumed by user-space to be + * immutable. + */ + nested_flush_cached_shadow_vmcs12(vcpu, vmcs12); + } else { + /* + * The only expected VM-instruction error is "VM entry with + * invalid control field(s)." Anything else indicates a + * problem with L0. And we should never get here with a + * VMFail of any type if early consistency checks are enabled. + */ + WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) != + VMXERR_ENTRY_INVALID_CONTROL_FIELD); + WARN_ON_ONCE(nested_early_check); + } + + vmx_switch_vmcs(vcpu, &vmx->vmcs01); + + /* Update any VMCS fields that might have changed while L2 ran */ + vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr); + vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr); + vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); + + if (kvm_has_tsc_control) + decache_tsc_multiplier(vmx); + + if (vmx->nested.change_vmcs01_virtual_apic_mode) { + vmx->nested.change_vmcs01_virtual_apic_mode = false; + vmx_set_virtual_apic_mode(vcpu); + } else if (!nested_cpu_has_ept(vmcs12) && + nested_cpu_has2(vmcs12, + SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) { + vmx_flush_tlb(vcpu, true); + } + + /* This is needed for same reason as it was needed in prepare_vmcs02 */ + vmx->host_rsp = 0; + + /* Unpin physical memory we referred to in vmcs02 */ + if (vmx->nested.apic_access_page) { + kvm_release_page_dirty(vmx->nested.apic_access_page); + vmx->nested.apic_access_page = NULL; + } + if (vmx->nested.virtual_apic_page) { + kvm_release_page_dirty(vmx->nested.virtual_apic_page); + vmx->nested.virtual_apic_page = NULL; + } + if (vmx->nested.pi_desc_page) { + kunmap(vmx->nested.pi_desc_page); + kvm_release_page_dirty(vmx->nested.pi_desc_page); + vmx->nested.pi_desc_page = NULL; + vmx->nested.pi_desc = NULL; + } + + /* + * We are now running in L2, mmu_notifier will force to reload the + * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1. + */ + kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); + + if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs)) + vmx->nested.need_vmcs12_sync = true; + + /* in case we halted in L2 */ + vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; + + if (likely(!vmx->fail)) { + /* + * TODO: SDM says that with acknowledge interrupt on + * exit, bit 31 of the VM-exit interrupt information + * (valid interrupt) is always set to 1 on + * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't + * need kvm_cpu_has_interrupt(). See the commit + * message for details. + */ + if (nested_exit_intr_ack_set(vcpu) && + exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT && + kvm_cpu_has_interrupt(vcpu)) { + int irq = kvm_cpu_get_interrupt(vcpu); + WARN_ON(irq < 0); + vmcs12->vm_exit_intr_info = irq | + INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR; + } + + if (exit_reason != -1) + trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason, + vmcs12->exit_qualification, + vmcs12->idt_vectoring_info_field, + vmcs12->vm_exit_intr_info, + vmcs12->vm_exit_intr_error_code, + KVM_ISA_VMX); + + load_vmcs12_host_state(vcpu, vmcs12); + + return; + } + + /* + * After an early L2 VM-entry failure, we're now back + * in L1 which thinks it just finished a VMLAUNCH or + * VMRESUME instruction, so we need to set the failure + * flag and the VM-instruction error field of the VMCS + * accordingly, and skip the emulated instruction. + */ + (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); + + /* + * Restore L1's host state to KVM's software model. We're here + * because a consistency check was caught by hardware, which + * means some amount of guest state has been propagated to KVM's + * model and needs to be unwound to the host's state. + */ + nested_vmx_restore_host_state(vcpu); + + vmx->fail = 0; +} + +/* + * Decode the memory-address operand of a vmx instruction, as recorded on an + * exit caused by such an instruction (run by a guest hypervisor). + * On success, returns 0. When the operand is invalid, returns 1 and throws + * #UD or #GP. + */ +int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification, + u32 vmx_instruction_info, bool wr, gva_t *ret) +{ + gva_t off; + bool exn; + struct kvm_segment s; + + /* + * According to Vol. 3B, "Information for VM Exits Due to Instruction + * Execution", on an exit, vmx_instruction_info holds most of the + * addressing components of the operand. Only the displacement part + * is put in exit_qualification (see 3B, "Basic VM-Exit Information"). + * For how an actual address is calculated from all these components, + * refer to Vol. 1, "Operand Addressing". + */ + int scaling = vmx_instruction_info & 3; + int addr_size = (vmx_instruction_info >> 7) & 7; + bool is_reg = vmx_instruction_info & (1u << 10); + int seg_reg = (vmx_instruction_info >> 15) & 7; + int index_reg = (vmx_instruction_info >> 18) & 0xf; + bool index_is_valid = !(vmx_instruction_info & (1u << 22)); + int base_reg = (vmx_instruction_info >> 23) & 0xf; + bool base_is_valid = !(vmx_instruction_info & (1u << 27)); + + if (is_reg) { + kvm_queue_exception(vcpu, UD_VECTOR); + return 1; + } + + /* Addr = segment_base + offset */ + /* offset = base + [index * scale] + displacement */ + off = exit_qualification; /* holds the displacement */ + if (base_is_valid) + off += kvm_register_read(vcpu, base_reg); + if (index_is_valid) + off += kvm_register_read(vcpu, index_reg)<<scaling; + vmx_get_segment(vcpu, &s, seg_reg); + *ret = s.base + off; + + if (addr_size == 1) /* 32 bit */ + *ret &= 0xffffffff; + + /* Checks for #GP/#SS exceptions. */ + exn = false; + if (is_long_mode(vcpu)) { + /* Long mode: #GP(0)/#SS(0) if the memory address is in a + * non-canonical form. This is the only check on the memory + * destination for long mode! + */ + exn = is_noncanonical_address(*ret, vcpu); + } else if (is_protmode(vcpu)) { + /* Protected mode: apply checks for segment validity in the + * following order: + * - segment type check (#GP(0) may be thrown) + * - usability check (#GP(0)/#SS(0)) + * - limit check (#GP(0)/#SS(0)) + */ + if (wr) + /* #GP(0) if the destination operand is located in a + * read-only data segment or any code segment. + */ + exn = ((s.type & 0xa) == 0 || (s.type & 8)); + else + /* #GP(0) if the source operand is located in an + * execute-only code segment + */ + exn = ((s.type & 0xa) == 8); + if (exn) { + kvm_queue_exception_e(vcpu, GP_VECTOR, 0); + return 1; + } + /* Protected mode: #GP(0)/#SS(0) if the segment is unusable. + */ + exn = (s.unusable != 0); + /* Protected mode: #GP(0)/#SS(0) if the memory + * operand is outside the segment limit. + */ + exn = exn || (off + sizeof(u64) > s.limit); + } + if (exn) { + kvm_queue_exception_e(vcpu, + seg_reg == VCPU_SREG_SS ? + SS_VECTOR : GP_VECTOR, + 0); + return 1; + } + + return 0; +} + +static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer) +{ + gva_t gva; + struct x86_exception e; + + if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), + vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva)) + return 1; + + if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) { + kvm_inject_page_fault(vcpu, &e); + return 1; + } + + return 0; +} + +/* + * Allocate a shadow VMCS and associate it with the currently loaded + * VMCS, unless such a shadow VMCS already exists. The newly allocated + * VMCS is also VMCLEARed, so that it is ready for use. + */ +static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs; + + /* + * We should allocate a shadow vmcs for vmcs01 only when L1 + * executes VMXON and free it when L1 executes VMXOFF. + * As it is invalid to execute VMXON twice, we shouldn't reach + * here when vmcs01 already have an allocated shadow vmcs. + */ + WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs); + + if (!loaded_vmcs->shadow_vmcs) { + loaded_vmcs->shadow_vmcs = alloc_vmcs(true); + if (loaded_vmcs->shadow_vmcs) + vmcs_clear(loaded_vmcs->shadow_vmcs); + } + return loaded_vmcs->shadow_vmcs; +} + +static int enter_vmx_operation(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + int r; + + r = alloc_loaded_vmcs(&vmx->nested.vmcs02); + if (r < 0) + goto out_vmcs02; + + vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL); + if (!vmx->nested.cached_vmcs12) + goto out_cached_vmcs12; + + vmx->nested.cached_shadow_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL); + if (!vmx->nested.cached_shadow_vmcs12) + goto out_cached_shadow_vmcs12; + + if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu)) + goto out_shadow_vmcs; + + hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC, + HRTIMER_MODE_REL_PINNED); + vmx->nested.preemption_timer.function = vmx_preemption_timer_fn; + + vmx->nested.vpid02 = allocate_vpid(); + + vmx->nested.vmcs02_initialized = false; + vmx->nested.vmxon = true; + + if (pt_mode == PT_MODE_HOST_GUEST) { + vmx->pt_desc.guest.ctl = 0; + pt_update_intercept_for_msr(vmx); + } + + return 0; + +out_shadow_vmcs: + kfree(vmx->nested.cached_shadow_vmcs12); + +out_cached_shadow_vmcs12: + kfree(vmx->nested.cached_vmcs12); + +out_cached_vmcs12: + free_loaded_vmcs(&vmx->nested.vmcs02); + +out_vmcs02: + return -ENOMEM; +} + +/* + * Emulate the VMXON instruction. + * Currently, we just remember that VMX is active, and do not save or even + * inspect the argument to VMXON (the so-called "VMXON pointer") because we + * do not currently need to store anything in that guest-allocated memory + * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their + * argument is different from the VMXON pointer (which the spec says they do). + */ +static int handle_vmon(struct kvm_vcpu *vcpu) +{ + int ret; + gpa_t vmptr; + struct page *page; + struct vcpu_vmx *vmx = to_vmx(vcpu); + const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED + | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; + + /* + * The Intel VMX Instruction Reference lists a bunch of bits that are + * prerequisite to running VMXON, most notably cr4.VMXE must be set to + * 1 (see vmx_set_cr4() for when we allow the guest to set this). + * Otherwise, we should fail with #UD. But most faulting conditions + * have already been checked by hardware, prior to the VM-exit for + * VMXON. We do test guest cr4.VMXE because processor CR4 always has + * that bit set to 1 in non-root mode. + */ + if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) { + kvm_queue_exception(vcpu, UD_VECTOR); + return 1; + } + + /* CPL=0 must be checked manually. */ + if (vmx_get_cpl(vcpu)) { + kvm_inject_gp(vcpu, 0); + return 1; + } + + if (vmx->nested.vmxon) + return nested_vmx_failValid(vcpu, + VMXERR_VMXON_IN_VMX_ROOT_OPERATION); + + if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES) + != VMXON_NEEDED_FEATURES) { + kvm_inject_gp(vcpu, 0); + return 1; + } + + if (nested_vmx_get_vmptr(vcpu, &vmptr)) + return 1; + + /* + * SDM 3: 24.11.5 + * The first 4 bytes of VMXON region contain the supported + * VMCS revision identifier + * + * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case; + * which replaces physical address width with 32 + */ + if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) + return nested_vmx_failInvalid(vcpu); + + page = kvm_vcpu_gpa_to_page(vcpu, vmptr); + if (is_error_page(page)) + return nested_vmx_failInvalid(vcpu); + + if (*(u32 *)kmap(page) != VMCS12_REVISION) { + kunmap(page); + kvm_release_page_clean(page); + return nested_vmx_failInvalid(vcpu); + } + kunmap(page); + kvm_release_page_clean(page); + + vmx->nested.vmxon_ptr = vmptr; + ret = enter_vmx_operation(vcpu); + if (ret) + return ret; + + return nested_vmx_succeed(vcpu); +} + +static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (vmx->nested.current_vmptr == -1ull) + return; + + if (enable_shadow_vmcs) { + /* copy to memory all shadowed fields in case + they were modified */ + copy_shadow_to_vmcs12(vmx); + vmx->nested.need_vmcs12_sync = false; + vmx_disable_shadow_vmcs(vmx); + } + vmx->nested.posted_intr_nv = -1; + + /* Flush VMCS12 to guest memory */ + kvm_vcpu_write_guest_page(vcpu, + vmx->nested.current_vmptr >> PAGE_SHIFT, + vmx->nested.cached_vmcs12, 0, VMCS12_SIZE); + + kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); + + vmx->nested.current_vmptr = -1ull; +} + +/* Emulate the VMXOFF instruction */ +static int handle_vmoff(struct kvm_vcpu *vcpu) +{ + if (!nested_vmx_check_permission(vcpu)) + return 1; + free_nested(vcpu); + return nested_vmx_succeed(vcpu); +} + +/* Emulate the VMCLEAR instruction */ +static int handle_vmclear(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + u32 zero = 0; + gpa_t vmptr; + + if (!nested_vmx_check_permission(vcpu)) + return 1; + + if (nested_vmx_get_vmptr(vcpu, &vmptr)) + return 1; + + if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) + return nested_vmx_failValid(vcpu, + VMXERR_VMCLEAR_INVALID_ADDRESS); + + if (vmptr == vmx->nested.vmxon_ptr) + return nested_vmx_failValid(vcpu, + VMXERR_VMCLEAR_VMXON_POINTER); + + if (vmx->nested.hv_evmcs_page) { + if (vmptr == vmx->nested.hv_evmcs_vmptr) + nested_release_evmcs(vcpu); + } else { + if (vmptr == vmx->nested.current_vmptr) + nested_release_vmcs12(vcpu); + + kvm_vcpu_write_guest(vcpu, + vmptr + offsetof(struct vmcs12, + launch_state), + &zero, sizeof(zero)); + } + + return nested_vmx_succeed(vcpu); +} + +static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch); + +/* Emulate the VMLAUNCH instruction */ +static int handle_vmlaunch(struct kvm_vcpu *vcpu) +{ + return nested_vmx_run(vcpu, true); +} + +/* Emulate the VMRESUME instruction */ +static int handle_vmresume(struct kvm_vcpu *vcpu) +{ + + return nested_vmx_run(vcpu, false); +} + +static int handle_vmread(struct kvm_vcpu *vcpu) +{ + unsigned long field; + u64 field_value; + unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); + gva_t gva = 0; + struct vmcs12 *vmcs12; + + if (!nested_vmx_check_permission(vcpu)) + return 1; + + if (to_vmx(vcpu)->nested.current_vmptr == -1ull) + return nested_vmx_failInvalid(vcpu); + + if (!is_guest_mode(vcpu)) + vmcs12 = get_vmcs12(vcpu); + else { + /* + * When vmcs->vmcs_link_pointer is -1ull, any VMREAD + * to shadowed-field sets the ALU flags for VMfailInvalid. + */ + if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull) + return nested_vmx_failInvalid(vcpu); + vmcs12 = get_shadow_vmcs12(vcpu); + } + + /* Decode instruction info and find the field to read */ + field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf)); + /* Read the field, zero-extended to a u64 field_value */ + if (vmcs12_read_any(vmcs12, field, &field_value) < 0) + return nested_vmx_failValid(vcpu, + VMXERR_UNSUPPORTED_VMCS_COMPONENT); + + /* + * Now copy part of this value to register or memory, as requested. + * Note that the number of bits actually copied is 32 or 64 depending + * on the guest's mode (32 or 64 bit), not on the given field's length. + */ + if (vmx_instruction_info & (1u << 10)) { + kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf), + field_value); + } else { + if (get_vmx_mem_address(vcpu, exit_qualification, + vmx_instruction_info, true, &gva)) + return 1; + /* _system ok, nested_vmx_check_permission has verified cpl=0 */ + kvm_write_guest_virt_system(vcpu, gva, &field_value, + (is_long_mode(vcpu) ? 8 : 4), NULL); + } + + return nested_vmx_succeed(vcpu); +} + + +static int handle_vmwrite(struct kvm_vcpu *vcpu) +{ + unsigned long field; + gva_t gva; + struct vcpu_vmx *vmx = to_vmx(vcpu); + unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); + + /* The value to write might be 32 or 64 bits, depending on L1's long + * mode, and eventually we need to write that into a field of several + * possible lengths. The code below first zero-extends the value to 64 + * bit (field_value), and then copies only the appropriate number of + * bits into the vmcs12 field. + */ + u64 field_value = 0; + struct x86_exception e; + struct vmcs12 *vmcs12; + + if (!nested_vmx_check_permission(vcpu)) + return 1; + + if (vmx->nested.current_vmptr == -1ull) + return nested_vmx_failInvalid(vcpu); + + if (vmx_instruction_info & (1u << 10)) + field_value = kvm_register_readl(vcpu, + (((vmx_instruction_info) >> 3) & 0xf)); + else { + if (get_vmx_mem_address(vcpu, exit_qualification, + vmx_instruction_info, false, &gva)) + return 1; + if (kvm_read_guest_virt(vcpu, gva, &field_value, + (is_64_bit_mode(vcpu) ? 8 : 4), &e)) { + kvm_inject_page_fault(vcpu, &e); + return 1; + } + } + + + field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf)); + /* + * If the vCPU supports "VMWRITE to any supported field in the + * VMCS," then the "read-only" fields are actually read/write. + */ + if (vmcs_field_readonly(field) && + !nested_cpu_has_vmwrite_any_field(vcpu)) + return nested_vmx_failValid(vcpu, + VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT); + + if (!is_guest_mode(vcpu)) + vmcs12 = get_vmcs12(vcpu); + else { + /* + * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE + * to shadowed-field sets the ALU flags for VMfailInvalid. + */ + if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull) + return nested_vmx_failInvalid(vcpu); + vmcs12 = get_shadow_vmcs12(vcpu); + } + + if (vmcs12_write_any(vmcs12, field, field_value) < 0) + return nested_vmx_failValid(vcpu, + VMXERR_UNSUPPORTED_VMCS_COMPONENT); + + /* + * Do not track vmcs12 dirty-state if in guest-mode + * as we actually dirty shadow vmcs12 instead of vmcs12. + */ + if (!is_guest_mode(vcpu)) { + switch (field) { +#define SHADOW_FIELD_RW(x) case x: +#include "vmcs_shadow_fields.h" + /* + * The fields that can be updated by L1 without a vmexit are + * always updated in the vmcs02, the others go down the slow + * path of prepare_vmcs02. + */ + break; + default: + vmx->nested.dirty_vmcs12 = true; + break; + } + } + + return nested_vmx_succeed(vcpu); +} + +static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr) +{ + vmx->nested.current_vmptr = vmptr; + if (enable_shadow_vmcs) { + vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL, + SECONDARY_EXEC_SHADOW_VMCS); + vmcs_write64(VMCS_LINK_POINTER, + __pa(vmx->vmcs01.shadow_vmcs)); + vmx->nested.need_vmcs12_sync = true; + } + vmx->nested.dirty_vmcs12 = true; +} + +/* Emulate the VMPTRLD instruction */ +static int handle_vmptrld(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + gpa_t vmptr; + + if (!nested_vmx_check_permission(vcpu)) + return 1; + + if (nested_vmx_get_vmptr(vcpu, &vmptr)) + return 1; + + if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) + return nested_vmx_failValid(vcpu, + VMXERR_VMPTRLD_INVALID_ADDRESS); + + if (vmptr == vmx->nested.vmxon_ptr) + return nested_vmx_failValid(vcpu, + VMXERR_VMPTRLD_VMXON_POINTER); + + /* Forbid normal VMPTRLD if Enlightened version was used */ + if (vmx->nested.hv_evmcs) + return 1; + + if (vmx->nested.current_vmptr != vmptr) { + struct vmcs12 *new_vmcs12; + struct page *page; + + page = kvm_vcpu_gpa_to_page(vcpu, vmptr); + if (is_error_page(page)) { + /* + * Reads from an unbacked page return all 1s, + * which means that the 32 bits located at the + * given physical address won't match the required + * VMCS12_REVISION identifier. + */ + nested_vmx_failValid(vcpu, + VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID); + return kvm_skip_emulated_instruction(vcpu); + } + new_vmcs12 = kmap(page); + if (new_vmcs12->hdr.revision_id != VMCS12_REVISION || + (new_vmcs12->hdr.shadow_vmcs && + !nested_cpu_has_vmx_shadow_vmcs(vcpu))) { + kunmap(page); + kvm_release_page_clean(page); + return nested_vmx_failValid(vcpu, + VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID); + } + + nested_release_vmcs12(vcpu); + + /* + * Load VMCS12 from guest memory since it is not already + * cached. + */ + memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE); + kunmap(page); + kvm_release_page_clean(page); + + set_current_vmptr(vmx, vmptr); + } + + return nested_vmx_succeed(vcpu); +} + +/* Emulate the VMPTRST instruction */ +static int handle_vmptrst(struct kvm_vcpu *vcpu) +{ + unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION); + u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO); + gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr; + struct x86_exception e; + gva_t gva; + + if (!nested_vmx_check_permission(vcpu)) + return 1; + + if (unlikely(to_vmx(vcpu)->nested.hv_evmcs)) + return 1; + + if (get_vmx_mem_address(vcpu, exit_qual, instr_info, true, &gva)) + return 1; + /* *_system ok, nested_vmx_check_permission has verified cpl=0 */ + if (kvm_write_guest_virt_system(vcpu, gva, (void *)¤t_vmptr, + sizeof(gpa_t), &e)) { + kvm_inject_page_fault(vcpu, &e); + return 1; + } + return nested_vmx_succeed(vcpu); +} + +/* Emulate the INVEPT instruction */ +static int handle_invept(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + u32 vmx_instruction_info, types; + unsigned long type; + gva_t gva; + struct x86_exception e; + struct { + u64 eptp, gpa; + } operand; + + if (!(vmx->nested.msrs.secondary_ctls_high & + SECONDARY_EXEC_ENABLE_EPT) || + !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) { + kvm_queue_exception(vcpu, UD_VECTOR); + return 1; + } + + if (!nested_vmx_check_permission(vcpu)) + return 1; + + vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); + type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf); + + types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6; + + if (type >= 32 || !(types & (1 << type))) + return nested_vmx_failValid(vcpu, + VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); + + /* According to the Intel VMX instruction reference, the memory + * operand is read even if it isn't needed (e.g., for type==global) + */ + if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), + vmx_instruction_info, false, &gva)) + return 1; + if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) { + kvm_inject_page_fault(vcpu, &e); + return 1; + } + + switch (type) { + case VMX_EPT_EXTENT_GLOBAL: + /* + * TODO: track mappings and invalidate + * single context requests appropriately + */ + case VMX_EPT_EXTENT_CONTEXT: + kvm_mmu_sync_roots(vcpu); + kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); + break; + default: + BUG_ON(1); + break; + } + + return nested_vmx_succeed(vcpu); +} + +static int handle_invvpid(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + u32 vmx_instruction_info; + unsigned long type, types; + gva_t gva; + struct x86_exception e; + struct { + u64 vpid; + u64 gla; + } operand; + u16 vpid02; + + if (!(vmx->nested.msrs.secondary_ctls_high & + SECONDARY_EXEC_ENABLE_VPID) || + !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) { + kvm_queue_exception(vcpu, UD_VECTOR); + return 1; + } + + if (!nested_vmx_check_permission(vcpu)) + return 1; + + vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); + type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf); + + types = (vmx->nested.msrs.vpid_caps & + VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8; + + if (type >= 32 || !(types & (1 << type))) + return nested_vmx_failValid(vcpu, + VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); + + /* according to the intel vmx instruction reference, the memory + * operand is read even if it isn't needed (e.g., for type==global) + */ + if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), + vmx_instruction_info, false, &gva)) + return 1; + if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) { + kvm_inject_page_fault(vcpu, &e); + return 1; + } + if (operand.vpid >> 16) + return nested_vmx_failValid(vcpu, + VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); + + vpid02 = nested_get_vpid02(vcpu); + switch (type) { + case VMX_VPID_EXTENT_INDIVIDUAL_ADDR: + if (!operand.vpid || + is_noncanonical_address(operand.gla, vcpu)) + return nested_vmx_failValid(vcpu, + VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); + if (cpu_has_vmx_invvpid_individual_addr()) { + __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR, + vpid02, operand.gla); + } else + __vmx_flush_tlb(vcpu, vpid02, false); + break; + case VMX_VPID_EXTENT_SINGLE_CONTEXT: + case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL: + if (!operand.vpid) + return nested_vmx_failValid(vcpu, + VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); + __vmx_flush_tlb(vcpu, vpid02, false); + break; + case VMX_VPID_EXTENT_ALL_CONTEXT: + __vmx_flush_tlb(vcpu, vpid02, false); + break; + default: + WARN_ON_ONCE(1); + return kvm_skip_emulated_instruction(vcpu); + } + + return nested_vmx_succeed(vcpu); +} + +static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + u32 index = vcpu->arch.regs[VCPU_REGS_RCX]; + u64 address; + bool accessed_dirty; + struct kvm_mmu *mmu = vcpu->arch.walk_mmu; + + if (!nested_cpu_has_eptp_switching(vmcs12) || + !nested_cpu_has_ept(vmcs12)) + return 1; + + if (index >= VMFUNC_EPTP_ENTRIES) + return 1; + + + if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT, + &address, index * 8, 8)) + return 1; + + accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT); + + /* + * If the (L2) guest does a vmfunc to the currently + * active ept pointer, we don't have to do anything else + */ + if (vmcs12->ept_pointer != address) { + if (!valid_ept_address(vcpu, address)) + return 1; + + kvm_mmu_unload(vcpu); + mmu->ept_ad = accessed_dirty; + mmu->mmu_role.base.ad_disabled = !accessed_dirty; + vmcs12->ept_pointer = address; + /* + * TODO: Check what's the correct approach in case + * mmu reload fails. Currently, we just let the next + * reload potentially fail + */ + kvm_mmu_reload(vcpu); + } + + return 0; +} + +static int handle_vmfunc(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct vmcs12 *vmcs12; + u32 function = vcpu->arch.regs[VCPU_REGS_RAX]; + + /* + * VMFUNC is only supported for nested guests, but we always enable the + * secondary control for simplicity; for non-nested mode, fake that we + * didn't by injecting #UD. + */ + if (!is_guest_mode(vcpu)) { + kvm_queue_exception(vcpu, UD_VECTOR); + return 1; + } + + vmcs12 = get_vmcs12(vcpu); + if ((vmcs12->vm_function_control & (1 << function)) == 0) + goto fail; + + switch (function) { + case 0: + if (nested_vmx_eptp_switching(vcpu, vmcs12)) + goto fail; + break; + default: + goto fail; + } + return kvm_skip_emulated_instruction(vcpu); + +fail: + nested_vmx_vmexit(vcpu, vmx->exit_reason, + vmcs_read32(VM_EXIT_INTR_INFO), + vmcs_readl(EXIT_QUALIFICATION)); + return 1; +} + + +static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + unsigned long exit_qualification; + gpa_t bitmap, last_bitmap; + unsigned int port; + int size; + u8 b; + + if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) + return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING); + + exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + + port = exit_qualification >> 16; + size = (exit_qualification & 7) + 1; + + last_bitmap = (gpa_t)-1; + b = -1; + + while (size > 0) { + if (port < 0x8000) + bitmap = vmcs12->io_bitmap_a; + else if (port < 0x10000) + bitmap = vmcs12->io_bitmap_b; + else + return true; + bitmap += (port & 0x7fff) / 8; + + if (last_bitmap != bitmap) + if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1)) + return true; + if (b & (1 << (port & 7))) + return true; + + port++; + size--; + last_bitmap = bitmap; + } + + return false; +} + +/* + * Return 1 if we should exit from L2 to L1 to handle an MSR access access, + * rather than handle it ourselves in L0. I.e., check whether L1 expressed + * disinterest in the current event (read or write a specific MSR) by using an + * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps. + */ +static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12, u32 exit_reason) +{ + u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX]; + gpa_t bitmap; + + if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) + return true; + + /* + * The MSR_BITMAP page is divided into four 1024-byte bitmaps, + * for the four combinations of read/write and low/high MSR numbers. + * First we need to figure out which of the four to use: + */ + bitmap = vmcs12->msr_bitmap; + if (exit_reason == EXIT_REASON_MSR_WRITE) + bitmap += 2048; + if (msr_index >= 0xc0000000) { + msr_index -= 0xc0000000; + bitmap += 1024; + } + + /* Then read the msr_index'th bit from this bitmap: */ + if (msr_index < 1024*8) { + unsigned char b; + if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1)) + return true; + return 1 & (b >> (msr_index & 7)); + } else + return true; /* let L1 handle the wrong parameter */ +} + +/* + * Return 1 if we should exit from L2 to L1 to handle a CR access exit, + * rather than handle it ourselves in L0. I.e., check if L1 wanted to + * intercept (via guest_host_mask etc.) the current event. + */ +static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12) +{ + unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + int cr = exit_qualification & 15; + int reg; + unsigned long val; + + switch ((exit_qualification >> 4) & 3) { + case 0: /* mov to cr */ + reg = (exit_qualification >> 8) & 15; + val = kvm_register_readl(vcpu, reg); + switch (cr) { + case 0: + if (vmcs12->cr0_guest_host_mask & + (val ^ vmcs12->cr0_read_shadow)) + return true; + break; + case 3: + if ((vmcs12->cr3_target_count >= 1 && + vmcs12->cr3_target_value0 == val) || + (vmcs12->cr3_target_count >= 2 && + vmcs12->cr3_target_value1 == val) || + (vmcs12->cr3_target_count >= 3 && + vmcs12->cr3_target_value2 == val) || + (vmcs12->cr3_target_count >= 4 && + vmcs12->cr3_target_value3 == val)) + return false; + if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING)) + return true; + break; + case 4: + if (vmcs12->cr4_guest_host_mask & + (vmcs12->cr4_read_shadow ^ val)) + return true; + break; + case 8: + if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING)) + return true; + break; + } + break; + case 2: /* clts */ + if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) && + (vmcs12->cr0_read_shadow & X86_CR0_TS)) + return true; + break; + case 1: /* mov from cr */ + switch (cr) { + case 3: + if (vmcs12->cpu_based_vm_exec_control & + CPU_BASED_CR3_STORE_EXITING) + return true; + break; + case 8: + if (vmcs12->cpu_based_vm_exec_control & + CPU_BASED_CR8_STORE_EXITING) + return true; + break; + } + break; + case 3: /* lmsw */ + /* + * lmsw can change bits 1..3 of cr0, and only set bit 0 of + * cr0. Other attempted changes are ignored, with no exit. + */ + val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; + if (vmcs12->cr0_guest_host_mask & 0xe & + (val ^ vmcs12->cr0_read_shadow)) + return true; + if ((vmcs12->cr0_guest_host_mask & 0x1) && + !(vmcs12->cr0_read_shadow & 0x1) && + (val & 0x1)) + return true; + break; + } + return false; +} + +static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu, + struct vmcs12 *vmcs12, gpa_t bitmap) +{ + u32 vmx_instruction_info; + unsigned long field; + u8 b; + + if (!nested_cpu_has_shadow_vmcs(vmcs12)) + return true; + + /* Decode instruction info and find the field to access */ + vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); + field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf)); + + /* Out-of-range fields always cause a VM exit from L2 to L1 */ + if (field >> 15) + return true; + + if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1)) + return true; + + return 1 & (b >> (field & 7)); +} + +/* + * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we + * should handle it ourselves in L0 (and then continue L2). Only call this + * when in is_guest_mode (L2). + */ +bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason) +{ + u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO); + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + + if (vmx->nested.nested_run_pending) + return false; + + if (unlikely(vmx->fail)) { + pr_info_ratelimited("%s failed vm entry %x\n", __func__, + vmcs_read32(VM_INSTRUCTION_ERROR)); + return true; + } + + /* + * The host physical addresses of some pages of guest memory + * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC + * Page). The CPU may write to these pages via their host + * physical address while L2 is running, bypassing any + * address-translation-based dirty tracking (e.g. EPT write + * protection). + * + * Mark them dirty on every exit from L2 to prevent them from + * getting out of sync with dirty tracking. + */ + nested_mark_vmcs12_pages_dirty(vcpu); + + trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason, + vmcs_readl(EXIT_QUALIFICATION), + vmx->idt_vectoring_info, + intr_info, + vmcs_read32(VM_EXIT_INTR_ERROR_CODE), + KVM_ISA_VMX); + + switch (exit_reason) { + case EXIT_REASON_EXCEPTION_NMI: + if (is_nmi(intr_info)) + return false; + else if (is_page_fault(intr_info)) + return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept; + else if (is_debug(intr_info) && + vcpu->guest_debug & + (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) + return false; + else if (is_breakpoint(intr_info) && + vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) + return false; + return vmcs12->exception_bitmap & + (1u << (intr_info & INTR_INFO_VECTOR_MASK)); + case EXIT_REASON_EXTERNAL_INTERRUPT: + return false; + case EXIT_REASON_TRIPLE_FAULT: + return true; + case EXIT_REASON_PENDING_INTERRUPT: + return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING); + case EXIT_REASON_NMI_WINDOW: + return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING); + case EXIT_REASON_TASK_SWITCH: + return true; + case EXIT_REASON_CPUID: + return true; + case EXIT_REASON_HLT: + return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING); + case EXIT_REASON_INVD: + return true; + case EXIT_REASON_INVLPG: + return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING); + case EXIT_REASON_RDPMC: + return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING); + case EXIT_REASON_RDRAND: + return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING); + case EXIT_REASON_RDSEED: + return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING); + case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP: + return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING); + case EXIT_REASON_VMREAD: + return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12, + vmcs12->vmread_bitmap); + case EXIT_REASON_VMWRITE: + return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12, + vmcs12->vmwrite_bitmap); + case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR: + case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD: + case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME: + case EXIT_REASON_VMOFF: case EXIT_REASON_VMON: + case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID: + /* + * VMX instructions trap unconditionally. This allows L1 to + * emulate them for its L2 guest, i.e., allows 3-level nesting! + */ + return true; + case EXIT_REASON_CR_ACCESS: + return nested_vmx_exit_handled_cr(vcpu, vmcs12); + case EXIT_REASON_DR_ACCESS: + return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING); + case EXIT_REASON_IO_INSTRUCTION: + return nested_vmx_exit_handled_io(vcpu, vmcs12); + case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR: + return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC); + case EXIT_REASON_MSR_READ: + case EXIT_REASON_MSR_WRITE: + return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason); + case EXIT_REASON_INVALID_STATE: + return true; + case EXIT_REASON_MWAIT_INSTRUCTION: + return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING); + case EXIT_REASON_MONITOR_TRAP_FLAG: + return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG); + case EXIT_REASON_MONITOR_INSTRUCTION: + return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING); + case EXIT_REASON_PAUSE_INSTRUCTION: + return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) || + nested_cpu_has2(vmcs12, + SECONDARY_EXEC_PAUSE_LOOP_EXITING); + case EXIT_REASON_MCE_DURING_VMENTRY: + return false; + case EXIT_REASON_TPR_BELOW_THRESHOLD: + return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW); + case EXIT_REASON_APIC_ACCESS: + case EXIT_REASON_APIC_WRITE: + case EXIT_REASON_EOI_INDUCED: + /* + * The controls for "virtualize APIC accesses," "APIC- + * register virtualization," and "virtual-interrupt + * delivery" only come from vmcs12. + */ + return true; + case EXIT_REASON_EPT_VIOLATION: + /* + * L0 always deals with the EPT violation. If nested EPT is + * used, and the nested mmu code discovers that the address is + * missing in the guest EPT table (EPT12), the EPT violation + * will be injected with nested_ept_inject_page_fault() + */ + return false; + case EXIT_REASON_EPT_MISCONFIG: + /* + * L2 never uses directly L1's EPT, but rather L0's own EPT + * table (shadow on EPT) or a merged EPT table that L0 built + * (EPT on EPT). So any problems with the structure of the + * table is L0's fault. + */ + return false; + case EXIT_REASON_INVPCID: + return + nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) && + nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING); + case EXIT_REASON_WBINVD: + return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING); + case EXIT_REASON_XSETBV: + return true; + case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS: + /* + * This should never happen, since it is not possible to + * set XSS to a non-zero value---neither in L1 nor in L2. + * If if it were, XSS would have to be checked against + * the XSS exit bitmap in vmcs12. + */ + return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES); + case EXIT_REASON_PREEMPTION_TIMER: + return false; + case EXIT_REASON_PML_FULL: + /* We emulate PML support to L1. */ + return false; + case EXIT_REASON_VMFUNC: + /* VM functions are emulated through L2->L0 vmexits. */ + return false; + case EXIT_REASON_ENCLS: + /* SGX is never exposed to L1 */ + return false; + default: + return true; + } +} + + +static int vmx_get_nested_state(struct kvm_vcpu *vcpu, + struct kvm_nested_state __user *user_kvm_nested_state, + u32 user_data_size) +{ + struct vcpu_vmx *vmx; + struct vmcs12 *vmcs12; + struct kvm_nested_state kvm_state = { + .flags = 0, + .format = 0, + .size = sizeof(kvm_state), + .vmx.vmxon_pa = -1ull, + .vmx.vmcs_pa = -1ull, + }; + + if (!vcpu) + return kvm_state.size + 2 * VMCS12_SIZE; + + vmx = to_vmx(vcpu); + vmcs12 = get_vmcs12(vcpu); + + if (nested_vmx_allowed(vcpu) && vmx->nested.enlightened_vmcs_enabled) + kvm_state.flags |= KVM_STATE_NESTED_EVMCS; + + if (nested_vmx_allowed(vcpu) && + (vmx->nested.vmxon || vmx->nested.smm.vmxon)) { + kvm_state.vmx.vmxon_pa = vmx->nested.vmxon_ptr; + kvm_state.vmx.vmcs_pa = vmx->nested.current_vmptr; + + if (vmx_has_valid_vmcs12(vcpu)) { + kvm_state.size += VMCS12_SIZE; + + if (is_guest_mode(vcpu) && + nested_cpu_has_shadow_vmcs(vmcs12) && + vmcs12->vmcs_link_pointer != -1ull) + kvm_state.size += VMCS12_SIZE; + } + + if (vmx->nested.smm.vmxon) + kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON; + + if (vmx->nested.smm.guest_mode) + kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE; + + if (is_guest_mode(vcpu)) { + kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE; + + if (vmx->nested.nested_run_pending) + kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING; + } + } + + if (user_data_size < kvm_state.size) + goto out; + + if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state))) + return -EFAULT; + + if (!vmx_has_valid_vmcs12(vcpu)) + goto out; + + /* + * When running L2, the authoritative vmcs12 state is in the + * vmcs02. When running L1, the authoritative vmcs12 state is + * in the shadow or enlightened vmcs linked to vmcs01, unless + * need_vmcs12_sync is set, in which case, the authoritative + * vmcs12 state is in the vmcs12 already. + */ + if (is_guest_mode(vcpu)) { + sync_vmcs12(vcpu, vmcs12); + } else if (!vmx->nested.need_vmcs12_sync) { + if (vmx->nested.hv_evmcs) + copy_enlightened_to_vmcs12(vmx); + else if (enable_shadow_vmcs) + copy_shadow_to_vmcs12(vmx); + } + + if (copy_to_user(user_kvm_nested_state->data, vmcs12, sizeof(*vmcs12))) + return -EFAULT; + + if (nested_cpu_has_shadow_vmcs(vmcs12) && + vmcs12->vmcs_link_pointer != -1ull) { + if (copy_to_user(user_kvm_nested_state->data + VMCS12_SIZE, + get_shadow_vmcs12(vcpu), sizeof(*vmcs12))) + return -EFAULT; + } + +out: + return kvm_state.size; +} + +/* + * Forcibly leave nested mode in order to be able to reset the VCPU later on. + */ +void vmx_leave_nested(struct kvm_vcpu *vcpu) +{ + if (is_guest_mode(vcpu)) { + to_vmx(vcpu)->nested.nested_run_pending = 0; + nested_vmx_vmexit(vcpu, -1, 0, 0); + } + free_nested(vcpu); +} + +static int vmx_set_nested_state(struct kvm_vcpu *vcpu, + struct kvm_nested_state __user *user_kvm_nested_state, + struct kvm_nested_state *kvm_state) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct vmcs12 *vmcs12; + u32 exit_qual; + int ret; + + if (kvm_state->format != 0) + return -EINVAL; + + if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) + nested_enable_evmcs(vcpu, NULL); + + if (!nested_vmx_allowed(vcpu)) + return kvm_state->vmx.vmxon_pa == -1ull ? 0 : -EINVAL; + + if (kvm_state->vmx.vmxon_pa == -1ull) { + if (kvm_state->vmx.smm.flags) + return -EINVAL; + + if (kvm_state->vmx.vmcs_pa != -1ull) + return -EINVAL; + + vmx_leave_nested(vcpu); + return 0; + } + + if (!page_address_valid(vcpu, kvm_state->vmx.vmxon_pa)) + return -EINVAL; + + if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) && + (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE)) + return -EINVAL; + + if (kvm_state->vmx.smm.flags & + ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON)) + return -EINVAL; + + /* + * SMM temporarily disables VMX, so we cannot be in guest mode, + * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags + * must be zero. + */ + if (is_smm(vcpu) ? kvm_state->flags : kvm_state->vmx.smm.flags) + return -EINVAL; + + if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) && + !(kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON)) + return -EINVAL; + + vmx_leave_nested(vcpu); + if (kvm_state->vmx.vmxon_pa == -1ull) + return 0; + + vmx->nested.vmxon_ptr = kvm_state->vmx.vmxon_pa; + ret = enter_vmx_operation(vcpu); + if (ret) + return ret; + + /* Empty 'VMXON' state is permitted */ + if (kvm_state->size < sizeof(kvm_state) + sizeof(*vmcs12)) + return 0; + + if (kvm_state->vmx.vmcs_pa != -1ull) { + if (kvm_state->vmx.vmcs_pa == kvm_state->vmx.vmxon_pa || + !page_address_valid(vcpu, kvm_state->vmx.vmcs_pa)) + return -EINVAL; + + set_current_vmptr(vmx, kvm_state->vmx.vmcs_pa); + } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) { + /* + * Sync eVMCS upon entry as we may not have + * HV_X64_MSR_VP_ASSIST_PAGE set up yet. + */ + vmx->nested.need_vmcs12_sync = true; + } else { + return -EINVAL; + } + + if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) { + vmx->nested.smm.vmxon = true; + vmx->nested.vmxon = false; + + if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) + vmx->nested.smm.guest_mode = true; + } + + vmcs12 = get_vmcs12(vcpu); + if (copy_from_user(vmcs12, user_kvm_nested_state->data, sizeof(*vmcs12))) + return -EFAULT; + + if (vmcs12->hdr.revision_id != VMCS12_REVISION) + return -EINVAL; + + if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE)) + return 0; + + vmx->nested.nested_run_pending = + !