summaryrefslogtreecommitdiffstats
path: root/block/bfq-iosched.c
diff options
context:
space:
mode:
authorPaolo Valente <paolo.valente@linaro.org>2021-01-22 19:19:47 +0100
committerJens Axboe <axboe@kernel.dk>2021-01-25 02:18:24 +0100
commit3c337690d2ebb7a01fa13bfa59ce4911f358df42 (patch)
tree98bdad23b303bb1679fb2dcdbca0694bfabac712 /block/bfq-iosched.c
parentblock, bfq: do not raise non-default weights (diff)
downloadlinux-3c337690d2ebb7a01fa13bfa59ce4911f358df42.tar.xz
linux-3c337690d2ebb7a01fa13bfa59ce4911f358df42.zip
block, bfq: avoid spurious switches to soft_rt of interactive queues
BFQ tags some bfq_queues as interactive or soft_rt if it deems that these bfq_queues contain the I/O of, respectively, interactive or soft real-time applications. BFQ privileges both these special types of bfq_queues over normal bfq_queues. To privilege a bfq_queue, BFQ mainly raises the weight of the bfq_queue. In particular, soft_rt bfq_queues get a higher weight than interactive bfq_queues. A bfq_queue may turn from interactive to soft_rt. And this leads to a tricky issue. Soft real-time applications usually start with an I/O-bound, interactive phase, in which they load themselves into main memory. BFQ correctly detects this phase, and keeps the bfq_queues associated with the application in interactive mode for a while. Problems arise when the I/O pattern of the application finally switches to soft real-time. One of the conditions for a bfq_queue to be deemed as soft_rt is that the bfq_queue does not consume too much bandwidth. But the bfq_queues associated with a soft real-time application consume as much bandwidth as they can in the loading phase of the application. So, after the application becomes truly soft real-time, a lot of time should pass before the average bandwidth consumed by its bfq_queues finally drops to a value acceptable for soft_rt bfq_queues. As a consequence, there might be a time gap during which the application is not privileged at all, because its bfq_queues are not interactive any longer, but cannot be deemed as soft_rt yet. To avoid this problem, BFQ pretends that an interactive bfq_queue consumes zero bandwidth, and allows an interactive bfq_queue to switch to soft_rt. Yet, this fake zero-bandwidth consumption easily causes the bfq_queue to often switch to soft_rt deceptively, during its loading phase. As in soft_rt mode, the bfq_queue gets its bandwidth correctly computed, and therefore soon switches back to interactive. Then it switches again to soft_rt, and so on. These spurious fluctuations usually cause losses of throughput, because they deceive BFQ's mechanisms for boosting throughput (injection, I/O-plugging avoidance, ...). This commit addresses this issue as follows: 1) It does compute actual bandwidth consumption also for interactive bfq_queues. This avoids the above false positives. 2) When a bfq_queue switches from interactive to normal mode, the consumed bandwidth is reset (forgotten). This allows the bfq_queue to enjoy soft_rt very quickly. In particular, two alternatives are possible in this switch: - the bfq_queue still has backlog, and therefore there is a budget already scheduled to serve the bfq_queue; in this case, the scheduling of the current budget of the bfq_queue is not hindered, because only the scheduling of the next budget will be affected by the weight drop. After that, if the bfq_queue is actually in a soft_rt phase, and becomes empty during the service of its current budget, which is the natural behavior of a soft_rt bfq_queue, then the bfq_queue will be considered as soft_rt when its next I/O arrives. If, in contrast, the bfq_queue remains constantly non-empty, then its next budget will be scheduled with a low weight, which is the natural treatment for an I/O-bound (non soft_rt) bfq_queue. - the bfq_queue is empty; in this case, the bfq_queue may be considered unjustly soft_rt when its new I/O arrives. Yet the problem is now much smaller than before, because it is unlikely that more than one spurious fluctuation occurs. Tested-by: Jan Kara <jack@suse.cz> Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
Diffstat (limited to '')
-rw-r--r--block/bfq-iosched.c57
1 files changed, 37 insertions, 20 deletions
diff --git a/block/bfq-iosched.c b/block/bfq-iosched.c
index 161badb744d6..003c96fa01ad 100644
--- a/block/bfq-iosched.c
+++ b/block/bfq-iosched.c
@@ -2356,6 +2356,24 @@ static void bfq_requests_merged(struct request_queue *q, struct request *rq,
/* Must be called with bfqq != NULL */
static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
{
+ /*
+ * If bfqq has been enjoying interactive weight-raising, then
+ * reset soft_rt_next_start. We do it for the following
+ * reason. bfqq may have been conveying the I/O needed to load
+ * a soft real-time application. Such an application actually
+ * exhibits a soft real-time I/O pattern after it finishes
+ * loading, and finally starts doing its job. But, if bfqq has
+ * been receiving a lot of bandwidth so far (likely to happen
+ * on a fast device), then soft_rt_next_start now contains a
+ * high value that. So, without this reset, bfqq would be
+ * prevented from being possibly considered as soft_rt for a
+ * very long time.
