diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2015-11-05 03:10:13 +0100 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2015-11-05 03:10:13 +0100 |
commit | 0d51ce9ca1116e8f4dc87cb51db8dd250327e9bb (patch) | |
tree | f845ff44f40f102c5143f94d3c9734e65544712d /drivers/gpio/gpiolib-acpi.c | |
parent | Merge tag 'for-linus-4.4-rc0-tag' of git://git.kernel.org/pub/scm/linux/kerne... (diff) | |
parent | Merge branches 'pm-avs', 'pm-clk' and 'powercap' (diff) | |
download | linux-0d51ce9ca1116e8f4dc87cb51db8dd250327e9bb.tar.xz linux-0d51ce9ca1116e8f4dc87cb51db8dd250327e9bb.zip |
Merge tag 'pm+acpi-4.4-rc1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management and ACPI updates from Rafael Wysocki:
"Quite a new features are included this time.
First off, the Collaborative Processor Performance Control interface
(version 2) defined by ACPI will now be supported on ARM64 along with
a cpufreq frontend for CPU performance scaling.
Second, ACPI gets a new infrastructure for the early probing of IRQ
chips and clock sources (along the lines of the existing similar
mechanism for DT).
Next, the ACPI core and the generic device properties API will now
support a recently introduced hierarchical properties extension of the
_DSD (Device Specific Data) ACPI device configuration object. If the
ACPI platform firmware uses that extension to organize device
properties in a hierarchical way, the kernel will automatically handle
it and make those properties available to device drivers via the
generic device properties API.
It also will be possible to build the ACPICA's AML interpreter
debugger into the kernel now and use that to diagnose AML-related
problems more efficiently. In the future, this should make it
possible to single-step AML execution and do similar things.
Interesting stuff, although somewhat experimental at this point.
Finally, the PM core gets a new mechanism that can be used by device
drivers to distinguish between suspend-to-RAM (based on platform
firmware support) and suspend-to-idle (or other variants of system
suspend the platform firmware is not involved in) and possibly
optimize their device suspend/resume handling accordingly.
In addition to that, some existing features are re-organized quite
substantially.
First, the ACPI-based handling of PCI host bridges on x86 and ia64 is
unified and the common code goes into the ACPI core (so as to reduce
code duplication and eliminate non-essential differences between the
two architectures in that area).
Second, the Operating Performance Points (OPP) framework is
reorganized to make the code easier to find and follow.
Next, the cpufreq core's sysfs interface is reorganized to get rid of
the "primary CPU" concept for configurations in which the same
performance scaling settings are shared between multiple CPUs.
Finally, some interfaces that aren't necessary any more are dropped
from the generic power domains framework.
On top of the above we have some minor extensions, cleanups and bug
fixes in multiple places, as usual.
Specifics:
- ACPICA update to upstream revision 20150930 (Bob Moore, Lv Zheng).
The most significant change is to allow the AML debugger to be
built into the kernel. On top of that there is an update related
to the NFIT table (the ACPI persistent memory interface) and a few
fixes and cleanups.
- ACPI CPPC2 (Collaborative Processor Performance Control v2) support
along with a cpufreq frontend (Ashwin Chaugule).
This can only be enabled on ARM64 at this point.
- New ACPI infrastructure for the early probing of IRQ chips and
clock sources (Marc Zyngier).
- Support for a new hierarchical properties extension of the ACPI
_DSD (Device Specific Data) device configuration object allowing
the kernel to handle hierarchical properties (provided by the
platform firmware this way) automatically and make them available
to device drivers via the generic device properties interface
(Rafael Wysocki).
- Generic device properties API extension to obtain an index of
certain string value in an array of strings, along the lines of
of_property_match_string(), but working for all of the supported
firmware node types, and support for the "dma-names" device
property based on it (Mika Westerberg).
- ACPI core fix to parse the MADT (Multiple APIC Description Table)
entries in the order expected by platform firmware (and mandated by
the specification) to avoid confusion on systems with more than 255
logical CPUs (Lukasz Anaczkowski).
- Consolidation of the ACPI-based handling of PCI host bridges on x86
and ia64 (Jiang Liu).
- ACPI core fixes to ensure that the correct IRQ number is used to
represent the SCI (System Control Interrupt) in the cases when it
has been re-mapped (Chen Yu).
- New ACPI backlight quirk for Lenovo IdeaPad S405 (Hans de Goede).
- ACPI EC driver fixes (Lv Zheng).
- Assorted ACPI fixes and cleanups (Dan Carpenter, Insu Yun, Jiri
Kosina, Rami Rosen, Rasmus Villemoes).
- New mechanism in the PM core allowing drivers to check if the
platform firmware is going to be involved in the upcoming system
suspend or if it has been involved in the suspend the system is
resuming from at the moment (Rafael Wysocki).