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING); + + if (nested_cpu_has_shadow_vmcs(vmcs12) && + vmcs12->vmcs_link_pointer != -1ull) { + struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu); + + if (kvm_state->size < sizeof(kvm_state) + 2 * sizeof(*vmcs12)) + return -EINVAL; + + if (copy_from_user(shadow_vmcs12, + user_kvm_nested_state->data + VMCS12_SIZE, + sizeof(*vmcs12))) + return -EFAULT; + + if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION || + !shadow_vmcs12->hdr.shadow_vmcs) + return -EINVAL; + } + + if (nested_vmx_check_vmentry_prereqs(vcpu, vmcs12) || + nested_vmx_check_vmentry_postreqs(vcpu, vmcs12, &exit_qual)) + return -EINVAL; + + vmx->nested.dirty_vmcs12 = true; + ret = nested_vmx_enter_non_root_mode(vcpu, false); + if (ret) + return -EINVAL; + + return 0; +} + +void nested_vmx_vcpu_setup(void) +{ + if (enable_shadow_vmcs) { + /* + * At vCPU creation, "VMWRITE to any supported field + * in the VMCS" is supported, so use the more + * permissive vmx_vmread_bitmap to specify both read + * and write permissions for the shadow VMCS. + */ + vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap)); + vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmread_bitmap)); + } +} + +/* + * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be + * returned for the various VMX controls MSRs when nested VMX is enabled. + * The same values should also be used to verify that vmcs12 control fields are + * valid during nested entry from L1 to L2. + * Each of these control msrs has a low and high 32-bit half: A low bit is on + * if the corresponding bit in the (32-bit) control field *must* be on, and a + * bit in the high half is on if the corresponding bit in the control field + * may be on. See also vmx_control_verify(). + */ +void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps, + bool apicv) +{ + /* + * Note that as a general rule, the high half of the MSRs (bits in + * the control fields which may be 1) should be initialized by the + * intersection of the underlying hardware's MSR (i.e., features which + * can be supported) and the list of features we want to expose - + * because they are known to be properly supported in our code. + * Also, usually, the low half of the MSRs (bits which must be 1) can + * be set to 0, meaning that L1 may turn off any of these bits. The + * reason is that if one of these bits is necessary, it will appear + * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control + * fields of vmcs01 and vmcs02, will turn these bits off - and + * nested_vmx_exit_reflected() will not pass related exits to L1. + * These rules have exceptions below. + */ + + /* pin-based controls */ + rdmsr(MSR_IA32_VMX_PINBASED_CTLS, + msrs->pinbased_ctls_low, + msrs->pinbased_ctls_high); + msrs->pinbased_ctls_low |= + PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR; + msrs->pinbased_ctls_high &= + PIN_BASED_EXT_INTR_MASK | + PIN_BASED_NMI_EXITING | + PIN_BASED_VIRTUAL_NMIS | + (apicv ? PIN_BASED_POSTED_INTR : 0); + msrs->pinbased_ctls_high |= + PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR | + PIN_BASED_VMX_PREEMPTION_TIMER; + + /* exit controls */ + rdmsr(MSR_IA32_VMX_EXIT_CTLS, + msrs->exit_ctls_low, + msrs->exit_ctls_high); + msrs->exit_ctls_low = + VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR; + + msrs->exit_ctls_high &= +#ifdef CONFIG_X86_64 + VM_EXIT_HOST_ADDR_SPACE_SIZE | +#endif + VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT; + msrs->exit_ctls_high |= + VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR | + VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER | + VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT; + + /* We support free control of debug control saving. */ + msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS; + + /* entry controls */ + rdmsr(MSR_IA32_VMX_ENTRY_CTLS, + msrs->entry_ctls_low, + msrs->entry_ctls_high); + msrs->entry_ctls_low = + VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR; + msrs->entry_ctls_high &= +#ifdef CONFIG_X86_64 + VM_ENTRY_IA32E_MODE | +#endif + VM_ENTRY_LOAD_IA32_PAT; + msrs->entry_ctls_high |= + (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER); + + /* We support free control of debug control loading. */ + msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS; + + /* cpu-based controls */ + rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, + msrs->procbased_ctls_low, + msrs->procbased_ctls_high); + msrs->procbased_ctls_low = + CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR; + msrs->procbased_ctls_high &= + CPU_BASED_VIRTUAL_INTR_PENDING | + CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING | + CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING | + CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING | + CPU_BASED_CR3_STORE_EXITING | +#ifdef CONFIG_X86_64 + CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING | +#endif + CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING | + CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG | + CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING | + CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING | + CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; + /* + * We can allow some features even when not supported by the + * hardware. For example, L1 can specify an MSR bitmap - and we + * can use it to avoid exits to L1 - even when L0 runs L2 + * without MSR bitmaps. + */ + msrs->procbased_ctls_high |= + CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR | + CPU_BASED_USE_MSR_BITMAPS; + + /* We support free control of CR3 access interception. */ + msrs->procbased_ctls_low &= + ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING); + + /* + * secondary cpu-based controls. Do not include those that + * depend on CPUID bits, they are added later by vmx_cpuid_update. + */ + rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2, + msrs->secondary_ctls_low, + msrs->secondary_ctls_high); + msrs->secondary_ctls_low = 0; + msrs->secondary_ctls_high &= + SECONDARY_EXEC_DESC | + SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | + SECONDARY_EXEC_APIC_REGISTER_VIRT | + SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | + SECONDARY_EXEC_WBINVD_EXITING; + + /* + * We can emulate "VMCS shadowing," even if the hardware + * doesn't support it. + */ + msrs->secondary_ctls_high |= + SECONDARY_EXEC_SHADOW_VMCS; + + if (enable_ept) { + /* nested EPT: emulate EPT also to L1 */ + msrs->secondary_ctls_high |= + SECONDARY_EXEC_ENABLE_EPT; + msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT | + VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT; + if (cpu_has_vmx_ept_execute_only()) + msrs->ept_caps |= + VMX_EPT_EXECUTE_ONLY_BIT; + msrs->ept_caps &= ept_caps; + msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT | + VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT | + VMX_EPT_1GB_PAGE_BIT; + if (enable_ept_ad_bits) { + msrs->secondary_ctls_high |= + SECONDARY_EXEC_ENABLE_PML; + msrs->ept_caps |= VMX_EPT_AD_BIT; + } + } + + if (cpu_has_vmx_vmfunc()) { + msrs->secondary_ctls_high |= + SECONDARY_EXEC_ENABLE_VMFUNC; + /* + * Advertise EPTP switching unconditionally + * since we emulate it + */ + if (enable_ept) + msrs->vmfunc_controls = + VMX_VMFUNC_EPTP_SWITCHING; + } + + /* + * Old versions of KVM use the single-context version without + * checking for support, so declare that it is supported even + * though it is treated as global context. The alternative is + * not failing the single-context invvpid, and it is worse. + */ + if (enable_vpid) { + msrs->secondary_ctls_high |= + SECONDARY_EXEC_ENABLE_VPID; + msrs->vpid_caps = VMX_VPID_INVVPID_BIT | + VMX_VPID_EXTENT_SUPPORTED_MASK; + } + + if (enable_unrestricted_guest) + msrs->secondary_ctls_high |= + SECONDARY_EXEC_UNRESTRICTED_GUEST; + + if (flexpriority_enabled) + msrs->secondary_ctls_high |= + SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; + + /* miscellaneous data */ + rdmsr(MSR_IA32_VMX_MISC, + msrs->misc_low, + msrs->misc_high); + msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA; + msrs->misc_low |= + MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS | + VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE | + VMX_MISC_ACTIVITY_HLT; + msrs->misc_high = 0; + + /* + * This MSR reports some information about VMX support. We + * should return information about the VMX we emulate for the + * guest, and the VMCS structure we give it - not about the + * VMX support of the underlying hardware. + */ + msrs->basic = + VMCS12_REVISION | + VMX_BASIC_TRUE_CTLS | + ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) | + (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT); + + if (cpu_has_vmx_basic_inout()) + msrs->basic |= VMX_BASIC_INOUT; + + /* + * These MSRs specify bits which the guest must keep fixed on + * while L1 is in VMXON mode (in L1's root mode, or running an L2). + * We picked the standard core2 setting. + */ +#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE) +#define VMXON_CR4_ALWAYSON X86_CR4_VMXE + msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON; + msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON; + + /* These MSRs specify bits which the guest must keep fixed off. */ + rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1); + rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1); + + /* highest index: VMX_PREEMPTION_TIMER_VALUE */ + msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1; +} + +void nested_vmx_hardware_unsetup(void) +{ + int i; + + if (enable_shadow_vmcs) { + for (i = 0; i < VMX_BITMAP_NR; i++) + free_page((unsigned long)vmx_bitmap[i]); + } +} + +__init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *)) +{ + int i; + + if (!cpu_has_vmx_shadow_vmcs()) + enable_shadow_vmcs = 0; + if (enable_shadow_vmcs) { + for (i = 0; i < VMX_BITMAP_NR; i++) { + vmx_bitmap[i] = (unsigned long *) + __get_free_page(GFP_KERNEL); + if (!vmx_bitmap[i]) { + nested_vmx_hardware_unsetup(); + return -ENOMEM; + } + } + + init_vmcs_shadow_fields(); + } + + exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear, + exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch, + exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld, + exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst, + exit_handlers[EXIT_REASON_VMREAD] = handle_vmread, + exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume, + exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite, + exit_handlers[EXIT_REASON_VMOFF] = handle_vmoff, + exit_handlers[EXIT_REASON_VMON] = handle_vmon, + exit_handlers[EXIT_REASON_INVEPT] = handle_invept, + exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid, + exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc, + + kvm_x86_ops->check_nested_events = vmx_check_nested_events; + kvm_x86_ops->get_nested_state = vmx_get_nested_state; + kvm_x86_ops->set_nested_state = vmx_set_nested_state; + kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages, + kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs; + kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version; + + return 0; +} diff --git a/arch/x86/kvm/vmx/nested.h b/arch/x86/kvm/vmx/nested.h new file mode 100644 index 000000000000..e847ff1019a2 --- /dev/null +++ b/arch/x86/kvm/vmx/nested.h @@ -0,0 +1,282 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef __KVM_X86_VMX_NESTED_H +#define __KVM_X86_VMX_NESTED_H + +#include "kvm_cache_regs.h" +#include "vmcs12.h" +#include "vmx.h" + +void vmx_leave_nested(struct kvm_vcpu *vcpu); +void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps, + bool apicv); +void nested_vmx_hardware_unsetup(void); +__init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *)); +void nested_vmx_vcpu_setup(void); +void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu); +int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry); +bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason); +void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason, + u32 exit_intr_info, unsigned long exit_qualification); +void nested_sync_from_vmcs12(struct kvm_vcpu *vcpu); +int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data); +int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata); +int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification, + u32 vmx_instruction_info, bool wr, gva_t *ret); + +static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu) +{ + return to_vmx(vcpu)->nested.cached_vmcs12; +} + +static inline struct vmcs12 *get_shadow_vmcs12(struct kvm_vcpu *vcpu) +{ + return to_vmx(vcpu)->nested.cached_shadow_vmcs12; +} + +static inline int vmx_has_valid_vmcs12(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + /* + * In case we do two consecutive get/set_nested_state()s while L2 was + * running hv_evmcs may end up not being mapped (we map it from + * nested_vmx_run()/vmx_vcpu_run()). Check is_guest_mode() as we always + * have vmcs12 if it is true. + */ + return is_guest_mode(vcpu) || vmx->nested.current_vmptr != -1ull || + vmx->nested.hv_evmcs; +} + +static inline unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu) +{ + /* return the page table to be shadowed - in our case, EPT12 */ + return get_vmcs12(vcpu)->ept_pointer; +} + +static inline bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu) +{ + return nested_ept_get_cr3(vcpu) & VMX_EPTP_AD_ENABLE_BIT; +} + +/* + * Reflect a VM Exit into L1. + */ +static inline int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, + u32 exit_reason) +{ + u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); + + /* + * At this point, the exit interruption info in exit_intr_info + * is only valid for EXCEPTION_NMI exits. For EXTERNAL_INTERRUPT + * we need to query the in-kernel LAPIC. + */ + WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT); + if ((exit_intr_info & + (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) == + (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) { + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + + vmcs12->vm_exit_intr_error_code = + vmcs_read32(VM_EXIT_INTR_ERROR_CODE); + } + + nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info, + vmcs_readl(EXIT_QUALIFICATION)); + return 1; +} + +/* + * Return the cr0 value that a nested guest would read. This is a combination + * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by + * its hypervisor (cr0_read_shadow). + */ +static inline unsigned long nested_read_cr0(struct vmcs12 *fields) +{ + return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) | + (fields->cr0_read_shadow & fields->cr0_guest_host_mask); +} +static inline unsigned long nested_read_cr4(struct vmcs12 *fields) +{ + return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) | + (fields->cr4_read_shadow & fields->cr4_guest_host_mask); +} + +static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu) +{ + return vmx_misc_cr3_count(to_vmx(vcpu)->nested.msrs.misc_low); +} + +/* + * Do the virtual VMX capability MSRs specify that L1 can use VMWRITE + * to modify any valid field of the VMCS, or are the VM-exit + * information fields read-only? + */ +static inline bool nested_cpu_has_vmwrite_any_field(struct kvm_vcpu *vcpu) +{ + return to_vmx(vcpu)->nested.msrs.misc_low & + MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS; +} + +static inline bool nested_cpu_has_zero_length_injection(struct kvm_vcpu *vcpu) +{ + return to_vmx(vcpu)->nested.msrs.misc_low & VMX_MISC_ZERO_LEN_INS; +} + +static inline bool nested_cpu_supports_monitor_trap_flag(struct kvm_vcpu *vcpu) +{ + return to_vmx(vcpu)->nested.msrs.procbased_ctls_high & + CPU_BASED_MONITOR_TRAP_FLAG; +} + +static inline bool nested_cpu_has_vmx_shadow_vmcs(struct kvm_vcpu *vcpu) +{ + return to_vmx(vcpu)->nested.msrs.secondary_ctls_high & + SECONDARY_EXEC_SHADOW_VMCS; +} + +static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit) +{ + return vmcs12->cpu_based_vm_exec_control & bit; +} + +static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit) +{ + return (vmcs12->cpu_based_vm_exec_control & + CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) && + (vmcs12->secondary_vm_exec_control & bit); +} + +static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12) +{ + return vmcs12->pin_based_vm_exec_control & + PIN_BASED_VMX_PREEMPTION_TIMER; +} + +static inline bool nested_cpu_has_nmi_exiting(struct vmcs12 *vmcs12) +{ + return vmcs12->pin_based_vm_exec_control & PIN_BASED_NMI_EXITING; +} + +static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12) +{ + return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS; +} + +static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12) +{ + return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT); +} + +static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12) +{ + return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES); +} + +static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12) +{ + return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML); +} + +static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12) +{ + return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); +} + +static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12) +{ + return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID); +} + +static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12) +{ + return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT); +} + +static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12) +{ + return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); +} + +static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12) +{ + return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR; +} + +static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12) +{ + return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC); +} + +static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12) +{ + return nested_cpu_has_vmfunc(vmcs12) && + (vmcs12->vm_function_control & + VMX_VMFUNC_EPTP_SWITCHING); +} + +static inline bool nested_cpu_has_shadow_vmcs(struct vmcs12 *vmcs12) +{ + return nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS); +} + +static inline bool nested_cpu_has_save_preemption_timer(struct vmcs12 *vmcs12) +{ + return vmcs12->vm_exit_controls & + VM_EXIT_SAVE_VMX_PREEMPTION_TIMER; +} + +/* + * In nested virtualization, check if L1 asked to exit on external interrupts. + * For most existing hypervisors, this will always return true. + */ +static inline bool nested_exit_on_intr(struct kvm_vcpu *vcpu) +{ + return get_vmcs12(vcpu)->pin_based_vm_exec_control & + PIN_BASED_EXT_INTR_MASK; +} + +/* + * if fixed0[i] == 1: val[i] must be 1 + * if fixed1[i] == 0: val[i] must be 0 + */ +static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1) +{ + return ((val & fixed1) | fixed0) == val; +} + +static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val) +{ + u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0; + u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1; + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + + if (to_vmx(vcpu)->nested.msrs.secondary_ctls_high & + SECONDARY_EXEC_UNRESTRICTED_GUEST && + nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST)) + fixed0 &= ~(X86_CR0_PE | X86_CR0_PG); + + return fixed_bits_valid(val, fixed0, fixed1); +} + +static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val) +{ + u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0; + u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1; + + return fixed_bits_valid(val, fixed0, fixed1); +} + +static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val) +{ + u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr4_fixed0; + u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr4_fixed1; + + return fixed_bits_valid(val, fixed0, fixed1); +} + +/* No difference in the restrictions on guest and host CR4 in VMX operation. */ +#define nested_guest_cr4_valid nested_cr4_valid +#define nested_host_cr4_valid nested_cr4_valid + +#endif /* __KVM_X86_VMX_NESTED_H */ diff --git a/arch/x86/kvm/vmx/ops.h b/arch/x86/kvm/vmx/ops.h new file mode 100644 index 000000000000..b8e50f76fefc --- /dev/null +++ b/arch/x86/kvm/vmx/ops.h @@ -0,0 +1,285 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef __KVM_X86_VMX_INSN_H +#define __KVM_X86_VMX_INSN_H + +#include <linux/nospec.h> + +#include <asm/kvm_host.h> +#include <asm/vmx.h> + +#include "evmcs.h" +#include "vmcs.h" + +#define __ex(x) __kvm_handle_fault_on_reboot(x) +#define __ex_clear(x, reg) \ + ____kvm_handle_fault_on_reboot(x, "xor " reg ", " reg) + +static __always_inline void vmcs_check16(unsigned long field) +{ + BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000, + "16-bit accessor invalid for 64-bit field"); + BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001, + "16-bit accessor invalid for 64-bit high field"); + BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000, + "16-bit accessor invalid for 32-bit high field"); + BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000, + "16-bit accessor invalid for natural width field"); +} + +static __always_inline void vmcs_check32(unsigned long field) +{ + BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0, + "32-bit accessor invalid for 16-bit field"); + BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000, + "32-bit accessor invalid for natural width field"); +} + +static __always_inline void vmcs_check64(unsigned long field) +{ + BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0, + "64-bit accessor invalid for 16-bit field"); + BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001, + "64-bit accessor invalid for 64-bit high field"); + BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000, + "64-bit accessor invalid for 32-bit field"); + BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000, + "64-bit accessor invalid for natural width field"); +} + +static __always_inline void vmcs_checkl(unsigned long field) +{ + BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0, + "Natural width accessor invalid for 16-bit field"); + BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000, + "Natural width accessor invalid for 64-bit field"); + BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001, + "Natural width accessor invalid for 64-bit high field"); + BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000, + "Natural width accessor invalid for 32-bit field"); +} + +static __always_inline unsigned long __vmcs_readl(unsigned long field) +{ + unsigned long value; + + asm volatile (__ex_clear("vmread %1, %0", "%k0") + : "=r"(value) : "r"(field)); + return value; +} + +static __always_inline u16 vmcs_read16(unsigned long field) +{ + vmcs_check16(field); + if (static_branch_unlikely(&enable_evmcs)) + return evmcs_read16(field); + return __vmcs_readl(field); +} + +static __always_inline u32 vmcs_read32(unsigned long field) +{ + vmcs_check32(field); + if (static_branch_unlikely(&enable_evmcs)) + return evmcs_read32(field); + return __vmcs_readl(field); +} + +static __always_inline u64 vmcs_read64(unsigned long field) +{ + vmcs_check64(field); + if (static_branch_unlikely(&enable_evmcs)) + return evmcs_read64(field); +#ifdef CONFIG_X86_64 + return __vmcs_readl(field); +#else + return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32); +#endif +} + +static __always_inline unsigned long vmcs_readl(unsigned long field) +{ + vmcs_checkl(field); + if (static_branch_unlikely(&enable_evmcs)) + return evmcs_read64(field); + return __vmcs_readl(field); +} + +static noinline void vmwrite_error(unsigned long field, unsigned long value) +{ + printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n", + field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); + dump_stack(); +} + +static __always_inline void __vmcs_writel(unsigned long field, unsigned long value) +{ + bool error; + + asm volatile (__ex("vmwrite %2, %1") CC_SET(na) + : CC_OUT(na) (error) : "r"(field), "rm"(value)); + if (unlikely(error)) + vmwrite_error(field, value); +} + +static __always_inline void vmcs_write16(unsigned long field, u16 value) +{ + vmcs_check16(field); + if (static_branch_unlikely(&enable_evmcs)) + return evmcs_write16(field, value); + + __vmcs_writel(field, value); +} + +static __always_inline void vmcs_write32(unsigned long field, u32 value) +{ + vmcs_check32(field); + if (static_branch_unlikely(&enable_evmcs)) + return evmcs_write32(field, value); + + __vmcs_writel(field, value); +} + +static __always_inline void vmcs_write64(unsigned long field, u64 value) +{ + vmcs_check64(field); + if (static_branch_unlikely(&enable_evmcs)) + return evmcs_write64(field, value); + + __vmcs_writel(field, value); +#ifndef CONFIG_X86_64 + asm volatile (""); + __vmcs_writel(field+1, value >> 32); +#endif +} + +static __always_inline void vmcs_writel(unsigned long field, unsigned long value) +{ + vmcs_checkl(field); + if (static_branch_unlikely(&enable_evmcs)) + return evmcs_write64(field, value); + + __vmcs_writel(field, value); +} + +static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask) +{ + BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000, + "vmcs_clear_bits does not support 64-bit fields"); + if (static_branch_unlikely(&enable_evmcs)) + return evmcs_write32(field, evmcs_read32(field) & ~mask); + + __vmcs_writel(field, __vmcs_readl(field) & ~mask); +} + +static __always_inline void vmcs_set_bits(unsigned long field, u32 mask) +{ + BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000, + "vmcs_set_bits does not support 64-bit fields"); + if (static_branch_unlikely(&enable_evmcs)) + return evmcs_write32(field, evmcs_read32(field) | mask); + + __vmcs_writel(field, __vmcs_readl(field) | mask); +} + +static inline void vmcs_clear(struct vmcs *vmcs) +{ + u64 phys_addr = __pa(vmcs); + bool error; + + asm volatile (__ex("vmclear %1") CC_SET(na) + : CC_OUT(na) (error) : "m"(phys_addr)); + if (unlikely(error)) + printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n", + vmcs, phys_addr); +} + +static inline void vmcs_load(struct vmcs *vmcs) +{ + u64 phys_addr = __pa(vmcs); + bool error; + + if (static_branch_unlikely(&enable_evmcs)) + return evmcs_load(phys_addr); + + asm volatile (__ex("vmptrld %1") CC_SET(na) + : CC_OUT(na) (error) : "m"(phys_addr)); + if (unlikely(error)) + printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n", + vmcs, phys_addr); +} + +static inline void __invvpid(unsigned long ext, u16 vpid, gva_t gva) +{ + struct { + u64 vpid : 16; + u64 rsvd : 48; + u64 gva; + } operand = { vpid, 0, gva }; + bool error; + + asm volatile (__ex("invvpid %2, %1") CC_SET(na) + : CC_OUT(na) (error) : "r"(ext), "m"(operand)); + BUG_ON(error); +} + +static inline void __invept(unsigned long ext, u64 eptp, gpa_t gpa) +{ + struct { + u64 eptp, gpa; + } operand = {eptp, gpa}; + bool error; + + asm volatile (__ex("invept %2, %1") CC_SET(na) + : CC_OUT(na) (error) : "r"(ext), "m"(operand)); + BUG_ON(error); +} + +static inline bool vpid_sync_vcpu_addr(int vpid, gva_t addr) +{ + if (vpid == 0) + return true; + + if (cpu_has_vmx_invvpid_individual_addr()) { + __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR, vpid, addr); + return true; + } + + return false; +} + +static inline void vpid_sync_vcpu_single(int vpid) +{ + if (vpid == 0) + return; + + if (cpu_has_vmx_invvpid_single()) + __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0); +} + +static inline void vpid_sync_vcpu_global(void) +{ + if (cpu_has_vmx_invvpid_global()) + __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0); +} + +static inline void vpid_sync_context(int vpid) +{ + if (cpu_has_vmx_invvpid_single()) + vpid_sync_vcpu_single(vpid); + else + vpid_sync_vcpu_global(); +} + +static inline void ept_sync_global(void) +{ + __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0); +} + +static inline void ept_sync_context(u64 eptp) +{ + if (cpu_has_vmx_invept_context()) + __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0); + else + ept_sync_global(); +} + +#endif /* __KVM_X86_VMX_INSN_H */ diff --git a/arch/x86/kvm/pmu_intel.c b/arch/x86/kvm/vmx/pmu_intel.c index 5ab4a364348e..5ab4a364348e 100644 --- a/arch/x86/kvm/pmu_intel.c +++ b/arch/x86/kvm/vmx/pmu_intel.c diff --git a/arch/x86/kvm/vmx/vmcs.h b/arch/x86/kvm/vmx/vmcs.h new file mode 100644 index 000000000000..6def3ba88e3b --- /dev/null +++ b/arch/x86/kvm/vmx/vmcs.h @@ -0,0 +1,136 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef __KVM_X86_VMX_VMCS_H +#define __KVM_X86_VMX_VMCS_H + +#include <linux/ktime.h> +#include <linux/list.h> +#include <linux/nospec.h> + +#include <asm/kvm.h> +#include <asm/vmx.h> + +#include "capabilities.h" + +struct vmcs_hdr { + u32 revision_id:31; + u32 shadow_vmcs:1; +}; + +struct vmcs { + struct vmcs_hdr hdr; + u32 abort; + char data[0]; +}; + +DECLARE_PER_CPU(struct vmcs *, current_vmcs); + +/* + * vmcs_host_state tracks registers that are loaded from the VMCS on VMEXIT + * and whose values change infrequently, but are not constant. I.e. this is + * used as a write-through cache of the corresponding VMCS fields. + */ +struct vmcs_host_state { + unsigned long cr3; /* May not match real cr3 */ + unsigned long cr4; /* May not match real cr4 */ + unsigned long gs_base; + unsigned long fs_base; + + u16 fs_sel, gs_sel, ldt_sel; +#ifdef CONFIG_X86_64 + u16 ds_sel, es_sel; +#endif +}; + +/* + * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also + * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs + * loaded on this CPU (so we can clear them if the CPU goes down). + */ +struct loaded_vmcs { + struct vmcs *vmcs; + struct vmcs *shadow_vmcs; + int cpu; + bool launched; + bool nmi_known_unmasked; + bool hv_timer_armed; + /* Support for vnmi-less CPUs */ + int soft_vnmi_blocked; + ktime_t entry_time; + s64 vnmi_blocked_time; + unsigned long *msr_bitmap; + struct list_head loaded_vmcss_on_cpu_link; + struct vmcs_host_state host_state; +}; + +static inline bool is_exception_n(u32 intr_info, u8 vector) +{ + return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | + INTR_INFO_VALID_MASK)) == + (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK); +} + +static inline bool is_debug(u32 intr_info) +{ + return is_exception_n(intr_info, DB_VECTOR); +} + +static inline bool is_breakpoint(u32 intr_info) +{ + return is_exception_n(intr_info, BP_VECTOR); +} + +static inline bool is_page_fault(u32 intr_info) +{ + return is_exception_n(intr_info, PF_VECTOR); +} + +static inline bool is_invalid_opcode(u32 intr_info) +{ + return is_exception_n(intr_info, UD_VECTOR); +} + +static inline bool is_gp_fault(u32 intr_info) +{ + return is_exception_n(intr_info, GP_VECTOR); +} + +static inline bool is_machine_check(u32 intr_info) +{ + return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | + INTR_INFO_VALID_MASK)) == + (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK); +} + +/* Undocumented: icebp/int1 */ +static inline bool is_icebp(u32 intr_info) +{ + return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK)) + == (INTR_TYPE_PRIV_SW_EXCEPTION | INTR_INFO_VALID_MASK); +} + +static inline bool is_nmi(u32 intr_info) +{ + return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK)) + == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK); +} + +enum vmcs_field_width { + VMCS_FIELD_WIDTH_U16 = 0, + VMCS_FIELD_WIDTH_U64 = 1, + VMCS_FIELD_WIDTH_U32 = 2, + VMCS_FIELD_WIDTH_NATURAL_WIDTH = 3 +}; + +static inline int vmcs_field_width(unsigned long field) +{ + if (0x1 & field) /* the *_HIGH fields are all 32 bit */ + return VMCS_FIELD_WIDTH_U32; + return (field >> 13) & 0x3; +} + +static inline int vmcs_field_readonly(unsigned long field) +{ + return (((field >> 10) & 0x3) == 1); +} + +#endif /* __KVM_X86_VMX_VMCS_H */ diff --git a/arch/x86/kvm/vmx/vmcs12.c b/arch/x86/kvm/vmx/vmcs12.c new file mode 100644 index 000000000000..53dfb401316d --- /dev/null +++ b/arch/x86/kvm/vmx/vmcs12.c @@ -0,0 +1,157 @@ +// SPDX-License-Identifier: GPL-2.0 + +#include "vmcs12.h" + +#define ROL16(val, n) ((u16)(((u16)(val) << (n)) | ((u16)(val) >> (16 - (n))))) +#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x) +#define FIELD(number, name) [ROL16(number, 6)] = VMCS12_OFFSET(name) +#define FIELD64(number, name) \ + FIELD(number, name), \ + [ROL16(number##_HIGH, 6)] = VMCS12_OFFSET(name) + sizeof(u32) + +const unsigned short vmcs_field_to_offset_table[] = { + FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id), + FIELD(POSTED_INTR_NV, posted_intr_nv), + FIELD(GUEST_ES_SELECTOR, guest_es_selector), + FIELD(GUEST_CS_SELECTOR, guest_cs_selector), + FIELD(GUEST_SS_SELECTOR, guest_ss_selector), + FIELD(GUEST_DS_SELECTOR, guest_ds_selector), + FIELD(GUEST_FS_SELECTOR, guest_fs_selector), + FIELD(GUEST_GS_SELECTOR, guest_gs_selector), + FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector), + FIELD(GUEST_TR_SELECTOR, guest_tr_selector), + FIELD(GUEST_INTR_STATUS, guest_intr_status), + FIELD(GUEST_PML_INDEX, guest_pml_index), + FIELD(HOST_ES_SELECTOR, host_es_selector), + FIELD(HOST_CS_SELECTOR, host_cs_selector), + FIELD(HOST_SS_SELECTOR, host_ss_selector), + FIELD(HOST_DS_SELECTOR, host_ds_selector), + FIELD(HOST_FS_SELECTOR, host_fs_selector), + FIELD(HOST_GS_SELECTOR, host_gs_selector), + FIELD(HOST_TR_SELECTOR, host_tr_selector), + FIELD64(IO_BITMAP_A, io_bitmap_a), + FIELD64(IO_BITMAP_B, io_bitmap_b), + FIELD64(MSR_BITMAP, msr_bitmap), + FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr), + FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr), + FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr), + FIELD64(PML_ADDRESS, pml_address), + FIELD64(TSC_OFFSET, tsc_offset), + FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr), + FIELD64(APIC_ACCESS_ADDR, apic_access_addr), + FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr), + FIELD64(VM_FUNCTION_CONTROL, vm_function_control), + FIELD64(EPT_POINTER, ept_pointer), + FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0), + FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1), + FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2), + FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3), + FIELD64(EPTP_LIST_ADDRESS, eptp_list_address), + FIELD64(VMREAD_BITMAP, vmread_bitmap), + FIELD64(VMWRITE_BITMAP, vmwrite_bitmap), + FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap), + FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address), + FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer), + FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl), + FIELD64(GUEST_IA32_PAT, guest_ia32_pat), + FIELD64(GUEST_IA32_EFER, guest_ia32_efer), + FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl), + FIELD64(GUEST_PDPTR0, guest_pdptr0), + FIELD64(GUEST_PDPTR1, guest_pdptr1), + FIELD64(GUEST_PDPTR2, guest_pdptr2), + FIELD64(GUEST_PDPTR3, guest_pdptr3), + FIELD64(GUEST_BNDCFGS, guest_bndcfgs), + FIELD64(HOST_IA32_PAT, host_ia32_pat), + FIELD64(HOST_IA32_EFER, host_ia32_efer), + FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl), + FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control), + FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control), + FIELD(EXCEPTION_BITMAP, exception_bitmap), + FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask), + FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match), + FIELD(CR3_TARGET_COUNT, cr3_target_count), + FIELD(VM_EXIT_CONTROLS, vm_exit_controls), + FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count), + FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count), + FIELD(VM_ENTRY_CONTROLS, vm_entry_controls), + FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count), + FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field), + FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code), + FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len), + FIELD(TPR_THRESHOLD, tpr_threshold), + FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control), + FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error), + FIELD(VM_EXIT_REASON, vm_exit_reason), + FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info), + FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code), + FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field), + FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code), + FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len), + FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info), + FIELD(GUEST_ES_LIMIT, guest_es_limit), + FIELD(GUEST_CS_LIMIT, guest_cs_limit), + FIELD(GUEST_SS_LIMIT, guest_ss_limit), + FIELD(GUEST_DS_LIMIT, guest_ds_limit), + FIELD(GUEST_FS_LIMIT, guest_fs_limit), + FIELD(GUEST_GS_LIMIT, guest_gs_limit), + FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit), + FIELD(GUEST_TR_LIMIT, guest_tr_limit), + FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit), + FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit), + FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes), + FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes), + FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes), + FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes), + FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes), + FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes), + FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes), + FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes), + FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info), + FIELD(GUEST_ACTIVITY_STATE, guest_activity_state), + FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs), + FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs), + FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value), + FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask), + FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask), + FIELD(CR0_READ_SHADOW, cr0_read_shadow), + FIELD(CR4_READ_SHADOW, cr4_read_shadow), + FIELD(CR3_TARGET_VALUE0, cr3_target_value0), + FIELD(CR3_TARGET_VALUE1, cr3_target_value1), + FIELD(CR3_TARGET_VALUE2, cr3_target_value2), + FIELD(CR3_TARGET_VALUE3, cr3_target_value3), + FIELD(EXIT_QUALIFICATION, exit_qualification), + FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address), + FIELD(GUEST_CR0, guest_cr0), + FIELD(GUEST_CR3, guest_cr3), + FIELD(GUEST_CR4, guest_cr4), + FIELD(GUEST_ES_BASE, guest_es_base), + FIELD(GUEST_CS_BASE, guest_cs_base), + FIELD(GUEST_SS_BASE, guest_ss_base), + FIELD(GUEST_DS_BASE, guest_ds_base), + FIELD(GUEST_FS_BASE, guest_fs_base), + FIELD(GUEST_GS_BASE, guest_gs_base), + FIELD(GUEST_LDTR_BASE, guest_ldtr_base), + FIELD(GUEST_TR_BASE, guest_tr_base), + FIELD(GUEST_GDTR_BASE, guest_gdtr_base), + FIELD(GUEST_IDTR_BASE, guest_idtr_base), + FIELD(GUEST_DR7, guest_dr7), + FIELD(GUEST_RSP, guest_rsp), + FIELD(GUEST_RIP, guest_rip), + FIELD(GUEST_RFLAGS, guest_rflags), + FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions), + FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp), + FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip), + FIELD(HOST_CR0, host_cr0), + FIELD(HOST_CR3, host_cr3), + FIELD(HOST_CR4, host_cr4), + FIELD(HOST_FS_BASE, host_fs_base), + FIELD(HOST_GS_BASE, host_gs_base), + FIELD(HOST_TR_BASE, host_tr_base), + FIELD(HOST_GDTR_BASE, host_gdtr_base), + FIELD(HOST_IDTR_BASE, host_idtr_base), + FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp), + FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip), + FIELD(HOST_RSP, host_rsp), + FIELD(HOST_RIP, host_rip), +}; +const unsigned int nr_vmcs12_fields = ARRAY_SIZE(vmcs_field_to_offset_table); diff --git a/arch/x86/kvm/vmx/vmcs12.h b/arch/x86/kvm/vmx/vmcs12.h new file mode 100644 index 000000000000..3a742428ad17 --- /dev/null +++ b/arch/x86/kvm/vmx/vmcs12.h @@ -0,0 +1,462 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef __KVM_X86_VMX_VMCS12_H +#define __KVM_X86_VMX_VMCS12_H + +#include <linux/build_bug.h> + +#include "vmcs.h" + +/* + * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a + * single nested guest (L2), hence the name vmcs12. Any VMX implementation has + * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is + * stored in guest memory specified by VMPTRLD, but is opaque to the guest, + * which must access it using VMREAD/VMWRITE/VMCLEAR instructions. + * More than one of these structures may exist, if L1 runs multiple L2 guests. + * nested_vmx_run() will use the data here to build the vmcs02: a VMCS for the + * underlying hardware which will be used to run L2. + * This structure is packed to ensure that its layout is identical across + * machines (necessary for live migration). + * + * IMPORTANT: Changing the layout of existing fields in this structure + * will break save/restore compatibility with older kvm releases. When + * adding new fields, either use space in the reserved padding* arrays + * or add the new fields to the end of the structure. + */ +typedef u64 natural_width; +struct __packed vmcs12 { + /* According to the Intel spec, a VMCS region must start with the + * following two fields. Then follow implementation-specific data. + */ + struct vmcs_hdr hdr; + u32 abort; + + u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */ + u32 padding[7]; /* room for future expansion */ + + u64 io_bitmap_a; + u64 io_bitmap_b; + u64 msr_bitmap; + u64 vm_exit_msr_store_addr; + u64 vm_exit_msr_load_addr; + u64 vm_entry_msr_load_addr; + u64 tsc_offset; + u64 virtual_apic_page_addr; + u64 apic_access_addr; + u64 posted_intr_desc_addr; + u64 ept_pointer; + u64 eoi_exit_bitmap0; + u64 eoi_exit_bitmap1; + u64 eoi_exit_bitmap2; + u64 eoi_exit_bitmap3; + u64 xss_exit_bitmap; + u64 guest_physical_address; + u64 vmcs_link_pointer; + u64 guest_ia32_debugctl; + u64 guest_ia32_pat; + u64 guest_ia32_efer; + u64 guest_ia32_perf_global_ctrl; + u64 guest_pdptr0; + u64 guest_pdptr1; + u64 guest_pdptr2; + u64 guest_pdptr3; + u64 guest_bndcfgs; + u64 host_ia32_pat; + u64 host_ia32_efer; + u64 host_ia32_perf_global_ctrl; + u64 vmread_bitmap; + u64 vmwrite_bitmap; + u64 vm_function_control; + u64 eptp_list_address; + u64 pml_address; + u64 padding64[3]; /* room for future expansion */ + /* + * To allow migration of L1 (complete with its L2 guests) between + * machines of different natural widths (32 or 64 bit), we cannot have + * unsigned long fields with no explicit size. We use u64 (aliased + * natural_width) instead. Luckily, x86 is little-endian. + */ + natural_width cr0_guest_host_mask; + natural_width cr4_guest_host_mask; + natural_width cr0_read_shadow; + natural_width cr4_read_shadow; + natural_width cr3_target_value0; + natural_width cr3_target_value1; + natural_width cr3_target_value2; + natural_width cr3_target_value3; + natural_width exit_qualification; + natural_width guest_linear_address; + natural_width guest_cr0; + natural_width guest_cr3; + natural_width guest_cr4; + natural_width guest_es_base; + natural_width guest_cs_base; + natural_width guest_ss_base; + natural_width guest_ds_base; + natural_width guest_fs_base; + natural_width guest_gs_base; + natural_width guest_ldtr_base; + natural_width guest_tr_base; + natural_width guest_gdtr_base; + natural_width guest_idtr_base; + natural_width guest_dr7; + natural_width guest_rsp; + natural_width guest_rip; + natural_width guest_rflags; + natural_width guest_pending_dbg_exceptions; + natural_width guest_sysenter_esp; + natural_width guest_sysenter_eip; + natural_width host_cr0; + natural_width host_cr3; + natural_width host_cr4; + natural_width host_fs_base; + natural_width host_gs_base; + natural_width host_tr_base; + natural_width host_gdtr_base; + natural_width host_idtr_base; + natural_width host_ia32_sysenter_esp; + natural_width host_ia32_sysenter_eip; + natural_width host_rsp; + natural_width host_rip; + natural_width paddingl[8]; /* room for future expansion */ + u32 pin_based_vm_exec_control; + u32 cpu_based_vm_exec_control; + u32 exception_bitmap; + u32 page_fault_error_code_mask; + u32 page_fault_error_code_match; + u32 cr3_target_count; + u32 vm_exit_controls; + u32 vm_exit_msr_store_count; + u32 vm_exit_msr_load_count; + u32 vm_entry_controls; + u32 vm_entry_msr_load_count; + u32 vm_entry_intr_info_field; + u32 