+ */
+
+ if (bfqq->wr_cur_max_time !=
+ bfqq->bfqd->bfq_wr_rt_max_time)
+ bfqq->soft_rt_next_start = jiffies;
+
if (bfq_bfqq_busy(bfqq))
bfqq->bfqd->wr_busy_queues--;
bfqq->wr_coeff = 1;
@@ -3956,30 +3974,15 @@ void bfq_bfqq_expire(struct bfq_data *bfqd,
* If we get here, and there are no outstanding
* requests, then the request pattern is isochronous
* (see the comments on the function
- * bfq_bfqq_softrt_next_start()). Thus we can compute
- * soft_rt_next_start. And we do it, unless bfqq is in
- * interactive weight raising. We do not do it in the
- * latter subcase, for the following reason. bfqq may
- * be conveying the I/O needed to load a soft
- * real-time application. Such an application will
- * actually exhibit a soft real-time I/O pattern after
- * it finally starts doing its job. But, if
- * soft_rt_next_start is computed here for an
- * interactive bfqq, and bfqq had received a lot of
- * service before remaining with no outstanding
- * request (likely to happen on a fast device), then
- * soft_rt_next_start would be assigned such a high
- * value that, for a very long time, bfqq would be
- * prevented from being possibly considered as soft
- * real time.
+ * bfq_bfqq_softrt_next_start()). Therefore we can
+ * compute soft_rt_next_start.
*
* If, instead, the queue still has outstanding
* requests, then we have to wait for the completion
* of all the outstanding requests to discover whether
* the request pattern is actually isochronous.
*/
- if (bfqq->dispatched == 0 &&
- bfqq->wr_coeff != bfqd->bfq_wr_coeff)
+ if (bfqq->dispatched == 0)
bfqq->soft_rt_next_start =
bfq_bfqq_softrt_next_start(bfqd, bfqq);
else if (bfqq->dispatched > 0) {
@@ -4563,9 +4566,21 @@ static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
bfqq->wr_cur_max_time)) {
if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
- bfq_wr_duration(bfqd)))
+ bfq_wr_duration(bfqd))) {
+ /*
+ * Either in interactive weight
+ * raising, or in soft_rt weight
+ * raising with the
+ * interactive-weight-raising period
+ * elapsed (so no switch back to
+ * interactive weight raising).
+ */
bfq_bfqq_end_wr(bfqq);
- else {
+ } else { /*
+ * soft_rt finishing while still in
+ * interactive period, switch back to
+ * interactive weight raising
+ */
switch_back_to_interactive_wr(bfqq, bfqd);
bfqq->entity.prio_changed = 1;
}
@@ -5016,6 +5031,8 @@ bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
}
bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
+ bfq_log_bfqq(bfqd, bfqq, "new_ioprio %d new_weight %d",
+ bfqq->new_ioprio, bfqq->entity.new_weight);
bfqq->entity.prio_changed = 1;
}