This should allow drivers to optimize their suspend/resume handling
in some cases and the changes include a couple of users of it (the
i8042 input driver, PCI PM).
- PCI PM fix to prevent runtime-suspended devices with PME enabled
from being resumed during system suspend even if they aren't
configured to wake up the system from sleep (Rafael Wysocki).
- New mechanism to report the number of a wakeup IRQ that woke up the
system from sleep last time (Alexandra Yates).
- Removal of unused interfaces from the generic power domains
framework and fixes related to latency measurements in that code
(Ulf Hansson, Daniel Lezcano).
- cpufreq core sysfs interface rework to make it handle CPUs that
share performance scaling settings (represented by a common cpufreq
policy object) more symmetrically (Viresh Kumar).
This should help to simplify the CPU offline/online handling among
other things.
- cpufreq core fixes and cleanups (Viresh Kumar).
- intel_pstate fixes related to the Turbo Activation Ratio (TAR)
mechanism on client platforms which causes the turbo P-states range
to vary depending on platform firmware settings (Srinivas
Pandruvada).
- intel_pstate sysfs interface fix (Prarit Bhargava).
- Assorted cpufreq driver (imx, tegra20, powernv, integrator) fixes
and cleanups (Bai Ping, Bartlomiej Zolnierkiewicz, Shilpasri G
Bhat, Luis de Bethencourt).
- cpuidle mvebu driver cleanups (Russell King).
- OPP (Operating Performance Points) framework code reorganization to
make it more maintainable (Viresh Kumar).
- Intel Broxton support for the RAPL (Running Average Power Limits)
power capping driver (Amy Wiles).
- Assorted power management code fixes and cleanups (Dan Carpenter,
Geert Uytterhoeven, Geliang Tang, Luis de Bethencourt, Rasmus
Villemoes)"
* tag 'pm+acpi-4.4-rc1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (108 commits)
cpufreq: postfix policy directory with the first CPU in related_cpus
cpufreq: create cpu/cpufreq/policyX directories
cpufreq: remove cpufreq_sysfs_{create|remove}_file()
cpufreq: create cpu/cpufreq at boot time
cpufreq: Use cpumask_copy instead of cpumask_or to copy a mask
cpufreq: ondemand: Drop unnecessary locks from update_sampling_rate()
PM / Domains: Merge measurements for PM QoS device latencies
PM / Domains: Don't measure ->start|stop() latency in system PM callbacks
PM / clk: Fix broken build due to non-matching code and header #ifdefs
ACPI / Documentation: add copy_dsdt to ACPI format options
ACPI / sysfs: correctly check failing memory allocation
ACPI / video: Add a quirk to force native backlight on Lenovo IdeaPad S405
ACPI / CPPC: Fix potential memory leak
ACPI / CPPC: signedness bug in register_pcc_channel()
ACPI / PAD: power_saving_thread() is not freezable
ACPI / PM: Fix incorrect wakeup IRQ setting during suspend-to-idle
ACPI: Using correct irq when waiting for events
ACPI: Use correct IRQ when uninstalling ACPI interrupt handler
cpuidle: mvebu: disable the bind/unbind attributes and use builtin_platform_driver
cpuidle: mvebu: clean up multiple platform drivers
...
Diffstat (limited to 'drivers/gpio/gpiolib-acpi.c')
-rw-r--r-- | drivers/gpio/gpiolib-acpi.c | 153 |
1 files changed, 109 insertions, 44 deletions
diff --git a/drivers/gpio/gpiolib-acpi.c b/drivers/gpio/gpiolib-acpi.c index bbcac3af2a7a..16a7b6816744 100644 --- a/drivers/gpio/gpiolib-acpi.c +++ b/drivers/gpio/gpiolib-acpi.c @@ -388,6 +388,8 @@ struct acpi_gpio_lookup { struct acpi_gpio_info info; int index; int pin_index; + bool active_low; + struct acpi_device *adev; struct gpio_desc *desc; int n; }; @@ -424,6 +426,65 @@ static int acpi_find_gpio(struct acpi_resource *ares, void *data) return 1; } +static int acpi_gpio_resource_lookup(struct acpi_gpio_lookup *lookup, + struct acpi_gpio_info *info) +{ + struct list_head res_list; + int ret; + + INIT_LIST_HEAD(&res_list); + + ret = acpi_dev_get_resources(lookup->adev, &res_list, acpi_find_gpio, + lookup); + if (ret < 0) + return ret; + + acpi_dev_free_resource_list(&res_list); + + if (!lookup->desc) + return -ENOENT; + + if (info) { + *info = lookup->info; + if (lookup->active_low) + info->active_low = lookup->active_low; + } + return 0; +} + +static int acpi_gpio_property_lookup(struct fwnode_handle *fwnode, + const