summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/nouveau
diff options
context:
space:
mode:
authorTimur Tabi <ttabi@nvidia.com>2023-11-22 21:28:40 +0100
committerDanilo Krummrich <dakr@redhat.com>2023-11-30 00:40:23 +0100
commit88a2b4d34a64bba914c4e245c6de3ca42bea93cf (patch)
tree0c821bef5ef82651afb85933c103d268c63e2e4e /drivers/gpu/drm/nouveau
parentdrm/panel: nt36523: fix return value check in nt36523_probe() (diff)
downloadlinux-88a2b4d34a64bba914c4e245c6de3ca42bea93cf.tar.xz
linux-88a2b4d34a64bba914c4e245c6de3ca42bea93cf.zip
nouveau/gsp: document some aspects of GSP-RM
Document a few aspects of communication with GSP-RM. These comments are derived from notes made during early development of GSP-RM support in Nouveau, but were not included in the initial patch set. Reviewed-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Timur Tabi <ttabi@nvidia.com> Reviewed-by: Danilo Krummrich <dakr@redhat.com> Signed-off-by: Danilo Krummrich <dakr@redhat.com> Link: https://patchwork.freedesktop.org/patch/msgid/20231122202840.2565153-1-ttabi@nvidia.com
Diffstat (limited to 'drivers/gpu/drm/nouveau')
-rw-r--r--drivers/gpu/drm/nouveau/include/nvrm/535.113.01/common/shared/msgq/inc/msgq/msgq_priv.h51
-rw-r--r--drivers/gpu/drm/nouveau/nvkm/subdev/gsp/r535.c82
2 files changed, 133 insertions, 0 deletions
diff --git a/drivers/gpu/drm/nouveau/include/nvrm/535.113.01/common/shared/msgq/inc/msgq/msgq_priv.h b/drivers/gpu/drm/nouveau/include/nvrm/535.113.01/common/shared/msgq/inc/msgq/msgq_priv.h
index 5a2f273d95c8..0e32e71e123f 100644
--- a/drivers/gpu/drm/nouveau/include/nvrm/535.113.01/common/shared/msgq/inc/msgq/msgq_priv.h
+++ b/drivers/gpu/drm/nouveau/include/nvrm/535.113.01/common/shared/msgq/inc/msgq/msgq_priv.h
@@ -26,6 +26,49 @@
* DEALINGS IN THE SOFTWARE.
*/
+/**
+ * msgqTxHeader -- TX queue data structure
+ * @version: the version of this structure, must be 0
+ * @size: the size of the entire queue, including this header
+ * @msgSize: the padded size of queue element, 16 is minimum
+ * @msgCount: the number of elements in this queue
+ * @writePtr: head index of this queue
+ * @flags: 1 = swap the RX pointers
+ * @rxHdrOff: offset of readPtr in this structure
+ * @entryOff: offset of beginning of queue (msgqRxHeader), relative to
+ * beginning of this structure
+ *
+ * The command queue is a queue of RPCs that are sent from the driver to the
+ * GSP. The status queue is a queue of messages/responses from GSP-RM to the
+ * driver. Although the driver allocates memory for both queues, the command
+ * queue is owned by the driver and the status queue is owned by GSP-RM. In
+ * addition, the headers of the two queues must not share the same 4K page.
+ *
+ * Each queue is prefixed with this data structure. The idea is that a queue
+ * and its header are written to only by their owner. That is, only the
+ * driver writes to the command queue and command queue header, and only the
+ * GSP writes to the status (receive) queue and its header.
+ *
+ * This is enforced by the concept of "swapping" the RX pointers. This is
+ * why the 'flags' field must be set to 1. 'rxHdrOff' is how the GSP knows
+ * where the where the tail pointer of its status queue.
+ *
+ * When the driver writes a new RPC to the command queue, it updates writePtr.
+ * When it reads a new message from the status queue, it updates readPtr. In
+ * this way, the GSP knows when a new command is in the queue (it polls
+ * writePtr) and it knows how much free space is in the status queue (it
+ * checks readPtr). The driver never cares about how much free space is in
+ * the status queue.
+ *
+ * As usual, producers write to the head pointer, and consumers read from the
+ * tail pointer. When head == tail, the queue is empty.
+ *
+ * So to summarize:
+ * command.writePtr = head of command queue
+ * command.readPtr = tail of status queue
+ * status.writePtr = head of status queue
+ * status.readPtr = tail of command queue
+ */
typedef struct
{
NvU32 version; // queue version
@@ -38,6 +81,14 @@ typedef struct
NvU32 entryOff; // Offset of entries from start of backing store.
} msgqTxHeader;
+/**
+ * msgqRxHeader - RX queue data structure
+ * @readPtr: tail index of the other queue
+ *
+ * Although this is a separate struct, it could easily be merged into
+ * msgqTxHeader. msgqTxHeader.rxHdrOff is simply the offset of readPtr
+ * from the beginning of msgqTxHeader.
