summaryrefslogtreecommitdiffstats
path: root/crypto/aegis128-neon-inner.c
diff options
context:
space:
mode:
authorArd Biesheuvel <ard.biesheuvel@linaro.org>2019-08-12 00:59:11 +0200
committerHerbert Xu <herbert@gondor.apana.org.au>2019-08-15 13:52:15 +0200
commita4397635afea5d127548d64e0055ed471ef2d5be (patch)
tree54304e9e7a7f0d0e9e78f1823c98241ab386fe9a /crypto/aegis128-neon-inner.c
parentcrypto: aegis128 - add support for SIMD acceleration (diff)
downloadlinux-a4397635afea5d127548d64e0055ed471ef2d5be.tar.xz
linux-a4397635afea5d127548d64e0055ed471ef2d5be.zip
crypto: aegis128 - provide a SIMD implementation based on NEON intrinsics
Provide an accelerated implementation of aegis128 by wiring up the SIMD hooks in the generic driver to an implementation based on NEON intrinsics, which can be compiled to both ARM and arm64 code. This results in a performance of 2.2 cycles per byte on Cortex-A53, which is a performance increase of ~11x compared to the generic code. Reviewed-by: Ondrej Mosnacek <omosnace@redhat.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Diffstat (limited to 'crypto/aegis128-neon-inner.c')
-rw-r--r--crypto/aegis128-neon-inner.c147
1 files changed, 147 insertions, 0 deletions
diff --git a/crypto/aegis128-neon-inner.c b/crypto/aegis128-neon-inner.c
new file mode 100644
index 000000000000..3d8043c4832b
--- /dev/null
+++ b/crypto/aegis128-neon-inner.c
@@ -0,0 +1,147 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Copyright (C) 2019 Linaro, Ltd. <ard.biesheuvel@linaro.org>
+ */
+
+#ifdef CONFIG_ARM64
+#include <asm/neon-intrinsics.h>
+
+#define AES_ROUND "aese %0.16b, %1.16b \n\t aesmc %0.16b, %0.16b"
+#else
+#include <arm_neon.h>
+
+#define AES_ROUND "aese.8 %q0, %q1 \n\t aesmc.8 %q0, %q0"
+#endif
+
+#define AEGIS_BLOCK_SIZE 16
+
+#include <stddef.h>
+
+void *memcpy(void *dest, const void *src, size_t n);
+void *memset(void *s, int c, size_t n);
+
+struct aegis128_state {
+ uint8x16_t v[5];
+};
+
+static struct aegis128_state aegis128_load_state_neon(const void *state)
+{
+ return (struct aegis128_state){ {
+ vld1q_u8(state),
+ vld1q_u8(state + 16),
+ vld1q_u8(state + 32),
+ vld1q_u8(state + 48),
+ vld1q_u8(state + 64)
+ } };
+}
+
+static void aegis128_save_state_neon(struct aegis128_state st, void *state)
+{
+ vst1q_u8(state, st.v[0]);
+ vst1q_u8(state + 16, st.v[1]);
+ vst1q_u8(state + 32, st.v[2]);
+ vst1q_u8(state + 48, st.v[3]);
+ vst1q_u8(state + 64, st.v[4]);
+}
+
+static inline __attribute__((always_inline))
+uint8x16_t aegis_aes_round(uint8x16_t w)
+{
+ uint8x16_t z = {};
+
+ /*
+ * We use inline asm here instead of the vaeseq_u8/vaesmcq_u8 intrinsics
+ * to force the compiler to issue the aese/aesmc instructions in pairs.
+ * This is much faster on many cores, where the instruction pair can
+ * execute in a single cycle.
+ */
+ asm(AES_ROUND : "+w"(w) : "w"(z));
+ return w;
+}
+
+static inline __attribute__((always_inline))
+struct aegis128_state aegis128_update_neon(struct aegis128_state st,
+ uint8x16_t m)
+{
+ m ^= aegis_aes_round(st.v[4]);
+ st.v[4] ^= aegis_aes_round(st.v[3]);
+ st.v[3] ^= aegis_aes_round(st.v[2]);
+ st.v[2] ^= aegis_aes_round(st.v[1]);
+ st.v[1] ^= aegis_aes_round(st.v[0]);
+ st.v[0] ^= m;
+
+ return st;
+}
+
+void crypto_aegis128_update_neon(void *state, const void *msg)
+{
+ struct aegis128_state st = aegis128_load_state_neon(state);
+
+ st = aegis128_update_neon(st, vld1q_u8(msg));
+
+ aegis128_save_state_neon(st, state);
+}
+
+void crypto_aegis128_encrypt_chunk_neon(void *state, void *dst, const void *src,
+ unsigned int size)
+{
+ struct aegis128_state st = aegis128_load_state_neon(state);
+ uint8x16_t msg;
+
+ while (size >= AEGIS_BLOCK_SIZE) {
+ uint8x16_t s = st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4];
+
+ msg = vld1q_u8(src);
+ st = aegis128_update_neon(st, msg);
+ vst1q_u8(dst, msg ^ s);
+
+ size -= AEGIS_BLOCK_SIZE;
+ src += AEGIS_BLOCK_SIZE;
+ dst += AEGIS_BLOCK_SIZE;
+ }
+
+ if (size > 0) {
+ uint8x16_t s = st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4];
+ uint8_t buf[AEGIS_BLOCK_SIZE] = {};
+
+ memcpy(buf, src, size);
+ msg = vld1q_u8(buf);
+ st = aegis128_update_neon(st, msg);
+ vst1q_u8(buf, msg ^ s);
+ memcpy(dst, buf, size);
+ }
+
+ aegis128_save_state_neon(st, state);
+}
+
+void crypto_aegis128_decrypt_chunk_neon(void *state, void *dst, const void *src,
+ unsigned int size)
+{
+ struct aegis128_state st = aegis128_load_state_neon(state);
+ uint8x16_t msg;
+
+ while (size >= AEGIS_BLOCK_SIZE) {
+ msg = vld1q_u8(src) ^ st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4];
+ st = aegis128_update_neon(st, msg);
+ vst1q_u8(dst, msg);
+
+ size -= AEGIS_BLOCK_SIZE;
+ src += AEGIS_BLOCK_SIZE;
+ dst += AEGIS_BLOCK_SIZE;
+ }
+
+ if (size > 0) {
+ uint8x16_t s = st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4];
+ uint8_t buf[AEGIS_BLOCK_SIZE];
+
+ vst1q_u8(buf, s);
+ memcpy(buf, src, size);
+ msg = vld1q_u8(buf) ^ s;
+ vst1q_u8(buf, msg);
+ memcpy(dst, buf, size);
+
+ st = aegis128_update_neon(st, msg);
+ }
+
+ aegis128_save_state_neon(st, state);
+}