char *propname, int index, + struct acpi_gpio_lookup *lookup) +{ + struct acpi_reference_args args; + int ret; + + memset(&args, 0, sizeof(args)); + ret = acpi_node_get_property_reference(fwnode, propname, index, &args); + if (ret) { + struct acpi_device *adev = to_acpi_device_node(fwnode); + + if (!adev) + return ret; + + if (!acpi_get_driver_gpio_data(adev, propname, index, &args)) + return ret; + } + /* + * The property was found and resolved, so need to lookup the GPIO based + * on returned args. + */ + lookup->adev = args.adev; + if (args.nargs >= 2) { + lookup->index = args.args[0]; + lookup->pin_index = args.args[1]; + /* 3rd argument, if present is used to specify active_low. */ + if (args.nargs >= 3) + lookup->active_low = !!args.args[2]; + } + return 0; +} + /** * acpi_get_gpiod_by_index() - get a GPIO descriptor from device resources * @adev: pointer to a ACPI device to get GPIO from @@ -451,8 +512,6 @@ struct gpio_desc *acpi_get_gpiod_by_index(struct acpi_device *adev, struct acpi_gpio_info *info) { struct acpi_gpio_lookup lookup; - struct list_head resource_list; - bool active_low = false; int ret; if (!adev) @@ -462,58 +521,64 @@ struct gpio_desc *acpi_get_gpiod_by_index(struct acpi_device *adev, lookup.index = index; if (propname) { - struct acpi_reference_args args; - dev_dbg(&adev->dev, "GPIO: looking up %s\n", propname); - memset(&args, 0, sizeof(args)); - ret = acpi_dev_get_property_reference(adev, propname, - index, &args); - if (ret) { - bool found = acpi_get_driver_gpio_data(adev, propname, - index, &args); - if (!found) - return ERR_PTR(ret); - } + ret = acpi_gpio_property_lookup(acpi_fwnode_handle(adev), + propname, index, &lookup); + if (ret) + return ERR_PTR(ret); - /* - * The property was found and resolved so need to - * lookup the GPIO based on returned args instead. - */ - adev = args.adev; - if (args.nargs >= 2) { - lookup.index = args.args[0]; - lookup.pin_index = args.args[1]; - /* - * 3rd argument, if present is used to - * specify active_low. - */ - if (args.nargs >= 3) - active_low = !!args.args[2]; - } - - dev_dbg(&adev->dev, "GPIO: _DSD returned %s %zd %llu %llu %llu\n", - dev_name(&adev->dev), args.nargs, - args.args[0], args.args[1], args.args[2]); + dev_dbg(&adev->dev, "GPIO: _DSD returned %s %d %d %u\n", + dev_name(&lookup.adev->dev), lookup.index, + lookup.pin_index, lookup.active_low); } else { dev_dbg(&adev->dev, "GPIO: looking up %d in _CRS\n", index); + lookup.adev = adev; } - INIT_LIST_HEAD(&resource_list); - ret = acpi_dev_get_resources(adev, &resource_list, acpi_find_gpio, - &lookup); - if (ret < 0) - return ERR_PTR(ret); + ret = acpi_gpio_resource_lookup(&lookup, info); + return ret ? ERR_PTR(ret) : lookup.desc; +} + +/** + * acpi_node_get_gpiod() - get a GPIO descriptor from ACPI resources + * @fwnode: pointer to an ACPI firmware node to get the GPIO information from + * @propname: Property name of the GPIO + * @index: index of GpioIo/GpioInt resource (starting from %0) + * @info: info pointer to fill in (optional) + * + * If @fwnode is an ACPI device object, call %acpi_get_gpiod_by_index() for it. + * Otherwise (ie. it is a data-only non-device object), use the property-based + * GPIO lookup to get to the GPIO resource with the relevant information and use + * that to obtain the GPIO descriptor to return. + */ +struct gpio_desc *acpi_node_get_gpiod(struct fwnode_handle *fwnode, + const char *propname, int index, + struct acpi_gpio_info *info) +{ + struct acpi_gpio_lookup lookup; + struct acpi_device *adev; + int ret; - acpi_dev_free_resource_list(&resource_list); + adev = to_acpi_device_node(fwnode); + if (adev) + return acpi_get_gpiod_by_index(adev, propname, index, info); - if (lookup.desc && info) { - *info = lookup.info; - if (active_low) - info->active_low = active_low; - } + if (!is_acpi_data_node(fwnode)) + return ERR_PTR(-ENODEV); + + if (!propname) + return ERR_PTR(-EINVAL); + + memset(&lookup, 0, sizeof(lookup)); + lookup.index = index; + + ret = acpi_gpio_property_lookup(fwnode, propname, index, &lookup); + if (ret) + return ERR_PTR(ret); - return lookup.desc ? lookup.desc : ERR_PTR(-ENOENT); + ret = acpi_gpio_resource_lookup(&lookup, info); + return ret ? ERR_PTR(ret) : lookup.desc; } /** |