summaryrefslogtreecommitdiffstats
path: root/drivers/cpufreq
diff options
context:
space:
mode:
authorNishanth Menon <nm@ti.com>2013-05-01 15:38:12 +0200
committerRafael J. Wysocki <rafael.j.wysocki@intel.com>2013-05-12 14:04:16 +0200
commitfc31d6f55908759530462998d0464a9f124b1c32 (patch)
treee46590fd7da690fc5f3229975a470e1db4b268e4 /drivers/cpufreq
parentcpufreq: Issue CPUFREQ_GOV_POLICY_EXIT notifier before dropping policy refcount (diff)
downloadlinux-fc31d6f55908759530462998d0464a9f124b1c32.tar.xz
linux-fc31d6f55908759530462998d0464a9f124b1c32.zip
cpufreq: cpufreq-cpu0: defer probe when regulator is not ready
With commit 1e4b545, regulator_get will now return -EPROBE_DEFER when the cpu0-supply node is present, but the regulator is not yet registered. It is possible for this to occur when the regulator registration by itself might be defered due to some dependent interface not yet instantiated. For example: an regulator which uses I2C and GPIO might need both systems available before proceeding, in this case, the regulator might defer it's registration. However, the cpufreq-cpu0 driver assumes that any un-successful return result is equivalent of failure. When the regulator_get returns failure other than -EPROBE_DEFER, it makes sense to assume that supply node is not present and proceed with the assumption that only clock control is necessary in the platform. With this change, we can now handle the following conditions: a) cpu0-supply binding is not present, regulator_get will return appropriate error result, resulting in cpufreq-cpu0 driver controlling just the clock. b) cpu0-supply binding is present, regulator_get returns -EPROBE_DEFER, we retry resulting in cpufreq-cpu0 driver registering later once the regulator is available. c) cpu0-supply binding is present, regulator_get returns -EPROBE_DEFER, however, regulator never registers, we retry until cpufreq-cpu0 driver fails to register pointing at device tree information bug. However, in this case, the fact that cpufreq-cpu0 operates with clock only when the DT binding clearly indicates need of a supply is a bug of it's own. d) cpu0-supply gets an regulator at probe - cpufreq-cpu0 driver controls both the clock and regulator Signed-off-by: Nishanth Menon <nm@ti.com> Acked-by: Shawn Guo <shawn.guo@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Diffstat (limited to '')
-rw-r--r--drivers/cpufreq/cpufreq-cpu0.c22
1 files changed, 16 insertions, 6 deletions
diff --git a/drivers/cpufreq/cpufreq-cpu0.c b/drivers/cpufreq/cpufreq-cpu0.c
index 3ab8294eab04..ecd8af900432 100644
--- a/drivers/cpufreq/cpufreq-cpu0.c
+++ b/drivers/cpufreq/cpufreq-cpu0.c
@@ -195,6 +195,22 @@ static int cpu0_cpufreq_probe(struct platform_device *pdev)
cpu_dev = &pdev->dev;
cpu_dev->of_node = np;
+ cpu_reg = devm_regulator_get(cpu_dev, "cpu0");
+ if (IS_ERR(cpu_reg)) {
+ /*
+ * If cpu0 regulator supply node is present, but regulator is
+ * not yet registered, we should try defering probe.
+ */
+ if (PTR_ERR(cpu_reg) == -EPROBE_DEFER) {
+ dev_err(cpu_dev, "cpu0 regulator not ready, retry\n");
+ ret = -EPROBE_DEFER;
+ goto out_put_node;
+ }
+ pr_warn("failed to get cpu0 regulator: %ld\n",
+ PTR_ERR(cpu_reg));
+ cpu_reg = NULL;
+ }
+
cpu_clk = devm_clk_get(cpu_dev, NULL);
if (IS_ERR(cpu_clk)) {
ret = PTR_ERR(cpu_clk);
@@ -202,12 +218,6 @@ static int cpu0_cpufreq_probe(struct platform_device *pdev)
goto out_put_node;
}
- cpu_reg = devm_regulator_get(cpu_dev, "cpu0");
- if (IS_ERR(cpu_reg)) {
- pr_warn("failed to get cpu0 regulator\n");
- cpu_reg = NULL;
- }
-
ret = of_init_opp_table(cpu_dev);
if (ret) {
pr_err("failed to init OPP table: %d\n", ret);