vm_entry_exception_error_code; + u32 vm_entry_instruction_len; + u32 tpr_threshold; + u32 secondary_vm_exec_control; + u32 vm_instruction_error; + u32 vm_exit_reason; + u32 vm_exit_intr_info; + u32 vm_exit_intr_error_code; + u32 idt_vectoring_info_field; + u32 idt_vectoring_error_code; + u32 vm_exit_instruction_len; + u32 vmx_instruction_info; + u32 guest_es_limit; + u32 guest_cs_limit; + u32 guest_ss_limit; + u32 guest_ds_limit; + u32 guest_fs_limit; + u32 guest_gs_limit; + u32 guest_ldtr_limit; + u32 guest_tr_limit; + u32 guest_gdtr_limit; + u32 guest_idtr_limit; + u32 guest_es_ar_bytes; + u32 guest_cs_ar_bytes; + u32 guest_ss_ar_bytes; + u32 guest_ds_ar_bytes; + u32 guest_fs_ar_bytes; + u32 guest_gs_ar_bytes; + u32 guest_ldtr_ar_bytes; + u32 guest_tr_ar_bytes; + u32 guest_interruptibility_info; + u32 guest_activity_state; + u32 guest_sysenter_cs; + u32 host_ia32_sysenter_cs; + u32 vmx_preemption_timer_value; + u32 padding32[7]; /* room for future expansion */ + u16 virtual_processor_id; + u16 posted_intr_nv; + u16 guest_es_selector; + u16 guest_cs_selector; + u16 guest_ss_selector; + u16 guest_ds_selector; + u16 guest_fs_selector; + u16 guest_gs_selector; + u16 guest_ldtr_selector; + u16 guest_tr_selector; + u16 guest_intr_status; + u16 host_es_selector; + u16 host_cs_selector; + u16 host_ss_selector; + u16 host_ds_selector; + u16 host_fs_selector; + u16 host_gs_selector; + u16 host_tr_selector; + u16 guest_pml_index; +}; + +/* + * VMCS12_REVISION is an arbitrary id that should be changed if the content or + * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and + * VMPTRLD verifies that the VMCS region that L1 is loading contains this id. + * + * IMPORTANT: Changing this value will break save/restore compatibility with + * older kvm releases. + */ +#define VMCS12_REVISION 0x11e57ed0 + +/* + * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region + * and any VMCS region. Although only sizeof(struct vmcs12) are used by the + * current implementation, 4K are reserved to avoid future complications. + */ +#define VMCS12_SIZE 0x1000 + +/* + * VMCS12_MAX_FIELD_INDEX is the highest index value used in any + * supported VMCS12 field encoding. + */ +#define VMCS12_MAX_FIELD_INDEX 0x17 + +/* + * For save/restore compatibility, the vmcs12 field offsets must not change. + */ +#define CHECK_OFFSET(field, loc) \ + BUILD_BUG_ON_MSG(offsetof(struct vmcs12, field) != (loc), \ + "Offset of " #field " in struct vmcs12 has changed.") + +static inline void vmx_check_vmcs12_offsets(void) +{ + CHECK_OFFSET(hdr, 0); + CHECK_OFFSET(abort, 4); + CHECK_OFFSET(launch_state, 8); + CHECK_OFFSET(io_bitmap_a, 40); + CHECK_OFFSET(io_bitmap_b, 48); + CHECK_OFFSET(msr_bitmap, 56); + CHECK_OFFSET(vm_exit_msr_store_addr, 64); + CHECK_OFFSET(vm_exit_msr_load_addr, 72); + CHECK_OFFSET(vm_entry_msr_load_addr, 80); + CHECK_OFFSET(tsc_offset, 88); + CHECK_OFFSET(virtual_apic_page_addr, 96); + CHECK_OFFSET(apic_access_addr, 104); + CHECK_OFFSET(posted_intr_desc_addr, 112); + CHECK_OFFSET(ept_pointer, 120); + CHECK_OFFSET(eoi_exit_bitmap0, 128); + CHECK_OFFSET(eoi_exit_bitmap1, 136); + CHECK_OFFSET(eoi_exit_bitmap2, 144); + CHECK_OFFSET(eoi_exit_bitmap3, 152); + CHECK_OFFSET(xss_exit_bitmap, 160); + CHECK_OFFSET(guest_physical_address, 168); + CHECK_OFFSET(vmcs_link_pointer, 176); + CHECK_OFFSET(guest_ia32_debugctl, 184); + CHECK_OFFSET(guest_ia32_pat, 192); + CHECK_OFFSET(guest_ia32_efer, 200); + CHECK_OFFSET(guest_ia32_perf_global_ctrl, 208); + CHECK_OFFSET(guest_pdptr0, 216); + CHECK_OFFSET(guest_pdptr1, 224); + CHECK_OFFSET(guest_pdptr2, 232); + CHECK_OFFSET(guest_pdptr3, 240); + CHECK_OFFSET(guest_bndcfgs, 248); + CHECK_OFFSET(host_ia32_pat, 256); + CHECK_OFFSET(host_ia32_efer, 264); + CHECK_OFFSET(host_ia32_perf_global_ctrl, 272); + CHECK_OFFSET(vmread_bitmap, 280); + CHECK_OFFSET(vmwrite_bitmap, 288); + CHECK_OFFSET(vm_function_control, 296); + CHECK_OFFSET(eptp_list_address, 304); + CHECK_OFFSET(pml_address, 312); + CHECK_OFFSET(cr0_guest_host_mask, 344); + CHECK_OFFSET(cr4_guest_host_mask, 352); + CHECK_OFFSET(cr0_read_shadow, 360); + CHECK_OFFSET(cr4_read_shadow, 368); + CHECK_OFFSET(cr3_target_value0, 376); + CHECK_OFFSET(cr3_target_value1, 384); + CHECK_OFFSET(cr3_target_value2, 392); + CHECK_OFFSET(cr3_target_value3, 400); + CHECK_OFFSET(exit_qualification, 408); + CHECK_OFFSET(guest_linear_address, 416); + CHECK_OFFSET(guest_cr0, 424); + CHECK_OFFSET(guest_cr3, 432); + CHECK_OFFSET(guest_cr4, 440); + CHECK_OFFSET(guest_es_base, 448); + CHECK_OFFSET(guest_cs_base, 456); + CHECK_OFFSET(guest_ss_base, 464); + CHECK_OFFSET(guest_ds_base, 472); + CHECK_OFFSET(guest_fs_base, 480); + CHECK_OFFSET(guest_gs_base, 488); + CHECK_OFFSET(guest_ldtr_base, 496); + CHECK_OFFSET(guest_tr_base, 504); + CHECK_OFFSET(guest_gdtr_base, 512); + CHECK_OFFSET(guest_idtr_base, 520); + CHECK_OFFSET(guest_dr7, 528); + CHECK_OFFSET(guest_rsp, 536); + CHECK_OFFSET(guest_rip, 544); + CHECK_OFFSET(guest_rflags, 552); + CHECK_OFFSET(guest_pending_dbg_exceptions, 560); + CHECK_OFFSET(guest_sysenter_esp, 568); + CHECK_OFFSET(guest_sysenter_eip, 576); + CHECK_OFFSET(host_cr0, 584); + CHECK_OFFSET(host_cr3, 592); + CHECK_OFFSET(host_cr4, 600); + CHECK_OFFSET(host_fs_base, 608); + CHECK_OFFSET(host_gs_base, 616); + CHECK_OFFSET(host_tr_base, 624); + CHECK_OFFSET(host_gdtr_base, 632); + CHECK_OFFSET(host_idtr_base, 640); + CHECK_OFFSET(host_ia32_sysenter_esp, 648); + CHECK_OFFSET(host_ia32_sysenter_eip, 656); + CHECK_OFFSET(host_rsp, 664); + CHECK_OFFSET(host_rip, 672); + CHECK_OFFSET(pin_based_vm_exec_control, 744); + CHECK_OFFSET(cpu_based_vm_exec_control, 748); + CHECK_OFFSET(exception_bitmap, 752); + CHECK_OFFSET(page_fault_error_code_mask, 756); + CHECK_OFFSET(page_fault_error_code_match, 760); + CHECK_OFFSET(cr3_target_count, 764); + CHECK_OFFSET(vm_exit_controls, 768); + CHECK_OFFSET(vm_exit_msr_store_count, 772); + CHECK_OFFSET(vm_exit_msr_load_count, 776); + CHECK_OFFSET(vm_entry_controls, 780); + CHECK_OFFSET(vm_entry_msr_load_count, 784); + CHECK_OFFSET(vm_entry_intr_info_field, 788); + CHECK_OFFSET(vm_entry_exception_error_code, 792); + CHECK_OFFSET(vm_entry_instruction_len, 796); + CHECK_OFFSET(tpr_threshold, 800); + CHECK_OFFSET(secondary_vm_exec_control, 804); + CHECK_OFFSET(vm_instruction_error, 808); + CHECK_OFFSET(vm_exit_reason, 812); + CHECK_OFFSET(vm_exit_intr_info, 816); + CHECK_OFFSET(vm_exit_intr_error_code, 820); + CHECK_OFFSET(idt_vectoring_info_field, 824); + CHECK_OFFSET(idt_vectoring_error_code, 828); + CHECK_OFFSET(vm_exit_instruction_len, 832); + CHECK_OFFSET(vmx_instruction_info, 836); + CHECK_OFFSET(guest_es_limit, 840); + CHECK_OFFSET(guest_cs_limit, 844); + CHECK_OFFSET(guest_ss_limit, 848); + CHECK_OFFSET(guest_ds_limit, 852); + CHECK_OFFSET(guest_fs_limit, 856); + CHECK_OFFSET(guest_gs_limit, 860); + CHECK_OFFSET(guest_ldtr_limit, 864); + CHECK_OFFSET(guest_tr_limit, 868); + CHECK_OFFSET(guest_gdtr_limit, 872); + CHECK_OFFSET(guest_idtr_limit, 876); + CHECK_OFFSET(guest_es_ar_bytes, 880); + CHECK_OFFSET(guest_cs_ar_bytes, 884); + CHECK_OFFSET(guest_ss_ar_bytes, 888); + CHECK_OFFSET(guest_ds_ar_bytes, 892); + CHECK_OFFSET(guest_fs_ar_bytes, 896); + CHECK_OFFSET(guest_gs_ar_bytes, 900); + CHECK_OFFSET(guest_ldtr_ar_bytes, 904); + CHECK_OFFSET(guest_tr_ar_bytes, 908); + CHECK_OFFSET(guest_interruptibility_info, 912); + CHECK_OFFSET(guest_activity_state, 916); + CHECK_OFFSET(guest_sysenter_cs, 920); + CHECK_OFFSET(host_ia32_sysenter_cs, 924); + CHECK_OFFSET(vmx_preemption_timer_value, 928); + CHECK_OFFSET(virtual_processor_id, 960); + CHECK_OFFSET(posted_intr_nv, 962); + CHECK_OFFSET(guest_es_selector, 964); + CHECK_OFFSET(guest_cs_selector, 966); + CHECK_OFFSET(guest_ss_selector, 968); + CHECK_OFFSET(guest_ds_selector, 970); + CHECK_OFFSET(guest_fs_selector, 972); + CHECK_OFFSET(guest_gs_selector, 974); + CHECK_OFFSET(guest_ldtr_selector, 976); + CHECK_OFFSET(guest_tr_selector, 978); + CHECK_OFFSET(guest_intr_status, 980); + CHECK_OFFSET(host_es_selector, 982); + CHECK_OFFSET(host_cs_selector, 984); + CHECK_OFFSET(host_ss_selector, 986); + CHECK_OFFSET(host_ds_selector, 988); + CHECK_OFFSET(host_fs_selector, 990); + CHECK_OFFSET(host_gs_selector, 992); + CHECK_OFFSET(host_tr_selector, 994); + CHECK_OFFSET(guest_pml_index, 996); +} + +extern const unsigned short vmcs_field_to_offset_table[]; +extern const unsigned int nr_vmcs12_fields; + +#define ROL16(val, n) ((u16)(((u16)(val) << (n)) | ((u16)(val) >> (16 - (n))))) + +static inline short vmcs_field_to_offset(unsigned long field) +{ + unsigned short offset; + unsigned int index; + + if (field >> 15) + return -ENOENT; + + index = ROL16(field, 6); + if (index >= nr_vmcs12_fields) + return -ENOENT; + + index = array_index_nospec(index, nr_vmcs12_fields); + offset = vmcs_field_to_offset_table[index]; + if (offset == 0) + return -ENOENT; + return offset; +} + +#undef ROL16 + +/* + * Read a vmcs12 field. Since these can have varying lengths and we return + * one type, we chose the biggest type (u64) and zero-extend the return value + * to that size. Note that the caller, handle_vmread, might need to use only + * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of + * 64-bit fields are to be returned). + */ +static inline int vmcs12_read_any(struct vmcs12 *vmcs12, + unsigned long field, u64 *ret) +{ + short offset = vmcs_field_to_offset(field); + char *p; + + if (offset < 0) + return offset; + + p = (char *)vmcs12 + offset; + + switch (vmcs_field_width(field)) { + case VMCS_FIELD_WIDTH_NATURAL_WIDTH: + *ret = *((natural_width *)p); + return 0; + case VMCS_FIELD_WIDTH_U16: + *ret = *((u16 *)p); + return 0; + case VMCS_FIELD_WIDTH_U32: + *ret = *((u32 *)p); + return 0; + case VMCS_FIELD_WIDTH_U64: + *ret = *((u64 *)p); + return 0; + default: + WARN_ON(1); + return -ENOENT; + } +} + +static inline int vmcs12_write_any(struct vmcs12 *vmcs12, + unsigned long field, u64 field_value){ + short offset = vmcs_field_to_offset(field); + char *p = (char *)vmcs12 + offset; + + if (offset < 0) + return offset; + + switch (vmcs_field_width(field)) { + case VMCS_FIELD_WIDTH_U16: + *(u16 *)p = field_value; + return 0; + case VMCS_FIELD_WIDTH_U32: + *(u32 *)p = field_value; + return 0; + case VMCS_FIELD_WIDTH_U64: + *(u64 *)p = field_value; + return 0; + case VMCS_FIELD_WIDTH_NATURAL_WIDTH: + *(natural_width *)p = field_value; + return 0; + default: + WARN_ON(1); + return -ENOENT; + } + +} + +#endif /* __KVM_X86_VMX_VMCS12_H */ diff --git a/arch/x86/kvm/vmx_shadow_fields.h b/arch/x86/kvm/vmx/vmcs_shadow_fields.h index 132432f375c2..132432f375c2 100644 --- a/arch/x86/kvm/vmx_shadow_fields.h +++ b/arch/x86/kvm/vmx/vmcs_shadow_fields.h diff --git a/arch/x86/kvm/vmx/vmenter.S b/arch/x86/kvm/vmx/vmenter.S new file mode 100644 index 000000000000..bcef2c7e9bc4 --- /dev/null +++ b/arch/x86/kvm/vmx/vmenter.S @@ -0,0 +1,57 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#include <linux/linkage.h> +#include <asm/asm.h> + + .text + +/** + * vmx_vmenter - VM-Enter the current loaded VMCS + * + * %RFLAGS.ZF: !VMCS.LAUNCHED, i.e. controls VMLAUNCH vs. VMRESUME + * + * Returns: + * %RFLAGS.CF is set on VM-Fail Invalid + * %RFLAGS.ZF is set on VM-Fail Valid + * %RFLAGS.{CF,ZF} are cleared on VM-Success, i.e. VM-Exit + * + * Note that VMRESUME/VMLAUNCH fall-through and return directly if + * they VM-Fail, whereas a successful VM-Enter + VM-Exit will jump + * to vmx_vmexit. + */ +ENTRY(vmx_vmenter) + /* EFLAGS.ZF is set if VMCS.LAUNCHED == 0 */ + je 2f + +1: vmresume + ret + +2: vmlaunch + ret + +3: cmpb $0, kvm_rebooting + jne 4f + call kvm_spurious_fault +4: ret + + .pushsection .fixup, "ax" +5: jmp 3b + .popsection + + _ASM_EXTABLE(1b, 5b) + _ASM_EXTABLE(2b, 5b) + +ENDPROC(vmx_vmenter) + +/** + * vmx_vmexit - Handle a VMX VM-Exit + * + * Returns: + * %RFLAGS.{CF,ZF} are cleared on VM-Success, i.e. VM-Exit + * + * This is vmx_vmenter's partner in crime. On a VM-Exit, control will jump + * here after hardware loads the host's state, i.e. this is the destination + * referred to by VMCS.HOST_RIP. + */ +ENTRY(vmx_vmexit) + ret +ENDPROC(vmx_vmexit) diff --git a/arch/x86/kvm/vmx/vmx.c b/arch/x86/kvm/vmx/vmx.c new file mode 100644 index 000000000000..41d6f7081ff7 --- /dev/null +++ b/arch/x86/kvm/vmx/vmx.c @@ -0,0 +1,7935 @@ +/* + * Kernel-based Virtual Machine driver for Linux + * + * This module enables machines with Intel VT-x extensions to run virtual + * machines without emulation or binary translation. + * + * Copyright (C) 2006 Qumranet, Inc. + * Copyright 2010 Red Hat, Inc. and/or its affiliates. + * + * Authors: + * Avi Kivity <avi@qumranet.com> + * Yaniv Kamay <yaniv@qumranet.com> + * + * This work is licensed under the terms of the GNU GPL, version 2. See + * the COPYING file in the top-level directory. + * + */ + +#include <linux/frame.h> +#include <linux/highmem.h> +#include <linux/hrtimer.h> +#include <linux/kernel.h> +#include <linux/kvm_host.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/mod_devicetable.h> +#include <linux/mm.h> +#include <linux/sched.h> +#include <linux/slab.h> +#include <linux/tboot.h> +#include <linux/trace_events.h> + +#include <asm/apic.h> +#include <asm/asm.h> +#include <asm/cpu.h> +#include <asm/debugreg.h> +#include <asm/desc.h> +#include <asm/fpu/internal.h> +#include <asm/io.h> +#include <asm/irq_remapping.h> +#include <asm/kexec.h> +#include <asm/perf_event.h> +#include <asm/mce.h> +#include <asm/mmu_context.h> +#include <asm/mshyperv.h> +#include <asm/spec-ctrl.h> +#include <asm/virtext.h> +#include <asm/vmx.h> + +#include "capabilities.h" +#include "cpuid.h" +#include "evmcs.h" +#include "irq.h" +#include "kvm_cache_regs.h" +#include "lapic.h" +#include "mmu.h" +#include "nested.h" +#include "ops.h" +#include "pmu.h" +#include "trace.h" +#include "vmcs.h" +#include "vmcs12.h" +#include "vmx.h" +#include "x86.h" + +MODULE_AUTHOR("Qumranet"); +MODULE_LICENSE("GPL"); + +static const struct x86_cpu_id vmx_cpu_id[] = { + X86_FEATURE_MATCH(X86_FEATURE_VMX), + {} +}; +MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); + +bool __read_mostly enable_vpid = 1; +module_param_named(vpid, enable_vpid, bool, 0444); + +static bool __read_mostly enable_vnmi = 1; +module_param_named(vnmi, enable_vnmi, bool, S_IRUGO); + +bool __read_mostly flexpriority_enabled = 1; +module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); + +bool __read_mostly enable_ept = 1; +module_param_named(ept, enable_ept, bool, S_IRUGO); + +bool __read_mostly enable_unrestricted_guest = 1; +module_param_named(unrestricted_guest, + enable_unrestricted_guest, bool, S_IRUGO); + +bool __read_mostly enable_ept_ad_bits = 1; +module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); + +static bool __read_mostly emulate_invalid_guest_state = true; +module_param(emulate_invalid_guest_state, bool, S_IRUGO); + +static bool __read_mostly fasteoi = 1; +module_param(fasteoi, bool, S_IRUGO); + +static bool __read_mostly enable_apicv = 1; +module_param(enable_apicv, bool, S_IRUGO); + +/* + * If nested=1, nested virtualization is supported, i.e., guests may use + * VMX and be a hypervisor for its own guests. If nested=0, guests may not + * use VMX instructions. + */ +static bool __read_mostly nested = 1; +module_param(nested, bool, S_IRUGO); + +static u64 __read_mostly host_xss; + +bool __read_mostly enable_pml = 1; +module_param_named(pml, enable_pml, bool, S_IRUGO); + +#define MSR_BITMAP_MODE_X2APIC 1 +#define MSR_BITMAP_MODE_X2APIC_APICV 2 + +#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL + +/* Guest_tsc -> host_tsc conversion requires 64-bit division. */ +static int __read_mostly cpu_preemption_timer_multi; +static bool __read_mostly enable_preemption_timer = 1; +#ifdef CONFIG_X86_64 +module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); +#endif + +#define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) +#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE +#define KVM_VM_CR0_ALWAYS_ON \ + (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \ + X86_CR0_WP | X86_CR0_PG | X86_CR0_PE) +#define KVM_CR4_GUEST_OWNED_BITS \ + (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \ + | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD) + +#define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE +#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) +#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) + +#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) + +#define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ + RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ + RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ + RTIT_STATUS_BYTECNT)) + +#define MSR_IA32_RTIT_OUTPUT_BASE_MASK \ + (~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f) + +/* + * These 2 parameters are used to config the controls for Pause-Loop Exiting: + * ple_gap: upper bound on the amount of time between two successive + * executions of PAUSE in a loop. Also indicate if ple enabled. + * According to test, this time is usually smaller than 128 cycles. + * ple_window: upper bound on the amount of time a guest is allowed to execute + * in a PAUSE loop. Tests indicate that most spinlocks are held for + * less than 2^12 cycles + * Time is measured based on a counter that runs at the same rate as the TSC, + * refer SDM volume 3b section 21.6.13 & 22.1.3. + */ +static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; +module_param(ple_gap, uint, 0444); + +static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; +module_param(ple_window, uint, 0444); + +/* Default doubles per-vcpu window every exit. */ +static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; +module_param(ple_window_grow, uint, 0444); + +/* Default resets per-vcpu window every exit to ple_window. */ +static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; +module_param(ple_window_shrink, uint, 0444); + +/* Default is to compute the maximum so we can never overflow. */ +static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; +module_param(ple_window_max, uint, 0444); + +/* Default is SYSTEM mode, 1 for host-guest mode */ +int __read_mostly pt_mode = PT_MODE_SYSTEM; +module_param(pt_mode, int, S_IRUGO); + +static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); +static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); +static DEFINE_MUTEX(vmx_l1d_flush_mutex); + +/* Storage for pre module init parameter parsing */ +static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; + +static const struct { + const char *option; + bool for_parse; +} vmentry_l1d_param[] = { + [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, + [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, + [VMENTER_L1D_FLUSH_COND] = {"cond", true}, + [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, + [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, + [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, +}; + +#define L1D_CACHE_ORDER 4 +static void *vmx_l1d_flush_pages; + +static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) +{ + struct page *page; + unsigned int i; + + if (!enable_ept) { + l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; + return 0; + } + + if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { + u64 msr; + + rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr); + if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { + l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; + return 0; + } + } + + /* If set to auto use the default l1tf mitigation method */ + if (l1tf == VMENTER_L1D_FLUSH_AUTO) { + switch (l1tf_mitigation) { + case L1TF_MITIGATION_OFF: + l1tf = VMENTER_L1D_FLUSH_NEVER; + break; + case L1TF_MITIGATION_FLUSH_NOWARN: + case L1TF_MITIGATION_FLUSH: + case L1TF_MITIGATION_FLUSH_NOSMT: + l1tf = VMENTER_L1D_FLUSH_COND; + break; + case L1TF_MITIGATION_FULL: + case L1TF_MITIGATION_FULL_FORCE: + l1tf = VMENTER_L1D_FLUSH_ALWAYS; + break; + } + } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { + l1tf = VMENTER_L1D_FLUSH_ALWAYS; + } + + if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && + !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { + page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); + if (!page) + return -ENOMEM; + vmx_l1d_flush_pages = page_address(page); + + /* + * Initialize each page with a different pattern in + * order to protect against KSM in the nested + * virtualization case. + */ + for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { + memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, + PAGE_SIZE); + } + } + + l1tf_vmx_mitigation = l1tf; + + if (l1tf != VMENTER_L1D_FLUSH_NEVER) + static_branch_enable(&vmx_l1d_should_flush); + else + static_branch_disable(&vmx_l1d_should_flush); + + if (l1tf == VMENTER_L1D_FLUSH_COND) + static_branch_enable(&vmx_l1d_flush_cond); + else + static_branch_disable(&vmx_l1d_flush_cond); + return 0; +} + +static int vmentry_l1d_flush_parse(const char *s) +{ + unsigned int i; + + if (s) { + for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { + if (vmentry_l1d_param[i].for_parse && + sysfs_streq(s, vmentry_l1d_param[i].option)) + return i; + } + } + return -EINVAL; +} + +static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) +{ + int l1tf, ret; + + l1tf = vmentry_l1d_flush_parse(s); + if (l1tf < 0) + return l1tf; + + if (!boot_cpu_has(X86_BUG_L1TF)) + return 0; + + /* + * Has vmx_init() run already? If not then this is the pre init + * parameter parsing. In that case just store the value and let + * vmx_init() do the proper setup after enable_ept has been + * established. + */ + if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { + vmentry_l1d_flush_param = l1tf; + return 0; + } + + mutex_lock(&vmx_l1d_flush_mutex); + ret = vmx_setup_l1d_flush(l1tf); + mutex_unlock(&vmx_l1d_flush_mutex); + return ret; +} + +static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) +{ + if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) + return sprintf(s, "???\n"); + + return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); +} + +static const struct kernel_param_ops vmentry_l1d_flush_ops = { + .set = vmentry_l1d_flush_set, + .get = vmentry_l1d_flush_get, +}; +module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); + +static bool guest_state_valid(struct kvm_vcpu *vcpu); +static u32 vmx_segment_access_rights(struct kvm_segment *var); +static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, + u32 msr, int type); + +void vmx_vmexit(void); + +static DEFINE_PER_CPU(struct vmcs *, vmxarea); +DEFINE_PER_CPU(struct vmcs *, current_vmcs); +/* + * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed + * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. + */ +static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); + +/* + * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we + * can find which vCPU should be waken up. + */ +static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu); +static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock); + +static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); +static DEFINE_SPINLOCK(vmx_vpid_lock); + +struct vmcs_config vmcs_config; +struct vmx_capability vmx_capability; + +#define VMX_SEGMENT_FIELD(seg) \ + [VCPU_SREG_##seg] = { \ + .selector = GUEST_##seg##_SELECTOR, \ + .base = GUEST_##seg##_BASE, \ + .limit = GUEST_##seg##_LIMIT, \ + .ar_bytes = GUEST_##seg##_AR_BYTES, \ + } + +static const struct kvm_vmx_segment_field { + unsigned selector; + unsigned base; + unsigned limit; + unsigned ar_bytes; +} kvm_vmx_segment_fields[] = { + VMX_SEGMENT_FIELD(CS), + VMX_SEGMENT_FIELD(DS), + VMX_SEGMENT_FIELD(ES), + VMX_SEGMENT_FIELD(FS), + VMX_SEGMENT_FIELD(GS), + VMX_SEGMENT_FIELD(SS), + VMX_SEGMENT_FIELD(TR), + VMX_SEGMENT_FIELD(LDTR), +}; + +u64 host_efer; + +/* + * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm + * will emulate SYSCALL in legacy mode if the vendor string in guest + * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To + * support this emulation, IA32_STAR must always be included in + * vmx_msr_index[], even in i386 builds. + */ +const u32 vmx_msr_index[] = { +#ifdef CONFIG_X86_64 + MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, +#endif + MSR_EFER, MSR_TSC_AUX, MSR_STAR, +}; + +#if IS_ENABLED(CONFIG_HYPERV) +static bool __read_mostly enlightened_vmcs = true; +module_param(enlightened_vmcs, bool, 0444); + +/* check_ept_pointer() should be under protection of ept_pointer_lock. */ +static void check_ept_pointer_match(struct kvm *kvm) +{ + struct kvm_vcpu *vcpu; + u64 tmp_eptp = INVALID_PAGE; + int i; + + kvm_for_each_vcpu(i, vcpu, kvm) { + if (!VALID_PAGE(tmp_eptp)) { + tmp_eptp = to_vmx(vcpu)->ept_pointer; + } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) { + to_kvm_vmx(kvm)->ept_pointers_match + = EPT_POINTERS_MISMATCH; + return; + } + } + + to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH; +} + +int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush, + void *data) +{ + struct kvm_tlb_range *range = data; + + return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn, + range->pages); +} + +static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm, + struct kvm_vcpu *vcpu, struct kvm_tlb_range *range) +{ + u64 ept_pointer = to_vmx(vcpu)->ept_pointer; + + /* + * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address + * of the base of EPT PML4 table, strip off EPT configuration + * information. + */ + if (range) + return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK, + kvm_fill_hv_flush_list_func, (void *)range); + else + return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK); +} + +static int hv_remote_flush_tlb_with_range(struct kvm *kvm, + struct kvm_tlb_range *range) +{ + struct kvm_vcpu *vcpu; + int ret = -ENOTSUPP, i; + + spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock); + + if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK) + check_ept_pointer_match(kvm); + + if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) { + kvm_for_each_vcpu(i, vcpu, kvm) { + /* If ept_pointer is invalid pointer, bypass flush request. */ + if (VALID_PAGE(to_vmx(vcpu)->ept_pointer)) + ret |= __hv_remote_flush_tlb_with_range( + kvm, vcpu, range); + } + } else { + ret = __hv_remote_flush_tlb_with_range(kvm, + kvm_get_vcpu(kvm, 0), range); + } + + spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock); + return ret; +} +static int hv_remote_flush_tlb(struct kvm *kvm) +{ + return hv_remote_flush_tlb_with_range(kvm, NULL); +} + +#endif /* IS_ENABLED(CONFIG_HYPERV) */ + +/* + * Comment's format: document - errata name - stepping - processor name. + * Refer from + * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp + */ +static u32 vmx_preemption_cpu_tfms[] = { +/* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ +0x000206E6, +/* 323056.pdf - AAX65 - C2 - Xeon L3406 */ +/* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ +/* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ +0x00020652, +/* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ +0x00020655, +/* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ +/* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ +/* + * 320767.pdf - AAP86 - B1 - + * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile + */ +0x000106E5, +/* 321333.pdf - AAM126 - C0 - Xeon 3500 */ +0x000106A0, +/* 321333.pdf - AAM126 - C1 - Xeon 3500 */ +0x000106A1, +/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ +0x000106A4, + /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ + /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ + /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ +0x000106A5, + /* Xeon E3-1220 V2 */ +0x000306A8, +}; + +static inline bool cpu_has_broken_vmx_preemption_timer(void) +{ + u32 eax = cpuid_eax(0x00000001), i; + + /* Clear the reserved bits */ + eax &= ~(0x3U << 14 | 0xfU << 28); + for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) + if (eax == vmx_preemption_cpu_tfms[i]) + return true; + + return false; +} + +static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) +{ + return flexpriority_enabled && lapic_in_kernel(vcpu); +} + +static inline bool report_flexpriority(void) +{ + return flexpriority_enabled; +} + +static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr) +{ + int i; + + for (i = 0; i < vmx->nmsrs; ++i) + if (vmx_msr_index[vmx->guest_msrs[i].index] == msr) + return i; + return -1; +} + +struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr) +{ + int i; + + i = __find_msr_index(vmx, msr); + if (i >= 0) + return &vmx->guest_msrs[i]; + return NULL; +} + +void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs) +{ + vmcs_clear(loaded_vmcs->vmcs); + if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) + vmcs_clear(loaded_vmcs->shadow_vmcs); + loaded_vmcs->cpu = -1; + loaded_vmcs->launched = 0; +} + +#ifdef CONFIG_KEXEC_CORE +/* + * This bitmap is used to indicate whether the vmclear + * operation is enabled on all cpus. All disabled by + * default. + */ +static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE; + +static inline void crash_enable_local_vmclear(int cpu) +{ + cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap); +} + +static inline void crash_disable_local_vmclear(int cpu) +{ + cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap); +} + +static inline int crash_local_vmclear_enabled(int cpu) +{ + return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap); +} + +static void crash_vmclear_local_loaded_vmcss(void) +{ + int cpu = raw_smp_processor_id(); + struct loaded_vmcs *v; + + if (!crash_local_vmclear_enabled(cpu)) + return; + + list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), + loaded_vmcss_on_cpu_link) + vmcs_clear(v->vmcs); +} +#else +static inline void crash_enable_local_vmclear(int cpu) { } +static inline void crash_disable_local_vmclear(int cpu) { } +#endif /* CONFIG_KEXEC_CORE */ + +static void __loaded_vmcs_clear(void *arg) +{ + struct loaded_vmcs *loaded_vmcs = arg; + int cpu = raw_smp_processor_id(); + + if (loaded_vmcs->cpu != cpu) + return; /* vcpu migration can race with cpu offline */ + if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) + per_cpu(current_vmcs, cpu) = NULL; + crash_disable_local_vmclear(cpu); + list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); + + /* + * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link + * is before setting loaded_vmcs->vcpu to -1 which is done in + * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist + * then adds the vmcs into percpu list before it is deleted. + */ + smp_wmb(); + + loaded_vmcs_init(loaded_vmcs); + crash_enable_local_vmclear(cpu); +} + +void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) +{ + int cpu = loaded_vmcs->cpu; + + if (cpu != -1) + smp_call_function_single(cpu, + __loaded_vmcs_clear, loaded_vmcs, 1); +} + +static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, + unsigned field) +{ + bool ret; + u32 mask = 1 << (seg * SEG_FIELD_NR + field); + + if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) { + vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS); + vmx->segment_cache.bitmask = 0; + } + ret = vmx->segment_cache.bitmask & mask; + vmx->segment_cache.bitmask |= mask; + return ret; +} + +static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) +{ + u16 *p = &vmx->segment_cache.seg[seg].selector; + + if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) + *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); + return *p; +} + +static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) +{ + ulong *p = &vmx->segment_cache.seg[seg].base; + + if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) + *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); + return *p; +} + +static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) +{ + u32 *p = &vmx->segment_cache.seg[seg].limit; + + if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) + *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); + return *p; +} + +static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) +{ + u32 *p = &vmx->segment_cache.seg[seg].ar; + + if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) + *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); + return *p; +} + +void update_exception_bitmap(struct kvm_vcpu *vcpu) +{ + u32 eb; + + eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | + (1u << DB_VECTOR) | (1u << AC_VECTOR); + /* + * Guest access to VMware backdoor ports could legitimately + * trigger #GP because of TSS I/O permission bitmap. + * We intercept those #GP and allow access to them anyway + * as VMware does. + */ + if (enable_vmware_backdoor) + eb |= (1u << GP_VECTOR); + if ((vcpu->guest_debug & + (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == + (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) + eb |= 1u << BP_VECTOR; + if (to_vmx(vcpu)->rmode.vm86_active) + eb = ~0; + if (enable_ept) + eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */ + + /* When we are running a nested L2 guest and L1 specified for it a + * certain exception bitmap, we must trap the same exceptions and pass + * them to L1. When running L2, we will only handle the exceptions + * specified above if L1 did not want them. + */ + if (is_guest_mode(vcpu)) + eb |= get_vmcs12(vcpu)->exception_bitmap; + + vmcs_write32(EXCEPTION_BITMAP, eb); +} + +/* + * Check if MSR is intercepted for currently loaded MSR bitmap. + */ +static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) +{ + unsigned long *msr_bitmap; + int f = sizeof(unsigned long); + + if (!cpu_has_vmx_msr_bitmap()) + return true; + + msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap; + + if (msr <= 0x1fff) { + return !!test_bit(msr, msr_bitmap + 0x800 / f); + } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { + msr &= 0x1fff; + return !!test_bit(msr, msr_bitmap + 0xc00 / f); + } + + return true; +} + +static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, + unsigned long entry, unsigned long exit) +{ + vm_entry_controls_clearbit(vmx, entry); + vm_exit_controls_clearbit(vmx, exit); +} + +static int find_msr(struct vmx_msrs *m, unsigned int msr) +{ + unsigned int i; + + for (i = 0; i < m->nr; ++i) { + if (m->val[i].index == msr) + return i; + } + return -ENOENT; +} + +static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) +{ + int i; + struct msr_autoload *m = &vmx->msr_autoload; + + switch (msr) { + case MSR_EFER: + if (cpu_has_load_ia32_efer()) { + clear_atomic_switch_msr_special(vmx, + VM_ENTRY_LOAD_IA32_EFER, + VM_EXIT_LOAD_IA32_EFER); + return; + } + break; + case MSR_CORE_PERF_GLOBAL_CTRL: + if (cpu_has_load_perf_global_ctrl()) { + clear_atomic_switch_msr_special(vmx, + VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, + VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); + return; + } + break; + } + i = find_msr(&m->guest, msr); + if (i < 0) + goto skip_guest; + --m->guest.nr; + m->guest.val[i] = m->guest.val[m->guest.nr]; + vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); + +skip_guest: + i = find_msr(&m->host, msr); + if (i < 0) + return; + + --m->host.nr; + m->host.val[i] = m->host.val[m->host.nr]; + vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); +} + +static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, + unsigned long entry, unsigned long exit, + unsigned long guest_val_vmcs, unsigned long host_val_vmcs, + u64 guest_val, u64 host_val) +{ + vmcs_write64(guest_val_vmcs, guest_val); + if (host_val_vmcs != HOST_IA32_EFER) + vmcs_write64(host_val_vmcs, host_val); + vm_entry_controls_setbit(vmx, entry); + vm_exit_controls_setbit(vmx, exit); +} + +static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, + u64 guest_val, u64 host_val, bool entry_only) +{ + int i, j = 0; + struct msr_autoload *m = &vmx->msr_autoload; + + switch (msr) { + case MSR_EFER: + if (cpu_has_load_ia32_efer()) { + add_atomic_switch_msr_special(vmx, + VM_ENTRY_LOAD_IA32_EFER, + VM_EXIT_LOAD_IA32_EFER, + GUEST_IA32_EFER, + HOST_IA32_EFER, + guest_val, host_val); + return; + } + break; + case MSR_CORE_PERF_GLOBAL_CTRL: + if (cpu_has_load_perf_global_ctrl()) { + add_atomic_switch_msr_special(vmx, + VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, + VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, + GUEST_IA32_PERF_GLOBAL_CTRL, + HOST_IA32_PERF_GLOBAL_CTRL, + guest_val, host_val); + return; + } + break; + case MSR_IA32_PEBS_ENABLE: + /* PEBS needs a quiescent period after being disabled (to write + * a record). Disabling PEBS through VMX MSR swapping doesn't + * provide that period, so a CPU could write host's record into + * guest's memory. + */ + wrmsrl(MSR_IA32_PEBS_ENABLE, 0); + } + + i = find_msr(&m->guest, msr); + if (!entry_only) + j = find_msr(&m->host, msr); + + if (i == NR_AUTOLOAD_MSRS || j == NR_AUTOLOAD_MSRS) { + printk_once(KERN_WARNING "Not enough msr switch entries. " + "Can't add msr %x\n", msr); + return; + } + if (i < 0) { + i = m->guest.nr++; + vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); + } + m->guest.val[i].index = msr; + m->guest.val[i].value = guest_val; + + if (entry_only) + return; + + if (j < 0) { + j = m->host.nr++; + vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); + } + m->host.val[j].index = msr; + m->host.val[j].value = host_val; +} + +static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset) +{ + u64 guest_efer = vmx->vcpu.arch.efer; + u64 ignore_bits = 0; + + if (!enable_ept) { + /* + * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing + * host CPUID is more efficient than testing guest CPUID + * or CR4. Host SMEP is anyway a requirement for guest SMEP. + */ + if (boot_cpu_has(X86_FEATURE_SMEP)) + guest_efer |= EFER_NX; + else if (!(guest_efer & EFER_NX)) + ignore_bits |= EFER_NX; + } + + /* + * LMA and LME handled by hardware; SCE meaningless outside long mode. + */ + ignore_bits |= EFER_SCE; +#ifdef CONFIG_X86_64 + ignore_bits |= EFER_LMA | EFER_LME; + /* SCE is meaningful only in long mode on Intel */ + if (guest_efer & EFER_LMA) + ignore_bits &= ~(u64)EFER_SCE; +#endif + + /* + * On EPT, we can't emulate NX, so we must switch EFER atomically. + * On CPUs that support "load IA32_EFER", always switch EFER + * atomically, since it's faster than switching it manually. + */ + if (cpu_has_load_ia32_efer() || + (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { + if (!(guest_efer & EFER_LMA)) + guest_efer &= ~EFER_LME; + if (guest_efer != host_efer) + add_atomic_switch_msr(vmx, MSR_EFER, + guest_efer, host_efer, false); + else + clear_atomic_switch_msr(vmx, MSR_EFER); + return false; + } else { + clear_atomic_switch_msr(vmx, MSR_EFER); + + guest_efer &= ~ignore_bits; + guest_efer |= host_efer & ignore_bits; + + vmx->guest_msrs[efer_offset].data = guest_efer; + vmx->guest_msrs[efer_offset].mask = ~ignore_bits; + + return true; + } +} + +#ifdef CONFIG_X86_32 +/* + * On 32-bit kernels, VM exits still load the FS and GS bases from the + * VMCS rather than the segment table. KVM uses this helper to figure + * out the current bases to poke them into the VMCS before entry. + */ +static unsigned long segment_base(u16 selector) +{ + struct desc_struct *table; + unsigned long v; + + if (!(selector & ~SEGMENT_RPL_MASK)) + return 0; + + table = get_current_gdt_ro(); + + if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { + u16 ldt_selector = kvm_read_ldt(); + + if (!(ldt_selector & ~SEGMENT_RPL_MASK)) + return 0; + + table = (struct desc_struct *)segment_base(ldt_selector); + } + v = get_desc_base(&table[selector >> 3]); + return v; +} +#endif + +static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) +{ + u32 i; + + wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); + wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); + wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); + wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); + for (i = 0; i < addr_range; i++) { + wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); + wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); + } +} + +static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) +{ + u32 i; + + rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); + rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); + rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); + rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); + for (i = 0; i < addr_range; i++) { + rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); + rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); + } +} + +static void pt_guest_enter(struct vcpu_vmx *vmx) +{ + if (pt_mode == PT_MODE_SYSTEM) + return; + + /* + * GUEST_IA32_RTIT_CTL is already set in the VMCS. + * Save host state before VM entry. + */ + rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); + if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { + wrmsrl(MSR_IA32_RTIT_CTL, 0); + pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range); + pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range); + } +} + +static void pt_guest_exit(struct vcpu_vmx *vmx) +{ + if (pt_mode == PT_MODE_SYSTEM) + return; + + if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { + pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range); + pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range); + } + + /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */ + wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); +} + +void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct vmcs_host_state *host_state; +#ifdef CONFIG_X86_64 + int cpu = raw_smp_processor_id(); +#endif + unsigned long fs_base, gs_base; + u16 fs_sel, gs_sel; + int i; + + vmx->req_immediate_exit = false; + + /* + * Note that guest MSRs to be saved/restored can also be changed + * when guest state is loaded. This happens when guest transitions + * to/from long-mode by setting MSR_EFER.LMA. + */ + if (!vmx->loaded_cpu_state || vmx->guest_msrs_dirty) { + vmx->guest_msrs_dirty = false; + for (i = 0; i < vmx->save_nmsrs; ++i) + kvm_set_shared_msr(vmx->guest_msrs[i].index, + vmx->guest_msrs[i].data, + vmx->guest_msrs[i].mask); + + } + + if (vmx->loaded_cpu_state) + return; + + vmx->loaded_cpu_state = vmx->loaded_vmcs; + host_state = &vmx->loaded_cpu_state->host_state; + + /* + * Set host fs and gs selectors. Unfortunately, 22.2.3 does not + * allow segment selectors with cpl > 0 or ti == 1. + */ + host_state->ldt_sel = kvm_read_ldt(); + +#ifdef CONFIG_X86_64 + savesegment(ds, host_state->ds_sel); + savesegment(es, host_state->es_sel); + + gs_base = cpu_kernelmode_gs_base(cpu); + if (likely(is_64bit_mm(current->mm))) { + save_fsgs_for_kvm(); + fs_sel = current->thread.fsindex; + gs_sel = current->thread.gsindex; + fs_base = current->thread.fsbase; + vmx->msr_host_kernel_gs_base = current->thread.gsbase; + } else { + savesegment(fs, fs_sel); + savesegment(gs, gs_sel); + fs_base = read_msr(MSR_FS_BASE); + vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); + } + + wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); +#else + savesegment(fs, fs_sel); + savesegment(gs, gs_sel); + fs_base = segment_base(fs_sel); + gs_base = segment_base(gs_sel); +#endif + + if (unlikely(fs_sel != host_state->fs_sel)) { + if (!(fs_sel & 7)) + vmcs_write16(HOST_FS_SELECTOR, fs_sel); + else + vmcs_write16(HOST_FS_SELECTOR, 0); + host_state->fs_sel = fs_sel; + } + if (unlikely(gs_sel != host_state->gs_sel)) { + if (!