diff options
author | Ira Weiny <ira.weiny@intel.com> | 2021-12-02 05:43:05 +0100 |
---|---|---|
committer | Greg Kroah-Hartman <gregkh@linuxfoundation.org> | 2021-12-03 16:41:50 +0100 |
commit | e1b5186810cc7d4ec60447032636b8e6772dbbc6 (patch) | |
tree | 9cf65ac1d372de986927b9971911bb49c48681c6 /drivers/base/auxiliary.c | |
parent | Documentation/auxiliary_bus: Clarify the release of devices from find device (diff) | |
download | linux-e1b5186810cc7d4ec60447032636b8e6772dbbc6.tar.xz linux-e1b5186810cc7d4ec60447032636b8e6772dbbc6.zip |
Documentation/auxiliary_bus: Move the text into the code
The code and documentation are more difficult to maintain when kept
separately. This is further compounded when the standard structure
documentation infrastructure is not used.
Move the documentation into the code, use the standard documentation
infrastructure, add current documented functions, and reference the text
in the rst file.
Suggested-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/20211202044305.4006853-8-ira.weiny@intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Diffstat (limited to 'drivers/base/auxiliary.c')
-rw-r--r-- | drivers/base/auxiliary.c | 141 |
1 files changed, 141 insertions, 0 deletions
diff --git a/drivers/base/auxiliary.c b/drivers/base/auxiliary.c index ab5315681a42..8c5e65930617 100644 --- a/drivers/base/auxiliary.c +++ b/drivers/base/auxiliary.c @@ -17,6 +17,147 @@ #include <linux/auxiliary_bus.h> #include "base.h" +/** + * DOC: PURPOSE + * + * In some subsystems, the functionality of the core device (PCI/ACPI/other) is + * too complex for a single device to be managed by a monolithic driver (e.g. + * Sound Open Firmware), multiple devices might implement a common intersection + * of functionality (e.g. NICs + RDMA), or a driver may want to export an + * interface for another subsystem to drive (e.g. SIOV Physical Function export + * Virtual Function management). A split of the functionality into child- + * devices representing sub-domains of functionality makes it possible to + * compartmentalize, layer, and distribute domain-specific concerns via a Linux + * device-driver model. + * + * An example for this kind of requirement is the audio subsystem where a + * single IP is handling multiple entities such as HDMI, Soundwire, local + * devices such as mics/speakers etc. The split for the core's functionality + * can be arbitrary or be defined by the DSP firmware topology and include + * hooks for test/debug. This allows for the audio core device to be minimal + * and focused on hardware-specific control and communication. + * + * Each auxiliary_device represents a part of its parent functionality. The + * generic behavior can be extended and specialized as needed by encapsulating + * an auxiliary_device within other domain-specific structures and the use of + * .ops callbacks. Devices on the auxiliary bus do not share any structures and + * the use of a communication channel with the parent is domain-specific. + * + * Note that ops are intended as a way to augment instance behavior within a + * class of auxiliary devices, it is not the mechanism for exporting common + * infrastructure from the parent. Consider EXPORT_SYMBOL_NS() to convey + * infrastructure from the parent module to the auxiliary module(s). + */ + +/** + * DOC: USAGE + * + * The auxiliary bus is to be used when a driver and one or more kernel + * modules, who share a common header file with the driver, need a mechanism to + * connect and provide access to a shared object allocated by the + * auxiliary_device's registering driver. The registering driver for the + * auxiliary_device(s) and the kernel module(s) registering auxiliary_drivers + * can be from the same subsystem, or from multiple subsystems. + * + * The emphasis here is on a common generic interface that keeps subsystem + * customization out of the bus infrastructure. + * + * One example is a PCI network device that is RDMA-capable and exports a child + * device to be driven by an auxiliary_driver in the RDMA subsystem. The PCI + * driver allocates and registers an auxiliary_device for each physical + * function on the NIC. The RDMA driver registers an auxiliary_driver that + * claims each of these auxiliary_devices. This conveys data/ops published by + * the parent PCI device/driver to the RDMA auxiliary_driver. + * + * Another use case is for the PCI device to be split out into multiple sub + * functions. For each sub function an auxiliary_device is created. A PCI sub + * function driver binds to such devices that creates its own one or more class + * devices. A PCI sub function auxiliary device is likely to be contained in a + * struct with additional attributes such as user defined sub function number + * and optional attributes such as resources and a link to the parent device. + * These attributes could be used by systemd/udev; and hence should be + * initialized before a driver binds to an auxiliary_device. + * + * A key requirement for utilizing the auxiliary bus is that there is no + * dependency on a physical bus, device, register accesses or regmap support. + * These individual devices split from the core cannot live on the platform bus + * as they are not physical devices that are controlled by DT/ACPI. The same + * argument applies for not using MFD in this scenario as MFD relies on + * individual function devices being physical devices. + */ + +/** + * DOC: EXAMPLE + * + * Auxiliary devices are created and registered by a subsystem-level core + * device that needs to break up its functionality into smaller fragments. One + * way to extend the scope of an auxiliary_device is to encapsulate it within a + * domain- pecific structure defined by the parent device. This structure + * contains the auxiliary_device and any associated shared data/callbacks + * needed to establish the connection with the parent. + * + * An example is: + * + * .. code-block:: c + * + * struct foo { + * struct auxiliary_device auxdev; + * void (*connect)(struct auxiliary_device *auxdev); + * void (*disconnect)(struct auxiliary_device *auxdev); + * void *data; + * }; + * + * The parent device then registers the auxiliary_device by calling + * auxiliary_device_init(), and then auxiliary_device_add(), with the pointer + * to the auxdev member of the above structure. The parent provides a name for + * the auxiliary_device that, combined with the parent's KBUILD_MODNAME, + * creates a match_name that is be used for matching and binding with a driver. + * + * Whenever an auxiliary_driver is registered, based on the match_name, the + * auxiliary_driver's probe() is invoked for the matching devices. The + * auxiliary_driver can also be encapsulated inside custom drivers that make + * the core device's functionality extensible by adding additional + * domain-specific ops as follows: + * + * .. code-block:: c + * + * struct my_ops { + * void (*send)(struct auxiliary_device *auxdev); + * void (*receive)(struct auxiliary_device *auxdev); + * }; + * + * + * struct my_driver { + * struct auxiliary_driver auxiliary_drv; + * const struct my_ops ops; + * }; + * + * An example of this type of usage is: + * + * .. code-block:: c + * + * const struct auxiliary_device_id my_auxiliary_id_table[] = { + * { .name = "foo_mod.foo_dev" }, + * { }, + * }; + * + * const struct my_ops my_custom_ops = { + * .send = my_tx, + * .receive = my_rx, + * }; + * + * const struct my_driver my_drv = { + * .auxiliary_drv = { + * .name = "myauxiliarydrv", + * .id_table = my_auxiliary_id_table, + * .probe = my_probe, + * .remove = my_remove, + * .shutdown = my_shutdown, + * }, + * .ops = my_custom_ops, + * }; + */ + static const struct auxiliary_device_id *auxiliary_match_id(const struct auxiliary_device_id *id, const struct auxiliary_device *auxdev) { |