diff options
author | Matt Fleming <matt@codeblueprint.co.uk> | 2016-02-29 22:22:52 +0100 |
---|---|---|
committer | Matt Fleming <matt@codeblueprint.co.uk> | 2016-09-09 17:08:34 +0200 |
commit | 816e76129ed5fadd28e526c43397c79775194b5c (patch) | |
tree | de3ec000aa5bb1fdbc6d652fbd4db9da0e82ebda /drivers/firmware | |
parent | efi: Add efi_memmap_install() for installing new EFI memory maps (diff) | |
download | linux-816e76129ed5fadd28e526c43397c79775194b5c.tar.xz linux-816e76129ed5fadd28e526c43397c79775194b5c.zip |
efi: Allow drivers to reserve boot services forever
Today, it is not possible for drivers to reserve EFI boot services for
access after efi_free_boot_services() has been called on x86. For
ARM/arm64 it can be done simply by calling memblock_reserve().
Having this ability for all three architectures is desirable for a
couple of reasons,
1) It saves drivers copying data out of those regions
2) kexec reboot can now make use of things like ESRT
Instead of using the standard memblock_reserve() which is insufficient
to reserve the region on x86 (see efi_reserve_boot_services()), a new
API is introduced in this patch; efi_mem_reserve().
efi.memmap now always represents which EFI memory regions are
available. On x86 the EFI boot services regions that have not been
reserved via efi_mem_reserve() will be removed from efi.memmap during
efi_free_boot_services().
This has implications for kexec, since it is not possible for a newly
kexec'd kernel to access the same boot services regions that the
initial boot kernel had access to unless they are reserved by every
kexec kernel in the chain.
Tested-by: Dave Young <dyoung@redhat.com> [kexec/kdump]
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [arm]
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Peter Jones <pjones@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Diffstat (limited to 'drivers/firmware')
-rw-r--r-- | drivers/firmware/efi/efi.c | 30 |
1 files changed, 30 insertions, 0 deletions
diff --git a/drivers/firmware/efi/efi.c b/drivers/firmware/efi/efi.c index d4886fd50c16..dfe07316cae5 100644 --- a/drivers/firmware/efi/efi.c +++ b/drivers/firmware/efi/efi.c @@ -27,6 +27,7 @@ #include <linux/slab.h> #include <linux/acpi.h> #include <linux/ucs2_string.h> +#include <linux/memblock.h> #include <asm/early_ioremap.h> @@ -396,6 +397,35 @@ u64 __init efi_mem_desc_end(efi_memory_desc_t *md) return end; } +void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {} + +/** + * efi_mem_reserve - Reserve an EFI memory region + * @addr: Physical address to reserve + * @size: Size of reservation + * + * Mark a region as reserved from general kernel allocation and + * prevent it being released by efi_free_boot_services(). + * + * This function should be called drivers once they've parsed EFI + * configuration tables to figure out where their data lives, e.g. + * efi_esrt_init(). + */ +void __init efi_mem_reserve(phys_addr_t addr, u64 size) +{ + if (!memblock_is_region_reserved(addr, size)) + memblock_reserve(addr, size); + + /* + * Some architectures (x86) reserve all boot services ranges + * until efi_free_boot_services() because of buggy firmware + * implementations. This means the above memblock_reserve() is + * superfluous on x86 and instead what it needs to do is + * ensure the @start, @size is not freed. + */ + efi_arch_mem_reserve(addr, size); +} + static __initdata efi_config_table_type_t common_tables[] = { {ACPI_20_TABLE_GUID, "ACPI 2.0", &efi.acpi20}, {ACPI_TABLE_GUID, "ACPI", &efi.acpi}, |