(gs_sel & 7)) + vmcs_write16(HOST_GS_SELECTOR, gs_sel); + else + vmcs_write16(HOST_GS_SELECTOR, 0); + host_state->gs_sel = gs_sel; + } + if (unlikely(fs_base != host_state->fs_base)) { + vmcs_writel(HOST_FS_BASE, fs_base); + host_state->fs_base = fs_base; + } + if (unlikely(gs_base != host_state->gs_base)) { + vmcs_writel(HOST_GS_BASE, gs_base); + host_state->gs_base = gs_base; + } +} + +static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) +{ + struct vmcs_host_state *host_state; + + if (!vmx->loaded_cpu_state) + return; + + WARN_ON_ONCE(vmx->loaded_cpu_state != vmx->loaded_vmcs); + host_state = &vmx->loaded_cpu_state->host_state; + + ++vmx->vcpu.stat.host_state_reload; + vmx->loaded_cpu_state = NULL; + +#ifdef CONFIG_X86_64 + rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); +#endif + if (host_state->ldt_sel || (host_state->gs_sel & 7)) { + kvm_load_ldt(host_state->ldt_sel); +#ifdef CONFIG_X86_64 + load_gs_index(host_state->gs_sel); +#else + loadsegment(gs, host_state->gs_sel); +#endif + } + if (host_state->fs_sel & 7) + loadsegment(fs, host_state->fs_sel); +#ifdef CONFIG_X86_64 + if (unlikely(host_state->ds_sel | host_state->es_sel)) { + loadsegment(ds, host_state->ds_sel); + loadsegment(es, host_state->es_sel); + } +#endif + invalidate_tss_limit(); +#ifdef CONFIG_X86_64 + wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); +#endif + load_fixmap_gdt(raw_smp_processor_id()); +} + +#ifdef CONFIG_X86_64 +static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) +{ + preempt_disable(); + if (vmx->loaded_cpu_state) + rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); + preempt_enable(); + return vmx->msr_guest_kernel_gs_base; +} + +static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) +{ + preempt_disable(); + if (vmx->loaded_cpu_state) + wrmsrl(MSR_KERNEL_GS_BASE, data); + preempt_enable(); + vmx->msr_guest_kernel_gs_base = data; +} +#endif + +static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu) +{ + struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); + struct pi_desc old, new; + unsigned int dest; + + /* + * In case of hot-plug or hot-unplug, we may have to undo + * vmx_vcpu_pi_put even if there is no assigned device. And we + * always keep PI.NDST up to date for simplicity: it makes the + * code easier, and CPU migration is not a fast path. + */ + if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu) + return; + + /* + * First handle the simple case where no cmpxchg is necessary; just + * allow posting non-urgent interrupts. + * + * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change + * PI.NDST: pi_post_block will do it for us and the wakeup_handler + * expects the VCPU to be on the blocked_vcpu_list that matches + * PI.NDST. + */ + if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR || + vcpu->cpu == cpu) { + pi_clear_sn(pi_desc); + return; + } + + /* The full case. */ + do { + old.control = new.control = pi_desc->control; + + dest = cpu_physical_id(cpu); + + if (x2apic_enabled()) + new.ndst = dest; + else + new.ndst = (dest << 8) & 0xFF00; + + new.sn = 0; + } while (cmpxchg64(&pi_desc->control, old.control, + new.control) != old.control); +} + +/* + * Switches to specified vcpu, until a matching vcpu_put(), but assumes + * vcpu mutex is already taken. + */ +void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + bool already_loaded = vmx->loaded_vmcs->cpu == cpu; + + if (!already_loaded) { + loaded_vmcs_clear(vmx->loaded_vmcs); + local_irq_disable(); + crash_disable_local_vmclear(cpu); + + /* + * Read loaded_vmcs->cpu should be before fetching + * loaded_vmcs->loaded_vmcss_on_cpu_link. + * See the comments in __loaded_vmcs_clear(). + */ + smp_rmb(); + + list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, + &per_cpu(loaded_vmcss_on_cpu, cpu)); + crash_enable_local_vmclear(cpu); + local_irq_enable(); + } + + if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) { + per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; + vmcs_load(vmx->loaded_vmcs->vmcs); + indirect_branch_prediction_barrier(); + } + + if (!already_loaded) { + void *gdt = get_current_gdt_ro(); + unsigned long sysenter_esp; + + kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); + + /* + * Linux uses per-cpu TSS and GDT, so set these when switching + * processors. See 22.2.4. + */ + vmcs_writel(HOST_TR_BASE, + (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); + vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ + + /* + * VM exits change the host TR limit to 0x67 after a VM + * exit. This is okay, since 0x67 covers everything except + * the IO bitmap and have have code to handle the IO bitmap + * being lost after a VM exit. + */ + BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67); + + rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); + vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ + + vmx->loaded_vmcs->cpu = cpu; + } + + /* Setup TSC multiplier */ + if (kvm_has_tsc_control && + vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio) + decache_tsc_multiplier(vmx); + + vmx_vcpu_pi_load(vcpu, cpu); + vmx->host_pkru = read_pkru(); + vmx->host_debugctlmsr = get_debugctlmsr(); +} + +static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu) +{ + struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); + + if (!kvm_arch_has_assigned_device(vcpu->kvm) || + !irq_remapping_cap(IRQ_POSTING_CAP) || + !kvm_vcpu_apicv_active(vcpu)) + return; + + /* Set SN when the vCPU is preempted */ + if (vcpu->preempted) + pi_set_sn(pi_desc); +} + +void vmx_vcpu_put(struct kvm_vcpu *vcpu) +{ + vmx_vcpu_pi_put(vcpu); + + vmx_prepare_switch_to_host(to_vmx(vcpu)); +} + +static bool emulation_required(struct kvm_vcpu *vcpu) +{ + return emulate_invalid_guest_state && !guest_state_valid(vcpu); +} + +static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu); + +unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) +{ + unsigned long rflags, save_rflags; + + if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) { + __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail); + rflags = vmcs_readl(GUEST_RFLAGS); + if (to_vmx(vcpu)->rmode.vm86_active) { + rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; + save_rflags = to_vmx(vcpu)->rmode.save_rflags; + rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; + } + to_vmx(vcpu)->rflags = rflags; + } + return to_vmx(vcpu)->rflags; +} + +void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) +{ + unsigned long old_rflags = vmx_get_rflags(vcpu); + + __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail); + to_vmx(vcpu)->rflags = rflags; + if (to_vmx(vcpu)->rmode.vm86_active) { + to_vmx(vcpu)->rmode.save_rflags = rflags; + rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; + } + vmcs_writel(GUEST_RFLAGS, rflags); + + if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM) + to_vmx(vcpu)->emulation_required = emulation_required(vcpu); +} + +u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) +{ + u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); + int ret = 0; + + if (interruptibility & GUEST_INTR_STATE_STI) + ret |= KVM_X86_SHADOW_INT_STI; + if (interruptibility & GUEST_INTR_STATE_MOV_SS) + ret |= KVM_X86_SHADOW_INT_MOV_SS; + + return ret; +} + +void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) +{ + u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); + u32 interruptibility = interruptibility_old; + + interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); + + if (mask & KVM_X86_SHADOW_INT_MOV_SS) + interruptibility |= GUEST_INTR_STATE_MOV_SS; + else if (mask & KVM_X86_SHADOW_INT_STI) + interruptibility |= GUEST_INTR_STATE_STI; + + if ((interruptibility != interruptibility_old)) + vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); +} + +static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + unsigned long value; + + /* + * Any MSR write that attempts to change bits marked reserved will + * case a #GP fault. + */ + if (data & vmx->pt_desc.ctl_bitmask) + return 1; + + /* + * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will + * result in a #GP unless the same write also clears TraceEn. + */ + if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && + ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) + return 1; + + /* + * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit + * and FabricEn would cause #GP, if + * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 + */ + if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && + !(data & RTIT_CTL_FABRIC_EN) && + !intel_pt_validate_cap(vmx->pt_desc.caps, + PT_CAP_single_range_output)) + return 1; + + /* + * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that + * utilize encodings marked reserved will casue a #GP fault. + */ + value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); + if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && + !test_bit((data & RTIT_CTL_MTC_RANGE) >> + RTIT_CTL_MTC_RANGE_OFFSET, &value)) + return 1; + value = intel_pt_validate_cap(vmx->pt_desc.caps, + PT_CAP_cycle_thresholds); + if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && + !test_bit((data & RTIT_CTL_CYC_THRESH) >> + RTIT_CTL_CYC_THRESH_OFFSET, &value)) + return 1; + value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); + if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && + !test_bit((data & RTIT_CTL_PSB_FREQ) >> + RTIT_CTL_PSB_FREQ_OFFSET, &value)) + return 1; + + /* + * If ADDRx_CFG is reserved or the encodings is >2 will + * cause a #GP fault. + */ + value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; + if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2)) + return 1; + value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; + if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2)) + return 1; + value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; + if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2)) + return 1; + value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; + if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2)) + return 1; + + return 0; +} + + +static void skip_emulated_instruction(struct kvm_vcpu *vcpu) +{ + unsigned long rip; + + rip = kvm_rip_read(vcpu); + rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN); + kvm_rip_write(vcpu, rip); + + /* skipping an emulated instruction also counts */ + vmx_set_interrupt_shadow(vcpu, 0); +} + +static void vmx_clear_hlt(struct kvm_vcpu *vcpu) +{ + /* + * Ensure that we clear the HLT state in the VMCS. We don't need to + * explicitly skip the instruction because if the HLT state is set, + * then the instruction is already executing and RIP has already been + * advanced. + */ + if (kvm_hlt_in_guest(vcpu->kvm) && + vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) + vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); +} + +static void vmx_queue_exception(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + unsigned nr = vcpu->arch.exception.nr; + bool has_error_code = vcpu->arch.exception.has_error_code; + u32 error_code = vcpu->arch.exception.error_code; + u32 intr_info = nr | INTR_INFO_VALID_MASK; + + kvm_deliver_exception_payload(vcpu); + + if (has_error_code) { + vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); + intr_info |= INTR_INFO_DELIVER_CODE_MASK; + } + + if (vmx->rmode.vm86_active) { + int inc_eip = 0; + if (kvm_exception_is_soft(nr)) + inc_eip = vcpu->arch.event_exit_inst_len; + if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE) + kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); + return; + } + + WARN_ON_ONCE(vmx->emulation_required); + + if (kvm_exception_is_soft(nr)) { + vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, + vmx->vcpu.arch.event_exit_inst_len); + intr_info |= INTR_TYPE_SOFT_EXCEPTION; + } else + intr_info |= INTR_TYPE_HARD_EXCEPTION; + + vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); + + vmx_clear_hlt(vcpu); +} + +static bool vmx_rdtscp_supported(void) +{ + return cpu_has_vmx_rdtscp(); +} + +static bool vmx_invpcid_supported(void) +{ + return cpu_has_vmx_invpcid(); +} + +/* + * Swap MSR entry in host/guest MSR entry array. + */ +static void move_msr_up(struct vcpu_vmx *vmx, int from, int to) +{ + struct shared_msr_entry tmp; + + tmp = vmx->guest_msrs[to]; + vmx->guest_msrs[to] = vmx->guest_msrs[from]; + vmx->guest_msrs[from] = tmp; +} + +/* + * Set up the vmcs to automatically save and restore system + * msrs. Don't touch the 64-bit msrs if the guest is in legacy + * mode, as fiddling with msrs is very expensive. + */ +static void setup_msrs(struct vcpu_vmx *vmx) +{ + int save_nmsrs, index; + + save_nmsrs = 0; +#ifdef CONFIG_X86_64 + /* + * The SYSCALL MSRs are only needed on long mode guests, and only + * when EFER.SCE is set. + */ + if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) { + index = __find_msr_index(vmx, MSR_STAR); + if (index >= 0) + move_msr_up(vmx, index, save_nmsrs++); + index = __find_msr_index(vmx, MSR_LSTAR); + if (index >= 0) + move_msr_up(vmx, index, save_nmsrs++); + index = __find_msr_index(vmx, MSR_SYSCALL_MASK); + if (index >= 0) + move_msr_up(vmx, index, save_nmsrs++); + } +#endif + index = __find_msr_index(vmx, MSR_EFER); + if (index >= 0 && update_transition_efer(vmx, index)) + move_msr_up(vmx, index, save_nmsrs++); + index = __find_msr_index(vmx, MSR_TSC_AUX); + if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP)) + move_msr_up(vmx, index, save_nmsrs++); + + vmx->save_nmsrs = save_nmsrs; + vmx->guest_msrs_dirty = true; + + if (cpu_has_vmx_msr_bitmap()) + vmx_update_msr_bitmap(&vmx->vcpu); +} + +static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu) +{ + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + + if (is_guest_mode(vcpu) && + (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)) + return vcpu->arch.tsc_offset - vmcs12->tsc_offset; + + return vcpu->arch.tsc_offset; +} + +static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) +{ + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + u64 g_tsc_offset = 0; + + /* + * We're here if L1 chose not to trap WRMSR to TSC. According + * to the spec, this should set L1's TSC; The offset that L1 + * set for L2 remains unchanged, and still needs to be added + * to the newly set TSC to get L2's TSC. + */ + if (is_guest_mode(vcpu) && + (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)) + g_tsc_offset = vmcs12->tsc_offset; + + trace_kvm_write_tsc_offset(vcpu->vcpu_id, + vcpu->arch.tsc_offset - g_tsc_offset, + offset); + vmcs_write64(TSC_OFFSET, offset + g_tsc_offset); + return offset + g_tsc_offset; +} + +/* + * nested_vmx_allowed() checks whether a guest should be allowed to use VMX + * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for + * all guests if the "nested" module option is off, and can also be disabled + * for a single guest by disabling its VMX cpuid bit. + */ +bool nested_vmx_allowed(struct kvm_vcpu *vcpu) +{ + return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX); +} + +static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu, + uint64_t val) +{ + uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits; + + return !(val & ~valid_bits); +} + +static int vmx_get_msr_feature(struct kvm_msr_entry *msr) +{ + switch (msr->index) { + case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: + if (!nested) + return 1; + return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); + default: + return 1; + } + + return 0; +} + +/* + * Reads an msr value (of 'msr_index') into 'pdata'. + * Returns 0 on success, non-0 otherwise. + * Assumes vcpu_load() was already called. + */ +static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct shared_msr_entry *msr; + u32 index; + + switch (msr_info->index) { +#ifdef CONFIG_X86_64 + case MSR_FS_BASE: + msr_info->data = vmcs_readl(GUEST_FS_BASE); + break; + case MSR_GS_BASE: + msr_info->data = vmcs_readl(GUEST_GS_BASE); + break; + case MSR_KERNEL_GS_BASE: + msr_info->data = vmx_read_guest_kernel_gs_base(vmx); + break; +#endif + case MSR_EFER: + return kvm_get_msr_common(vcpu, msr_info); + case MSR_IA32_SPEC_CTRL: + if (!msr_info->host_initiated && + !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) + return 1; + + msr_info->data = to_vmx(vcpu)->spec_ctrl; + break; + case MSR_IA32_ARCH_CAPABILITIES: + if (!msr_info->host_initiated && + !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) + return 1; + msr_info->data = to_vmx(vcpu)->arch_capabilities; + break; + case MSR_IA32_SYSENTER_CS: + msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); + break; + case MSR_IA32_SYSENTER_EIP: + msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); + break; + case MSR_IA32_SYSENTER_ESP: + msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); + break; + case MSR_IA32_BNDCFGS: + if (!kvm_mpx_supported() || + (!msr_info->host_initiated && + !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) + return 1; + msr_info->data = vmcs_read64(GUEST_BNDCFGS); + break; + case MSR_IA32_MCG_EXT_CTL: + if (!msr_info->host_initiated && + !(vmx->msr_ia32_feature_control & + FEATURE_CONTROL_LMCE)) + return 1; + msr_info->data = vcpu->arch.mcg_ext_ctl; + break; + case MSR_IA32_FEATURE_CONTROL: + msr_info->data = vmx->msr_ia32_feature_control; + break; + case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: + if (!nested_vmx_allowed(vcpu)) + return 1; + return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, + &msr_info->data); + case MSR_IA32_XSS: + if (!vmx_xsaves_supported()) + return 1; + msr_info->data = vcpu->arch.ia32_xss; + break; + case MSR_IA32_RTIT_CTL: + if (pt_mode != PT_MODE_HOST_GUEST) + return 1; + msr_info->data = vmx->pt_desc.guest.ctl; + break; + case MSR_IA32_RTIT_STATUS: + if (pt_mode != PT_MODE_HOST_GUEST) + return 1; + msr_info->data = vmx->pt_desc.guest.status; + break; + case MSR_IA32_RTIT_CR3_MATCH: + if ((pt_mode != PT_MODE_HOST_GUEST) || + !intel_pt_validate_cap(vmx->pt_desc.caps, + PT_CAP_cr3_filtering)) + return 1; + msr_info->data = vmx->pt_desc.guest.cr3_match; + break; + case MSR_IA32_RTIT_OUTPUT_BASE: + if ((pt_mode != PT_MODE_HOST_GUEST) || + (!intel_pt_validate_cap(vmx->pt_desc.caps, + PT_CAP_topa_output) && + !intel_pt_validate_cap(vmx->pt_desc.caps, + PT_CAP_single_range_output))) + return 1; + msr_info->data = vmx->pt_desc.guest.output_base; + break; + case MSR_IA32_RTIT_OUTPUT_MASK: + if ((pt_mode != PT_MODE_HOST_GUEST) || + (!intel_pt_validate_cap(vmx->pt_desc.caps, + PT_CAP_topa_output) && + !intel_pt_validate_cap(vmx->pt_desc.caps, + PT_CAP_single_range_output))) + return 1; + msr_info->data = vmx->pt_desc.guest.output_mask; + break; + case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: + index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; + if ((pt_mode != PT_MODE_HOST_GUEST) || + (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps, + PT_CAP_num_address_ranges))) + return 1; + if (index % 2) + msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; + else + msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; + break; + case MSR_TSC_AUX: + if (!msr_info->host_initiated && + !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) + return 1; + /* Otherwise falls through */ + default: + msr = find_msr_entry(vmx, msr_info->index); + if (msr) { + msr_info->data = msr->data; + break; + } + return kvm_get_msr_common(vcpu, msr_info); + } + + return 0; +} + +/* + * Writes msr value into into the appropriate "register". + * Returns 0 on success, non-0 otherwise. + * Assumes vcpu_load() was already called. + */ +static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct shared_msr_entry *msr; + int ret = 0; + u32 msr_index = msr_info->index; + u64 data = msr_info->data; + u32 index; + + switch (msr_index) { + case MSR_EFER: + ret = kvm_set_msr_common(vcpu, msr_info); + break; +#ifdef CONFIG_X86_64 + case MSR_FS_BASE: + vmx_segment_cache_clear(vmx); + vmcs_writel(GUEST_FS_BASE, data); + break; + case MSR_GS_BASE: + vmx_segment_cache_clear(vmx); + vmcs_writel(GUEST_GS_BASE, data); + break; + case MSR_KERNEL_GS_BASE: + vmx_write_guest_kernel_gs_base(vmx, data); + break; +#endif + case MSR_IA32_SYSENTER_CS: + vmcs_write32(GUEST_SYSENTER_CS, data); + break; + case MSR_IA32_SYSENTER_EIP: + vmcs_writel(GUEST_SYSENTER_EIP, data); + break; + case MSR_IA32_SYSENTER_ESP: + vmcs_writel(GUEST_SYSENTER_ESP, data); + break; + case MSR_IA32_BNDCFGS: + if (!kvm_mpx_supported() || + (!msr_info->host_initiated && + !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) + return 1; + if (is_noncanonical_address(data & PAGE_MASK, vcpu) || + (data & MSR_IA32_BNDCFGS_RSVD)) + return 1; + vmcs_write64(GUEST_BNDCFGS, data); + break; + case MSR_IA32_SPEC_CTRL: + if (!msr_info->host_initiated && + !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) + return 1; + + /* The STIBP bit doesn't fault even if it's not advertised */ + if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD)) + return 1; + + vmx->spec_ctrl = data; + + if (!data) + break; + + /* + * For non-nested: + * When it's written (to non-zero) for the first time, pass + * it through. + * + * For nested: + * The handling of the MSR bitmap for L2 guests is done in + * nested_vmx_merge_msr_bitmap. We should not touch the + * vmcs02.msr_bitmap here since it gets completely overwritten + * in the merging. We update the vmcs01 here for L1 as well + * since it will end up touching the MSR anyway now. + */ + vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, + MSR_IA32_SPEC_CTRL, + MSR_TYPE_RW); + break; + case MSR_IA32_PRED_CMD: + if (!msr_info->host_initiated && + !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) + return 1; + + if (data & ~PRED_CMD_IBPB) + return 1; + + if (!data) + break; + + wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); + + /* + * For non-nested: + * When it's written (to non-zero) for the first time, pass + * it through. + * + * For nested: + * The handling of the MSR bitmap for L2 guests is done in + * nested_vmx_merge_msr_bitmap. We should not touch the + * vmcs02.msr_bitmap here since it gets completely overwritten + * in the merging. + */ + vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD, + MSR_TYPE_W); + break; + case MSR_IA32_ARCH_CAPABILITIES: + if (!msr_info->host_initiated) + return 1; + vmx->arch_capabilities = data; + break; + case MSR_IA32_CR_PAT: + if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { + if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) + return 1; + vmcs_write64(GUEST_IA32_PAT, data); + vcpu->arch.pat = data; + break; + } + ret = kvm_set_msr_common(vcpu, msr_info); + break; + case MSR_IA32_TSC_ADJUST: + ret = kvm_set_msr_common(vcpu, msr_info); + break; + case MSR_IA32_MCG_EXT_CTL: + if ((!msr_info->host_initiated && + !(to_vmx(vcpu)->msr_ia32_feature_control & + FEATURE_CONTROL_LMCE)) || + (data & ~MCG_EXT_CTL_LMCE_EN)) + return 1; + vcpu->arch.mcg_ext_ctl = data; + break; + case MSR_IA32_FEATURE_CONTROL: + if (!vmx_feature_control_msr_valid(vcpu, data) || + (to_vmx(vcpu)->msr_ia32_feature_control & + FEATURE_CONTROL_LOCKED && !msr_info->host_initiated)) + return 1; + vmx->msr_ia32_feature_control = data; + if (msr_info->host_initiated && data == 0) + vmx_leave_nested(vcpu); + break; + case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: + if (!msr_info->host_initiated) + return 1; /* they are read-only */ + if (!nested_vmx_allowed(vcpu)) + return 1; + return vmx_set_vmx_msr(vcpu, msr_index, data); + case MSR_IA32_XSS: + if (!vmx_xsaves_supported()) + return 1; + /* + * The only supported bit as of Skylake is bit 8, but + * it is not supported on KVM. + */ + if (data != 0) + return 1; + vcpu->arch.ia32_xss = data; + if (vcpu->arch.ia32_xss != host_xss) + add_atomic_switch_msr(vmx, MSR_IA32_XSS, + vcpu->arch.ia32_xss, host_xss, false); + else + clear_atomic_switch_msr(vmx, MSR_IA32_XSS); + break; + case MSR_IA32_RTIT_CTL: + if ((pt_mode != PT_MODE_HOST_GUEST) || + vmx_rtit_ctl_check(vcpu, data) || + vmx->nested.vmxon) + return 1; + vmcs_write64(GUEST_IA32_RTIT_CTL, data); + vmx->pt_desc.guest.ctl = data; + pt_update_intercept_for_msr(vmx); + break; + case MSR_IA32_RTIT_STATUS: + if ((pt_mode != PT_MODE_HOST_GUEST) || + (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) || + (data & MSR_IA32_RTIT_STATUS_MASK)) + return 1; + vmx->pt_desc.guest.status = data; + break; + case MSR_IA32_RTIT_CR3_MATCH: + if ((pt_mode != PT_MODE_HOST_GUEST) || + (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) || + !intel_pt_validate_cap(vmx->pt_desc.caps, + PT_CAP_cr3_filtering)) + return 1; + vmx->pt_desc.guest.cr3_match = data; + break; + case MSR_IA32_RTIT_OUTPUT_BASE: + if ((pt_mode != PT_MODE_HOST_GUEST) || + (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) || + (!intel_pt_validate_cap(vmx->pt_desc.caps, + PT_CAP_topa_output) && + !intel_pt_validate_cap(vmx->pt_desc.caps, + PT_CAP_single_range_output)) || + (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK)) + return 1; + vmx->pt_desc.guest.output_base = data; + break; + case MSR_IA32_RTIT_OUTPUT_MASK: + if ((pt_mode != PT_MODE_HOST_GUEST) || + (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) || + (!intel_pt_validate_cap(vmx->pt_desc.caps, + PT_CAP_topa_output) && + !intel_pt_validate_cap(vmx->pt_desc.caps, + PT_CAP_single_range_output))) + return 1; + vmx->pt_desc.guest.output_mask = data; + break; + case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: + index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; + if ((pt_mode != PT_MODE_HOST_GUEST) || + (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) || + (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps, + PT_CAP_num_address_ranges))) + return 1; + if (index % 2) + vmx->pt_desc.guest.addr_b[index / 2] = data; + else + vmx->pt_desc.guest.addr_a[index / 2] = data; + break; + case MSR_TSC_AUX: + if (!msr_info->host_initiated && + !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) + return 1; + /* Check reserved bit, higher 32 bits should be zero */ + if ((data >> 32) != 0) + return 1; + /* Otherwise falls through */ + default: + msr = find_msr_entry(vmx, msr_index); + if (msr) { + u64 old_msr_data = msr->data; + msr->data = data; + if (msr - vmx->guest_msrs < vmx->save_nmsrs) { + preempt_disable(); + ret = kvm_set_shared_msr(msr->index, msr->data, + msr->mask); + preempt_enable(); + if (ret) + msr->data = old_msr_data; + } + break; + } + ret = kvm_set_msr_common(vcpu, msr_info); + } + + return ret; +} + +static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) +{ + __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail); + switch (reg) { + case VCPU_REGS_RSP: + vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); + break; + case VCPU_REGS_RIP: + vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); + break; + case VCPU_EXREG_PDPTR: + if (enable_ept) + ept_save_pdptrs(vcpu); + break; + default: + break; + } +} + +static __init int cpu_has_kvm_support(void) +{ + return cpu_has_vmx(); +} + +static __init int vmx_disabled_by_bios(void) +{ + u64 msr; + + rdmsrl(MSR_IA32_FEATURE_CONTROL, msr); + if (msr & FEATURE_CONTROL_LOCKED) { + /* launched w/ TXT and VMX disabled */ + if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX) + && tboot_enabled()) + return 1; + /* launched w/o TXT and VMX only enabled w/ TXT */ + if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX) + && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX) + && !tboot_enabled()) { + printk(KERN_WARNING "kvm: disable TXT in the BIOS or " + "activate TXT before enabling KVM\n"); + return 1; + } + /* launched w/o TXT and VMX disabled */ + if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX) + && !tboot_enabled()) + return 1; + } + + return 0; +} + +static void kvm_cpu_vmxon(u64 addr) +{ + cr4_set_bits(X86_CR4_VMXE); + intel_pt_handle_vmx(1); + + asm volatile ("vmxon %0" : : "m"(addr)); +} + +static int hardware_enable(void) +{ + int cpu = raw_smp_processor_id(); + u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); + u64 old, test_bits; + + if (cr4_read_shadow() & X86_CR4_VMXE) + return -EBUSY; + + /* + * This can happen if we hot-added a CPU but failed to allocate + * VP assist page for it. + */ + if (static_branch_unlikely(&enable_evmcs) && + !hv_get_vp_assist_page(cpu)) + return -EFAULT; + + INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); + INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu)); + spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); + + /* + * Now we can enable the vmclear operation in kdump + * since the loaded_vmcss_on_cpu list on this cpu + * has been initialized. + * + * Though the cpu is not in VMX operation now, there + * is no problem to enable the vmclear operation + * for the loaded_vmcss_on_cpu list is empty! + */ + crash_enable_local_vmclear(cpu); + + rdmsrl(MSR_IA32_FEATURE_CONTROL, old); + + test_bits = FEATURE_CONTROL_LOCKED; + test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; + if (tboot_enabled()) + test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX; + + if ((old & test_bits) != test_bits) { + /* enable and lock */ + wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits); + } + kvm_cpu_vmxon(phys_addr); + if (enable_ept) + ept_sync_global(); + + return 0; +} + +static void vmclear_local_loaded_vmcss(void) +{ + int cpu = raw_smp_processor_id(); + struct loaded_vmcs *v, *n; + + list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), + loaded_vmcss_on_cpu_link) + __loaded_vmcs_clear(v); +} + + +/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot() + * tricks. + */ +static void kvm_cpu_vmxoff(void) +{ + asm volatile (__ex("vmxoff")); + + intel_pt_handle_vmx(0); + cr4_clear_bits(X86_CR4_VMXE); +} + +static void hardware_disable(void) +{ + vmclear_local_loaded_vmcss(); + kvm_cpu_vmxoff(); +} + +static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, + u32 msr, u32 *result) +{ + u32 vmx_msr_low, vmx_msr_high; + u32 ctl = ctl_min | ctl_opt; + + rdmsr(msr, vmx_msr_low, vmx_msr_high); + + ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ + ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ + + /* Ensure minimum (required) set of control bits are supported. */ + if (ctl_min & ~ctl) + return -EIO; + + *result = ctl; + return 0; +} + +static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf, + struct vmx_capability *vmx_cap) +{ + u32 vmx_msr_low, vmx_msr_high; + u32 min, opt, min2, opt2; + u32 _pin_based_exec_control = 0; + u32 _cpu_based_exec_control = 0; + u32 _cpu_based_2nd_exec_control = 0; + u32 _vmexit_control = 0; + u32 _vmentry_control = 0; + + memset(vmcs_conf, 0, sizeof(*vmcs_conf)); + min = CPU_BASED_HLT_EXITING | +#ifdef CONFIG_X86_64 + CPU_BASED_CR8_LOAD_EXITING | + CPU_BASED_CR8_STORE_EXITING | +#endif + CPU_BASED_CR3_LOAD_EXITING | + CPU_BASED_CR3_STORE_EXITING | + CPU_BASED_UNCOND_IO_EXITING | + CPU_BASED_MOV_DR_EXITING | + CPU_BASED_USE_TSC_OFFSETING | + CPU_BASED_MWAIT_EXITING | + CPU_BASED_MONITOR_EXITING | + CPU_BASED_INVLPG_EXITING | + CPU_BASED_RDPMC_EXITING; + + opt = CPU_BASED_TPR_SHADOW | + CPU_BASED_USE_MSR_BITMAPS | + CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; + if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS, + &_cpu_based_exec_control) < 0) + return -EIO; +#ifdef CONFIG_X86_64 + if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) + _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING & + ~CPU_BASED_CR8_STORE_EXITING; +#endif + if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { + min2 = 0; + opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | + SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | + SECONDARY_EXEC_WBINVD_EXITING | + SECONDARY_EXEC_ENABLE_VPID | + SECONDARY_EXEC_ENABLE_EPT | + SECONDARY_EXEC_UNRESTRICTED_GUEST | + SECONDARY_EXEC_PAUSE_LOOP_EXITING | + SECONDARY_EXEC_DESC | + SECONDARY_EXEC_RDTSCP | + SECONDARY_EXEC_ENABLE_INVPCID | + SECONDARY_EXEC_APIC_REGISTER_VIRT | + SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | + SECONDARY_EXEC_SHADOW_VMCS | + SECONDARY_EXEC_XSAVES | + SECONDARY_EXEC_RDSEED_EXITING | + SECONDARY_EXEC_RDRAND_EXITING | + SECONDARY_EXEC_ENABLE_PML | + SECONDARY_EXEC_TSC_SCALING | + SECONDARY_EXEC_PT_USE_GPA | + SECONDARY_EXEC_PT_CONCEAL_VMX | + SECONDARY_EXEC_ENABLE_VMFUNC | + SECONDARY_EXEC_ENCLS_EXITING; + if (adjust_vmx_controls(min2, opt2, + MSR_IA32_VMX_PROCBASED_CTLS2, + &_cpu_based_2nd_exec_control) < 0) + return -EIO; + } +#ifndef CONFIG_X86_64 + if (!(_cpu_based_2nd_exec_control & + SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) + _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; +#endif + + if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) + _cpu_based_2nd_exec_control &= ~( + SECONDARY_EXEC_APIC_REGISTER_VIRT | + SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | + SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); + + rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, + &vmx_cap->ept, &vmx_cap->vpid); + + if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) { + /* CR3 accesses and invlpg don't need to cause VM Exits when EPT + enabled */ + _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | + CPU_BASED_CR3_STORE_EXITING | + CPU_BASED_INVLPG_EXITING); + } else if (vmx_cap->ept) { + vmx_cap->ept = 0; + pr_warn_once("EPT CAP should not exist if not support " + "1-setting enable EPT VM-execution control\n"); + } + if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && + vmx_cap->vpid) { + vmx_cap->vpid = 0; + pr_warn_once("VPID CAP should not exist if not support " + "1-setting enable VPID VM-execution control\n"); + } + + min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT; +#ifdef CONFIG_X86_64 + min |= VM_EXIT_HOST_ADDR_SPACE_SIZE; +#endif + opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | + VM_EXIT_SAVE_IA32_PAT | + VM_EXIT_LOAD_IA32_PAT | + VM_EXIT_LOAD_IA32_EFER | + VM_EXIT_CLEAR_BNDCFGS | + VM_EXIT_PT_CONCEAL_PIP | + VM_EXIT_CLEAR_IA32_RTIT_CTL; + if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS, + &_vmexit_control) < 0) + return -EIO; + + min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING; + opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR | + PIN_BASED_VMX_PREEMPTION_TIMER; + if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS, + &_pin_based_exec_control) < 0) + return -EIO; + + if (cpu_has_broken_vmx_preemption_timer()) + _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; + if (!(_cpu_based_2nd_exec_control & + SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) + _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; + + min = VM_ENTRY_LOAD_DEBUG_CONTROLS; + opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | + VM_ENTRY_LOAD_IA32_PAT | + VM_ENTRY_LOAD_IA32_EFER | + VM_ENTRY_LOAD_BNDCFGS | + VM_ENTRY_PT_CONCEAL_PIP | + VM_ENTRY_LOAD_IA32_RTIT_CTL; + if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS, + &_vmentry_control) < 0) + return -EIO; + + /* + * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they + * can't be used due to an errata where VM Exit may incorrectly clear + * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the + * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. + */ + if (boot_cpu_data.x86 == 0x6) { + switch (boot_cpu_data.x86_model) { + case 26: /* AAK155 */ + case 30: /* AAP115 */ + case 37: /* AAT100 */ + case 44: /* BC86,AAY89,BD102 */ + case 46: /* BA97 */ + _vmexit_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; + _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; + pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " + "does not work properly. Using workaround\n"); + break; + default: + break; + } + } + + + rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); + + /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ + if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) + return -EIO; + +#ifdef CONFIG_X86_64 + /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ + if (vmx_msr_high & (1u<<16)) + return -EIO; +#endif + + /* Require Write-Back (WB) memory type for VMCS accesses. */ + if (((vmx_msr_high >> 18) & 15) != 6) + return -EIO; + + vmcs_conf->size = vmx_msr_high & 0x1fff; + vmcs_conf->order = get_order(vmcs_conf->size); + vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; + + vmcs_conf->revision_id = vmx_msr_low; + + vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; + vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; + vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; + vmcs_conf->vmexit_ctrl = _vmexit_control; + vmcs_conf->vmentry_ctrl = _vmentry_control; + + if (static_branch_unlikely(&enable_evmcs)) + evmcs_sanitize_exec_ctrls(vmcs_conf); + + return 0; +} + +struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu) +{ + int node = cpu_to_node(cpu); + struct page *pages; + struct vmcs *vmcs; + + pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order); + if (!pages) + return NULL; + vmcs = page_address(pages); + memset(vmcs, 0, vmcs_config.size); + + /* KVM supports Enlightened VMCS v1 only */ + if (static_branch_unlikely(&enable_evmcs)) + vmcs->hdr.revision_id = KVM_EVMCS_VERSION; + else + vmcs->hdr.revision_id = vmcs_config.revision_id; + + if (shadow) + vmcs->hdr.shadow_vmcs = 1; + return vmcs; +} + +void free_vmcs(struct vmcs *vmcs) +{ + free_pages((unsigned long)vmcs, vmcs_config.order); +} + +/* + * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded + */ +void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) +{ + if (!loaded_vmcs->vmcs) + return; + loaded_vmcs_clear(loaded_vmcs); + free_vmcs(loaded_vmcs->vmcs); + loaded_vmcs->vmcs = NULL; + if (loaded_vmcs->msr_bitmap) + free_page((unsigned long)loaded_vmcs->msr_bitmap); + WARN_ON(loaded_vmcs->shadow_vmcs != NULL); +} + +int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) +{ + loaded_vmcs->vmcs = alloc_vmcs(false); + if (!loaded_vmcs->vmcs) + return -ENOMEM; + + loaded_vmcs->shadow_vmcs = NULL; + loaded_vmcs_init(loaded_vmcs); + + if (cpu_has_vmx_msr_bitmap()) { + loaded_vmcs->msr_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL); + if (!loaded_vmcs->msr_bitmap) + goto out_vmcs; + memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); + + if (IS_ENABLED(CONFIG_HYPERV) && + static_branch_unlikely(&enable_evmcs) && + (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { + struct hv_enlightened_vmcs *evmcs = + (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs; + + evmcs->hv_enlightenments_control.msr_bitmap = 1; + } + } + + memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); + + return 0; + +out_vmcs: + free_loaded_vmcs(loaded_vmcs); + return -ENOMEM; +} + +static void free_kvm_area(void) +{ + int cpu; + + for_each_possible_cpu(cpu) { + free_vmcs(per_cpu(vmxarea, cpu)); + per_cpu(vmxarea, cpu) = NULL; + } +} + +static __init int alloc_kvm_area(void) +{ + int cpu; + + for_each_possible_cpu(cpu) { + struct vmcs *vmcs; + + vmcs = alloc_vmcs_cpu(false, cpu); + if (!vmcs) { + free_kvm_area(); + return -ENOMEM; + } + + /* + * When eVMCS is enabled, alloc_vmcs_cpu() sets + * vmcs->revision_id to KVM_EVMCS_VERSION instead of + * revision_id reported by MSR_IA32_VMX_BASIC. + * + * However, even though not explictly documented by + * TLFS, VMXArea passed as VMXON argument should + * still be marked with revision_id reported by + * physical CPU. + */ + if (static_branch_unlikely(&enable_evmcs)) + vmcs->hdr.revision_id = vmcs_config.revision_id; + + per_cpu(vmxarea, cpu) = vmcs; + } + return 0; +} + +static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, + struct kvm_segment *save) +{ + if (!emulate_invalid_guest_state) { + /* + * CS and SS RPL should be equal during guest entry according + * to VMX spec, but in reality it is not always so. Since vcpu + * is in the middle of the transition from real mode to + * protected mode it is safe to assume that RPL 0 is a good + * default value. + */ + if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) + save->selector &= ~SEGMENT_RPL_MASK; + save->dpl = save->selector & SEGMENT_RPL_MASK; + save->s = 1; + } + vmx_set_segment(vcpu, save, seg); +} + +static void enter_pmode(struct kvm_vcpu *vcpu) +{ + unsigned long flags; + struct vcpu_vmx *vmx = to_vmx(vcpu); + + /* + * Update real mode segment cache. It may be not up-to-date if sement + * register was written while vcpu was in a guest mode. + */ + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); + + vmx->rmode.vm86_active = 0; + + vmx_segment_cache_clear(vmx); + + vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); + + flags = vmcs_readl(GUEST_RFLAGS); + flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; + flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; + vmcs_writel(GUEST_RFLAGS, flags); + + vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | + (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); + + update_exception_bitmap(vcpu); + + fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); + fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); + fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); + fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); + fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); + fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); +} + +static void fix_rmode_seg(int seg, struct kvm_segment *save) +{ + const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; + struct kvm_segment var = *save; + + var.dpl = 0x3; + if (seg == VCPU_SREG_CS) + var.type = 0x3; + + if (!emulate_invalid_guest_state) { + var.selector = var.base >> 4; + var.base = var.base & 0xffff0; + var.limit = 0xffff; + var.g = 0; + var.db = 0; + var.present = 1; + var.s = 1; + var.l = 0; + var.unusable = 0; + var.type = 0x3; + var.avl = 0; + if (save->base & 0xf) + printk_once(KERN_WARNING "kvm: segment base is not " + "paragraph aligned when entering " + "protected mode (seg=%d)", seg); + } + + vmcs_write16(sf->selector, var.selector); + vmcs_writel(sf->base, var.base); + vmcs_write32(sf->limit, var.limit); + vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); +} + +static void enter_rmode(struct kvm_vcpu *vcpu) +{ + unsigned long flags; + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); + + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); + vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); + + vmx->rmode.vm86_active = 1; + + /* + * Very old userspace does not call KVM_SET_TSS_ADDR before entering + * vcpu. Warn the user that an update is overdue. + */ + if (!kvm_vmx->tss_addr) + printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be " + "called before entering vcpu\n"); + + vmx_segment_cache_clear(vmx); + + vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); + vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); + vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); + + flags = vmcs_readl(GUEST_RFLAGS); + vmx->rmode.save_rflags = flags; + + flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; + + vmcs_writel(GUEST_RFLAGS, flags); + vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); + update_exception_bitmap(vcpu); + + fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); + fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); + fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); + fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); + fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); + fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); + + kvm_mmu_reset_context(vcpu); +} + +void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER); + + if (!msr) + return; + + vcpu->arch.efer = efer; + if (efer & EFER_LMA) { + vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); + msr->data = efer; + } else { + vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); + + msr->data = efer & ~EFER_LME; + } + setup_msrs(vmx); +} + +#ifdef CONFIG_X86_64 + +static void enter_lmode(struct kvm_vcpu *vcpu) +{ + u32 guest_tr_ar; + + vmx_segment_cache_clear(to_vmx(vcpu)); + + guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); + if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { + pr_debug_ratelimited("%s: tss fixup for long mode. \n", + __func__); + vmcs_write32(GUEST_TR_AR_BYTES, + (guest_tr_ar & ~VMX_AR_TYPE_MASK) + | VMX_AR_TYPE_BUSY_64_TSS); + } + vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); +} + +static void exit_lmode(struct kvm_vcpu *vcpu) +{ + vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); + vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); +} + +#endif + +static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) +{ + int vpid = to_vmx(vcpu)->vpid; + + if (!vpid_sync_vcpu_addr(vpid, addr)) + vpid_sync_context(vpid); + + /* + * If VPIDs are not supported or enabled, then the above is a no-op. + * But we don't really need a TLB flush in that case anyway, because + * each VM entry/exit includes an implicit flush when VPID is 0. + */ +} + +static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu) +{ + ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; + + vcpu->arch.cr0 &= ~cr0_guest_owned_bits; + vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits; +} + +static void vmx_decache_cr3(struct kvm_vcpu *vcpu) +{ + if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu))) + vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); + __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); +} + +static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu) +{ + ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; + + vcpu->arch.cr4 &= ~cr4_guest_owned_bits; + vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits; +} + +static void ept_load_pdptrs(struct kvm_vcpu *vcpu) +{ + struct kvm_mmu *mmu = vcpu->arch.walk_mmu; + + if (!test_bit(VCPU_EXREG_PDPTR, + (unsigned long *)&vcpu->arch.regs_dirty)) + return; + + if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) { + vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); + vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); + vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); + vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); + } +} + +void ept_save_pdptrs(struct kvm_vcpu *vcpu) +{ + struct kvm_mmu *mmu = vcpu->arch.walk_mmu; + + if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) { + mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); + mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); + mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); + mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); + } + + __set_bit(VCPU_EXREG_PDPTR, + (unsigned long *)&vcpu->arch.regs_avail); + __set_bit(VCPU_EXREG_PDPTR, + (unsigned long *)&vcpu->arch.regs_dirty); +} + +static void ept_update_paging_mode_cr0(unsigned long *hw_cr0, + unsigned long cr0, + struct kvm_vcpu *vcpu) +{ + if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) + vmx_decache_cr3(vcpu); + if (!