+ */
typedef struct
{
NvU32 readPtr; // message id of last message read
diff --git a/drivers/gpu/drm/nouveau/nvkm/subdev/gsp/r535.c b/drivers/gpu/drm/nouveau/nvkm/subdev/gsp/r535.c
index f6725a5f5bfb..44fb86841c05 100644
--- a/drivers/gpu/drm/nouveau/nvkm/subdev/gsp/r535.c
+++ b/drivers/gpu/drm/nouveau/nvkm/subdev/gsp/r535.c
@@ -1377,6 +1377,13 @@ r535_gsp_msg_post_event(void *priv, u32 fn, void *repv, u32 repc)
return 0;
}
+/**
+ * r535_gsp_msg_run_cpu_sequencer() -- process I/O commands from the GSP
+ *
+ * The GSP sequencer is a list of I/O commands that the GSP can send to
+ * the driver to perform for various purposes. The most common usage is to
+ * perform a special mid-initialization reset.
+ */
static int
r535_gsp_msg_run_cpu_sequencer(void *priv, u32 fn, void *repv, u32 repc)
{
@@ -1716,6 +1723,23 @@ r535_gsp_libos_id8(const char *name)
return id;
}
+/**
+ * create_pte_array() - creates a PTE array of a physically contiguous buffer
+ * @ptes: pointer to the array
+ * @addr: base address of physically contiguous buffer (GSP_PAGE_SIZE aligned)
+ * @size: size of the buffer
+ *
+ * GSP-RM sometimes expects physically-contiguous buffers to have an array of
+ * "PTEs" for each page in that buffer. Although in theory that allows for
+ * the buffer to be physically discontiguous, GSP-RM does not currently
+ * support that.
+ *
+ * In this case, the PTEs are DMA addresses of each page of the buffer. Since
+ * the buffer is physically contiguous, calculating all the PTEs is simple
+ * math.
+ *
+ * See memdescGetPhysAddrsForGpu()
+ */
static void create_pte_array(u64 *ptes, dma_addr_t addr, size_t size)
{
unsigned int num_pages = DIV_ROUND_UP_ULL(size, GSP_PAGE_SIZE);
@@ -1725,6 +1749,35 @@ static void create_pte_array(u64 *ptes, dma_addr_t addr, size_t size)
ptes[i] = (u64)addr + (i << GSP_PAGE_SHIFT);
}
+/**
+ * r535_gsp_libos_init() -- create the libos arguments structure
+ *
+ * The logging buffers are byte queues that contain encoded printf-like
+ * messages from GSP-RM. They need to be decoded by a special application
+ * that can parse the buffers.
+ *
+ * The 'loginit' buffer contains logs from early GSP-RM init and
+ * exception dumps. The 'logrm' buffer contains the subsequent logs. Both are
+ * written to directly by GSP-RM and can be any multiple of GSP_PAGE_SIZE.
+ *
+ * The physical address map for the log buffer is stored in the buffer
+ * itself, starting with offset 1. Offset 0 contains the "put" pointer.
+ *
+ * The GSP only understands 4K pages (GSP_PAGE_SIZE), so even if the kernel is
+ * configured for a larger page size (e.g. 64K pages), we need to give
+ * the GSP an array of 4K pages. Fortunately, since the buffer is
+ * physically contiguous, it's simple math to calculate the addresses.
+ *
+ * The buffers must be a multiple of GSP_PAGE_SIZE. GSP-RM also currently
+ * ignores the @kind field for LOGINIT, LOGINTR, and LOGRM, but expects the
+ * buffers to be physically contiguous anyway.
+ *
+ * The memory allocated for the arguments must remain until the GSP sends the
+ * init_done RPC.
+ *
+ * See _kgspInitLibosLoggingStructures (allocates memory for buffers)
+ * See kgspSetupLibosInitArgs_IMPL (creates pLibosInitArgs[] array)
+ */
static int
r535_gsp_libos_init(struct nvkm_gsp *gsp)
{
@@ -1835,6 +1888,35 @@ nvkm_gsp_radix3_dtor(struct nvkm_gsp *gsp, struct nvkm_gsp_radix3 *rx3)
nvkm_gsp_mem_dtor(gsp, &rx3->mem[i]);
}
+/**
+ * nvkm_gsp_radix3_sg - build a radix3 table from a S/G list
+ *
+ * The GSP uses a three-level page table, called radix3, to map the firmware.
+ * Each 64-bit "pointer" in the table is either the bus address of an entry in
+ * the next table (for levels 0 and 1) or the bus address of the next page in
+ * the GSP firmware image itself.
+ *
+ * Level 0 contains a single entry in one page that points to the first page
+ * of level 1.
+ *
+ * Level 1, since it's also only one page in size, contains up to 512 entries,
+ * one for each page in Level 2.
+ *
+ * Level 2 can be up to 512 pages in size, and each of those entries points to
+ * the next page of the firmware image. Since there can be up to 512*512
+ * pages, that limits the size of the firmware to 512*512*GSP_PAGE_SIZE = 1GB.
+ *
+ * Internally, the GSP has its window into system memory, but the base
+ * physical address of the aperture is not 0. In fact, it varies depending on
+ * the GPU architecture. Since the GPU is a PCI device, this window is
+ * accessed via DMA and is therefore bound by IOMMU translation. The end
+ * result is that GSP-RM must translate the bus addresses in the table to GSP
+ * physical addresses. All this should happen transparently.
+ *
+ * Returns 0 on success, or negative error code
+ *
+ * See kgspCreateRadix3_IMPL
+ */
static int
nvkm_gsp_radix3_sg(struct nvkm_device *device, struct sg_table *sgt, u64 size,
struct nvkm_gsp_radix3 *rx3)