diff options
author | Shakeel Butt <shakeelb@google.com> | 2021-02-24 21:03:55 +0100 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2021-02-24 22:38:29 +0100 |
commit | b6038942480e574c697ea1a80019bbe586c1d654 (patch) | |
tree | e6a462f329fa8794ee9ad3d5cfef4761d7237f44 /drivers/base/node.c | |
parent | mm/memcg: remove rcu locking for lock_page_lruvec function series (diff) | |
download | linux-b6038942480e574c697ea1a80019bbe586c1d654.tar.xz linux-b6038942480e574c697ea1a80019bbe586c1d654.zip |
mm: memcg: add swapcache stat for memcg v2
This patch adds swapcache stat for the cgroup v2. The swapcache
represents the memory that is accounted against both the memory and the
swap limit of the cgroup. The main motivation behind exposing the
swapcache stat is for enabling users to gracefully migrate from cgroup
v1's memsw counter to cgroup v2's memory and swap counters.
Cgroup v1's memsw limit allows users to limit the memory+swap usage of a
workload but without control on the exact proportion of memory and swap.
Cgroup v2 provides separate limits for memory and swap which enables more
control on the exact usage of memory and swap individually for the
workload.
With some little subtleties, the v1's memsw limit can be switched with the
sum of the v2's memory and swap limits. However the alternative for memsw
usage is not yet available in cgroup v2. Exposing per-cgroup swapcache
stat enables that alternative. Adding the memory usage and swap usage and
subtracting the swapcache will approximate the memsw usage. This will
help in the transparent migration of the workloads depending on memsw
usage and limit to v2' memory and swap counters.
The reasons these applications are still interested in this approximate
memsw usage are: (1) these applications are not really interested in two
separate memory and swap usage metrics. A single usage metric is more
simple to use and reason about for them.
(2) The memsw usage metric hides the underlying system's swap setup from
the applications. Applications with multiple instances running in a
datacenter with heterogeneous systems (some have swap and some don't) will
keep seeing a consistent view of their usage.
[akpm@linux-foundation.org: fix CONFIG_SWAP=n build]
Link: https://lkml.kernel.org/r/20210108155813.2914586-3-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'drivers/base/node.c')
-rw-r--r-- | drivers/base/node.c | 6 |
1 files changed, 6 insertions, 0 deletions
diff --git a/drivers/base/node.c b/drivers/base/node.c index d02d86aec19f..f449dbb2c746 100644 --- a/drivers/base/node.c +++ b/drivers/base/node.c @@ -372,14 +372,19 @@ static ssize_t node_read_meminfo(struct device *dev, struct pglist_data *pgdat = NODE_DATA(nid); struct sysinfo i; unsigned long sreclaimable, sunreclaimable; + unsigned long swapcached = 0; si_meminfo_node(&i, nid); sreclaimable = node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B); sunreclaimable = node_page_state_pages(pgdat, NR_SLAB_UNRECLAIMABLE_B); +#ifdef CONFIG_SWAP + swapcached = node_page_state_pages(pgdat, NR_SWAPCACHE); +#endif len = sysfs_emit_at(buf, len, "Node %d MemTotal: %8lu kB\n" "Node %d MemFree: %8lu kB\n" "Node %d MemUsed: %8lu kB\n" + "Node %d SwapCached: %8lu kB\n" "Node %d Active: %8lu kB\n" "Node %d Inactive: %8lu kB\n" "Node %d Active(anon): %8lu kB\n" @@ -391,6 +396,7 @@ static ssize_t node_read_meminfo(struct device *dev, nid, K(i.totalram), nid, K(i.freeram), nid, K(i.totalram - i.freeram), + nid, K(swapcached), nid, K(node_page_state(pgdat, NR_ACTIVE_ANON) + node_page_state(pgdat, NR_ACTIVE_FILE)), nid, K(node_page_state(pgdat, NR_INACTIVE_ANON) + |