(cr0 & X86_CR0_PG)) { + /* From paging/starting to nonpaging */ + vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, + vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) | + (CPU_BASED_CR3_LOAD_EXITING | + CPU_BASED_CR3_STORE_EXITING)); + vcpu->arch.cr0 = cr0; + vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); + } else if (!is_paging(vcpu)) { + /* From nonpaging to paging */ + vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, + vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) & + ~(CPU_BASED_CR3_LOAD_EXITING | + CPU_BASED_CR3_STORE_EXITING)); + vcpu->arch.cr0 = cr0; + vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); + } + + if (!(cr0 & X86_CR0_WP)) + *hw_cr0 &= ~X86_CR0_WP; +} + +void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + unsigned long hw_cr0; + + hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); + if (enable_unrestricted_guest) + hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; + else { + hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; + + if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) + enter_pmode(vcpu); + + if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) + enter_rmode(vcpu); + } + +#ifdef CONFIG_X86_64 + if (vcpu->arch.efer & EFER_LME) { + if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) + enter_lmode(vcpu); + if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) + exit_lmode(vcpu); + } +#endif + + if (enable_ept && !enable_unrestricted_guest) + ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu); + + vmcs_writel(CR0_READ_SHADOW, cr0); + vmcs_writel(GUEST_CR0, hw_cr0); + vcpu->arch.cr0 = cr0; + + /* depends on vcpu->arch.cr0 to be set to a new value */ + vmx->emulation_required = emulation_required(vcpu); +} + +static int get_ept_level(struct kvm_vcpu *vcpu) +{ + if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48)) + return 5; + return 4; +} + +u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa) +{ + u64 eptp = VMX_EPTP_MT_WB; + + eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; + + if (enable_ept_ad_bits && + (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) + eptp |= VMX_EPTP_AD_ENABLE_BIT; + eptp |= (root_hpa & PAGE_MASK); + + return eptp; +} + +void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) +{ + struct kvm *kvm = vcpu->kvm; + unsigned long guest_cr3; + u64 eptp; + + guest_cr3 = cr3; + if (enable_ept) { + eptp = construct_eptp(vcpu, cr3); + vmcs_write64(EPT_POINTER, eptp); + + if (kvm_x86_ops->tlb_remote_flush) { + spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock); + to_vmx(vcpu)->ept_pointer = eptp; + to_kvm_vmx(kvm)->ept_pointers_match + = EPT_POINTERS_CHECK; + spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock); + } + + if (enable_unrestricted_guest || is_paging(vcpu) || + is_guest_mode(vcpu)) + guest_cr3 = kvm_read_cr3(vcpu); + else + guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; + ept_load_pdptrs(vcpu); + } + + vmcs_writel(GUEST_CR3, guest_cr3); +} + +int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) +{ + /* + * Pass through host's Machine Check Enable value to hw_cr4, which + * is in force while we are in guest mode. Do not let guests control + * this bit, even if host CR4.MCE == 0. + */ + unsigned long hw_cr4; + + hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); + if (enable_unrestricted_guest) + hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; + else if (to_vmx(vcpu)->rmode.vm86_active) + hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; + else + hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; + + if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) { + if (cr4 & X86_CR4_UMIP) { + vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL, + SECONDARY_EXEC_DESC); + hw_cr4 &= ~X86_CR4_UMIP; + } else if (!is_guest_mode(vcpu) || + !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) + vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, + SECONDARY_EXEC_DESC); + } + + if (cr4 & X86_CR4_VMXE) { + /* + * To use VMXON (and later other VMX instructions), a guest + * must first be able to turn on cr4.VMXE (see handle_vmon()). + * So basically the check on whether to allow nested VMX + * is here. We operate under the default treatment of SMM, + * so VMX cannot be enabled under SMM. + */ + if (!nested_vmx_allowed(vcpu) || is_smm(vcpu)) + return 1; + } + + if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) + return 1; + + vcpu->arch.cr4 = cr4; + + if (!enable_unrestricted_guest) { + if (enable_ept) { + if (!is_paging(vcpu)) { + hw_cr4 &= ~X86_CR4_PAE; + hw_cr4 |= X86_CR4_PSE; + } else if (!(cr4 & X86_CR4_PAE)) { + hw_cr4 &= ~X86_CR4_PAE; + } + } + + /* + * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in + * hardware. To emulate this behavior, SMEP/SMAP/PKU needs + * to be manually disabled when guest switches to non-paging + * mode. + * + * If !enable_unrestricted_guest, the CPU is always running + * with CR0.PG=1 and CR4 needs to be modified. + * If enable_unrestricted_guest, the CPU automatically + * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. + */ + if (!is_paging(vcpu)) + hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); + } + + vmcs_writel(CR4_READ_SHADOW, cr4); + vmcs_writel(GUEST_CR4, hw_cr4); + return 0; +} + +void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + u32 ar; + + if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { + *var = vmx->rmode.segs[seg]; + if (seg == VCPU_SREG_TR + || var->selector == vmx_read_guest_seg_selector(vmx, seg)) + return; + var->base = vmx_read_guest_seg_base(vmx, seg); + var->selector = vmx_read_guest_seg_selector(vmx, seg); + return; + } + var->base = vmx_read_guest_seg_base(vmx, seg); + var->limit = vmx_read_guest_seg_limit(vmx, seg); + var->selector = vmx_read_guest_seg_selector(vmx, seg); + ar = vmx_read_guest_seg_ar(vmx, seg); + var->unusable = (ar >> 16) & 1; + var->type = ar & 15; + var->s = (ar >> 4) & 1; + var->dpl = (ar >> 5) & 3; + /* + * Some userspaces do not preserve unusable property. Since usable + * segment has to be present according to VMX spec we can use present + * property to amend userspace bug by making unusable segment always + * nonpresent. vmx_segment_access_rights() already marks nonpresent + * segment as unusable. + */ + var->present = !var->unusable; + var->avl = (ar >> 12) & 1; + var->l = (ar >> 13) & 1; + var->db = (ar >> 14) & 1; + var->g = (ar >> 15) & 1; +} + +static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) +{ + struct kvm_segment s; + + if (to_vmx(vcpu)->rmode.vm86_active) { + vmx_get_segment(vcpu, &s, seg); + return s.base; + } + return vmx_read_guest_seg_base(to_vmx(vcpu), seg); +} + +int vmx_get_cpl(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (unlikely(vmx->rmode.vm86_active)) + return 0; + else { + int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); + return VMX_AR_DPL(ar); + } +} + +static u32 vmx_segment_access_rights(struct kvm_segment *var) +{ + u32 ar; + + if (var->unusable || !var->present) + ar = 1 << 16; + else { + ar = var->type & 15; + ar |= (var->s & 1) << 4; + ar |= (var->dpl & 3) << 5; + ar |= (var->present & 1) << 7; + ar |= (var->avl & 1) << 12; + ar |= (var->l & 1) << 13; + ar |= (var->db & 1) << 14; + ar |= (var->g & 1) << 15; + } + + return ar; +} + +void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; + + vmx_segment_cache_clear(vmx); + + if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { + vmx->rmode.segs[seg] = *var; + if (seg == VCPU_SREG_TR) + vmcs_write16(sf->selector, var->selector); + else if (var->s) + fix_rmode_seg(seg, &vmx->rmode.segs[seg]); + goto out; + } + + vmcs_writel(sf->base, var->base); + vmcs_write32(sf->limit, var->limit); + vmcs_write16(sf->selector, var->selector); + + /* + * Fix the "Accessed" bit in AR field of segment registers for older + * qemu binaries. + * IA32 arch specifies that at the time of processor reset the + * "Accessed" bit in the AR field of segment registers is 1. And qemu + * is setting it to 0 in the userland code. This causes invalid guest + * state vmexit when "unrestricted guest" mode is turned on. + * Fix for this setup issue in cpu_reset is being pushed in the qemu + * tree. Newer qemu binaries with that qemu fix would not need this + * kvm hack. + */ + if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR)) + var->type |= 0x1; /* Accessed */ + + vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); + +out: + vmx->emulation_required = emulation_required(vcpu); +} + +static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) +{ + u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); + + *db = (ar >> 14) & 1; + *l = (ar >> 13) & 1; +} + +static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) +{ + dt->size = vmcs_read32(GUEST_IDTR_LIMIT); + dt->address = vmcs_readl(GUEST_IDTR_BASE); +} + +static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) +{ + vmcs_write32(GUEST_IDTR_LIMIT, dt->size); + vmcs_writel(GUEST_IDTR_BASE, dt->address); +} + +static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) +{ + dt->size = vmcs_read32(GUEST_GDTR_LIMIT); + dt->address = vmcs_readl(GUEST_GDTR_BASE); +} + +static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) +{ + vmcs_write32(GUEST_GDTR_LIMIT, dt->size); + vmcs_writel(GUEST_GDTR_BASE, dt->address); +} + +static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) +{ + struct kvm_segment var; + u32 ar; + + vmx_get_segment(vcpu, &var, seg); + var.dpl = 0x3; + if (seg == VCPU_SREG_CS) + var.type = 0x3; + ar = vmx_segment_access_rights(&var); + + if (var.base != (var.selector << 4)) + return false; + if (var.limit != 0xffff) + return false; + if (ar != 0xf3) + return false; + + return true; +} + +static bool code_segment_valid(struct kvm_vcpu *vcpu) +{ + struct kvm_segment cs; + unsigned int cs_rpl; + + vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); + cs_rpl = cs.selector & SEGMENT_RPL_MASK; + + if (cs.unusable) + return false; + if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) + return false; + if (!cs.s) + return false; + if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { + if (cs.dpl > cs_rpl) + return false; + } else { + if (cs.dpl != cs_rpl) + return false; + } + if (!cs.present) + return false; + + /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ + return true; +} + +static bool stack_segment_valid(struct kvm_vcpu *vcpu) +{ + struct kvm_segment ss; + unsigned int ss_rpl; + + vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); + ss_rpl = ss.selector & SEGMENT_RPL_MASK; + + if (ss.unusable) + return true; + if (ss.type != 3 && ss.type != 7) + return false; + if (!ss.s) + return false; + if (ss.dpl != ss_rpl) /* DPL != RPL */ + return false; + if (!ss.present) + return false; + + return true; +} + +static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) +{ + struct kvm_segment var; + unsigned int rpl; + + vmx_get_segment(vcpu, &var, seg); + rpl = var.selector & SEGMENT_RPL_MASK; + + if (var.unusable) + return true; + if (!var.s) + return false; + if (!var.present) + return false; + if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { + if (var.dpl < rpl) /* DPL < RPL */ + return false; + } + + /* TODO: Add other members to kvm_segment_field to allow checking for other access + * rights flags + */ + return true; +} + +static bool tr_valid(struct kvm_vcpu *vcpu) +{ + struct kvm_segment tr; + + vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); + + if (tr.unusable) + return false; + if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ + return false; + if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ + return false; + if (!tr.present) + return false; + + return true; +} + +static bool ldtr_valid(struct kvm_vcpu *vcpu) +{ + struct kvm_segment ldtr; + + vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); + + if (ldtr.unusable) + return true; + if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ + return false; + if (ldtr.type != 2) + return false; + if (!ldtr.present) + return false; + + return true; +} + +static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) +{ + struct kvm_segment cs, ss; + + vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); + vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); + + return ((cs.selector & SEGMENT_RPL_MASK) == + (ss.selector & SEGMENT_RPL_MASK)); +} + +/* + * Check if guest state is valid. Returns true if valid, false if + * not. + * We assume that registers are always usable + */ +static bool guest_state_valid(struct kvm_vcpu *vcpu) +{ + if (enable_unrestricted_guest) + return true; + + /* real mode guest state checks */ + if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { + if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) + return false; + if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) + return false; + if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) + return false; + if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) + return false; + if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) + return false; + if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) + return false; + } else { + /* protected mode guest state checks */ + if (!cs_ss_rpl_check(vcpu)) + return false; + if (!code_segment_valid(vcpu)) + return false; + if (!stack_segment_valid(vcpu)) + return false; + if (!data_segment_valid(vcpu, VCPU_SREG_DS)) + return false; + if (!data_segment_valid(vcpu, VCPU_SREG_ES)) + return false; + if (!data_segment_valid(vcpu, VCPU_SREG_FS)) + return false; + if (!data_segment_valid(vcpu, VCPU_SREG_GS)) + return false; + if (!tr_valid(vcpu)) + return false; + if (!ldtr_valid(vcpu)) + return false; + } + /* TODO: + * - Add checks on RIP + * - Add checks on RFLAGS + */ + + return true; +} + +static int init_rmode_tss(struct kvm *kvm) +{ + gfn_t fn; + u16 data = 0; + int idx, r; + + idx = srcu_read_lock(&kvm->srcu); + fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT; + r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); + if (r < 0) + goto out; + data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; + r = kvm_write_guest_page(kvm, fn++, &data, + TSS_IOPB_BASE_OFFSET, sizeof(u16)); + if (r < 0) + goto out; + r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE); + if (r < 0) + goto out; + r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); + if (r < 0) + goto out; + data = ~0; + r = kvm_write_guest_page(kvm, fn, &data, + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1, + sizeof(u8)); +out: + srcu_read_unlock(&kvm->srcu, idx); + return r; +} + +static int init_rmode_identity_map(struct kvm *kvm) +{ + struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); + int i, idx, r = 0; + kvm_pfn_t identity_map_pfn; + u32 tmp; + + /* Protect kvm_vmx->ept_identity_pagetable_done. */ + mutex_lock(&kvm->slots_lock); + + if (likely(kvm_vmx->ept_identity_pagetable_done)) + goto out2; + + if (!kvm_vmx->ept_identity_map_addr) + kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; + identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT; + + r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, + kvm_vmx->ept_identity_map_addr, PAGE_SIZE); + if (r < 0) + goto out2; + + idx = srcu_read_lock(&kvm->srcu); + r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE); + if (r < 0) + goto out; + /* Set up identity-mapping pagetable for EPT in real mode */ + for (i = 0; i < PT32_ENT_PER_PAGE; i++) { + tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | + _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); + r = kvm_write_guest_page(kvm, identity_map_pfn, + &tmp, i * sizeof(tmp), sizeof(tmp)); + if (r < 0) + goto out; + } + kvm_vmx->ept_identity_pagetable_done = true; + +out: + srcu_read_unlock(&kvm->srcu, idx); + +out2: + mutex_unlock(&kvm->slots_lock); + return r; +} + +static void seg_setup(int seg) +{ + const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; + unsigned int ar; + + vmcs_write16(sf->selector, 0); + vmcs_writel(sf->base, 0); + vmcs_write32(sf->limit, 0xffff); + ar = 0x93; + if (seg == VCPU_SREG_CS) + ar |= 0x08; /* code segment */ + + vmcs_write32(sf->ar_bytes, ar); +} + +static int alloc_apic_access_page(struct kvm *kvm) +{ + struct page *page; + int r = 0; + + mutex_lock(&kvm->slots_lock); + if (kvm->arch.apic_access_page_done) + goto out; + r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, + APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); + if (r) + goto out; + + page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); + if (is_error_page(page)) { + r = -EFAULT; + goto out; + } + + /* + * Do not pin the page in memory, so that memory hot-unplug + * is able to migrate it. + */ + put_page(page); + kvm->arch.apic_access_page_done = true; +out: + mutex_unlock(&kvm->slots_lock); + return r; +} + +int allocate_vpid(void) +{ + int vpid; + + if (!enable_vpid) + return 0; + spin_lock(&vmx_vpid_lock); + vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); + if (vpid < VMX_NR_VPIDS) + __set_bit(vpid, vmx_vpid_bitmap); + else + vpid = 0; + spin_unlock(&vmx_vpid_lock); + return vpid; +} + +void free_vpid(int vpid) +{ + if (!enable_vpid || vpid == 0) + return; + spin_lock(&vmx_vpid_lock); + __clear_bit(vpid, vmx_vpid_bitmap); + spin_unlock(&vmx_vpid_lock); +} + +static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, + u32 msr, int type) +{ + int f = sizeof(unsigned long); + + if (!cpu_has_vmx_msr_bitmap()) + return; + + if (static_branch_unlikely(&enable_evmcs)) + evmcs_touch_msr_bitmap(); + + /* + * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals + * have the write-low and read-high bitmap offsets the wrong way round. + * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. + */ + if (msr <= 0x1fff) { + if (type & MSR_TYPE_R) + /* read-low */ + __clear_bit(msr, msr_bitmap + 0x000 / f); + + if (type & MSR_TYPE_W) + /* write-low */ + __clear_bit(msr, msr_bitmap + 0x800 / f); + + } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { + msr &= 0x1fff; + if (type & MSR_TYPE_R) + /* read-high */ + __clear_bit(msr, msr_bitmap + 0x400 / f); + + if (type & MSR_TYPE_W) + /* write-high */ + __clear_bit(msr, msr_bitmap + 0xc00 / f); + + } +} + +static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap, + u32 msr, int type) +{ + int f = sizeof(unsigned long); + + if (!cpu_has_vmx_msr_bitmap()) + return; + + if (static_branch_unlikely(&enable_evmcs)) + evmcs_touch_msr_bitmap(); + + /* + * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals + * have the write-low and read-high bitmap offsets the wrong way round. + * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. + */ + if (msr <= 0x1fff) { + if (type & MSR_TYPE_R) + /* read-low */ + __set_bit(msr, msr_bitmap + 0x000 / f); + + if (type & MSR_TYPE_W) + /* write-low */ + __set_bit(msr, msr_bitmap + 0x800 / f); + + } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { + msr &= 0x1fff; + if (type & MSR_TYPE_R) + /* read-high */ + __set_bit(msr, msr_bitmap + 0x400 / f); + + if (type & MSR_TYPE_W) + /* write-high */ + __set_bit(msr, msr_bitmap + 0xc00 / f); + + } +} + +static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap, + u32 msr, int type, bool value) +{ + if (value) + vmx_enable_intercept_for_msr(msr_bitmap, msr, type); + else + vmx_disable_intercept_for_msr(msr_bitmap, msr, type); +} + +static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu) +{ + u8 mode = 0; + + if (cpu_has_secondary_exec_ctrls() && + (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) & + SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { + mode |= MSR_BITMAP_MODE_X2APIC; + if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) + mode |= MSR_BITMAP_MODE_X2APIC_APICV; + } + + return mode; +} + +static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap, + u8 mode) +{ + int msr; + + for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { + unsigned word = msr / BITS_PER_LONG; + msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0; + msr_bitmap[word + (0x800 / sizeof(long))] = ~0; + } + + if (mode & MSR_BITMAP_MODE_X2APIC) { + /* + * TPR reads and writes can be virtualized even if virtual interrupt + * delivery is not in use. + */ + vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW); + if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { + vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R); + vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); + vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); + } + } +} + +void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; + u8 mode = vmx_msr_bitmap_mode(vcpu); + u8 changed = mode ^ vmx->msr_bitmap_mode; + + if (!changed) + return; + + if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV)) + vmx_update_msr_bitmap_x2apic(msr_bitmap, mode); + + vmx->msr_bitmap_mode = mode; +} + +void pt_update_intercept_for_msr(struct vcpu_vmx *vmx) +{ + unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; + bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); + u32 i; + + vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS, + MSR_TYPE_RW, flag); + vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE, + MSR_TYPE_RW, flag); + vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK, + MSR_TYPE_RW, flag); + vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH, + MSR_TYPE_RW, flag); + for (i = 0; i < vmx->pt_desc.addr_range; i++) { + vmx_set_intercept_for_msr(msr_bitmap, + MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); + vmx_set_intercept_for_msr(msr_bitmap, + MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); + } +} + +static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu) +{ + return enable_apicv; +} + +static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + void *vapic_page; + u32 vppr; + int rvi; + + if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || + !nested_cpu_has_vid(get_vmcs12(vcpu)) || + WARN_ON_ONCE(!vmx->nested.virtual_apic_page)) + return false; + + rvi = vmx_get_rvi(); + + vapic_page = kmap(vmx->nested.virtual_apic_page); + vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); + kunmap(vmx->nested.virtual_apic_page); + + return ((rvi & 0xf0) > (vppr & 0xf0)); +} + +static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, + bool nested) +{ +#ifdef CONFIG_SMP + int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR; + + if (vcpu->mode == IN_GUEST_MODE) { + /* + * The vector of interrupt to be delivered to vcpu had + * been set in PIR before this function. + * + * Following cases will be reached in this block, and + * we always send a notification event in all cases as + * explained below. + * + * Case 1: vcpu keeps in non-root mode. Sending a + * notification event posts the interrupt to vcpu. + * + * Case 2: vcpu exits to root mode and is still + * runnable. PIR will be synced to vIRR before the + * next vcpu entry. Sending a notification event in + * this case has no effect, as vcpu is not in root + * mode. + * + * Case 3: vcpu exits to root mode and is blocked. + * vcpu_block() has already synced PIR to vIRR and + * never blocks vcpu if vIRR is not cleared. Therefore, + * a blocked vcpu here does not wait for any requested + * interrupts in PIR, and sending a notification event + * which has no effect is safe here. + */ + + apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); + return true; + } +#endif + return false; +} + +static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, + int vector) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (is_guest_mode(vcpu) && + vector == vmx->nested.posted_intr_nv) { + /* + * If a posted intr is not recognized by hardware, + * we will accomplish it in the next vmentry. + */ + vmx->nested.pi_pending = true; + kvm_make_request(KVM_REQ_EVENT, vcpu); + /* the PIR and ON have been set by L1. */ + if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true)) + kvm_vcpu_kick(vcpu); + return 0; + } + return -1; +} +/* + * Send interrupt to vcpu via posted interrupt way. + * 1. If target vcpu is running(non-root mode), send posted interrupt + * notification to vcpu and hardware will sync PIR to vIRR atomically. + * 2. If target vcpu isn't running(root mode), kick it to pick up the + * interrupt from PIR in next vmentry. + */ +static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + int r; + + r = vmx_deliver_nested_posted_interrupt(vcpu, vector); + if (!r) + return; + + if (pi_test_and_set_pir(vector, &vmx->pi_desc)) + return; + + /* If a previous notification has sent the IPI, nothing to do. */ + if (pi_test_and_set_on(&vmx->pi_desc)) + return; + + if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false)) + kvm_vcpu_kick(vcpu); +} + +/* + * Set up the vmcs's constant host-state fields, i.e., host-state fields that + * will not change in the lifetime of the guest. + * Note that host-state that does change is set elsewhere. E.g., host-state + * that is set differently for each CPU is set in vmx_vcpu_load(), not here. + */ +void vmx_set_constant_host_state(struct vcpu_vmx *vmx) +{ + u32 low32, high32; + unsigned long tmpl; + struct desc_ptr dt; + unsigned long cr0, cr3, cr4; + + cr0 = read_cr0(); + WARN_ON(cr0 & X86_CR0_TS); + vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ + + /* + * Save the most likely value for this task's CR3 in the VMCS. + * We can't use __get_current_cr3_fast() because we're not atomic. + */ + cr3 = __read_cr3(); + vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ + vmx->loaded_vmcs->host_state.cr3 = cr3; + + /* Save the most likely value for this task's CR4 in the VMCS. */ + cr4 = cr4_read_shadow(); + vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ + vmx->loaded_vmcs->host_state.cr4 = cr4; + + vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ +#ifdef CONFIG_X86_64 + /* + * Load null selectors, so we can avoid reloading them in + * vmx_prepare_switch_to_host(), in case userspace uses + * the null selectors too (the expected case). + */ + vmcs_write16(HOST_DS_SELECTOR, 0); + vmcs_write16(HOST_ES_SELECTOR, 0); +#else + vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ + vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ +#endif + vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ + vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ + + store_idt(&dt); + vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */ + vmx->host_idt_base = dt.address; + + vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ + + rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); + vmcs_write32(HOST_IA32_SYSENTER_CS, low32); + rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); + vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ + + if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { + rdmsr(MSR_IA32_CR_PAT, low32, high32); + vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); + } + + if (cpu_has_load_ia32_efer()) + vmcs_write64(HOST_IA32_EFER, host_efer); +} + +void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) +{ + vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS; + if (enable_ept) + vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE; + if (is_guest_mode(&vmx->vcpu)) + vmx->vcpu.arch.cr4_guest_owned_bits &= + ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask; + vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits); +} + +static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) +{ + u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; + + if (!kvm_vcpu_apicv_active(&vmx->vcpu)) + pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; + + if (!enable_vnmi) + pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; + + /* Enable the preemption timer dynamically */ + pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; + return pin_based_exec_ctrl; +} + +static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx)); + if (cpu_has_secondary_exec_ctrls()) { + if (kvm_vcpu_apicv_active(vcpu)) + vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL, + SECONDARY_EXEC_APIC_REGISTER_VIRT | + SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); + else + vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, + SECONDARY_EXEC_APIC_REGISTER_VIRT | + SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); + } + + if (cpu_has_vmx_msr_bitmap()) + vmx_update_msr_bitmap(vcpu); +} + +u32 vmx_exec_control(struct vcpu_vmx *vmx) +{ + u32 exec_control = vmcs_config.cpu_based_exec_ctrl; + + if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) + exec_control &= ~CPU_BASED_MOV_DR_EXITING; + + if (!cpu_need_tpr_shadow(&vmx->vcpu)) { + exec_control &= ~CPU_BASED_TPR_SHADOW; +#ifdef CONFIG_X86_64 + exec_control |= CPU_BASED_CR8_STORE_EXITING | + CPU_BASED_CR8_LOAD_EXITING; +#endif + } + if (!enable_ept) + exec_control |= CPU_BASED_CR3_STORE_EXITING | + CPU_BASED_CR3_LOAD_EXITING | + CPU_BASED_INVLPG_EXITING; + if (kvm_mwait_in_guest(vmx->vcpu.kvm)) + exec_control &= ~(CPU_BASED_MWAIT_EXITING | + CPU_BASED_MONITOR_EXITING); + if (kvm_hlt_in_guest(vmx->vcpu.kvm)) + exec_control &= ~CPU_BASED_HLT_EXITING; + return exec_control; +} + + +static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx) +{ + struct kvm_vcpu *vcpu = &vmx->vcpu; + + u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; + + if (pt_mode == PT_MODE_SYSTEM) + exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); + if (!cpu_need_virtualize_apic_accesses(vcpu)) + exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; + if (vmx->vpid == 0) + exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; + if (!enable_ept) { + exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; + enable_unrestricted_guest = 0; + } + if (!enable_unrestricted_guest) + exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; + if (kvm_pause_in_guest(vmx->vcpu.kvm)) + exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; + if (!kvm_vcpu_apicv_active(vcpu)) + exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | + SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); + exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; + + /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, + * in vmx_set_cr4. */ + exec_control &= ~SECONDARY_EXEC_DESC; + + /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD + (handle_vmptrld). + We can NOT enable shadow_vmcs here because we don't have yet + a current VMCS12 + */ + exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; + + if (!enable_pml) + exec_control &= ~SECONDARY_EXEC_ENABLE_PML; + + if (vmx_xsaves_supported()) { + /* Exposing XSAVES only when XSAVE is exposed */ + bool xsaves_enabled = + guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && + guest_cpuid_has(vcpu, X86_FEATURE_XSAVES); + + if (!xsaves_enabled) + exec_control &= ~SECONDARY_EXEC_XSAVES; + + if (nested) { + if (xsaves_enabled) + vmx->nested.msrs.secondary_ctls_high |= + SECONDARY_EXEC_XSAVES; + else + vmx->nested.msrs.secondary_ctls_high &= + ~SECONDARY_EXEC_XSAVES; + } + } + + if (vmx_rdtscp_supported()) { + bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP); + if (!rdtscp_enabled) + exec_control &= ~SECONDARY_EXEC_RDTSCP; + + if (nested) { + if (rdtscp_enabled) + vmx->nested.msrs.secondary_ctls_high |= + SECONDARY_EXEC_RDTSCP; + else + vmx->nested.msrs.secondary_ctls_high &= + ~SECONDARY_EXEC_RDTSCP; + } + } + + if (vmx_invpcid_supported()) { + /* Exposing INVPCID only when PCID is exposed */ + bool invpcid_enabled = + guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) && + guest_cpuid_has(vcpu, X86_FEATURE_PCID); + + if (!invpcid_enabled) { + exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID; + guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID); + } + + if (nested) { + if (invpcid_enabled) + vmx->nested.msrs.secondary_ctls_high |= + SECONDARY_EXEC_ENABLE_INVPCID; + else + vmx->nested.msrs.secondary_ctls_high &= + ~SECONDARY_EXEC_ENABLE_INVPCID; + } + } + + if (vmx_rdrand_supported()) { + bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND); + if (rdrand_enabled) + exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING; + + if (nested) { + if (rdrand_enabled) + vmx->nested.msrs.secondary_ctls_high |= + SECONDARY_EXEC_RDRAND_EXITING; + else + vmx->nested.msrs.secondary_ctls_high &= + ~SECONDARY_EXEC_RDRAND_EXITING; + } + } + + if (vmx_rdseed_supported()) { + bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED); + if (rdseed_enabled) + exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING; + + if (nested) { + if (rdseed_enabled) + vmx->nested.msrs.secondary_ctls_high |= + SECONDARY_EXEC_RDSEED_EXITING; + else + vmx->nested.msrs.secondary_ctls_high &= + ~SECONDARY_EXEC_RDSEED_EXITING; + } + } + + vmx->secondary_exec_control = exec_control; +} + +static void ept_set_mmio_spte_mask(void) +{ + /* + * EPT Misconfigurations can be generated if the value of bits 2:0 + * of an EPT paging-structure entry is 110b (write/execute). + */ + kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK, + VMX_EPT_MISCONFIG_WX_VALUE); +} + +#define VMX_XSS_EXIT_BITMAP 0 + +/* + * Sets up the vmcs for emulated real mode. + */ +static void vmx_vcpu_setup(struct vcpu_vmx *vmx) +{ + int i; + + if (nested) + nested_vmx_vcpu_setup(); + + if (cpu_has_vmx_msr_bitmap()) + vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); + + vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */ + + /* Control */ + vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx)); + vmx->hv_deadline_tsc = -1; + + vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx)); + + if (cpu_has_secondary_exec_ctrls()) { + vmx_compute_secondary_exec_control(vmx); + vmcs_write32(SECONDARY_VM_EXEC_CONTROL, + vmx->secondary_exec_control); + } + + if (kvm_vcpu_apicv_active(&vmx->vcpu)) { + vmcs_write64(EOI_EXIT_BITMAP0, 0); + vmcs_write64(EOI_EXIT_BITMAP1, 0); + vmcs_write64(EOI_EXIT_BITMAP2, 0); + vmcs_write64(EOI_EXIT_BITMAP3, 0); + + vmcs_write16(GUEST_INTR_STATUS, 0); + + vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); + vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); + } + + if (!kvm_pause_in_guest(vmx->vcpu.kvm)) { + vmcs_write32(PLE_GAP, ple_gap); + vmx->ple_window = ple_window; + vmx->ple_window_dirty = true; + } + + vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); + vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); + vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ + + vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ + vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ + vmx_set_constant_host_state(vmx); + vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ + vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ + + if (cpu_has_vmx_vmfunc()) + vmcs_write64(VM_FUNCTION_CONTROL, 0); + + vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); + vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); + vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); + vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); + vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); + + if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) + vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); + + for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) { + u32 index = vmx_msr_index[i]; + u32 data_low, data_high; + int j = vmx->nmsrs; + + if (rdmsr_safe(index, &data_low, &data_high) < 0) + continue; + if (wrmsr_safe(index, data_low, data_high) < 0) + continue; + vmx->guest_msrs[j].index = i; + vmx->guest_msrs[j].data = 0; + vmx->guest_msrs[j].mask = -1ull; + ++vmx->nmsrs; + } + + vmx->arch_capabilities = kvm_get_arch_capabilities(); + + vm_exit_controls_init(vmx, vmx_vmexit_ctrl()); + + /* 22.2.1, 20.8.1 */ + vm_entry_controls_init(vmx, vmx_vmentry_ctrl()); + + vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS; + vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS); + + set_cr4_guest_host_mask(vmx); + + if (vmx_xsaves_supported()) + vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); + + if (enable_pml) { + vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); + vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); + } + + if (cpu_has_vmx_encls_vmexit()) + vmcs_write64(ENCLS_EXITING_BITMAP, -1ull); + + if (pt_mode == PT_MODE_HOST_GUEST) { + memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); + /* Bit[6~0] are forced to 1, writes are ignored. */ + vmx->pt_desc.guest.output_mask = 0x7F; + vmcs_write64(GUEST_IA32_RTIT_CTL, 0); + } +} + +static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct msr_data apic_base_msr; + u64 cr0; + + vmx->rmode.vm86_active = 0; + vmx->spec_ctrl = 0; + + vcpu->arch.microcode_version = 0x100000000ULL; + vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val(); + kvm_set_cr8(vcpu, 0); + + if (!init_event) { + apic_base_msr.data = APIC_DEFAULT_PHYS_BASE | + MSR_IA32_APICBASE_ENABLE; + if (kvm_vcpu_is_reset_bsp(vcpu)) + apic_base_msr.data |= MSR_IA32_APICBASE_BSP; + apic_base_msr.host_initiated = true; + kvm_set_apic_base(vcpu, &apic_base_msr); + } + + vmx_segment_cache_clear(vmx); + + seg_setup(VCPU_SREG_CS); + vmcs_write16(GUEST_CS_SELECTOR, 0xf000); + vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); + + seg_setup(VCPU_SREG_DS); + seg_setup(VCPU_SREG_ES); + seg_setup(VCPU_SREG_FS); + seg_setup(VCPU_SREG_GS); + seg_setup(VCPU_SREG_SS); + + vmcs_write16(GUEST_TR_SELECTOR, 0); + vmcs_writel(GUEST_TR_BASE, 0); + vmcs_write32(GUEST_TR_LIMIT, 0xffff); + vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); + + vmcs_write16(GUEST_LDTR_SELECTOR, 0); + vmcs_writel(GUEST_LDTR_BASE, 0); + vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); + vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); + + if (!init_event) { + vmcs_write32(GUEST_SYSENTER_CS, 0); + vmcs_writel(GUEST_SYSENTER_ESP, 0); + vmcs_writel(GUEST_SYSENTER_EIP, 0); + vmcs_write64(GUEST_IA32_DEBUGCTL, 0); + } + + kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); + kvm_rip_write(vcpu, 0xfff0); + + vmcs_writel(GUEST_GDTR_BASE, 0); + vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); + + vmcs_writel(GUEST_IDTR_BASE, 0); + vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); + + vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); + vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); + vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); + if (kvm_mpx_supported()) + vmcs_write64(GUEST_BNDCFGS, 0); + + setup_msrs(vmx); + + vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ + + if (cpu_has_vmx_tpr_shadow() && !init_event) { + vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); + if (cpu_need_tpr_shadow(vcpu)) + vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, + __pa(vcpu->arch.apic->regs)); + vmcs_write32(TPR_THRESHOLD, 0); + } + + kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); + + if (vmx->vpid != 0) + vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); + + cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET; + vmx->vcpu.arch.cr0 = cr0; + vmx_set_cr0(vcpu, cr0); /* enter rmode */ + vmx_set_cr4(vcpu, 0); + vmx_set_efer(vcpu, 0); + + update_exception_bitmap(vcpu); + + vpid_sync_context(vmx->vpid); + if (init_event) + vmx_clear_hlt(vcpu); +} + +static void enable_irq_window(struct kvm_vcpu *vcpu) +{ + vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, + CPU_BASED_VIRTUAL_INTR_PENDING); +} + +static void enable_nmi_window(struct kvm_vcpu *vcpu) +{ + if (!enable_vnmi || + vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { + enable_irq_window(vcpu); + return; + } + + vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, + CPU_BASED_VIRTUAL_NMI_PENDING); +} + +static void vmx_inject_irq(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + uint32_t intr; + int irq = vcpu->arch.interrupt.nr; + + trace_kvm_inj_virq(irq); + + ++vcpu->stat.irq_injections; + if (vmx->rmode.vm86_active) { + int inc_eip = 0; + if (vcpu->arch.interrupt.soft) + inc_eip = vcpu->arch.event_exit_inst_len; + if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE) + kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); + return; + } + intr = irq | INTR_INFO_VALID_MASK; + if (vcpu->arch.interrupt.soft) { + intr |= INTR_TYPE_SOFT_INTR; + vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, + vmx->vcpu.arch.event_exit_inst_len); + } else + intr |= INTR_TYPE_EXT_INTR; + vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); + + vmx_clear_hlt(vcpu); +} + +static void vmx_inject_nmi(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (!enable_vnmi) { + /* + * Tracking the NMI-blocked state in software is built upon + * finding the next open IRQ window. This, in turn, depends on + * well-behaving guests: They have to keep IRQs disabled at + * least as long as the NMI handler runs. Otherwise we may + * cause NMI nesting, maybe breaking the guest. But as this is + * highly unlikely, we can live with the residual risk. + */ + vmx->loaded_vmcs->soft_vnmi_blocked = 1; + vmx->loaded_vmcs->vnmi_blocked_time = 0; + } + + ++vcpu->stat.nmi_injections; + vmx->loaded_vmcs->nmi_known_unmasked = false; + + if (vmx->rmode.vm86_active) { + if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE) + kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); + return; + } + + vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, + INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); + + vmx_clear_hlt(vcpu); +} + +bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + bool masked; + + if (!enable_vnmi) + return vmx->loaded_vmcs->soft_vnmi_blocked; + if (vmx->loaded_vmcs->nmi_known_unmasked) + return false; + masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; + vmx->loaded_vmcs->nmi_known_unmasked = !masked; + return masked; +} + +void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (!enable_vnmi) { + if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { + vmx->loaded_vmcs->soft_vnmi_blocked = masked; + vmx->loaded_vmcs->vnmi_blocked_time = 0; + } + } else { + vmx->loaded_vmcs->nmi_known_unmasked = !masked; + if (masked) + vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, + GUEST_INTR_STATE_NMI); + else + vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, + GUEST_INTR_STATE_NMI); + } +} + +static int vmx_nmi_allowed(struct kvm_vcpu *vcpu) +{ + if (to_vmx(vcpu)->nested.nested_run_pending) + return 0; + + if (!enable_vnmi && + to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) + return 0; + + return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & + (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI + | GUEST_INTR_STATE_NMI)); +} + +static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu) +{ + return (!to_vmx(vcpu)->nested.nested_run_pending && + vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) && + !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & + (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); +} + +static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) +{ + int ret; + + if (enable_unrestricted_guest) + return 0; + + ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, + PAGE_SIZE * 3); + if (ret) + return ret; + to_kvm_vmx(kvm)->tss_addr = addr; + return init_rmode_tss(kvm); +} + +static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) +{ + to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; + return 0; +} + +static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) +{ + switch (vec) { + case BP_VECTOR: + /* + * Update instruction length as we may reinject the exception + * from user space while in guest debugging mode. + */ + to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = + vmcs_read32(VM_EXIT_INSTRUCTION_LEN); + if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) + return false; + /* fall through */ + case DB_VECTOR: + if (vcpu->guest_debug & + (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) + return false; + /* fall through */ + case DE_VECTOR: + case OF_VECTOR: + case BR_VECTOR: + case UD_VECTOR: + case DF_VECTOR: + case SS_VECTOR: + case GP_VECTOR: + case MF_VECTOR: + return true; + break; + } + return false; +} + +static int handle_rmode_exception(struct kvm_vcpu *vcpu, + int vec, u32 err_code) +{ + /* + * Instruction with address size override prefix opcode 0x67 + * Cause the #SS fault with 0 error code in VM86 mode. + */ + if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { + if (kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE) { + if (vcpu->arch.halt_request) { + vcpu->arch.halt_request = 0; + return kvm_vcpu_halt(vcpu); + } + return 1; + } + return 0; + } + + /* + * Forward all other exceptions that are valid in real mode. + * FIXME: Breaks guest debugging in real mode, needs to be fixed with + * the required debugging infrastructure rework. + */ + kvm_queue_exception(vcpu, vec); + return 1; +} + +/* + * Trigger machine check on the host. We assume all the MSRs are already set up + * by the CPU and that we still run on the same CPU as the MCE occurred on. + * We pass a fake environment to the machine check handler because we want + * the guest to be always treated like user space, no matter what context + * it used internally. + */ +static void kvm_machine_check(void) +{ +#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64) + struct pt_regs regs = { + .cs = 3, /* Fake ring 3 no matter what the guest ran on */ + .flags = X86_EFLAGS_IF, + }; + + do_machine_check(®s, 0); +#endif +} + +static int handle_machine_check(struct kvm_vcpu *vcpu) +{ + /* already handled by vcpu_run */ + return 1; +} + +static int handle_exception(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct kvm_run *kvm_run = vcpu->run; + u32 intr_info, ex_no, error_code; + unsigned long cr2, rip, dr6; + u32 vect_info; + enum emulation_result er; + + vect_info = vmx->idt_vectoring_info; + intr_info = vmx->exit_intr_info; + + if (is_machine_check(intr_info)) + return handle_machine_check(vcpu); + + if (is_nmi(intr_info)) + return 1; /* already handled by vmx_vcpu_run() */ + + if (is_invalid_opcode(intr_info)) + return handle_ud(vcpu); + + error_code = 0; + if (intr_info & INTR_INFO_DELIVER_CODE_MASK) + error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); + + if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { + WARN_ON_ONCE(!enable_vmware_backdoor); + er = kvm_emulate_instruction(vcpu, + EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL); + if (er == EMULATE_USER_EXIT) + return 0; + else if (er != EMULATE_DONE) + kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); + return 1; + } + + /* + * The #PF with PFEC.RSVD = 1 indicates the guest is accessing + * MMIO, it is better to report an internal error. + * See the comments in vmx_handle_exit. + */ + if ((vect_info & VECTORING_INFO_VALID_MASK) && + !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { + vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; + vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; + vcpu->run->internal.ndata = 3; + vcpu->run->internal.data[0] = vect_info; + vcpu->run->internal.data[1] = intr_info; + vcpu->run->internal.data[2] = error_code; + return 0; + } + + if (is_page_fault(intr_info)) { + cr2 = vmcs_readl(EXIT_QUALIFICATION); + /* EPT won't cause page fault directly */ + WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept); + return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); + } + + ex_no = intr_info & INTR_INFO_VECTOR_MASK; + + if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) + return handle_rmode_exception(vcpu, ex_no, error_code); + + switch (ex_no) { + case AC_VECTOR: + kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); + return 1; + case DB_VECTOR: + dr6 = vmcs_readl(EXIT_QUALIFICATION); + if (!(vcpu->guest_debug & + (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { + vcpu->arch.dr6 &= ~15; + vcpu->arch.dr6 |= dr6 | DR6_RTM; + if (is_icebp(intr_info)) + skip_emulated_instruction(vcpu); + + kvm_queue_exception(vcpu, DB_VECTOR); + return 1; + } + kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1; + kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); + /* fall through */ + case BP_VECTOR: + /* + * Update instruction length as we may reinject #BP from + * user space while in guest debugging mode. Reading it for + * #DB as well causes no harm, it is not used in that case. + */ + vmx->vcpu.arch.event_exit_inst_len = + vmcs_read32(VM_EXIT_INSTRUCTION_LEN); + kvm_run->exit_reason = KVM_EXIT_DEBUG; + rip = kvm_rip_read(vcpu); + kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip; + kvm_run->debug.arch.exception = ex_no; + break; + default: + kvm_run->exit_reason = KVM_EXIT_EXCEPTION; + kvm_run->ex.exception = ex_no; + kvm_run->ex.error_code = error_code; + break; + } + return 0; +} + +static int handle_external_interrupt(struct kvm_vcpu *vcpu) +{ + ++vcpu->stat.irq_exits; + return 1; +} + +static int handle_triple_fault(struct kvm_vcpu *vcpu) +{ + vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; + vcpu->mmio_needed = 0; + return 0; +} + +static int handle_io(struct kvm_vcpu *vcpu) +{ + unsigned long exit_qualification; + int size, in, string; + unsigned port; + + exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + string = (exit_qualification & 16) != 0; + + ++vcpu->stat.io_exits; + + if (string) + return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; + + port = exit_qualification >> 16; + size = (exit_qualification & 7) + 1; + in = (exit_qualification & 8) != 0; + + return kvm_fast_pio(vcpu, size, port, in); +} + +static void +vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) +{ + /* + * Patch in the VMCALL instruction: + */ + hypercall[0] = 0x0f; + hypercall[1] = 0x01; + hypercall[2] = 0xc1; +} + +/* called to set cr0 as appropriate for a mov-to-cr0 exit. */ +static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) +{ + if (is_guest_mode(vcpu)) { + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + unsigned long orig_val = val; + + /* + * We get here when L2 changed cr0 in a way that did not change + * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), + * but did change L0 shadowed bits. So we first calculate the + * effective cr0 value that L1 would like to write into the + * hardware. It consists of the L2-owned bits from the new + * value combined with the L1-owned bits from L1's guest_cr0. + */ + val = (val & ~vmcs12->cr0_guest_host_mask) | + (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); + + if (!nested_guest_cr0_valid(vcpu, val)) + return 1; + + if (kvm_set_cr0(vcpu, val)) + return 1; + vmcs_writel(CR0_READ_SHADOW, orig_val); + return 0; + } else { + if (to_vmx(vcpu)->nested.vmxon && + !nested_host_cr0_valid(vcpu, val)) + return 1; + + return kvm_set_cr0(vcpu, val); + } +} + +static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) +{ + if (is_guest_mode(vcpu)) { + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + unsigned long orig_val = val; + + /* analogously to handle_set_cr0 */ + val = (val & ~vmcs12->cr4_guest_host_mask) | + (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); + if (kvm_set_cr4(vcpu, val)) + return 1; + vmcs_writel(CR4_READ_SHADOW, orig_val); + return 0; + } else + return kvm_set_cr4(vcpu, val); +} + +static int handle_desc(struct kvm_vcpu *vcpu) +{ + WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP)); + return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; +} + +static int handle_cr(struct kvm_vcpu *vcpu) +{ + unsigned long exit_qualification, val; + int cr; + int reg; + int err; + int ret; + + exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + cr = exit_qualification & 15; + reg = (exit_qualification >> 8) & 15; + switch ((exit_qualification >> 4) & 3) { + case 0: /* mov to cr */ + val = kvm_register_readl(vcpu, reg); + trace_kvm_cr_write(cr, val); + switch (cr) { + case 0: + err = handle_set_cr0(vcpu, val); + return kvm_complete_insn_gp(vcpu, err); + case 3: + WARN_ON_ONCE(enable_unrestricted_guest); + err = kvm_set_cr3(vcpu, val); + return kvm_complete_insn_gp(vcpu, err); + case 4: + err = handle_set_cr4(vcpu, val); + return kvm_complete_insn_gp(vcpu, err); + case 8: { + u8 cr8_prev = kvm_get_cr8(vcpu); + u8 cr8 = (u8)val; + err = kvm_set_cr8(vcpu, cr8); + ret = kvm_complete_insn_gp(vcpu, err); + if (lapic_in_kernel(vcpu)) + return ret; + if (cr8_prev <= cr8) + return ret; + /* + * TODO: we might be squashing a + * KVM_GUESTDBG_SINGLESTEP-triggered + * KVM_EXIT_DEBUG here. + */ + vcpu->run->exit_reason = KVM_EXIT_SET_TPR; + return 0; + } + } + break; + case 2: /* clts */ + WARN_ONCE(1, "Guest should always own CR0.TS"); + vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS)); + trace_kvm_cr_write(0, kvm_read_cr0(vcpu)); + return kvm_skip_emulated_instruction(vcpu); + case 1: /*mov from cr*/ + switch (cr) { + case 3: + WARN_ON_ONCE(enable_unrestricted_guest); + val = kvm_read_cr3(vcpu); + kvm_register_write(vcpu, reg, val); + trace_kvm_cr_read(cr, val); + return kvm_skip_emulated_instruction(vcpu); + case 8: + val = kvm_get_cr8(vcpu); + kvm_register_write(vcpu, reg, val); + trace_kvm_cr_read(cr, val); + return kvm_skip_emulated_instruction(vcpu); + } + break; + case 3: /* lmsw */ + val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; + trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val); + kvm_lmsw(vcpu, val); + + return kvm_skip_emulated_instruction(vcpu); + default: + break; + } + vcpu->run->exit_reason = 0; + vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", + (int)(exit_qualification >> 4) & 3, cr); + return 0; +} + +static int handle_dr(struct kvm_vcpu *vcpu) +{ + unsigned long exit_qualification; + int dr, dr7, reg; + + exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + dr = exit_qualification & DEBUG_REG_ACCESS_NUM; + + /* First, if DR does not exist, trigger UD */ + if (!kvm_require_dr(vcpu, dr)) + return 1; + + /* Do not handle if the CPL > 0, will trigger GP on re-entry */ + if (!kvm_require_cpl(vcpu, 0)) + return 1; + dr7 = vmcs_readl(GUEST_DR7); + if (dr7 & DR7_GD) { + /* + * As the vm-exit takes precedence over the debug trap, we + * need to emulate the latter, either for the host or the + * guest debugging itself. + */ + if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { + vcpu->run->debug.arch.dr6 = vcpu->arch.dr6; + vcpu->run->debug.arch.dr7 = dr7; + vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); + vcpu->run->debug.arch.exception = DB_VECTOR; + vcpu->run->exit_reason = KVM_EXIT_DEBUG; + return 0; + } else { + vcpu->arch.dr6 &= ~15; + vcpu->arch.dr6 |= DR6_BD | DR6_RTM; + kvm_queue_exception(vcpu, DB_VECTOR); + return 1; + } + } + + if (vcpu->guest_debug == 0) { + vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, + CPU_BASED_MOV_DR_EXITING); + + /* + * No more DR vmexits; force a reload of the debug registers + * and reenter on this instruction. The next vmexit will + * retrieve the full state of the debug registers. + */ + vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; + return 1; + } + + reg = DEBUG_REG_ACCESS_REG(exit_qualification); + if (exit_qualification & TYPE_MOV_FROM_DR) { + unsigned long val; + + if (kvm_get_dr(vcpu, dr, &val)) + return 1; + kvm_register_write(vcpu, reg, val); + } else + if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg))) + return 1; + + return kvm_skip_emulated_instruction(vcpu); +} + +static u64 vmx_get_dr6(struct kvm_vcpu *vcpu) +{ + return vcpu->arch.dr6; +} + +static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val) +{ +} + +static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) +{ + get_debugreg(vcpu->arch.db[0], 0); + get_debugreg(vcpu->arch.db[1], 1); + get_debugreg(vcpu->arch.db[2], 2); + get_debugreg(vcpu->arch.db[3], 3); + get_debugreg(vcpu->arch.dr6, 6); + vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); + + vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; + vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING); +} + +static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) +{ + vmcs_writel(GUEST_DR7, val); +} + +static int handle_cpuid(struct kvm_vcpu *vcpu) +{ + return kvm_emulate_cpuid(vcpu); +} + +static int handle_rdmsr(struct kvm_vcpu *vcpu) +{ + u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX]; + struct msr_data msr_info; + + msr_info.index = ecx; + msr_info.host_initiated = false; + if (vmx_get_msr(vcpu, &msr_info)) { + trace_kvm_msr_read_ex(ecx); + kvm_inject_gp(vcpu, 0); + return 1; + } + + trace_kvm_msr_read(ecx, msr_info.data); + + /* FIXME: handling of bits 32:63 of rax, rdx */ + vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u; + vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u; + return kvm_skip_emulated_instruction(vcpu); +} + +static int handle_wrmsr(struct kvm_vcpu *vcpu) +{ + struct msr_data msr; + u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX]; + u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u) + | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32); + + msr.data = data; + msr.index = ecx; + msr.host_initiated = false; + if (kvm_set_msr(vcpu, &msr) != 0) { + trace_kvm_msr_write_ex(ecx, data); + kvm_inject_gp(vcpu, 0); + return 1; + } + + trace_kvm_msr_write(ecx, data); + return kvm_skip_emulated_instruction(vcpu); +} + +static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) +{ + kvm_apic_update_ppr(vcpu); + return 1; +} + +static int handle_interrupt_window(struct kvm_vcpu *vcpu) +{ + vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, + CPU_BASED_VIRTUAL_INTR_PENDING); + + kvm_make_request(KVM_REQ_EVENT, vcpu); + + ++vcpu->stat.irq_window_exits; + return 1; +} + +static int handle_halt(struct kvm_vcpu *vcpu) +{ + return kvm_emulate_halt(vcpu); +} + +static int handle_vmcall(struct kvm_vcpu *vcpu) +{ + return kvm_emulate_hypercall(vcpu); +} + +static int handle_invd(struct kvm_vcpu *vcpu) +{ + return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; +} + +static int handle_invlpg(struct kvm_vcpu *vcpu) +{ + unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + + kvm_mmu_invlpg(vcpu, exit_qualification); + return kvm_skip_emulated_instruction(vcpu); +} + +static int handle_rdpmc(struct kvm_vcpu *vcpu) +{ + int err; + + err = kvm_rdpmc(vcpu); + return kvm_complete_insn_gp(vcpu, err); +} + +static int handle_wbinvd(struct kvm_vcpu *vcpu) +{ + return kvm_emulate_wbinvd(vcpu); +} + +static int handle_xsetbv(struct kvm_vcpu *vcpu) +{ + u64 new_bv = kvm_read_edx_eax(vcpu); + u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX); + + if (kvm_set_xcr(vcpu, index, new_bv) == 0) + return kvm_skip_emulated_instruction(vcpu); + return 1; +} + +static int handle_xsaves(struct kvm_vcpu *vcpu) +{ + kvm_skip_emulated_instruction(vcpu); + WARN(1, "this should never happen\n"); + return 1; +} + +static int handle_xrstors(struct kvm_vcpu *vcpu) +{ + kvm_skip_emulated_instruction(vcpu); + WARN(1, "this should never happen\n"); + return 1; +} + +static int handle_apic_access(struct kvm_vcpu *vcpu) +{ + if (likely(fasteoi)) { + unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + int access_type, offset; + + access_type = exit_qualification & APIC_ACCESS_TYPE; + offset = exit_qualification & APIC_ACCESS_OFFSET; + /* + * Sane guest uses MOV to write EOI, with written value + * not cared. So make a short-circuit here by avoiding + * heavy instruction emulation. + */ + if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && + (offset == APIC_EOI)) { + kvm_lapic_set_eoi(vcpu); + return kvm_skip_emulated_instruction(vcpu); + } + } + return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; +} + +static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) +{ + unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + int vector = exit_qualification & 0xff; + + /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ + kvm_apic_set_eoi_accelerated(vcpu, vector); + return 1; +} + +static int handle_apic_write(struct kvm_vcpu *vcpu) +{ + unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + u32 offset = exit_qualification & 0xfff; + + /* APIC-write VM exit is trap-like and thus no need to adjust IP */ + kvm_apic_write_nodecode(vcpu, offset); + return 1; +} + +static int handle_task_switch(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + unsigned long exit_qualification; + bool has_error_code = false; + u32 error_code = 0; + u16 tss_selector; + int reason, type, idt_v, idt_index; + + idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); + idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); + type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); + + exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + + reason = (u32)exit_qualification >> 30; + if (reason == TASK_SWITCH_GATE && idt_v) { + switch (type) { + case INTR_TYPE_NMI_INTR: + vcpu->arch.nmi_injected = false; + vmx_set_nmi_mask(vcpu, true); + break; + case INTR_TYPE_EXT_INTR: + case INTR_TYPE_SOFT_INTR: + kvm_clear_interrupt_queue(vcpu); + break; + case INTR_TYPE_HARD_EXCEPTION: + if (vmx->idt_vectoring_info & + VECTORING_INFO_DELIVER_CODE_MASK) { + has_error_code = true; + error_code = + vmcs_read32(IDT_VECTORING_ERROR_CODE); + } + /* fall through */ + case INTR_TYPE_SOFT_EXCEPTION: + kvm_clear_exception_queue(vcpu); + break; + default: + break; + } + } + tss_selector = exit_qualification; + + if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && + type != INTR_TYPE_EXT_INTR && + type != INTR_TYPE_NMI_INTR)) + skip_emulated_instruction(vcpu); + + if (kvm_task_switch(vcpu, tss_selector, + type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason, + has_error_code, error_code) == EMULATE_FAIL) { + vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; + vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; + vcpu->run->internal.ndata = 0; + return 0; + } + + /* + * TODO: What about debug traps on tss switch? + * Are we supposed to inject them and update dr6? + */ + + return 1; +} + +static int handle_ept_violation(struct kvm_vcpu *vcpu) +{ + unsigned long exit_qualification; + gpa_t gpa; + u64 error_code; + + exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + + /* + * EPT violation happened while executing iret from NMI, + * "blocked by NMI" bit has to be set before next VM entry. + * There are errata that may cause this bit to not be set: + * AAK134, BY25. + */ + if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && + enable_vnmi && + (exit_qualification & INTR_INFO_UNBLOCK_NMI)) + vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); + + gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); + trace_kvm_page_fault(gpa, exit_qualification); + + /* Is it a read fault? */ + error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) + ? PFERR_USER_MASK : 0; + /* Is it a write fault? */ + error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) + ? PFERR_WRITE_MASK : 0; + /* Is it a fetch fault? */ + error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) + ? PFERR_FETCH_MASK : 0; + /* ept page table entry is present? */ + error_code |= (exit_qualification & + (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE | + EPT_VIOLATION_EXECUTABLE)) + ? PFERR_PRESENT_MASK : 0; + + error_code |= (exit_qualification & 0x100) != 0 ? + PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; + + vcpu->arch.exit_qualification = exit_qualification; + return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); +} + +static int handle_ept_misconfig(struct kvm_vcpu *vcpu) +{ + gpa_t gpa; + + /* + * A nested guest cannot optimize MMIO vmexits, because we have an + * nGPA here instead of the required GPA. + */ + gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); + if (!is_guest_mode(vcpu) && + !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { + trace_kvm_fast_mmio(gpa); + /* + * Doing kvm_skip_emulated_instruction() depends on undefined + * behavior: Intel's manual doesn't mandate + * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG + * occurs and while on real hardware it was observed to be set, + * other hypervisors (namely Hyper-V) don't set it, we end up + * advancing IP with some random value. Disable fast mmio when + * running nested and keep it for real hardware in hope that + * VM_EXIT_INSTRUCTION_LEN will always be set correctly. + */ + if (!static_cpu_has(X86_FEATURE_HYPERVISOR)) + return kvm_skip_emulated_instruction(vcpu); + else + return kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) == + EMULATE_DONE; + } + + return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); +} + +static int handle_nmi_window(struct kvm_vcpu *vcpu) +{ + WARN_ON_ONCE(!enable_vnmi); + vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, + CPU_BASED_VIRTUAL_NMI_PENDING); + ++vcpu->stat.nmi_window_exits; + kvm_make_request(KVM_REQ_EVENT, vcpu); + + return 1; +} + +static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + enum emulation_result err = EMULATE_DONE; + int ret = 1; + u32 cpu_exec_ctrl; + bool intr_window_requested; + unsigned count = 130; + + /* + * We should never reach the point where we are emulating L2 + * due to invalid guest state as that means we incorrectly + * allowed a nested VMEntry with an invalid vmcs12. + */ + WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending); + + cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); + intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING; + + while (vmx->emulation_required && count-- != 0) { + if (intr_window_requested && vmx_interrupt_allowed(vcpu)) + return handle_interrupt_window(&vmx->vcpu); + + if (kvm_test_request(KVM_REQ_EVENT, vcpu)) + return 1; + + err = kvm_emulate_instruction(vcpu, 0); + + if (err == EMULATE_USER_EXIT) { + ++vcpu->stat.mmio_exits; + ret = 0; + goto out; + } + + if (err != EMULATE_DONE) + goto emulation_error; + + if (vmx->emulation_required && !vmx->rmode.vm86_active && + vcpu->arch.exception.pending) + goto emulation_error; + + if (vcpu->arch.halt_request) { + vcpu->arch.halt_request = 0; + ret = kvm_vcpu_halt(vcpu); + goto out; + } + + if (signal_pending(current)) + goto out; + if (need_resched()) + schedule(); + } + +out: + return ret; + +emulation_error: + vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; + vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; + vcpu->run->internal.ndata = 0; + return 0; +} + +static void grow_ple_window(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + int old = vmx->ple_window; + + vmx->ple_window = __grow_ple_window(old, ple_window, + ple_window_grow, + ple_window_max); + + if (vmx->ple_window != old) + vmx->ple_window_dirty = true; + + trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old); +} + +static void shrink_ple_window(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + int old = vmx->ple_window; + + vmx->ple_window = __shrink_ple_window(old, ple_window, + ple_window_shrink, + ple_window); + + if (vmx->ple_window != old) + vmx->ple_window_dirty = true; + + trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old); +} + +/* + * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR. + */ +static void wakeup_handler(void) +{ + struct kvm_vcpu *vcpu; + int cpu = smp_processor_id(); + + spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); + list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu), + blocked_vcpu_list) { + struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); + + if (pi_test_on(pi_desc) == 1) + kvm_vcpu_kick(vcpu); + } + spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); +} + +static void vmx_enable_tdp(void) +{ + kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK, + enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull, + enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull, + 0ull, VMX_EPT_EXECUTABLE_MASK, + cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK, + VMX_EPT_RWX_MASK, 0ull); + + ept_set_mmio_spte_mask(); + kvm_enable_tdp(); +} + +/* + * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE + * exiting, so only get here on cpu with PAUSE-Loop-Exiting. + */ +static int handle_pause(struct kvm_vcpu *vcpu) +{ + if (!kvm_pause_in_guest(vcpu->kvm)) + grow_ple_window(vcpu); + + /* + * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" + * VM-execution control is ignored if CPL > 0. OTOH, KVM + * never set PAUSE_EXITING and just set PLE if supported, + * so the vcpu must be CPL=0 if it gets a PAUSE exit. + */ + kvm_vcpu_on_spin(vcpu, true); + return kvm_skip_emulated_instruction(vcpu); +} + +static int handle_nop(struct kvm_vcpu *vcpu) +{ + return kvm_skip_emulated_instruction(vcpu); +} + +static int handle_mwait(struct kvm_vcpu *vcpu) +{ + printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n"); + return handle_nop(vcpu); +} + +static int handle_invalid_op(struct kvm_vcpu *vcpu) +{ + kvm_queue_exception(vcpu, UD_VECTOR); + return 1; +} + +static int handle_monitor_trap(struct kvm_vcpu *vcpu) +{ + return 1; +} + +static int handle_monitor(struct kvm_vcpu *vcpu) +{ + printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n"); + return handle_nop(vcpu); +} + +static int handle_invpcid(struct kvm_vcpu *vcpu) +{ + u32 vmx_instruction_info; + unsigned long type; + bool pcid_enabled; + gva_t gva; + struct x86_exception e; + unsigned i; + unsigned long roots_to_free = 0; + struct { + u64 pcid; + u64 gla; + } operand; + + if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { + kvm_queue_exception(vcpu, UD_VECTOR); + return 1; + } + + vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); + type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf); + + if (type > 3) { + kvm_inject_gp(vcpu, 0); + return 1; + } + + /* According to the Intel instruction reference, the memory operand + * is read even if it isn't needed (e.g., for type==all) + */ + if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), + vmx_instruction_info, false, &gva)) + return 1; + + if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) { + kvm_inject_page_fault(vcpu, &e); + return 1; + } + + if (operand.pcid >> 12 != 0) { + kvm_inject_gp(vcpu, 0); + return 1; + } + + pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); + + switch (type) { + case INVPCID_TYPE_INDIV_ADDR: + if ((!pcid_enabled && (operand.pcid != 0)) || + is_noncanonical_address(operand.gla, vcpu)) { + kvm_inject_gp(vcpu, 0); + return 1; + } + kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); + return kvm_skip_emulated_instruction(vcpu); + + case INVPCID_TYPE_SINGLE_CTXT: + if (!pcid_enabled && (operand.pcid != 0)) { + kvm_inject_gp(vcpu, 0); + return 1; + } + + if (kvm_get_active_pcid(vcpu) == operand.pcid) { + kvm_mmu_sync_roots(vcpu); + kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); + } + + for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) + if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3) + == operand.pcid) + roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); + + kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free); + /* + * If neither the current cr3 nor any of the prev_roots use the + * given PCID, then nothing needs to be done here because a + * resync will happen anyway before switching to any other CR3. + */ + + return kvm_skip_emulated_instruction(vcpu); + + case INVPCID_TYPE_ALL_NON_GLOBAL: + /* + * Currently, KVM doesn't mark global entries in the shadow + * page tables, so a non-global flush just degenerates to a + * global flush. If needed, we could optimize this later by + * keeping track of global entries in shadow page tables. + */ + + /* fall-through */ + case INVPCID_TYPE_ALL_INCL_GLOBAL: + kvm_mmu_unload(vcpu); + return kvm_skip_emulated_instruction(vcpu); + + default: + BUG(); /* We have already checked above that type <= 3 */ + } +} + +static int handle_pml_full(struct kvm_vcpu *vcpu) +{ + unsigned long exit_qualification; + + trace_kvm_pml_full(vcpu->vcpu_id); + + exit_qualification = vmcs_readl(EXIT_QUALIFICATION); + + /* + * PML buffer FULL happened while executing iret from NMI, + * "blocked by NMI" bit has to be set before next VM entry. + */ + if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && + enable_vnmi && + (exit_qualification & INTR_INFO_UNBLOCK_NMI)) + vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, + GUEST_INTR_STATE_NMI); + + /* + * PML buffer already flushed at beginning of VMEXIT. Nothing to do + * here.., and there's no userspace involvement needed for PML. + */ + return 1; +} + +static int handle_preemption_timer(struct kvm_vcpu *vcpu) +{ + if (!to_vmx(vcpu)->req_immediate_exit) + kvm_lapic_expired_hv_timer(vcpu); + return 1; +} + +/* + * When nested=0, all VMX instruction VM Exits filter here. The handlers + * are overwritten by nested_vmx_setup() when nested=1. + */ +static int handle_vmx_instruction(struct kvm_vcpu *vcpu) +{ + kvm_queue_exception(vcpu, UD_VECTOR); + return 1; +} + +static int handle_encls(struct kvm_vcpu *vcpu) +{ + /* + * SGX virtualization is not yet supported. There is no software + * enable bit for SGX, so we have to trap ENCLS and inject a #UD + * to prevent the guest from executing ENCLS. + */ + kvm_queue_exception(vcpu, UD_VECTOR); + return 1; +} + +/* + * The exit handlers return 1 if the exit was handled fully and guest execution + * may resume. Otherwise they set the kvm_run parameter to indicate what needs + * to be done to userspace and return 0. + */ +static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { + [EXIT_REASON_EXCEPTION_NMI] = handle_exception, + [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, + [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, + [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, + [EXIT_REASON_IO_INSTRUCTION] = handle_io, + [EXIT_REASON_CR_ACCESS] = handle_cr, + [EXIT_REASON_DR_ACCESS] = handle_dr, + [EXIT_REASON_CPUID] = handle_cpuid, + [EXIT_REASON_MSR_READ] = handle_rdmsr, + [EXIT_REASON_MSR_WRITE] = handle_wrmsr, + [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window, + [EXIT_REASON_HLT] = handle_halt, + [EXIT_REASON_INVD] = handle_invd, + [EXIT_REASON_INVLPG] = handle_invlpg, + [EXIT_REASON_RDPMC] = handle_rdpmc, + [EXIT_REASON_VMCALL] = handle_vmcall, + [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, + [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, + [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, + [EXIT_REASON_VMPTRST] = handle_vmx_instruction, + [EXIT_REASON_VMREAD] = handle_vmx_instruction, + [EXIT_REASON_VMRESUME] = handle_vmx_instruction, + [EXIT_REASON_VMWRITE] = handle_vmx_instruction, + [EXIT_REASON_VMOFF] = handle_vmx_instruction, + [EXIT_REASON_VMON] = handle_vmx_instruction, + [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, + [EXIT_REASON_APIC_ACCESS] = handle_apic_access, + [EXIT_REASON_APIC_WRITE] = handle_apic_write, + [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, + [EXIT_REASON_WBINVD] = handle_wbinvd, + [EXIT_REASON_XSETBV] = handle_xsetbv, + [EXIT_REASON_TASK_SWITCH] = handle_task_switch, + [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, + [EXIT_REASON_GDTR_IDTR] = handle_desc, + [EXIT_REASON_LDTR_TR] = handle_desc, + [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, + [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, + [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, + [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait, + [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, + [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor, + [EXIT_REASON_INVEPT] = handle_vmx_instruction, + [EXIT_REASON_INVVPID] = handle_vmx_instruction, + [EXIT_REASON_RDRAND] = handle_invalid_op, + [EXIT_REASON_RDSEED] = handle_invalid_op, + [EXIT_REASON_XSAVES] = handle_xsaves, + [EXIT_REASON_XRSTORS] = handle_xrstors, + [EXIT_REASON_PML_FULL] = handle_pml_full, + [EXIT_REASON_INVPCID] = handle_invpcid, + [EXIT_REASON_VMFUNC] = handle_vmx_instruction, + [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, + [EXIT_REASON_ENCLS] = handle_encls, +}; + +static const int kvm_vmx_max_exit_handlers = + ARRAY_SIZE(kvm_vmx_exit_handlers); + +static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2) +{ + *info1 = vmcs_readl(EXIT_QUALIFICATION); + *info2 = vmcs_read32(VM_EXIT_INTR_INFO); +} + +static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) +{ + if (vmx->pml_pg) { + __free_page(vmx->pml_pg); + vmx->pml_pg = NULL; + } +} + +static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + u64 *pml_buf; + u16 pml_idx; + + pml_idx = vmcs_read16(GUEST_PML_INDEX); + + /* Do nothing if PML buffer is empty */ + if (pml_idx == (PML_ENTITY_NUM - 1)) + return; + + /* PML index always points to next available PML buffer entity */ + if (pml_idx >= PML_ENTITY_NUM) + pml_idx = 0; + else + pml_idx++; + + pml_buf = page_address(vmx->pml_pg); + for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { + u64 gpa; + + gpa = pml_buf[pml_idx]; + WARN_ON(gpa & (PAGE_SIZE - 1)); + kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); + } + + /* reset PML index */ + vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); +} + +/* + * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap. + * Called before reporting dirty_bitmap to userspace. + */ +static void kvm_flush_pml_buffers(struct kvm *kvm) +{ + int i; + struct kvm_vcpu *vcpu; + /* + * We only need to kick vcpu out of guest mode here, as PML buffer + * is flushed at beginning of all VMEXITs, and it's obvious that only + * vcpus running in guest are possible to have unflushed GPAs in PML + * buffer. + */ + kvm_for_each_vcpu(i, vcpu, kvm) + kvm_vcpu_kick(vcpu); +} + +static void vmx_dump_sel(char *name, uint32_t sel) +{ + pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", + name, vmcs_read16(sel), + vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), + vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), + vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); +} + +static void vmx_dump_dtsel(char *name, uint32_t limit) +{ + pr_err("%s limit=0x%08x, base=0x%016lx\n", + name, vmcs_read32(limit), + vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); +} + +static void dump_vmcs(void) +{ + u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); + u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); + u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); + u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); + u32 secondary_exec_control = 0; + unsigned long cr4 = vmcs_readl(GUEST_CR4); + u64 efer = vmcs_read64(GUEST_IA32_EFER); + int i, n; + + if (cpu_has_secondary_exec_ctrls()) + secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); + + pr_err("*** Guest State ***\n"); + pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", + vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), + vmcs_readl(CR0_GUEST_HOST_MASK)); + pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", + cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); + pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); + if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) && + (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA)) + { + pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", + vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); + pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", + vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); + } + pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", + vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); + pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", + vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); + pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", + vmcs_readl(GUEST_SYSENTER_ESP), + vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); + vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); + vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); + vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); + vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); + vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); + vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); + vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); + vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); + vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); + vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); + if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) || + (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER))) + pr_err("EFER = 0x%016llx PAT = 0x%016llx\n", + efer, vmcs_read64(GUEST_IA32_PAT)); + pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", + vmcs_read64(GUEST_IA32_DEBUGCTL), + vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); + if (cpu_has_load_perf_global_ctrl() && + vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) + pr_err("PerfGlobCtl = 0x%016llx\n", + vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); + if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) + pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); + pr_err("Interruptibility = %08x ActivityState = %08x\n", + vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), + vmcs_read32(GUEST_ACTIVITY_STATE)); + if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) + pr_err("InterruptStatus = %04x\n", + vmcs_read16(GUEST_INTR_STATUS)); + + pr_err("*** Host State ***\n"); + pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", + vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); + pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", + vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), + vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), + vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), + vmcs_read16(HOST_TR_SELECTOR)); + pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", + vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), + vmcs_readl(HOST_TR_BASE)); + pr_err("GDTBase=%016lx IDTBase=%016lx\n", + vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); + pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", + vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), + vmcs_readl(HOST_CR4)); + pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", + vmcs_readl(HOST_IA32_SYSENTER_ESP), + vmcs_read32(HOST_IA32_SYSENTER_CS), + vmcs_readl(HOST_IA32_SYSENTER_EIP)); + if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER)) + pr_err("EFER = 0x%016llx PAT = 0x%016llx\n", + vmcs_read64(HOST_IA32_EFER), + vmcs_read64(HOST_IA32_PAT)); + if (cpu_has_load_perf_global_ctrl() && + vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) + pr_err("PerfGlobCtl = 0x%016llx\n", + vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); + + pr_err("*** Control State ***\n"); + pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n", + pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control); + pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl); + pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", + vmcs_read32(EXCEPTION_BITMAP), + vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), + vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); + pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", + vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), + vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), + vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); + pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", + vmcs_read32(VM_EXIT_INTR_INFO), + vmcs_read32(VM_EXIT_INTR_ERROR_CODE), + vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); + pr_err(" reason=%08x qualification=%016lx\n", + vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); + pr_err("IDTVectoring: info=%08x errcode=%08x\n", + vmcs_read32(IDT_VECTORING_INFO_FIELD), + vmcs_read32(IDT_VECTORING_ERROR_CODE)); + pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); + if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) + pr_err("TSC Multiplier = 0x%016llx\n", + vmcs_read64(TSC_MULTIPLIER)); + if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) + pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); + if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) + pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); + if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) + pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); + n = vmcs_read32(CR3_TARGET_COUNT); + for (i = 0; i + 1 < n; i += 4) + pr_err("CR3 target%u=%016lx target%u=%016lx\n", + i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2), + i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2)); + if (i < n) + pr_err("CR3 target%u=%016lx\n", + i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2)); + if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) + pr_err("PLE Gap=%08x Window=%08x\n", + vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); + if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) + pr_err("Virtual processor ID = 0x%04x\n", + vmcs_read16(VIRTUAL_PROCESSOR_ID)); +} + +/* + * The guest has exited. See if we can fix it or if we need userspace + * assistance. + */ +static int vmx_handle_exit(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + u32 exit_reason = vmx->exit_reason; + u32 vectoring_info = vmx->idt_vectoring_info; + + trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX); + + /* + * Flush logged GPAs PML buffer, this will make dirty_bitmap more + * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before + * querying dirty_bitmap, we only need to kick all vcpus out of guest + * mode as if vcpus is in root mode, the PML buffer must has been + * flushed already. + */ + if (enable_pml) + vmx_flush_pml_buffer(vcpu); + + /* If guest state is invalid, start emulating */ + if (vmx->emulation_required) + return handle_invalid_guest_state(vcpu); + + if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason)) + return nested_vmx_reflect_vmexit(vcpu, exit_reason); + + if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) { + dump_vmcs(); + vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; + vcpu->run->fail_entry.hardware_entry_failure_reason + = exit_reason; + return 0; + } + + if (unlikely(vmx->fail)) { + vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; + vcpu->run->fail_entry.hardware_entry_failure_reason + = vmcs_read32(VM_INSTRUCTION_ERROR); + return 0; + } + + /* + * Note: + * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by + * delivery event since it indicates guest is accessing MMIO. + * The vm-exit can be triggered again after return to guest that + * will cause infinite loop. + */ + if ((vectoring_info & VECTORING_INFO_VALID_MASK) && + (exit_reason != EXIT_REASON_EXCEPTION_NMI && + exit_reason != EXIT_REASON_EPT_VIOLATION && + exit_reason != EXIT_REASON_PML_FULL && + exit_reason != EXIT_REASON_TASK_SWITCH)) { + vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; + vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; + vcpu->run->internal.ndata = 3; + vcpu->run->internal.data[0] = vectoring_info; + vcpu->run->internal.data[1] = exit_reason; + vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; + if (exit_reason == EXIT_REASON_EPT_MISCONFIG) { + vcpu->run->internal.ndata++; + vcpu->run->internal.data[3] = + vmcs_read64(GUEST_PHYSICAL_ADDRESS); + } + return 0; + } + + if (unlikely(!enable_vnmi && + vmx->loaded_vmcs->soft_vnmi_blocked)) { + if (vmx_interrupt_allowed(vcpu)) { + vmx->loaded_vmcs->soft_vnmi_blocked = 0; + } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && + vcpu->arch.nmi_pending) { + /* + * This CPU don't support us in finding the end of an + * NMI-blocked window if the guest runs with IRQs + * disabled. So we pull the trigger after 1 s of + * futile waiting, but inform the user about this. + */ + printk(KERN_WARNING "%s: Breaking out of NMI-blocked " + "state on VCPU %d after 1 s timeout\n", + __func__, vcpu->vcpu_id); + vmx->loaded_vmcs->soft_vnmi_blocked = 0; + } + } + + if (exit_reason < kvm_vmx_max_exit_handlers + && kvm_vmx_exit_handlers[exit_reason]) + return kvm_vmx_exit_handlers[exit_reason](vcpu); + else { + vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", + exit_reason); + kvm_queue_exception(vcpu, UD_VECTOR); + return 1; + } +} + +/* + * Software based L1D cache flush which is used when microcode providing + * the cache control MSR is not loaded. + * + * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to + * flush it is required to read in 64 KiB because the replacement algorithm + * is not exactly LRU. This could be sized at runtime via topology + * information but as all relevant affected CPUs have 32KiB L1D cache size + * there is no point in doing so. + */ +static void vmx_l1d_flush(struct kvm_vcpu *vcpu) +{ + int size = PAGE_SIZE << L1D_CACHE_ORDER; + + /* + * This code is only executed when the the flush mode is 'cond' or + * 'always' + */ + if (static_branch_likely(&vmx_l1d_flush_cond)) { + bool flush_l1d; + + /* + * Clear the per-vcpu flush bit, it gets set again + * either from vcpu_run() or from one of the unsafe + * VMEXIT handlers. + */ + flush_l1d = vcpu->arch.l1tf_flush_l1d; + vcpu->arch.l1tf_flush_l1d = false; + + /* + * Clear the per-cpu flush bit, it gets set again from + * the interrupt handlers. + */ + flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); + kvm_clear_cpu_l1tf_flush_l1d(); + + if (!flush_l1d) + return; + } + + vcpu->stat.l1d_flush++; + + if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { + wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); + return; + } + + asm volatile( + /* First ensure the pages are in the TLB */ + "xorl %%eax, %%eax\n" + ".Lpopulate_tlb:\n\t" + "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" + "addl $4096, %%eax\n\t" + "cmpl %%eax, %[size]\n\t" + "jne .Lpopulate_tlb\n\t" + "xorl %%eax, %%eax\n\t" + "cpuid\n\t" + /* Now fill the cache */ + "xorl %%eax, %%eax\n" + ".Lfill_cache:\n" + "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" + "addl $64, %%eax\n\t" + "cmpl %%eax, %[size]\n\t" + "jne .Lfill_cache\n\t" + "lfence\n" + :: [flush_pages] "r" (vmx_l1d_flush_pages), + [size] "r" (size) + : "eax", "ebx", "ecx", "edx"); +} + +static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) +{ + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + + if (is_guest_mode(vcpu) && + nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) + return; + + if (irr == -1 || tpr < irr) { + vmcs_write32(TPR_THRESHOLD, 0); + return; + } + + vmcs_write32(TPR_THRESHOLD, irr); +} + +void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) +{ + u32 sec_exec_control; + + if (!lapic_in_kernel(vcpu)) + return; + + if (!flexpriority_enabled && + !cpu_has_vmx_virtualize_x2apic_mode()) + return; + + /* Postpone execution until vmcs01 is the current VMCS. */ + if (is_guest_mode(vcpu)) { + to_vmx(vcpu)->nested.change_vmcs01_virtual_apic_mode = true; + return; + } + + sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); + sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | + SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); + + switch (kvm_get_apic_mode(vcpu)) { + case LAPIC_MODE_INVALID: + WARN_ONCE(true, "Invalid local APIC state"); + case LAPIC_MODE_DISABLED: + break; + case LAPIC_MODE_XAPIC: + if (flexpriority_enabled) { + sec_exec_control |= + SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; + vmx_flush_tlb(vcpu, true); + } + break; + case LAPIC_MODE_X2APIC: + if (cpu_has_vmx_virtualize_x2apic_mode()) + sec_exec_control |= + SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; + break; + } + vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control); + + vmx_update_msr_bitmap(vcpu); +} + +static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa) +{ + if (!is_guest_mode(vcpu)) { + vmcs_write64(APIC_ACCESS_ADDR, hpa); + vmx_flush_tlb(vcpu, true); + } +} + +static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) +{ + u16 status; + u8 old; + + if (max_isr == -1) + max_isr = 0; + + status = vmcs_read16(GUEST_INTR_STATUS); + old = status >> 8; + if (max_isr != old) { + status &= 0xff; + status |= max_isr << 8; + vmcs_write16(GUEST_INTR_STATUS, status); + } +} + +static void vmx_set_rvi(int vector) +{ + u16 status; + u8 old; + + if (vector == -1) + vector = 0; + + status = vmcs_read16(GUEST_INTR_STATUS); + old = (u8)status & 0xff; + if ((u8)vector != old) { + status &= ~0xff; + status |= (u8)vector; + vmcs_write16(GUEST_INTR_STATUS, status); + } +} + +static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) +{ + /* + * When running L2, updating RVI is only relevant when + * vmcs12 virtual-interrupt-delivery enabled. + * However, it can be enabled only when L1 also + * intercepts external-interrupts and in that case + * we should not update vmcs02 RVI but instead intercept + * interrupt. Therefore, do nothing when running L2. + */ + if (!is_guest_mode(vcpu)) + vmx_set_rvi(max_irr); +} + +static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + int max_irr; + bool max_irr_updated; + + WARN_ON(!vcpu->arch.apicv_active); + if (pi_test_on(&vmx->pi_desc)) { + pi_clear_on(&vmx->pi_desc); + /* + * IOMMU can write to PIR.ON, so the barrier matters even on UP. + * But on x86 this is just a compiler barrier anyway. + */ + smp_mb__after_atomic(); + max_irr_updated = + kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); + + /* + * If we are running L2 and L1 has a new pending interrupt + * which can be injected, we should re-evaluate + * what should be done with this new L1 interrupt. + * If L1 intercepts external-interrupts, we should + * exit from L2 to L1. Otherwise, interrupt should be + * delivered directly to L2. + */ + if (is_guest_mode(vcpu) && max_irr_updated) { + if (nested_exit_on_intr(vcpu)) + kvm_vcpu_exiting_guest_mode(vcpu); + else + kvm_make_request(KVM_REQ_EVENT, vcpu); + } + } else { + max_irr = kvm_lapic_find_highest_irr(vcpu); + } + vmx_hwapic_irr_update(vcpu, max_irr); + return max_irr; +} + +static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) +{ + if (!kvm_vcpu_apicv_active(vcpu)) + return; + + vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); + vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); + vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); + vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); +} + +static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + pi_clear_on(&vmx->pi_desc); + memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); +} + +static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx) +{ + u32 exit_intr_info = 0; + u16 basic_exit_reason = (u16)vmx->exit_reason; + + if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY + || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI)) + return; + + if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) + exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); + vmx->exit_intr_info = exit_intr_info; + + /* if exit due to PF check for async PF */ + if (is_page_fault(exit_intr_info)) + vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason(); + + /* Handle machine checks before interrupts are enabled */ + if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY || + is_machine_check(exit_intr_info)) + kvm_machine_check(); + + /* We need to handle NMIs before interrupts are enabled */ + if (is_nmi(exit_intr_info)) { + kvm_before_interrupt(&vmx->vcpu); + asm("int $2"); + kvm_after_interrupt(&vmx->vcpu); + } +} + +static void vmx_handle_external_intr(struct kvm_vcpu *vcpu) +{ + u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); + + if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK)) + == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) { + unsigned int vector; + unsigned long entry; + gate_desc *desc; + struct vcpu_vmx *vmx = to_vmx(vcpu); +#ifdef CONFIG_X86_64 + unsigned long tmp; +#endif + + vector = exit_intr_info & INTR_INFO_VECTOR_MASK; + desc = (gate_desc *)vmx->host_idt_base + vector; + entry = gate_offset(desc); + asm volatile( +#ifdef CONFIG_X86_64 + "mov %%" _ASM_SP ", %[sp]\n\t" + "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t" + "push $%c[ss]\n\t" + "push %[sp]\n\t" +#endif + "pushf\n\t" + __ASM_SIZE(push) " $%c[cs]\n\t" + CALL_NOSPEC + : +#ifdef CONFIG_X86_64 + [sp]"=&r"(tmp), +#endif + ASM_CALL_CONSTRAINT + : + THUNK_TARGET(entry), + [ss]"i"(__KERNEL_DS), + [cs]"i"(__KERNEL_CS) + ); + } +} +STACK_FRAME_NON_STANDARD(vmx_handle_external_intr); + +static bool vmx_has_emulated_msr(int index) +{ + switch (index) { + case MSR_IA32_SMBASE: + /* + * We cannot do SMM unless we can run the guest in big + * real mode. + */ + return enable_unrestricted_guest || emulate_invalid_guest_state; + case MSR_AMD64_VIRT_SPEC_CTRL: + /* This is AMD only. */ + return false; + default: + return true; + } +} + +static bool vmx_pt_supported(void) +{ + return pt_mode == PT_MODE_HOST_GUEST; +} + +static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) +{ + u32 exit_intr_info; + bool unblock_nmi; + u8 vector; + bool idtv_info_valid; + + idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; + + if (enable_vnmi) { + if (vmx->loaded_vmcs->nmi_known_unmasked) + return; + /* + * Can't use vmx->exit_intr_info since we're not sure what + * the exit reason is. + */ + exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); + unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; + vector = exit_intr_info & INTR_INFO_VECTOR_MASK; + /* + * SDM 3: 27.7.1.2 (September 2008) + * Re-set bit "block by NMI" before VM entry if vmexit caused by + * a guest IRET fault. + * SDM 3: 23.2.2 (September 2008) + * Bit 12 is undefined in any of the following cases: + * If the VM exit sets the valid bit in the IDT-vectoring + * information field. + * If the VM exit is due to a double fault. + */ + if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && + vector != DF_VECTOR && !idtv_info_valid) + vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, + GUEST_INTR_STATE_NMI); + else + vmx->loaded_vmcs->nmi_known_unmasked = + !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) + & GUEST_INTR_STATE_NMI); + } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) + vmx->loaded_vmcs->vnmi_blocked_time += + ktime_to_ns(ktime_sub(ktime_get(), + vmx->loaded_vmcs->entry_time)); +} + +static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, + u32 idt_vectoring_info, + int instr_len_field, + int error_code_field) +{ + u8 vector; + int type; + bool idtv_info_valid; + + idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; + + vcpu->arch.nmi_injected = false; + kvm_clear_exception_queue(vcpu); + kvm_clear_interrupt_queue(vcpu); + + if (!idtv_info_valid) + return; + + kvm_make_request(KVM_REQ_EVENT, vcpu); + + vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; + type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; + + switch (type) { + case INTR_TYPE_NMI_INTR: + vcpu->arch.nmi_injected = true; + /* + * SDM 3: 27.7.1.2 (September 2008) + * Clear bit "block by NMI" before VM entry if a NMI + * delivery faulted. + */ + vmx_set_nmi_mask(vcpu, false); + break; + case INTR_TYPE_SOFT_EXCEPTION: + vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); + /* fall through */ + case INTR_TYPE_HARD_EXCEPTION: + if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { + u32 err = vmcs_read32(error_code_field); + kvm_requeue_exception_e(vcpu, vector, err); + } else + kvm_requeue_exception(vcpu, vector); + break; + case INTR_TYPE_SOFT_INTR: + vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); + /* fall through */ + case INTR_TYPE_EXT_INTR: + kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); + break; + default: + break; + } +} + +static void vmx_complete_interrupts(struct vcpu_vmx *vmx) +{ + __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, + VM_EXIT_INSTRUCTION_LEN, + IDT_VECTORING_ERROR_CODE); +} + +static void vmx_cancel_injection(struct kvm_vcpu *vcpu) +{ + __vmx_complete_interrupts(vcpu, + vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), + VM_ENTRY_INSTRUCTION_LEN, + VM_ENTRY_EXCEPTION_ERROR_CODE); + + vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); +} + +static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) +{ + int i, nr_msrs; + struct perf_guest_switch_msr *msrs; + + msrs = perf_guest_get_msrs(&nr_msrs); + + if (!msrs) + return; + + for (i = 0; i < nr_msrs; i++) + if (msrs[i].host == msrs[i].guest) + clear_atomic_switch_msr(vmx, msrs[i].msr); + else + add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, + msrs[i].host, false); +} + +static void vmx_arm_hv_timer(struct vcpu_vmx *vmx, u32 val) +{ + vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, val); + if (!vmx->loaded_vmcs->hv_timer_armed) + vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL, + PIN_BASED_VMX_PREEMPTION_TIMER); + vmx->loaded_vmcs->hv_timer_armed = true; +} + +static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + u64 tscl; + u32 delta_tsc; + + if (vmx->req_immediate_exit) { + vmx_arm_hv_timer(vmx, 0); + return; + } + + if (vmx->hv_deadline_tsc != -1) { + tscl = rdtsc(); + if (vmx->hv_deadline_tsc > tscl) + /* set_hv_timer ensures the delta fits in 32-bits */ + delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> + cpu_preemption_timer_multi); + else + delta_tsc = 0; + + vmx_arm_hv_timer(vmx, delta_tsc); + return; + } + + if (vmx->loaded_vmcs->hv_timer_armed) + vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL, + PIN_BASED_VMX_PREEMPTION_TIMER); + vmx->loaded_vmcs->hv_timer_armed = false; +} + +static void vmx_vcpu_run(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + unsigned long cr3, cr4, evmcs_rsp; + + /* Record the guest's net vcpu time for enforced NMI injections. */ + if (unlikely(!enable_vnmi && + vmx->loaded_vmcs->soft_vnmi_blocked)) + vmx->loaded_vmcs->entry_time = ktime_get(); + + /* Don't enter VMX if guest state is invalid, let the exit handler + start emulation until we arrive back to a valid state */ + if (vmx->emulation_required) + return; + + if (vmx->ple_window_dirty) { + vmx->ple_window_dirty = false; + vmcs_write32(PLE_WINDOW, vmx->ple_window); + } + + if (vmx->nested.need_vmcs12_sync) + nested_sync_from_vmcs12(vcpu); + + if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty)) + vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); + if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty)) + vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); + + cr3 = __get_current_cr3_fast(); + if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { + vmcs_writel(HOST_CR3, cr3); + vmx->loaded_vmcs->host_state.cr3 = cr3; + } + + cr4 = cr4_read_shadow(); + if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { + vmcs_writel(HOST_CR4, cr4); + vmx->loaded_vmcs->host_state.cr4 = cr4; + } + + /* When single-stepping over STI and MOV SS, we must clear the + * corresponding interruptibility bits in the guest state. Otherwise + * vmentry fails as it then expects bit 14 (BS) in pending debug + * exceptions being set, but that's not correct for the guest debugging + * case. */ + if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) + vmx_set_interrupt_shadow(vcpu, 0); + + if (static_cpu_has(X86_FEATURE_PKU) && + kvm_read_cr4_bits(vcpu, X86_CR4_PKE) && + vcpu->arch.pkru != vmx->host_pkru) + __write_pkru(vcpu->arch.pkru); + + pt_guest_enter(vmx); + + atomic_switch_perf_msrs(vmx); + + vmx_update_hv_timer(vcpu); + + /* + * If this vCPU has touched SPEC_CTRL, restore the guest's value if + * it's non-zero. Since vmentry is serialising on affected CPUs, there + * is no need to worry about the conditional branch over the wrmsr + * being speculatively taken. + */ + x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0); + + vmx->__launched = vmx->loaded_vmcs->launched; + + evmcs_rsp = static_branch_unlikely(&enable_evmcs) ? + (unsigned long)¤t_evmcs->host_rsp : 0; + + if (static_branch_unlikely(&vmx_l1d_should_flush)) + vmx_l1d_flush(vcpu); + + asm( + /* Store host registers */ + "push %%" _ASM_DX "; push %%" _ASM_BP ";" + "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */ + "push %%" _ASM_CX " \n\t" + "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */ + "cmp %%" _ASM_SP ", %c[host_rsp](%%" _ASM_CX ") \n\t" + "je 1f \n\t" + "mov %%" _ASM_SP ", %c[host_rsp](%%" _ASM_CX ") \n\t" + /* Avoid VMWRITE when Enlightened VMCS is in use */ + "test %%" _ASM_SI ", %%" _ASM_SI " \n\t" + "jz 2f \n\t" + "mov %%" _ASM_SP ", (%%" _ASM_SI ") \n\t" + "jmp 1f \n\t" + "2: \n\t" + __ex("vmwrite %%" _ASM_SP ", %%" _ASM_DX) "\n\t" + "1: \n\t" + "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */ + + /* Reload cr2 if changed */ + "mov %c[cr2](%%" _ASM_CX "), %%" _ASM_AX " \n\t" + "mov %%cr2, %%" _ASM_DX " \n\t" + "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t" + "je 3f \n\t" + "mov %%" _ASM_AX", %%cr2 \n\t" + "3: \n\t" + /* Check if vmlaunch or vmresume is needed */ + "cmpl $0, %c[launched](%%" _ASM_CX ") \n\t" + /* Load guest registers. Don't clobber flags. */ + "mov %c[rax](%%" _ASM_CX "), %%" _ASM_AX " \n\t" + "mov %c[rbx](%%" _ASM_CX "), %%" _ASM_BX " \n\t" + "mov %c[rdx](%%" _ASM_CX "), %%" _ASM_DX " \n\t" + "mov %c[rsi](%%" _ASM_CX "), %%" _ASM_SI " \n\t" + "mov %c[rdi](%%" _ASM_CX "), %%" _ASM_DI " \n\t" + "mov %c[rbp](%%" _ASM_CX "), %%" _ASM_BP " \n\t" +#ifdef CONFIG_X86_64 + "mov %c[r8](%%" _ASM_CX "), %%r8 \n\t" + "mov %c[r9](%%" _ASM_CX "), %%r9 \n\t" + "mov %c[r10](%%" _ASM_CX "), %%r10 \n\t" + "mov %c[r11](%%" _ASM_CX "), %%r11 \n\t" + "mov %c[r12](%%" _ASM_CX "), %%r12 \n\t" + "mov %c[r13](%%" _ASM_CX "), %%r13 \n\t" + "mov %c[r14](%%" _ASM_CX "), %%r14 \n\t" + "mov %c[r15](%%" _ASM_CX "), %%r15 \n\t" +#endif + /* Load guest RCX. This kills the vmx_vcpu pointer! */ + "mov %c[rcx](%%" _ASM_CX "), %%" _ASM_CX " \n\t" + + /* Enter guest mode */ + "call vmx_vmenter\n\t" + + /* Save guest's RCX to the stack placeholder (see above) */ + "mov %%" _ASM_CX ", %c[wordsize](%%" _ASM_SP ") \n\t" + + /* Load host's RCX, i.e. the vmx_vcpu pointer */ + "pop %%" _ASM_CX " \n\t" + + /* Set vmx->fail based on EFLAGS.{CF,ZF} */ + "setbe %c[fail](%%" _ASM_CX ")\n\t" + + /* Save all guest registers, including RCX from the stack */ + "mov %%" _ASM_AX ", %c[rax](%%" _ASM_CX ") \n\t" + "mov %%" _ASM_BX ", %c[rbx](%%" _ASM_CX ") \n\t" + __ASM_SIZE(pop) " %c[rcx](%%" _ASM_CX ") \n\t" + "mov %%" _ASM_DX ", %c[rdx](%%" _ASM_CX ") \n\t" + "mov %%" _ASM_SI ", %c[rsi](%%" _ASM_CX ") \n\t" + "mov %%" _ASM_DI ", %c[rdi](%%" _ASM_CX ") \n\t" + "mov %%" _ASM_BP ", %c[rbp](%%" _ASM_CX ") \n\t" +#ifdef CONFIG_X86_64 + "mov %%r8, %c[r8](%%" _ASM_CX ") \n\t" + "mov %%r9, %c[r9](%%" _ASM_CX ") \n\t" + "mov %%r10, %c[r10](%%" _ASM_CX ") \n\t" + "mov %%r11, %c[r11](%%" _ASM_CX ") \n\t" + "mov %%r12, %c[r12](%%" _ASM_CX ") \n\t" + "mov %%r13, %c[r13](%%" _ASM_CX ") \n\t" + "mov %%r14, %c[r14](%%" _ASM_CX ") \n\t" + "mov %%r15, %c[r15](%%" _ASM_CX ") \n\t" + /* + * Clear host registers marked as clobbered to prevent + * speculative use. + */ + "xor %%r8d, %%r8d \n\t" + "xor %%r9d, %%r9d \n\t" + "xor %%r10d, %%r10d \n\t" + "xor %%r11d, %%r11d \n\t" + "xor %%r12d, %%r12d \n\t" + "xor %%r13d, %%r13d \n\t" + "xor %%r14d, %%r14d \n\t" + "xor %%r15d, %%r15d \n\t" +#endif + "mov %%cr2, %%" _ASM_AX " \n\t" + "mov %%" _ASM_AX ", %c[cr2](%%" _ASM_CX ") \n\t" + + "xor %%eax, %%eax \n\t" + "xor %%ebx, %%ebx \n\t" + "xor %%esi, %%esi \n\t" + "xor %%edi, %%edi \n\t" + "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t" + : ASM_CALL_CONSTRAINT + : "c"(vmx), "d"((unsigned long)HOST_RSP), "S"(evmcs_rsp), + [launched]"i"(offsetof(struct vcpu_vmx, __launched)), + [fail]"i"(offsetof(struct vcpu_vmx, fail)), + [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)), + [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])), + [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])), + [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])), + [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])), + [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])), + [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])), + [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])), +#ifdef CONFIG_X86_64 + [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])), + [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])), + [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])), + [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])), + [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])), + [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])), + [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])), + [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])), +#endif + [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)), + [wordsize]"i"(sizeof(ulong)) + : "cc", "memory" +#ifdef CONFIG_X86_64 + , "rax", "rbx", "rdi" + , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" +#else + , "eax", "ebx", "edi" +#endif + ); + + /* + * We do not use IBRS in the kernel. If this vCPU has used the + * SPEC_CTRL MSR it may have left it on; save the value and + * turn it off. This is much more efficient than blindly adding + * it to the atomic save/restore list. Especially as the former + * (Saving guest MSRs on vmexit) doesn't even exist in KVM. + * + * For non-nested case: + * If the L01 MSR bitmap does not intercept the MSR, then we need to + * save it. + * + * For nested case: + * If the L02 MSR bitmap does not intercept the MSR, then we need to + * save it. + */ + if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) + vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); + + x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0); + + /* Eliminate branch target predictions from guest mode */ + vmexit_fill_RSB(); + + /* All fields are clean at this point */ + if (static_branch_unlikely(&enable_evmcs)) + current_evmcs->hv_clean_fields |= + HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; + + /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ + if (vmx->host_debugctlmsr) + update_debugctlmsr(vmx->host_debugctlmsr); + +#ifndef CONFIG_X86_64 + /* + * The sysexit path does not restore ds/es, so we must set them to + * a reasonable value ourselves. + * + * We can't defer this to vmx_prepare_switch_to_host() since that + * function may be executed in interrupt context, which saves and + * restore segments around it, nullifying its effect. + */ + loadsegment(ds, __USER_DS); + loadsegment(es, __USER_DS); +#endif + + vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP) + | (1 << VCPU_EXREG_RFLAGS) + | (1 << VCPU_EXREG_PDPTR) + | (1 << VCPU_EXREG_SEGMENTS) + | (1 << VCPU_EXREG_CR3)); + vcpu->arch.regs_dirty = 0; + + pt_guest_exit(vmx); + + /* + * eager fpu is enabled if PKEY is supported and CR4 is switched + * back on host, so it is safe to read guest PKRU from current + * XSAVE. + */ + if (static_cpu_has(X86_FEATURE_PKU) && + kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) { + vcpu->arch.pkru = __read_pkru(); + if (vcpu->arch.pkru != vmx->host_pkru) + __write_pkru(vmx->host_pkru); + } + + vmx->nested.nested_run_pending = 0; + vmx->idt_vectoring_info = 0; + + vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON); + if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) + return; + + vmx->loaded_vmcs->launched = 1; + vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); + + vmx_complete_atomic_exit(vmx); + vmx_recover_nmi_blocking(vmx); + vmx_complete_interrupts(vmx); +} +STACK_FRAME_NON_STANDARD(vmx_vcpu_run); + +static struct kvm *vmx_vm_alloc(void) +{ + struct kvm_vmx *kvm_vmx = vzalloc(sizeof(struct kvm_vmx)); + return &kvm_vmx->kvm; +} + +static void vmx_vm_free(struct kvm *kvm) +{ + vfree(to_kvm_vmx(kvm)); +} + +static void vmx_free_vcpu(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (enable_pml) + vmx_destroy_pml_buffer(vmx); + free_vpid(vmx->vpid); + leave_guest_mode(vcpu); + nested_vmx_free_vcpu(vcpu); + free_loaded_vmcs(vmx->loaded_vmcs); + kfree(vmx->guest_msrs); + kvm_vcpu_uninit(vcpu); + kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu); + kmem_cache_free(kvm_vcpu_cache, vmx); +} + +static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id) +{ + int err; + struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); + unsigned long *msr_bitmap; + int cpu; + + if (!vmx) + return ERR_PTR(-ENOMEM); + + vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, GFP_KERNEL); + if (!vmx->vcpu.arch.guest_fpu) { + printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n"); + err = -ENOMEM; + goto free_partial_vcpu; + } + + vmx->vpid = allocate_vpid(); + + err = kvm_vcpu_init(&vmx->vcpu, kvm, id); + if (err) + goto free_vcpu; + + err = -ENOMEM; + + /* + * If PML is turned on, failure on enabling PML just results in failure + * of creating the vcpu, therefore we can simplify PML logic (by + * avoiding dealing with cases, such as enabling PML partially on vcpus + * for the guest, etc. + */ + if (enable_pml) { + vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO); + if (!vmx->pml_pg) + goto uninit_vcpu; + } + + vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL); + BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0]) + > PAGE_SIZE); + + if (!vmx->guest_msrs) + goto free_pml; + + err = alloc_loaded_vmcs(&vmx->vmcs01); + if (err < 0) + goto free_msrs; + + msr_bitmap = vmx->vmcs01.msr_bitmap; + vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R); + vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW); + vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW); + vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); + vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); + vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); + vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); + vmx->msr_bitmap_mode = 0; + + vmx->loaded_vmcs = &vmx->vmcs01; + cpu = get_cpu(); + vmx_vcpu_load(&vmx->vcpu, cpu); + vmx->vcpu.cpu = cpu; + vmx_vcpu_setup(vmx); + vmx_vcpu_put(&vmx->vcpu); + put_cpu(); + if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) { + err = alloc_apic_access_page(kvm); + if (err) + goto free_vmcs; + } + + if (enable_ept && !enable_unrestricted_guest) { + err = init_rmode_identity_map(kvm); + if (err) + goto free_vmcs; + } + + if (nested) + nested_vmx_setup_ctls_msrs(&vmx->nested.msrs, + vmx_capability.ept, + kvm_vcpu_apicv_active(&vmx->vcpu)); + else + memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs)); + + vmx->nested.posted_intr_nv = -1; + vmx->nested.current_vmptr = -1ull; + + vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED; + + /* + * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR + * or POSTED_INTR_WAKEUP_VECTOR. + */ + vmx->pi_desc.nv = POSTED_INTR_VECTOR; + vmx->pi_desc.sn = 1; + + vmx->ept_pointer = INVALID_PAGE; + + return &vmx->vcpu; + +free_vmcs: + free_loaded_vmcs(vmx->loaded_vmcs); +free_msrs: + kfree(vmx->guest_msrs); +free_pml: + vmx_destroy_pml_buffer(vmx); +uninit_vcpu: + kvm_vcpu_uninit(&vmx->vcpu); +free_vcpu: + free_vpid(vmx->vpid); + kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu); +free_partial_vcpu: + kmem_cache_free(kvm_vcpu_cache, vmx); + return ERR_PTR(err); +} + +#define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html for details.\n" +#define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html for details.\n" + +static int vmx_vm_init(struct kvm *kvm) +{ + spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock); + + if (!ple_gap) + kvm->arch.pause_in_guest = true; + + if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { + switch (l1tf_mitigation) { + case L1TF_MITIGATION_OFF: + case L1TF_MITIGATION_FLUSH_NOWARN: + /* 'I explicitly don't care' is set */ + break; + case L1TF_MITIGATION_FLUSH: + case L1TF_MITIGATION_FLUSH_NOSMT: + case L1TF_MITIGATION_FULL: + /* + * Warn upon starting the first VM in a potentially + * insecure environment. + */ + if (cpu_smt_control == CPU_SMT_ENABLED) + pr_warn_once(L1TF_MSG_SMT); + if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) + pr_warn_once(L1TF_MSG_L1D); + break; + case L1TF_MITIGATION_FULL_FORCE: + /* Flush is enforced */ + break; + } + } + return 0; +} + +static void __init vmx_check_processor_compat(void *rtn) +{ + struct vmcs_config vmcs_conf; + struct vmx_capability vmx_cap; + + *(int *)rtn = 0; + if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) + *(int *)rtn = -EIO; + if (nested) + nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept, + enable_apicv); + if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { + printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", + smp_processor_id()); + *(int *)rtn = -EIO; + } +} + +static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) +{ + u8 cache; + u64 ipat = 0; + + /* For VT-d and EPT combination + * 1. MMIO: always map as UC + * 2. EPT with VT-d: + * a. VT-d without snooping control feature: can't guarantee the + * result, try to trust guest. + * b. VT-d with snooping control feature: snooping control feature of + * VT-d engine can guarantee the cache correctness. Just set it + * to WB to keep consistent with host. So the same as item 3. + * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep + * consistent with host MTRR + */ + if (is_mmio) { + cache = MTRR_TYPE_UNCACHABLE; + goto exit; + } + + if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) { + ipat = VMX_EPT_IPAT_BIT; + cache = MTRR_TYPE_WRBACK; + goto exit; + } + + if (kvm_read_cr0(vcpu) & X86_CR0_CD) { + ipat = VMX_EPT_IPAT_BIT; + if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) + cache = MTRR_TYPE_WRBACK; + else + cache = MTRR_TYPE_UNCACHABLE; + goto exit; + } + + cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn); + +exit: + return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat; +} + +static int vmx_get_lpage_level(void) +{ + if (enable_ept && !cpu_has_vmx_ept_1g_page()) + return PT_DIRECTORY_LEVEL; + else + /* For shadow and EPT supported 1GB page */ + return PT_PDPE_LEVEL; +} + +static void vmcs_set_secondary_exec_control(u32 new_ctl) +{ + /* + * These bits in the secondary execution controls field + * are dynamic, the others are mostly based on the hypervisor + * architecture and the guest's CPUID. Do not touch the + * dynamic bits. + */ + u32 mask = + SECONDARY_EXEC_SHADOW_VMCS | + SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | + SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | + SECONDARY_EXEC_DESC; + + u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); + + vmcs_write32(SECONDARY_VM_EXEC_CONTROL, + (new_ctl & ~mask) | (cur_ctl & mask)); +} + +/* + * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits + * (indicating "allowed-1") if they are supported in the guest's CPUID. + */ +static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct kvm_cpuid_entry2 *entry; + + vmx->nested.msrs.cr0_fixed1 = 0xffffffff; + vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; + +#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ + if (entry && (entry->_reg & (_cpuid_mask))) \ + vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ +} while (0) + + entry = kvm_find_cpuid_entry(vcpu, 0x1, 0); + cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME)); + cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME)); + cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC)); + cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE)); + cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE)); + cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE)); + cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE)); + cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE)); + cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR)); + cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM)); + cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX)); + cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX)); + cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID)); + cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE)); + + entry = kvm_find_cpuid_entry(vcpu, 0x7, 0); + cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE)); + cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP)); + cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP)); + cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU)); + cr4_fixed1_update(X86_CR4_UMIP, ecx, bit(X86_FEATURE_UMIP)); + +#undef cr4_fixed1_update +} + +static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (kvm_mpx_supported()) { + bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX); + + if (mpx_enabled) { + vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS; + vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS; + } else { + vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS; + vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS; + } + } +} + +static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + struct kvm_cpuid_entry2 *best = NULL; + int i; + + for (i = 0; i < PT_CPUID_LEAVES; i++) { + best = kvm_find_cpuid_entry(vcpu, 0x14, i); + if (!best) + return; + vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; + vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; + vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; + vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; + } + + /* Get the number of configurable Address Ranges for filtering */ + vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps, + PT_CAP_num_address_ranges); + + /* Initialize and clear the no dependency bits */ + vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | + RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC); + + /* + * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise + * will inject an #GP + */ + if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) + vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; + + /* + * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and + * PSBFreq can be set + */ + if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) + vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | + RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); + + /* + * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and + * MTCFreq can be set + */ + if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) + vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | + RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE); + + /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ + if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) + vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | + RTIT_CTL_PTW_EN); + + /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ + if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) + vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; + + /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ + if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) + vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; + + /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */ + if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) + vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; + + /* unmask address range configure area */ + for (i = 0; i < vmx->pt_desc.addr_range; i++) + vmx->pt_desc.ctl_bitmask &= ~(0xf << (32 + i * 4)); +} + +static void vmx_cpuid_update(struct kvm_vcpu *vcpu) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + if (cpu_has_secondary_exec_ctrls()) { + vmx_compute_secondary_exec_control(vmx); + vmcs_set_secondary_exec_control(vmx->secondary_exec_control); + } + + if (nested_vmx_allowed(vcpu)) + to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= + FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; + else + to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= + ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; + + if (nested_vmx_allowed(vcpu)) { + nested_vmx_cr_fixed1_bits_update(vcpu); + nested_vmx_entry_exit_ctls_update(vcpu); + } + + if (boot_cpu_has(X86_FEATURE_INTEL_PT) && + guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) + update_intel_pt_cfg(vcpu); +} + +static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry) +{ + if (func == 1 && nested) + entry->ecx |= bit(X86_FEATURE_VMX); +} + +static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) +{ + to_vmx(vcpu)->req_immediate_exit = true; +} + +static int vmx_check_intercept(struct kvm_vcpu *vcpu, + struct x86_instruction_info *info, + enum x86_intercept_stage stage) +{ + struct vmcs12 *vmcs12 = get_vmcs12(vcpu); + struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; + + /* + * RDPID causes #UD if disabled through secondary execution controls. + * Because it is marked as EmulateOnUD, we need to intercept it here. + */ + if (info->intercept == x86_intercept_rdtscp && + !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) { + ctxt->exception.vector = UD_VECTOR; + ctxt->exception.error_code_valid = false; + return X86EMUL_PROPAGATE_FAULT; + } + + /* TODO: check more intercepts... */ + return X86EMUL_CONTINUE; +} + +#ifdef CONFIG_X86_64 +/* (a << shift) / divisor, return 1 if overflow otherwise 0 */ +static inline int u64_shl_div_u64(u64 a, unsigned int shift, + u64 divisor, u64 *result) +{ + u64 low = a << shift, high = a >> (64 - shift); + + /* To avoid the overflow on divq */ + if (high >= divisor) + return 1; + + /* Low hold the result, high hold rem which is discarded */ + asm("divq %2\n\t" : "=a" (low), "=d" (high) : + "rm" (divisor), "0" (low), "1" (high)); + *result = low; + + return 0; +} + +static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc) +{ + struct vcpu_vmx *vmx; + u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; + + if (kvm_mwait_in_guest(vcpu->kvm)) + return -EOPNOTSUPP; + + vmx = to_vmx(vcpu); + tscl = rdtsc(); + guest_tscl = kvm_read_l1_tsc(vcpu, tscl); + delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; + lapic_timer_advance_cycles = nsec_to_cycles(vcpu, lapic_timer_advance_ns); + + if (delta_tsc > lapic_timer_advance_cycles) + delta_tsc -= lapic_timer_advance_cycles; + else + delta_tsc = 0; + + /* Convert to host delta tsc if tsc scaling is enabled */ + if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio && + u64_shl_div_u64(delta_tsc, + kvm_tsc_scaling_ratio_frac_bits, + vcpu->arch.tsc_scaling_ratio, + &delta_tsc)) + return -ERANGE; + + /* + * If the delta tsc can't fit in the 32 bit after the multi shift, + * we can't use the preemption timer. + * It's possible that it fits on later vmentries, but checking + * on every vmentry is costly so we just use an hrtimer. + */ + if (delta_tsc >> (cpu_preemption_timer_multi + 32)) + return -ERANGE; + + vmx->hv_deadline_tsc = tscl + delta_tsc; + return delta_tsc == 0; +} + +static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) +{ + to_vmx(vcpu)->hv_deadline_tsc = -1; +} +#endif + +static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) +{ + if (!kvm_pause_in_guest(vcpu->kvm)) + shrink_ple_window(vcpu); +} + +static void vmx_slot_enable_log_dirty(struct kvm *kvm, + struct kvm_memory_slot *slot) +{ + kvm_mmu_slot_leaf_clear_dirty(kvm, slot); + kvm_mmu_slot_largepage_remove_write_access(kvm, slot); +} + +static void vmx_slot_disable_log_dirty(struct kvm *kvm, + struct kvm_memory_slot *slot) +{ + kvm_mmu_slot_set_dirty(kvm, slot); +} + +static void vmx_flush_log_dirty(struct kvm *kvm) +{ + kvm_flush_pml_buffers(kvm); +} + +static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu) +{ + struct vmcs12 *vmcs12; + struct vcpu_vmx *vmx = to_vmx(vcpu); + gpa_t gpa; + struct page *page = NULL; + u64 *pml_address; + + if (is_guest_mode(vcpu)) { + WARN_ON_ONCE(vmx->nested.pml_full); + + /* + * Check if PML is enabled for the nested guest. + * Whether eptp bit 6 is set is already checked + * as part of A/D emulation. + */ + vmcs12 = get_vmcs12(vcpu); + if (!nested_cpu_has_pml(vmcs12)) + return 0; + + if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) { + vmx->nested.pml_full = true; + return 1; + } + + gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull; + + page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address); + if (is_error_page(page)) + return 0; + + pml_address = kmap(page); + pml_address[vmcs12->guest_pml_index--] = gpa; + kunmap(page); + kvm_release_page_clean(page); + } + + return 0; +} + +static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm, + struct kvm_memory_slot *memslot, + gfn_t offset, unsigned long mask) +{ + kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask); +} + +static void __pi_post_block(struct kvm_vcpu *vcpu) +{ + struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); + struct pi_desc old, new; + unsigned int dest; + + do { + old.control = new.control = pi_desc->control; + WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR, + "Wakeup handler not enabled while the VCPU is blocked\n"); + + dest = cpu_physical_id(vcpu->cpu); + + if (x2apic_enabled()) + new.ndst = dest; + else + new.ndst = (dest << 8) & 0xFF00; + + /* set 'NV' to 'notification vector' */ + new.nv = POSTED_INTR_VECTOR; + } while (cmpxchg64(&pi_desc->control, old.control, + new.control) != old.control); + + if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) { + spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); + list_del(&vcpu->blocked_vcpu_list); + spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); + vcpu->pre_pcpu = -1; + } +} + +/* + * This routine does the following things for vCPU which is going + * to be blocked if VT-d PI is enabled. + * - Store the vCPU to the wakeup list, so when interrupts happen + * we can find the right vCPU to wake up. + * - Change the Posted-interrupt descriptor as below: + * 'NDST' <-- vcpu->pre_pcpu + * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR + * - If 'ON' is set during this process, which means at least one + * interrupt is posted for this vCPU, we cannot block it, in + * this case, return 1, otherwise, return 0. + * + */ +static int pi_pre_block(struct kvm_vcpu *vcpu) +{ + unsigned int dest; + struct pi_desc old, new; + struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); + + if (!kvm_arch_has_assigned_device(vcpu->kvm) || + !irq_remapping_cap(IRQ_POSTING_CAP) || + !kvm_vcpu_apicv_active(vcpu)) + return 0; + + WARN_ON(irqs_disabled()); + local_irq_disable(); + if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) { + vcpu->pre_pcpu = vcpu->cpu; + spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); + list_add_tail(&vcpu->blocked_vcpu_list, + &per_cpu(blocked_vcpu_on_cpu, + vcpu->pre_pcpu)); + spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); + } + + do { + old.control = new.control = pi_desc->control; + + WARN((pi_desc->sn == 1), + "Warning: SN field of posted-interrupts " + "is set before blocking\n"); + + /* + * Since vCPU can be preempted during this process, + * vcpu->cpu could be different with pre_pcpu, we + * need to set pre_pcpu as the destination of wakeup + * notification event, then we can find the right vCPU + * to wakeup in wakeup handler if interrupts happen + * when the vCPU is in blocked state. + */ + dest = cpu_physical_id(vcpu->pre_pcpu); + + if (x2apic_enabled()) + new.ndst = dest; + else + new.ndst = (dest << 8) & 0xFF00; + + /* set 'NV' to 'wakeup vector' */ + new.nv = POSTED_INTR_WAKEUP_VECTOR; + } while (cmpxchg64(&pi_desc->control, old.control, + new.control) != old.control); + + /* We should not block the vCPU if an interrupt is posted for it. */ + if (pi_test_on(pi_desc) == 1) + __pi_post_block(vcpu); + + local_irq_enable(); + return (vcpu->pre_pcpu == -1); +} + +static int vmx_pre_block(struct kvm_vcpu *vcpu) +{ + if (pi_pre_block(vcpu)) + return 1; + + if (kvm_lapic_hv_timer_in_use(vcpu)) + kvm_lapic_switch_to_sw_timer(vcpu); + + return 0; +} + +static void pi_post_block(struct kvm_vcpu *vcpu) +{ + if (vcpu->pre_pcpu == -1) + return; + + WARN_ON(irqs_disabled()); + local_irq_disable(); + __pi_post_block(vcpu); + local_irq_enable(); +} + +static void vmx_post_block(struct kvm_vcpu *vcpu) +{ + if (kvm_x86_ops->set_hv_timer) + kvm_lapic_switch_to_hv_timer(vcpu); + + pi_post_block(vcpu); +} + +/* + * vmx_update_pi_irte - set IRTE for Posted-Interrupts + * + * @kvm: kvm + * @host_irq: host irq of the interrupt + * @guest_irq: gsi of the interrupt + * @set: set or unset PI + * returns 0 on success, < 0 on failure + */ +static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq, + uint32_t guest_irq, bool set) +{ + struct kvm_kernel_irq_routing_entry *e; + struct kvm_irq_routing_table *irq_rt; + struct kvm_lapic_irq irq; + struct kvm_vcpu *vcpu; + struct vcpu_data vcpu_info; + int idx, ret = 0; + + if (!kvm_arch_has_assigned_device(kvm) || + !irq_remapping_cap(IRQ_POSTING_CAP) || + !kvm_vcpu_apicv_active(kvm->vcpus[0])) + return 0; + + idx = srcu_read_lock(&kvm->irq_srcu); + irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu); + if (guest_irq >= irq_rt->nr_rt_entries || + hlist_empty(&irq_rt->map[guest_irq])) { + pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n", + guest_irq, irq_rt->nr_rt_entries); + goto out; + } + + hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) { + if (e->type != KVM_IRQ_ROUTING_MSI) + continue; + /* + * VT-d PI cannot support posting multicast/broadcast + * interrupts to a vCPU, we still use interrupt remapping + * for these kind of interrupts. + * + * For lowest-priority interrupts, we only support + * those with single CPU as the destination, e.g. user + * configures the interrupts via /proc/irq or uses + * irqbalance to make the interrupts single-CPU. + * + * We will support full lowest-priority interrupt later. + */ + + kvm_set_msi_irq(kvm, e, &irq); + if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) { + /* + * Make sure the IRTE is in remapped mode if + * we don't handle it in posted mode. + */ + ret = irq_set_vcpu_affinity(host_irq, NULL); + if (ret < 0) { + printk(KERN_INFO + "failed to back to remapped mode, irq: %u\n", + host_irq); + goto out; + } + + continue; + } + + vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu)); + vcpu_info.vector = irq.vector; + + trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi, + vcpu_info.vector, vcpu_info.pi_desc_addr, set); + + if (set) + ret = irq_set_vcpu_affinity(host_irq, &vcpu_info); + else + ret = irq_set_vcpu_affinity(host_irq, NULL); + + if (ret < 0) { + printk(KERN_INFO "%s: failed to update PI IRTE\n", + __func__); + goto out; + } + } + + ret = 0; +out: + srcu_read_unlock(&kvm->irq_srcu, idx); + return ret; +} + +static void vmx_setup_mce(struct kvm_vcpu *vcpu) +{ + if (vcpu->arch.mcg_cap & MCG_LMCE_P) + to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= + FEATURE_CONTROL_LMCE; + else + to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= + ~FEATURE_CONTROL_LMCE; +} + +static int vmx_smi_allowed(struct kvm_vcpu *vcpu) +{ + /* we need a nested vmexit to enter SMM, postpone if run is pending */ + if (to_vmx(vcpu)->nested.nested_run_pending) + return 0; + return 1; +} + +static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + + vmx->nested.smm.guest_mode = is_guest_mode(vcpu); + if (vmx->nested.smm.guest_mode) + nested_vmx_vmexit(vcpu, -1, 0, 0); + + vmx->nested.smm.vmxon = vmx->nested.vmxon; + vmx->nested.vmxon = false; + vmx_clear_hlt(vcpu); + return 0; +} + +static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase) +{ + struct vcpu_vmx *vmx = to_vmx(vcpu); + int ret; + + if (vmx->nested.smm.vmxon) { + vmx->nested.vmxon = true; + vmx->nested.smm.vmxon = false; + } + + if (vmx->nested.smm.guest_mode) { + vcpu->arch.hflags &= ~HF_SMM_MASK; + ret = nested_vmx_enter_non_root_mode(vcpu, false); + vcpu->arch.hflags |= HF_SMM_MASK; + if (ret) + return ret; + + vmx->nested.smm.guest_mode = false; + } + return 0; +} + +static int enable_smi_window(struct kvm_vcpu *vcpu) +{ + return 0; +} + +static __init int hardware_setup(void) +{ + unsigned long host_bndcfgs; + int r, i; + + rdmsrl_safe(MSR_EFER, &host_efer); + + for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) + kvm_define_shared_msr(i, vmx_msr_index[i]); + + if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) + return -EIO; + + if (boot_cpu_has(X86_FEATURE_NX)) + kvm_enable_efer_bits(EFER_NX); + + if (boot_cpu_has(X86_FEATURE_MPX)) { + rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); + WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost"); + } + + if (boot_cpu_has(X86_FEATURE_XSAVES)) + rdmsrl(MSR_IA32_XSS, host_xss); + + if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || + !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) + enable_vpid = 0; + + if (!cpu_has_vmx_ept() || + !cpu_has_vmx_ept_4levels() || + !cpu_has_vmx_ept_mt_wb() || + !cpu_has_vmx_invept_global()) + enable_ept = 0; + + if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) + enable_ept_ad_bits = 0; + + if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) + enable_unrestricted_guest = 0; + + if (!cpu_has_vmx_flexpriority()) + flexpriority_enabled = 0; + + if (!cpu_has_virtual_nmis()) + enable_vnmi = 0; + + /* + * set_apic_access_page_addr() is used to reload apic access + * page upon invalidation. No need to do anything if not + * using the APIC_ACCESS_ADDR VMCS field. + */ + if (!flexpriority_enabled) + kvm_x86_ops->set_apic_access_page_addr = NULL; + + if (!cpu_has_vmx_tpr_shadow()) + kvm_x86_ops->update_cr8_intercept = NULL; + + if (enable_ept && !cpu_has_vmx_ept_2m_page()) + kvm_disable_largepages(); + +#if IS_ENABLED(CONFIG_HYPERV) + if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH + && enable_ept) { + kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb; + kvm_x86_ops->tlb_remote_flush_with_range = + hv_remote_flush_tlb_with_range; + } +#endif + + if (!cpu_has_vmx_ple()) { + ple_gap = 0; + ple_window = 0; + ple_window_grow = 0; + ple_window_max = 0; + ple_window_shrink = 0; + } + + if (!cpu_has_vmx_apicv()) { + enable_apicv = 0; + kvm_x86_ops->sync_pir_to_irr = NULL; + } + + if (cpu_has_vmx_tsc_scaling()) { + kvm_has_tsc_control = true; + kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; + kvm_tsc_scaling_ratio_frac_bits = 48; + } + + set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ + + if (enable_ept) + vmx_enable_tdp(); + else + kvm_disable_tdp(); + + /* + * Only enable PML when hardware supports PML feature, and both EPT + * and EPT A/D bit features are enabled -- PML depends on them to work. + */ + if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) + enable_pml = 0; + + if (!enable_pml) { + kvm_x86_ops->slot_enable_log_dirty = NULL; + kvm_x86_ops->slot_disable_log_dirty = NULL; + kvm_x86_ops->flush_log_dirty = NULL; + kvm_x86_ops->enable_log_dirty_pt_masked = NULL; + } + + if (!cpu_has_vmx_preemption_timer()) + kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit; + + if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) { + u64 vmx_msr; + + rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); + cpu_preemption_timer_multi = + vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; + } else { + kvm_x86_ops->set_hv_timer = NULL; + kvm_x86_ops->cancel_hv_timer = NULL; + } + + kvm_set_posted_intr_wakeup_handler(wakeup_handler); + + kvm_mce_cap_supported |= MCG_LMCE_P; + + if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) + return -EINVAL; + if (!enable_ept || !cpu_has_vmx_intel_pt()) + pt_mode = PT_MODE_SYSTEM; + + if (nested) { + nested_vmx_setup_ctls_msrs(&vmcs_config.nested, + vmx_capability.ept, enable_apicv); + + r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); + if (r) + return r; + } + + r = alloc_kvm_area(); + if (r) + nested_vmx_hardware_unsetup(); + return r; +} + +static __exit void hardware_unsetup(void) +{ + if (nested) + nested_vmx_hardware_unsetup(); + + free_kvm_area(); +} + +static struct kvm_x86_ops vmx_x86_ops __ro_after_init = { + .cpu_has_kvm_support = cpu_has_kvm_support, + .disabled_by_bios = vmx_disabled_by_bios, + .hardware_setup = hardware_setup, + .hardware_unsetup = hardware_unsetup, + .check_processor_compatibility = vmx_check_processor_compat, + .hardware_enable = hardware_enable, + .hardware_disable = hardware_disable, + .cpu_has_accelerated_tpr = report_flexpriority, + .has_emulated_msr = vmx_has_emulated_msr, + + .vm_init = vmx_vm_init, + .vm_alloc = vmx_vm_alloc, + .vm_free = vmx_vm_free, + + .vcpu_create = vmx_create_vcpu, + .vcpu_free = vmx_free_vcpu, + .vcpu_reset = vmx_vcpu_reset, + + .prepare_guest_switch = vmx_prepare_switch_to_guest, + .vcpu_load = vmx_vcpu_load, + .vcpu_put = vmx_vcpu_put, + + .update_bp_intercept = update_exception_bitmap, + .get_msr_feature = vmx_get_msr_feature, + .get_msr = vmx_get_msr, + .set_msr = vmx_set_msr, + .get_segment_base = vmx_get_segment_base, + .get_segment = vmx_get_segment, + .set_segment = vmx_set_segment, + .get_cpl = vmx_get_cpl, + .get_cs_db_l_bits = vmx_get_cs_db_l_bits, + .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits, + .decache_cr3 = vmx_decache_cr3, + .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits, + .set_cr0 = vmx_set_cr0, + .set_cr3 = vmx_set_cr3, + .set_cr4 = vmx_set_cr4, + .set_efer = vmx_set_efer, + .get_idt = vmx_get_idt, + .set_idt = vmx_set_idt, + .get_gdt = vmx_get_gdt, + .set_gdt = vmx_set_gdt, + .get_dr6 = vmx_get_dr6, + .set_dr6 = vmx_set_dr6, + .set_dr7 = vmx_set_dr7, + .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, + .cache_reg = vmx_cache_reg, + .get_rflags = vmx_get_rflags, + .set_rflags = vmx_set_rflags, + + .tlb_flush = vmx_flush_tlb, + .tlb_flush_gva = vmx_flush_tlb_gva, + + .run = vmx_vcpu_run, + .handle_exit = vmx_handle_exit, + .skip_emulated_instruction = skip_emulated_instruction, + .set_interrupt_shadow = vmx_set_interrupt_shadow, + .get_interrupt_shadow = vmx_get_interrupt_shadow, + .patch_hypercall = vmx_patch_hypercall, + .set_irq = vmx_inject_irq, + .set_nmi = vmx_inject_nmi, + .queue_exception = vmx_queue_exception, + .cancel_injection = vmx_cancel_injection, + .interrupt_allowed = vmx_interrupt_allowed, + .nmi_allowed = vmx_nmi_allowed, + .get_nmi_mask = vmx_get_nmi_mask, + .set_nmi_mask = vmx_set_nmi_mask, + .enable_nmi_window = enable_nmi_window, + .enable_irq_window = enable_irq_window, + .update_cr8_intercept = update_cr8_intercept, + .set_virtual_apic_mode = vmx_set_virtual_apic_mode, + .set_apic_access_page_addr = vmx_set_apic_access_page_addr, + .get_enable_apicv = vmx_get_enable_apicv, + .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, + .load_eoi_exitmap = vmx_load_eoi_exitmap, + .apicv_post_state_restore = vmx_apicv_post_state_restore, + .hwapic_irr_update = vmx_hwapic_irr_update, + .hwapic_isr_update = vmx_hwapic_isr_update, + .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, + .sync_pir_to_irr = vmx_sync_pir_to_irr, + .deliver_posted_interrupt = vmx_deliver_posted_interrupt, + + .set_tss_addr = vmx_set_tss_addr, + .set_identity_map_addr = vmx_set_identity_map_addr, + .get_tdp_level = get_ept_level, + .get_mt_mask = vmx_get_mt_mask, + + .get_exit_info = vmx_get_exit_info, + + .get_lpage_level = vmx_get_lpage_level, + + .cpuid_update = vmx_cpuid_update, + + .rdtscp_supported = vmx_rdtscp_supported, + .invpcid_supported = vmx_invpcid_supported, + + .set_supported_cpuid = vmx_set_supported_cpuid, + + .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, + + .read_l1_tsc_offset = vmx_read_l1_tsc_offset, + .write_l1_tsc_offset = vmx_write_l1_tsc_offset, + + .set_tdp_cr3 = vmx_set_cr3, + + .check_intercept = vmx_check_intercept, + .handle_external_intr = vmx_handle_external_intr, + .mpx_supported = vmx_mpx_supported, + .xsaves_supported = vmx_xsaves_supported, + .umip_emulated = vmx_umip_emulated, + .pt_supported = vmx_pt_supported, + + .request_immediate_exit = vmx_request_immediate_exit, + + .sched_in = vmx_sched_in, + + .slot_enable_log_dirty = vmx_slot_enable_log_dirty, + .slot_disable_log_dirty = vmx_slot_disable_log_dirty, + .flush_log_dirty = vmx_flush_log_dirty, + .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked, + .write_log_dirty = vmx_write_pml_buffer, + + .pre_block = vmx_pre_block, + .post_block = vmx_post_block, + + .pmu_ops = &intel_pmu_ops, + + .update_pi_irte = vmx_update_pi_irte, + +#ifdef CONFIG_X86_64 + .set_hv_timer = vmx_set_hv_timer, + .cancel_hv_timer = vmx_cancel_hv_timer, +#endif + + .setup_mce = vmx_setup_mce, + + .smi_allowed = vmx_smi_allowed, + .pre_enter_smm = vmx_pre_enter_smm, + .pre_leave_smm = vmx_pre_leave_smm, + .enable_smi_window = enable_smi_window, + + .check_nested_events = NULL, + .get_nested_state = NULL, + .set_nested_state = NULL, + .get_vmcs12_pages = NULL, + .nested_enable_evmcs = NULL, +}; + +static void vmx_cleanup_l1d_flush(void) +{ + if (vmx_l1d_flush_pages) { + free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); + vmx_l1d_flush_pages = NULL; + } + /* Restore state so sysfs ignores VMX */ + l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; +} + +static void vmx_exit(void) +{ +#ifdef CONFIG_KEXEC_CORE + RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL); + synchronize_rcu(); +#endif + + kvm_exit(); + +#if IS_ENABLED(CONFIG_HYPERV) + if (static_branch_unlikely(&enable_evmcs)) { + int cpu; + struct hv_vp_assist_page *vp_ap; + /* + * Reset everything to support using non-enlightened VMCS + * access later (e.g. when we reload the module with + * enlightened_vmcs=0) + */ + for_each_online_cpu(cpu) { + vp_ap = hv_get_vp_assist_page(cpu); + + if (!vp_ap) + continue; + + vp_ap->current_nested_vmcs = 0; + vp_ap->enlighten_vmentry = 0; + } + + static_branch_disable(&enable_evmcs); + } +#endif + vmx_cleanup_l1d_flush(); +} +module_exit(vmx_exit); + +static int __init vmx_init(void) +{ + int r; + +#if IS_ENABLED(CONFIG_HYPERV) + /* + * Enlightened VMCS usage should be recommended and the host needs + * to support eVMCS v1 or above. We can also disable eVMCS support + * with module parameter. + */ + if (enlightened_vmcs && + ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && + (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= + KVM_EVMCS_VERSION) { + int cpu; + + /* Check that we have assist pages on all online CPUs */ + for_each_online_cpu(cpu) { + if (!hv_get_vp_assist_page(cpu)) { + enlightened_vmcs = false; + break; + } + } + + if (enlightened_vmcs) { + pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n"); + static_branch_enable(&enable_evmcs); + } + } else { + enlightened_vmcs = false; + } +#endif + + r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), + __alignof__(struct vcpu_vmx), THIS_MODULE); + if (r) + return r; + + /* + * Must be called after kvm_init() so enable_ept is properly set + * up. Hand the parameter mitigation value in which was stored in + * the pre module init parser. If no parameter was given, it will + * contain 'auto' which will be turned into the default 'cond' + * mitigation mode. + */ + if (boot_cpu_has(X86_BUG_L1TF)) { + r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); + if (r) { + vmx_exit(); + return r; + } + } + +#ifdef CONFIG_KEXEC_CORE + rcu_assign_pointer(crash_vmclear_loaded_vmcss, + crash_vmclear_local_loaded_vmcss); +#endif + vmx_check_vmcs12_offsets(); + + return 0; +} +module_init(vmx_init); diff --git a/arch/x86/kvm/vmx/vmx.h b/arch/x86/kvm/vmx/vmx.h new file mode 100644 index 000000000000..99328954c2fc --- /dev/null +++ b/arch/x86/kvm/vmx/vmx.h @@ -0,0 +1,519 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef __KVM_X86_VMX_H +#define __KVM_X86_VMX_H + +#include <linux/kvm_host.h> + +#include <asm/kvm.h> +#include <asm/intel_pt.h> + +#include "capabilities.h" +#include "ops.h" +#include "vmcs.h" + +extern const u32 vmx_msr_index[]; +extern u64 host_efer; + +#define MSR_TYPE_R 1 +#define MSR_TYPE_W 2 +#define MSR_TYPE_RW 3 + +#define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4)) + +#define NR_AUTOLOAD_MSRS 8 + +struct vmx_msrs { + unsigned int nr; + struct vmx_msr_entry val[NR_AUTOLOAD_MSRS]; +}; + +struct shared_msr_entry { + unsigned index; + u64 data; + u64 mask; +}; + +enum segment_cache_field { + SEG_FIELD_SEL = 0, + SEG_FIELD_BASE = 1, + SEG_FIELD_LIMIT = 2, + SEG_FIELD_AR = 3, + + SEG_FIELD_NR = 4 +}; + +/* Posted-Interrupt Descriptor */ +struct pi_desc { + u32 pir[8]; /* Posted interrupt requested */ + union { + struct { + /* bit 256 - Outstanding Notification */ + u16 on : 1, + /* bit 257 - Suppress Notification */ + sn : 1, + /* bit 271:258 - Reserved */ + rsvd_1 : 14; + /* bit 279:272 - Notification Vector */ + u8 nv; + /* bit 287:280 - Reserved */ + u8 rsvd_2; + /* bit 319:288 - Notification Destination */ + u32 ndst; + }; + u64 control; + }; + u32 rsvd[6]; +} __aligned(64); + +#define RTIT_ADDR_RANGE 4 + +struct pt_ctx { + u64 ctl; + u64 status; + u64 output_base; + u64 output_mask; + u64 cr3_match; + u64 addr_a[RTIT_ADDR_RANGE]; + u64 addr_b[RTIT_ADDR_RANGE]; +}; + +struct pt_desc { + u64 ctl_bitmask; + u32 addr_range; + u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES]; + struct pt_ctx host; + struct pt_ctx guest; +}; + +/* + * The nested_vmx structure is part of vcpu_vmx, and holds information we need + * for correct emulation of VMX (i.e., nested VMX) on this vcpu. + */ +struct nested_vmx { + /* Has the level1 guest done vmxon? */ + bool vmxon; + gpa_t vmxon_ptr; + bool pml_full; + + /* The guest-physical address of the current VMCS L1 keeps for L2 */ + gpa_t current_vmptr; + /* + * Cache of the guest's VMCS, existing outside of guest memory. + * Loaded from guest memory during VMPTRLD. Flushed to guest + * memory during VMCLEAR and VMPTRLD. + */ + struct vmcs12 *cached_vmcs12; + /* + * Cache of the guest's shadow VMCS, existing outside of guest + * memory. Loaded from guest memory during VM entry. Flushed + * to guest memory during VM exit. + */ + struct vmcs12 *cached_shadow_vmcs12; + /* + * Indicates if the shadow vmcs or enlightened vmcs must be updated + * with the data held by struct vmcs12. + */ + bool need_vmcs12_sync; + bool dirty_vmcs12; + + /* + * vmcs02 has been initialized, i.e. state that is constant for + * vmcs02 has been written to the backing VMCS. Initialization + * is delayed until L1 actually attempts to run a nested VM. + */ + bool vmcs02_initialized; + + bool change_vmcs01_virtual_apic_mode; + + /* + * Enlightened VMCS has been enabled. It does not mean that L1 has to + * use it. However, VMX features available to L1 will be limited based + * on what the enlightened VMCS supports. + */ + bool enlightened_vmcs_enabled; + + /* L2 must run next, and mustn't decide to exit to L1. */ + bool nested_run_pending; + + struct loaded_vmcs vmcs02; + + /* + * Guest pages referred to in the vmcs02 with host-physical + * pointers, so we must keep them pinned while L2 runs. + */ + struct page *apic_access_page; + struct page *virtual_apic_page; + struct page *pi_desc_page; + struct pi_desc *pi_desc; + bool pi_pending; + u16 posted_intr_nv; + + struct hrtimer preemption_timer; + bool preemption_timer_expired; + + /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */ + u64 vmcs01_debugctl; + u64 vmcs01_guest_bndcfgs; + + u16 vpid02; + u16 last_vpid; + + struct nested_vmx_msrs msrs; + + /* SMM related state */ + struct { + /* in VMX operation on SMM entry? */ + bool vmxon; + /* in guest mode on SMM entry? */ + bool guest_mode; + } smm; + + gpa_t hv_evmcs_vmptr; + struct page *hv_evmcs_page; + struct hv_enlightened_vmcs *hv_evmcs; +}; + +struct vcpu_vmx { + struct kvm_vcpu vcpu; + unsigned long host_rsp; + u8 fail; + u8 msr_bitmap_mode; + u32 exit_intr_info; + u32 idt_vectoring_info; + ulong rflags; + struct shared_msr_entry *guest_msrs; + int nmsrs; + int save_nmsrs; + bool guest_msrs_dirty; + unsigned long host_idt_base; +#ifdef CONFIG_X86_64 + u64 msr_host_kernel_gs_base; + u64 msr_guest_kernel_gs_base; +#endif + + u64 arch_capabilities; + u64 spec_ctrl; + + u32 vm_entry_controls_shadow; + u32 vm_exit_controls_shadow; + u32 secondary_exec_control; + + /* + * loaded_vmcs points to the VMCS currently used in this vcpu. For a + * non-nested (L1) guest, it always points to vmcs01. For a nested + * guest (L2), it points to a different VMCS. loaded_cpu_state points + * to the VMCS whose state is loaded into the CPU registers that only + * need to be switched when transitioning to/from the kernel; a NULL + * value indicates that host state is loaded. + */ + struct loaded_vmcs vmcs01; + struct loaded_vmcs *loaded_vmcs; + struct loaded_vmcs *loaded_cpu_state; + bool __launched; /* temporary, used in vmx_vcpu_run */ + struct msr_autoload { + struct vmx_msrs guest; + struct vmx_msrs host; + } msr_autoload; + + struct { + int vm86_active; + ulong save_rflags; + struct kvm_segment segs[8]; + } rmode; + struct { + u32 bitmask; /* 4 bits per segment (1 bit per field) */ + struct kvm_save_segment { + u16 selector; + unsigned long base; + u32 limit; + u32 ar; + } seg[8]; + } segment_cache; + int vpid; + bool emulation_required; + + u32 exit_reason; + + /* Posted interrupt descriptor */ + struct pi_desc pi_desc; + + /* Support for a guest hypervisor (nested VMX) */ + struct nested_vmx nested; + + /* Dynamic PLE window. */ + int ple_window; + bool ple_window_dirty; + + bool req_immediate_exit; + + /* Support for PML */ +#define PML_ENTITY_NUM 512 + struct page *pml_pg; + + /* apic deadline value in host tsc */ + u64 hv_deadline_tsc; + + u64 current_tsc_ratio; + + u32 host_pkru; + + unsigned long host_debugctlmsr; + + /* + * Only bits masked by msr_ia32_feature_control_valid_bits can be set in + * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included + * in msr_ia32_feature_control_valid_bits. + */ + u64 msr_ia32_feature_control; + u64 msr_ia32_feature_control_valid_bits; + u64 ept_pointer; + + struct pt_desc pt_desc; +}; + +enum ept_pointers_status { + EPT_POINTERS_CHECK = 0, + EPT_POINTERS_MATCH = 1, + EPT_POINTERS_MISMATCH = 2 +}; + +struct kvm_vmx { + struct kvm kvm; + + unsigned int tss_addr; + bool ept_identity_pagetable_done; + gpa_t ept_identity_map_addr; + + enum ept_pointers_status ept_pointers_match; + spinlock_t ept_pointer_lock; +}; + +bool nested_vmx_allowed(struct kvm_vcpu *vcpu); +void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu); +void vmx_vcpu_put(struct kvm_vcpu *vcpu); +int allocate_vpid(void); +void free_vpid(int vpid); +void vmx_set_constant_host_state(struct vcpu_vmx *vmx); +void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu); +int vmx_get_cpl(struct kvm_vcpu *vcpu); +unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu); +void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); +u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu); +void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask); +void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer); +void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); +void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); +int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); +void set_cr4_guest_host_mask(struct vcpu_vmx *vmx); +void ept_save_pdptrs(struct kvm_vcpu *vcpu); +void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); +void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); +u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa); +void update_exception_bitmap(struct kvm_vcpu *vcpu); +void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu); +bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu); +void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked); +void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu); +struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr); +void pt_update_intercept_for_msr(struct vcpu_vmx *vmx); + +#define POSTED_INTR_ON 0 +#define POSTED_INTR_SN 1 + +static inline bool pi_test_and_set_on(struct pi_desc *pi_desc) +{ + return test_and_set_bit(POSTED_INTR_ON, + (unsigned long *)&pi_desc->control); +} + +static inline bool pi_test_and_clear_on(struct pi_desc *pi_desc) +{ + return test_and_clear_bit(POSTED_INTR_ON, + (unsigned long *)&pi_desc->control); +} + +static inline int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc) +{ + return test_and_set_bit(vector, (unsigned long *)pi_desc->pir); +} + +static inline void pi_clear_sn(struct pi_desc *pi_desc) +{ + return clear_bit(POSTED_INTR_SN, + (unsigned long *)&pi_desc->control); +} + +static inline void pi_set_sn(struct pi_desc *pi_desc) +{ + return set_bit(POSTED_INTR_SN, + (unsigned long *)&pi_desc->control); +} + +static inline void pi_clear_on(struct pi_desc *pi_desc) +{ + clear_bit(POSTED_INTR_ON, + (unsigned long *)&pi_desc->control); +} + +static inline int pi_test_on(struct pi_desc *pi_desc) +{ + return test_bit(POSTED_INTR_ON, + (unsigned long *)&pi_desc->control); +} + +static inline int pi_test_sn(struct pi_desc *pi_desc) +{ + return test_bit(POSTED_INTR_SN, + (unsigned long *)&pi_desc->control); +} + +static inline u8 vmx_get_rvi(void) +{ + return vmcs_read16(GUEST_INTR_STATUS) & 0xff; +} + +static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx) +{ + vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS); +} + +static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val) +{ + vmcs_write32(VM_ENTRY_CONTROLS, val); + vmx->vm_entry_controls_shadow = val; +} + +static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val) +{ + if (vmx->vm_entry_controls_shadow != val) + vm_entry_controls_init(vmx, val); +} + +static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx) +{ + return vmx->vm_entry_controls_shadow; +} + +static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val) +{ + vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val); +} + +static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val) +{ + vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val); +} + +static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx) +{ + vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS); +} + +static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val) +{ + vmcs_write32(VM_EXIT_CONTROLS, val); + vmx->vm_exit_controls_shadow = val; +} + +static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val) +{ + if (vmx->vm_exit_controls_shadow != val) + vm_exit_controls_init(vmx, val); +} + +static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx) +{ + return vmx->vm_exit_controls_shadow; +} + +static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val) +{ + vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val); +} + +static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val) +{ + vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val); +} + +static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx) +{ + vmx->segment_cache.bitmask = 0; +} + +static inline u32 vmx_vmentry_ctrl(void) +{ + u32 vmentry_ctrl = vmcs_config.vmentry_ctrl; + if (pt_mode == PT_MODE_SYSTEM) + vmentry_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP | VM_EXIT_CLEAR_IA32_RTIT_CTL); + /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ + return vmentry_ctrl & + ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER); +} + +static inline u32 vmx_vmexit_ctrl(void) +{ + u32 vmexit_ctrl = vmcs_config.vmexit_ctrl; + if (pt_mode == PT_MODE_SYSTEM) + vmexit_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP | VM_ENTRY_LOAD_IA32_RTIT_CTL); + /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ + return vmcs_config.vmexit_ctrl & + ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER); +} + +u32 vmx_exec_control(struct vcpu_vmx *vmx); + +static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm) +{ + return container_of(kvm, struct kvm_vmx, kvm); +} + +static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu) +{ + return container_of(vcpu, struct vcpu_vmx, vcpu); +} + +static inline struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu) +{ + return &(to_vmx(vcpu)->pi_desc); +} + +struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu); +void free_vmcs(struct vmcs *vmcs); +int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs); +void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs); +void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs); +void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs); + +static inline struct vmcs *alloc_vmcs(bool shadow) +{ + return alloc_vmcs_cpu(shadow, raw_smp_processor_id()); +} + +u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa); + +static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid, + bool invalidate_gpa) +{ + if (enable_ept && (invalidate_gpa || !enable_vpid)) { + if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) + return; + ept_sync_context(construct_eptp(vcpu, + vcpu->arch.mmu->root_hpa)); + } else { + vpid_sync_context(vpid); + } +} + +static inline void vmx_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa) +{ + __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid, invalidate_gpa); +} + +static inline void decache_tsc_multiplier(struct vcpu_vmx *vmx) +{ + vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio; + vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio); +} + +#endif /* __KVM_X86_VMX_H */ diff --git a/arch/x86/kvm/x86.c b/arch/x86/kvm/x86.c index f049ecfac7bb..02c8e095a239 100644 --- a/arch/x86/kvm/x86.c +++ b/arch/x86/kvm/x86.c @@ -69,6 +69,7 @@ #include <asm/irq_remapping.h> #include <asm/mshyperv.h> #include <asm/hypervisor.h> +#include <asm/intel_pt.h> #define CREATE_TRACE_POINTS #include "trace.h" @@ -213,6 +214,9 @@ struct kvm_stats_debugfs_item debugfs_entries[] = { u64 __read_mostly host_xcr0; +struct kmem_cache *x86_fpu_cache; +EXPORT_SYMBOL_GPL(x86_fpu_cache); + static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) @@ -1121,7 +1125,13 @@ static u32 msrs_to_save[] = { #endif MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, - MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES + MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES, + MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, + MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, + MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, + MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, + MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, + MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, }; static unsigned num_msrs_to_save; @@ -2999,6 +3009,7 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) case KVM_CAP_HYPERV_TLBFLUSH: case KVM_CAP_HYPERV_SEND_IPI: case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: + case KVM_CAP_HYPERV_CPUID: case KVM_CAP_PCI_SEGMENT: case KVM_CAP_DEBUGREGS: case KVM_CAP_X86_ROBUST_SINGLESTEP: @@ -3010,7 +3021,6 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) case KVM_CAP_HYPERV_TIME: case KVM_CAP_IOAPIC_POLARITY_IGNORED: case KVM_CAP_TSC_DEADLINE_TIMER: - case KVM_CAP_ENABLE_CAP_VM: case KVM_CAP_DISABLE_QUIRKS: case KVM_CAP_SET_BOOT_CPU_ID: case KVM_CAP_SPLIT_IRQCHIP: @@ -3632,7 +3642,7 @@ static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) { - struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave; + struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; u64 xstate_bv = xsave->header.xfeatures; u64 valid; @@ -3674,7 +3684,7 @@ static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) static void load_xsave(struct kvm_vcpu *vcpu, u8 *src) { - struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave; + struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave; u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET); u64 valid; @@ -3722,7 +3732,7 @@ static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, fill_xsave((u8 *) guest_xsave->region, vcpu); } else { memcpy(guest_xsave->region, - &vcpu->arch.guest_fpu.state.fxsave, + &vcpu->arch.guest_fpu->state.fxsave, sizeof(struct fxregs_state)); *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = XFEATURE_MASK_FPSSE; @@ -3752,7 +3762,7 @@ static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, if (xstate_bv & ~XFEATURE_MASK_FPSSE || mxcsr & ~mxcsr_feature_mask) return -EINVAL; - memcpy(&vcpu->arch.guest_fpu.state.fxsave, + memcpy(&vcpu->arch.guest_fpu->state.fxsave, guest_xsave->region, sizeof(struct fxregs_state)); } return 0; @@ -3830,6 +3840,8 @@ static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, return kvm_hv_activate_synic(vcpu, cap->cap == KVM_CAP_HYPERV_SYNIC2); case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: + if (!kvm_x86_ops->nested_enable_evmcs) + return -ENOTTY; r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version); if (!r) { user_ptr = (void __user *)(uintptr_t)cap->args[0]; @@ -4192,6 +4204,25 @@ long kvm_arch_vcpu_ioctl(struct file *filp, r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state); break; } + case KVM_GET_SUPPORTED_HV_CPUID: { + struct kvm_cpuid2 __user *cpuid_arg = argp; + struct kvm_cpuid2 cpuid; + + r = -EFAULT; + if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) + goto out; + + r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid, + cpuid_arg->entries); + if (r) + goto out; + + r = -EFAULT; + if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) + goto out; + r = 0; + break; + } default: r = -EINVAL; } @@ -4396,7 +4427,7 @@ static int kvm_vm_ioctl_reinject(struct kvm *kvm, */ int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) { - bool is_dirty = false; + bool flush = false; int r; mutex_lock(&kvm->slots_lock); @@ -4407,14 +4438,41 @@ int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) if (kvm_x86_ops->flush_log_dirty) kvm_x86_ops->flush_log_dirty(kvm); - r = kvm_get_dirty_log_protect(kvm, log, &is_dirty); + r = kvm_get_dirty_log_protect(kvm, log, &flush); /* * All the TLBs can be flushed out of mmu lock, see the comments in * kvm_mmu_slot_remove_write_access(). */ lockdep_assert_held(&kvm->slots_lock); - if (is_dirty) + if (flush) + kvm_flush_remote_tlbs(kvm); + + mutex_unlock(&kvm->slots_lock); + return r; +} + +int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log) +{ + bool flush = false; + int r; + + mutex_lock(&kvm->slots_lock); + + /* + * Flush potentially hardware-cached dirty pages to dirty_bitmap. + */ + if (kvm_x86_ops->flush_log_dirty) + kvm_x86_ops->flush_log_dirty(kvm); + + r = kvm_clear_dirty_log_protect(kvm, log, &flush); + + /* + * All the TLBs can be flushed out of mmu lock, see the comments in + * kvm_mmu_slot_remove_write_access(). + */ + lockdep_assert_held(&kvm->slots_lock); + if (flush) kvm_flush_remote_tlbs(kvm); mutex_unlock(&kvm->slots_lock); @@ -4433,8 +4491,8 @@ int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, return 0; } -static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, - struct kvm_enable_cap *cap) +int kvm_vm_ioctl_enable_cap(struct kvm *kvm, + struct kvm_enable_cap *cap) { int r; @@ -4767,15 +4825,6 @@ set_identity_unlock: r = 0; break; } - case KVM_ENABLE_CAP: { - struct kvm_enable_cap cap; - - r = -EFAULT; - if (copy_from_user(&cap, argp, sizeof(cap))) - goto out; - r = kvm_vm_ioctl_enable_cap(kvm, &cap); - break; - } case KVM_MEMORY_ENCRYPT_OP: { r = -ENOTTY; if (kvm_x86_ops->mem_enc_op) @@ -4844,6 +4893,30 @@ static void kvm_init_msr_list(void) if (!kvm_x86_ops->rdtscp_supported()) continue; break; + case MSR_IA32_RTIT_CTL: + case MSR_IA32_RTIT_STATUS: + if (!kvm_x86_ops->pt_supported()) + continue; + break; + case MSR_IA32_RTIT_CR3_MATCH: + if (!kvm_x86_ops->pt_supported() || + !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) + continue; + break; + case MSR_IA32_RTIT_OUTPUT_BASE: + case MSR_IA32_RTIT_OUTPUT_MASK: + if (!kvm_x86_ops->pt_supported() || + (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && + !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) + continue; + break; + case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: { + if (!kvm_x86_ops->pt_supported() || + msrs_to_save[i] - MSR_IA32_RTIT_ADDR0_A >= + intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) + continue; + break; + } default: break; } @@ -6815,11 +6888,30 @@ int kvm_arch_init(void *opaque) goto out; } + /* + * KVM explicitly assumes that the guest has an FPU and + * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the + * vCPU's FPU state as a fxregs_state struct. + */ + if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { + printk(KERN_ERR "kvm: inadequate fpu\n"); + r = -EOPNOTSUPP; + goto out; + } + r = -ENOMEM; + x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu), + __alignof__(struct fpu), SLAB_ACCOUNT, + NULL); + if (!x86_fpu_cache) { + printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n"); + goto out; + } + shared_msrs = alloc_percpu(struct kvm_shared_msrs); if (!shared_msrs) { printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); - goto out; + goto out_free_x86_fpu_cache; } r = kvm_mmu_module_init(); @@ -6852,6 +6944,8 @@ int kvm_arch_init(void *opaque) out_free_percpu: free_percpu(shared_msrs); +out_free_x86_fpu_cache: + kmem_cache_destroy(x86_fpu_cache); out: return r; } @@ -6875,6 +6969,7 @@ void kvm_arch_exit(void) kvm_x86_ops = NULL; kvm_mmu_module_exit(); free_percpu(shared_msrs); + kmem_cache_destroy(x86_fpu_cache); } int kvm_vcpu_halt(struct kvm_vcpu *vcpu) @@ -7998,9 +8093,9 @@ static int complete_emulated_mmio(struct kvm_vcpu *vcpu) static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) { preempt_disable(); - copy_fpregs_to_fpstate(&vcpu->arch.user_fpu); + copy_fpregs_to_fpstate(¤t->thread.fpu); /* PKRU is separately restored in kvm_x86_ops->run. */ - __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state, + __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state, ~XFEATURE_MASK_PKRU); preempt_enable(); trace_kvm_fpu(1); @@ -8010,8 +8105,8 @@ static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) { preempt_disable(); - copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu); - copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state); + copy_fpregs_to_fpstate(vcpu->arch.guest_fpu); + copy_kernel_to_fpregs(¤t->thread.fpu.state); preempt_enable(); ++vcpu->stat.fpu_reload; trace_kvm_fpu(0); @@ -8505,7 +8600,7 @@ int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) vcpu_load(vcpu); - fxsave = &vcpu->arch.guest_fpu.state.fxsave; + fxsave = &vcpu->arch.guest_fpu->state.fxsave; memcpy(fpu->fpr, fxsave->st_space, 128); fpu->fcw = fxsave->cwd; fpu->fsw = fxsave->swd; @@ -8525,7 +8620,7 @@ int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) vcpu_load(vcpu); - fxsave = &vcpu->arch.guest_fpu.state.fxsave; + fxsave = &vcpu->arch.guest_fpu->state.fxsave; memcpy(fxsave->st_space, fpu->fpr, 128); fxsave->cwd = fpu->fcw; @@ -8581,9 +8676,9 @@ static int sync_regs(struct kvm_vcpu *vcpu) static void fx_init(struct kvm_vcpu *vcpu) { - fpstate_init(&vcpu->arch.guest_fpu.state); + fpstate_init(&vcpu->arch.guest_fpu->state); if (boot_cpu_has(X86_FEATURE_XSAVES)) - vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv = + vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED; /* @@ -8621,6 +8716,7 @@ struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) { + vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; kvm_vcpu_mtrr_init(vcpu); vcpu_load(vcpu); kvm_vcpu_reset(vcpu, false); @@ -8707,11 +8803,11 @@ void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) */ if (init_event) kvm_put_guest_fpu(vcpu); - mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave, + mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, XFEATURE_MASK_BNDREGS); if (mpx_state_buffer) memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state)); - mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave, + mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave, XFEATURE_MASK_BNDCSR); if (mpx_state_buffer) memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr)); @@ -8723,7 +8819,6 @@ void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) kvm_pmu_reset(vcpu); vcpu->arch.smbase = 0x30000; - vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; vcpu->arch.msr_misc_features_enables = 0; vcpu->arch.xcr0 = XFEATURE_MASK_FP; @@ -9282,7 +9377,7 @@ static void kvm_mmu_slot_apply_flags(struct kvm *kvm, * with dirty logging disabled in order to eliminate unnecessary GPA * logging in PML buffer (and potential PML buffer full VMEXT). This * guarantees leaving PML enabled during guest's lifetime won't have - * any additonal overhead from PML when guest is running with dirty + * any additional overhead from PML when guest is running with dirty * logging disabled for memory slots. * * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot |