diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-17 00:20:36 +0200 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-17 00:20:36 +0200 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/mtd/chips | |
download | linux-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.tar.xz linux-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.zip |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'drivers/mtd/chips')
-rw-r--r-- | drivers/mtd/chips/Kconfig | 286 | ||||
-rw-r--r-- | drivers/mtd/chips/Makefile | 26 | ||||
-rw-r--r-- | drivers/mtd/chips/amd_flash.c | 1415 | ||||
-rw-r--r-- | drivers/mtd/chips/cfi_cmdset_0001.c | 2160 | ||||
-rw-r--r-- | drivers/mtd/chips/cfi_cmdset_0002.c | 1515 | ||||
-rw-r--r-- | drivers/mtd/chips/cfi_cmdset_0020.c | 1418 | ||||
-rw-r--r-- | drivers/mtd/chips/cfi_probe.c | 445 | ||||
-rw-r--r-- | drivers/mtd/chips/cfi_util.c | 196 | ||||
-rw-r--r-- | drivers/mtd/chips/chipreg.c | 111 | ||||
-rw-r--r-- | drivers/mtd/chips/fwh_lock.h | 107 | ||||
-rw-r--r-- | drivers/mtd/chips/gen_probe.c | 255 | ||||
-rw-r--r-- | drivers/mtd/chips/jedec.c | 934 | ||||
-rw-r--r-- | drivers/mtd/chips/jedec_probe.c | 2127 | ||||
-rw-r--r-- | drivers/mtd/chips/map_absent.c | 117 | ||||
-rw-r--r-- | drivers/mtd/chips/map_ram.c | 143 | ||||
-rw-r--r-- | drivers/mtd/chips/map_rom.c | 94 | ||||
-rw-r--r-- | drivers/mtd/chips/sharp.c | 596 |
17 files changed, 11945 insertions, 0 deletions
diff --git a/drivers/mtd/chips/Kconfig b/drivers/mtd/chips/Kconfig new file mode 100644 index 000000000000..d682dbc8157e --- /dev/null +++ b/drivers/mtd/chips/Kconfig @@ -0,0 +1,286 @@ +# drivers/mtd/chips/Kconfig +# $Id: Kconfig,v 1.13 2004/12/01 15:49:10 nico Exp $ + +menu "RAM/ROM/Flash chip drivers" + depends on MTD!=n + +config MTD_CFI + tristate "Detect flash chips by Common Flash Interface (CFI) probe" + depends on MTD + select MTD_GEN_PROBE + help + The Common Flash Interface specification was developed by Intel, + AMD and other flash manufactures that provides a universal method + for probing the capabilities of flash devices. If you wish to + support any device that is CFI-compliant, you need to enable this + option. Visit <http://www.amd.com/products/nvd/overview/cfi.html> + for more information on CFI. + +config MTD_JEDECPROBE + tristate "Detect non-CFI AMD/JEDEC-compatible flash chips" + depends on MTD + select MTD_GEN_PROBE + help + This option enables JEDEC-style probing of flash chips which are not + compatible with the Common Flash Interface, but will use the common + CFI-targetted flash drivers for any chips which are identified which + are in fact compatible in all but the probe method. This actually + covers most AMD/Fujitsu-compatible chips, and will shortly cover also + non-CFI Intel chips (that code is in MTD CVS and should shortly be sent + for inclusion in Linus' tree) + +config MTD_GEN_PROBE + tristate + +config MTD_CFI_ADV_OPTIONS + bool "Flash chip driver advanced configuration options" + depends on MTD_GEN_PROBE + help + If you need to specify a specific endianness for access to flash + chips, or if you wish to reduce the size of the kernel by including + support for only specific arrangements of flash chips, say 'Y'. This + option does not directly affect the code, but will enable other + configuration options which allow you to do so. + + If unsure, say 'N'. + +choice + prompt "Flash cmd/query data swapping" + depends on MTD_CFI_ADV_OPTIONS + default MTD_CFI_NOSWAP + +config MTD_CFI_NOSWAP + bool "NO" + ---help--- + This option defines the way in which the CPU attempts to arrange + data bits when writing the 'magic' commands to the chips. Saying + 'NO', which is the default when CONFIG_MTD_CFI_ADV_OPTIONS isn't + enabled, means that the CPU will not do any swapping; the chips + are expected to be wired to the CPU in 'host-endian' form. + Specific arrangements are possible with the BIG_ENDIAN_BYTE and + LITTLE_ENDIAN_BYTE, if the bytes are reversed. + + If you have a LART, on which the data (and address) lines were + connected in a fashion which ensured that the nets were as short + as possible, resulting in a bit-shuffling which seems utterly + random to the untrained eye, you need the LART_ENDIAN_BYTE option. + + Yes, there really exists something sicker than PDP-endian :) + +config MTD_CFI_BE_BYTE_SWAP + bool "BIG_ENDIAN_BYTE" + +config MTD_CFI_LE_BYTE_SWAP + bool "LITTLE_ENDIAN_BYTE" + +endchoice + +config MTD_CFI_GEOMETRY + bool "Specific CFI Flash geometry selection" + depends on MTD_CFI_ADV_OPTIONS + help + This option does not affect the code directly, but will enable + some other configuration options which would allow you to reduce + the size of the kernel by including support for only certain + arrangements of CFI chips. If unsure, say 'N' and all options + which are supported by the current code will be enabled. + +config MTD_MAP_BANK_WIDTH_1 + bool "Support 8-bit buswidth" if MTD_CFI_GEOMETRY + default y + help + If you wish to support CFI devices on a physical bus which is + 8 bits wide, say 'Y'. + +config MTD_MAP_BANK_WIDTH_2 + bool "Support 16-bit buswidth" if MTD_CFI_GEOMETRY + default y + help + If you wish to support CFI devices on a physical bus which is + 16 bits wide, say 'Y'. + +config MTD_MAP_BANK_WIDTH_4 + bool "Support 32-bit buswidth" if MTD_CFI_GEOMETRY + default y + help + If you wish to support CFI devices on a physical bus which is + 32 bits wide, say 'Y'. + +config MTD_MAP_BANK_WIDTH_8 + bool "Support 64-bit buswidth" if MTD_CFI_GEOMETRY + default n + help + If you wish to support CFI devices on a physical bus which is + 64 bits wide, say 'Y'. + +config MTD_MAP_BANK_WIDTH_16 + bool "Support 128-bit buswidth" if MTD_CFI_GEOMETRY + default n + help + If you wish to support CFI devices on a physical bus which is + 128 bits wide, say 'Y'. + +config MTD_MAP_BANK_WIDTH_32 + bool "Support 256-bit buswidth" if MTD_CFI_GEOMETRY + default n + help + If you wish to support CFI devices on a physical bus which is + 256 bits wide, say 'Y'. + +config MTD_CFI_I1 + bool "Support 1-chip flash interleave" if MTD_CFI_GEOMETRY + default y + help + If your flash chips are not interleaved - i.e. you only have one + flash chip addressed by each bus cycle, then say 'Y'. + +config MTD_CFI_I2 + bool "Support 2-chip flash interleave" if MTD_CFI_GEOMETRY + default y + help + If your flash chips are interleaved in pairs - i.e. you have two + flash chips addressed by each bus cycle, then say 'Y'. + +config MTD_CFI_I4 + bool "Support 4-chip flash interleave" if MTD_CFI_GEOMETRY + default n + help + If your flash chips are interleaved in fours - i.e. you have four + flash chips addressed by each bus cycle, then say 'Y'. + +config MTD_CFI_I8 + bool "Support 8-chip flash interleave" if MTD_CFI_GEOMETRY + default n + help + If your flash chips are interleaved in eights - i.e. you have eight + flash chips addressed by each bus cycle, then say 'Y'. + +config MTD_CFI_INTELEXT + tristate "Support for Intel/Sharp flash chips" + depends on MTD_GEN_PROBE + select MTD_CFI_UTIL + help + The Common Flash Interface defines a number of different command + sets which a CFI-compliant chip may claim to implement. This code + provides support for one of those command sets, used on Intel + StrataFlash and other parts. + +config MTD_CFI_AMDSTD + tristate "Support for AMD/Fujitsu flash chips" + depends on MTD_GEN_PROBE + select MTD_CFI_UTIL + help + The Common Flash Interface defines a number of different command + sets which a CFI-compliant chip may claim to implement. This code + provides support for one of those command sets, used on chips + including the AMD Am29LV320. + +config MTD_CFI_AMDSTD_RETRY + int "Retry failed commands (erase/program)" + depends on MTD_CFI_AMDSTD + default "0" + help + Some chips, when attached to a shared bus, don't properly filter + bus traffic that is destined to other devices. This broken + behavior causes erase and program sequences to be aborted when + the sequences are mixed with traffic for other devices. + + SST49LF040 (and related) chips are know to be broken. + +config MTD_CFI_AMDSTD_RETRY_MAX + int "Max retries of failed commands (erase/program)" + depends on MTD_CFI_AMDSTD_RETRY + default "0" + help + If you have an SST49LF040 (or related chip) then this value should + be set to at least 1. This can also be adjusted at driver load + time with the retry_cmd_max module parameter. + +config MTD_CFI_STAA + tristate "Support for ST (Advanced Architecture) flash chips" + depends on MTD_GEN_PROBE + select MTD_CFI_UTIL + help + The Common Flash Interface defines a number of different command + sets which a CFI-compliant chip may claim to implement. This code + provides support for one of those command sets. + +config MTD_CFI_UTIL + tristate + +config MTD_RAM + tristate "Support for RAM chips in bus mapping" + depends on MTD + help + This option enables basic support for RAM chips accessed through + a bus mapping driver. + +config MTD_ROM + tristate "Support for ROM chips in bus mapping" + depends on MTD + help + This option enables basic support for ROM chips accessed through + a bus mapping driver. + +config MTD_ABSENT + tristate "Support for absent chips in bus mapping" + depends on MTD + help + This option enables support for a dummy probing driver used to + allocated placeholder MTD devices on systems that have socketed + or removable media. Use of this driver as a fallback chip probe + preserves the expected registration order of MTD device nodes on + the system regardless of media presence. Device nodes created + with this driver will return -ENODEV upon access. + +config MTD_OBSOLETE_CHIPS + depends on MTD && BROKEN + bool "Older (theoretically obsoleted now) drivers for non-CFI chips" + help + This option does not enable any code directly, but will allow you to + select some other chip drivers which are now considered obsolete, + because the generic CONFIG_JEDECPROBE code above should now detect + the chips which are supported by these drivers, and allow the generic + CFI-compatible drivers to drive the chips. Say 'N' here unless you have + already tried the CONFIG_JEDECPROBE method and reported its failure + to the MTD mailing list at <linux-mtd@lists.infradead.org> + +config MTD_AMDSTD + tristate "AMD compatible flash chip support (non-CFI)" + depends on MTD && MTD_OBSOLETE_CHIPS + help + This option enables support for flash chips using AMD-compatible + commands, including some which are not CFI-compatible and hence + cannot be used with the CONFIG_MTD_CFI_AMDSTD option. + + It also works on AMD compatible chips that do conform to CFI. + +config MTD_SHARP + tristate "pre-CFI Sharp chip support" + depends on MTD && MTD_OBSOLETE_CHIPS + help + This option enables support for flash chips using Sharp-compatible + commands, including some which are not CFI-compatible and hence + cannot be used with the CONFIG_MTD_CFI_INTELxxx options. + +config MTD_JEDEC + tristate "JEDEC device support" + depends on MTD && MTD_OBSOLETE_CHIPS + help + Enable older older JEDEC flash interface devices for self + programming flash. It is commonly used in older AMD chips. It is + only called JEDEC because the JEDEC association + <http://www.jedec.org/> distributes the identification codes for the + chips. + +config MTD_XIP + bool "XIP aware MTD support" + depends on !SMP && MTD_CFI_INTELEXT && EXPERIMENTAL + default y if XIP_KERNEL + help + This allows MTD support to work with flash memory which is also + used for XIP purposes. If you're not sure what this is all about + then say N. + +endmenu + diff --git a/drivers/mtd/chips/Makefile b/drivers/mtd/chips/Makefile new file mode 100644 index 000000000000..6830489828c6 --- /dev/null +++ b/drivers/mtd/chips/Makefile @@ -0,0 +1,26 @@ +# +# linux/drivers/chips/Makefile +# +# $Id: Makefile.common,v 1.4 2004/07/12 16:07:30 dwmw2 Exp $ + +# *** BIG UGLY NOTE *** +# +# The removal of get_module_symbol() and replacement with +# inter_module_register() et al has introduced a link order dependency +# here where previously there was none. We now have to ensure that +# the CFI command set drivers are linked before gen_probe.o + +obj-$(CONFIG_MTD) += chipreg.o +obj-$(CONFIG_MTD_AMDSTD) += amd_flash.o +obj-$(CONFIG_MTD_CFI) += cfi_probe.o +obj-$(CONFIG_MTD_CFI_UTIL) += cfi_util.o +obj-$(CONFIG_MTD_CFI_STAA) += cfi_cmdset_0020.o +obj-$(CONFIG_MTD_CFI_AMDSTD) += cfi_cmdset_0002.o +obj-$(CONFIG_MTD_CFI_INTELEXT) += cfi_cmdset_0001.o +obj-$(CONFIG_MTD_GEN_PROBE) += gen_probe.o +obj-$(CONFIG_MTD_JEDEC) += jedec.o +obj-$(CONFIG_MTD_JEDECPROBE) += jedec_probe.o +obj-$(CONFIG_MTD_RAM) += map_ram.o +obj-$(CONFIG_MTD_ROM) += map_rom.o +obj-$(CONFIG_MTD_SHARP) += sharp.o +obj-$(CONFIG_MTD_ABSENT) += map_absent.o diff --git a/drivers/mtd/chips/amd_flash.c b/drivers/mtd/chips/amd_flash.c new file mode 100644 index 000000000000..41e2e3e31603 --- /dev/null +++ b/drivers/mtd/chips/amd_flash.c @@ -0,0 +1,1415 @@ +/* + * MTD map driver for AMD compatible flash chips (non-CFI) + * + * Author: Jonas Holmberg <jonas.holmberg@axis.com> + * + * $Id: amd_flash.c,v 1.26 2004/11/20 12:49:04 dwmw2 Exp $ + * + * Copyright (c) 2001 Axis Communications AB + * + * This file is under GPL. + * + */ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/sched.h> +#include <linux/errno.h> +#include <linux/slab.h> +#include <linux/delay.h> +#include <linux/interrupt.h> +#include <linux/init.h> +#include <linux/mtd/map.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/flashchip.h> + +/* There's no limit. It exists only to avoid realloc. */ +#define MAX_AMD_CHIPS 8 + +#define DEVICE_TYPE_X8 (8 / 8) +#define DEVICE_TYPE_X16 (16 / 8) +#define DEVICE_TYPE_X32 (32 / 8) + +/* Addresses */ +#define ADDR_MANUFACTURER 0x0000 +#define ADDR_DEVICE_ID 0x0001 +#define ADDR_SECTOR_LOCK 0x0002 +#define ADDR_HANDSHAKE 0x0003 +#define ADDR_UNLOCK_1 0x0555 +#define ADDR_UNLOCK_2 0x02AA + +/* Commands */ +#define CMD_UNLOCK_DATA_1 0x00AA +#define CMD_UNLOCK_DATA_2 0x0055 +#define CMD_MANUFACTURER_UNLOCK_DATA 0x0090 +#define CMD_UNLOCK_BYPASS_MODE 0x0020 +#define CMD_PROGRAM_UNLOCK_DATA 0x00A0 +#define CMD_RESET_DATA 0x00F0 +#define CMD_SECTOR_ERASE_UNLOCK_DATA 0x0080 +#define CMD_SECTOR_ERASE_UNLOCK_DATA_2 0x0030 + +#define CMD_UNLOCK_SECTOR 0x0060 + +/* Manufacturers */ +#define MANUFACTURER_AMD 0x0001 +#define MANUFACTURER_ATMEL 0x001F +#define MANUFACTURER_FUJITSU 0x0004 +#define MANUFACTURER_ST 0x0020 +#define MANUFACTURER_SST 0x00BF +#define MANUFACTURER_TOSHIBA 0x0098 + +/* AMD */ +#define AM29F800BB 0x2258 +#define AM29F800BT 0x22D6 +#define AM29LV800BB 0x225B +#define AM29LV800BT 0x22DA +#define AM29LV160DT 0x22C4 +#define AM29LV160DB 0x2249 +#define AM29BDS323D 0x22D1 +#define AM29BDS643D 0x227E + +/* Atmel */ +#define AT49xV16x 0x00C0 +#define AT49xV16xT 0x00C2 + +/* Fujitsu */ +#define MBM29LV160TE 0x22C4 +#define MBM29LV160BE 0x2249 +#define MBM29LV800BB 0x225B + +/* ST - www.st.com */ +#define M29W800T 0x00D7 +#define M29W160DT 0x22C4 +#define M29W160DB 0x2249 + +/* SST */ +#define SST39LF800 0x2781 +#define SST39LF160 0x2782 + +/* Toshiba */ +#define TC58FVT160 0x00C2 +#define TC58FVB160 0x0043 + +#define D6_MASK 0x40 + +struct amd_flash_private { + int device_type; + int interleave; + int numchips; + unsigned long chipshift; +// const char *im_name; + struct flchip chips[0]; +}; + +struct amd_flash_info { + const __u16 mfr_id; + const __u16 dev_id; + const char *name; + const u_long size; + const int numeraseregions; + const struct mtd_erase_region_info regions[4]; +}; + + + +static int amd_flash_read(struct mtd_info *, loff_t, size_t, size_t *, + u_char *); +static int amd_flash_write(struct mtd_info *, loff_t, size_t, size_t *, + const u_char *); +static int amd_flash_erase(struct mtd_info *, struct erase_info *); +static void amd_flash_sync(struct mtd_info *); +static int amd_flash_suspend(struct mtd_info *); +static void amd_flash_resume(struct mtd_info *); +static void amd_flash_destroy(struct mtd_info *); +static struct mtd_info *amd_flash_probe(struct map_info *map); + + +static struct mtd_chip_driver amd_flash_chipdrv = { + .probe = amd_flash_probe, + .destroy = amd_flash_destroy, + .name = "amd_flash", + .module = THIS_MODULE +}; + + + +static const char im_name[] = "amd_flash"; + + + +static inline __u32 wide_read(struct map_info *map, __u32 addr) +{ + if (map->buswidth == 1) { + return map_read8(map, addr); + } else if (map->buswidth == 2) { + return map_read16(map, addr); + } else if (map->buswidth == 4) { + return map_read32(map, addr); + } + + return 0; +} + +static inline void wide_write(struct map_info *map, __u32 val, __u32 addr) +{ + if (map->buswidth == 1) { + map_write8(map, val, addr); + } else if (map->buswidth == 2) { + map_write16(map, val, addr); + } else if (map->buswidth == 4) { + map_write32(map, val, addr); + } +} + +static inline __u32 make_cmd(struct map_info *map, __u32 cmd) +{ + const struct amd_flash_private *private = map->fldrv_priv; + if ((private->interleave == 2) && + (private->device_type == DEVICE_TYPE_X16)) { + cmd |= (cmd << 16); + } + + return cmd; +} + +static inline void send_unlock(struct map_info *map, unsigned long base) +{ + wide_write(map, (CMD_UNLOCK_DATA_1 << 16) | CMD_UNLOCK_DATA_1, + base + (map->buswidth * ADDR_UNLOCK_1)); + wide_write(map, (CMD_UNLOCK_DATA_2 << 16) | CMD_UNLOCK_DATA_2, + base + (map->buswidth * ADDR_UNLOCK_2)); +} + +static inline void send_cmd(struct map_info *map, unsigned long base, __u32 cmd) +{ + send_unlock(map, base); + wide_write(map, make_cmd(map, cmd), + base + (map->buswidth * ADDR_UNLOCK_1)); +} + +static inline void send_cmd_to_addr(struct map_info *map, unsigned long base, + __u32 cmd, unsigned long addr) +{ + send_unlock(map, base); + wide_write(map, make_cmd(map, cmd), addr); +} + +static inline int flash_is_busy(struct map_info *map, unsigned long addr, + int interleave) +{ + + if ((interleave == 2) && (map->buswidth == 4)) { + __u32 read1, read2; + + read1 = wide_read(map, addr); + read2 = wide_read(map, addr); + + return (((read1 >> 16) & D6_MASK) != + ((read2 >> 16) & D6_MASK)) || + (((read1 & 0xffff) & D6_MASK) != + ((read2 & 0xffff) & D6_MASK)); + } + + return ((wide_read(map, addr) & D6_MASK) != + (wide_read(map, addr) & D6_MASK)); +} + +static inline void unlock_sector(struct map_info *map, unsigned long sect_addr, + int unlock) +{ + /* Sector lock address. A6 = 1 for unlock, A6 = 0 for lock */ + int SLA = unlock ? + (sect_addr | (0x40 * map->buswidth)) : + (sect_addr & ~(0x40 * map->buswidth)) ; + + __u32 cmd = make_cmd(map, CMD_UNLOCK_SECTOR); + + wide_write(map, make_cmd(map, CMD_RESET_DATA), 0); + wide_write(map, cmd, SLA); /* 1st cycle: write cmd to any address */ + wide_write(map, cmd, SLA); /* 2nd cycle: write cmd to any address */ + wide_write(map, cmd, SLA); /* 3rd cycle: write cmd to SLA */ +} + +static inline int is_sector_locked(struct map_info *map, + unsigned long sect_addr) +{ + int status; + + wide_write(map, CMD_RESET_DATA, 0); + send_cmd(map, sect_addr, CMD_MANUFACTURER_UNLOCK_DATA); + + /* status is 0x0000 for unlocked and 0x0001 for locked */ + status = wide_read(map, sect_addr + (map->buswidth * ADDR_SECTOR_LOCK)); + wide_write(map, CMD_RESET_DATA, 0); + return status; +} + +static int amd_flash_do_unlock(struct mtd_info *mtd, loff_t ofs, size_t len, + int is_unlock) +{ + struct map_info *map; + struct mtd_erase_region_info *merip; + int eraseoffset, erasesize, eraseblocks; + int i; + int retval = 0; + int lock_status; + + map = mtd->priv; + + /* Pass the whole chip through sector by sector and check for each + sector if the sector and the given interval overlap */ + for(i = 0; i < mtd->numeraseregions; i++) { + merip = &mtd->eraseregions[i]; + + eraseoffset = merip->offset; + erasesize = merip->erasesize; + eraseblocks = merip->numblocks; + + if (ofs > eraseoffset + erasesize) + continue; + + while (eraseblocks > 0) { + if (ofs < eraseoffset + erasesize && ofs + len > eraseoffset) { + unlock_sector(map, eraseoffset, is_unlock); + + lock_status = is_sector_locked(map, eraseoffset); + + if (is_unlock && lock_status) { + printk("Cannot unlock sector at address %x length %xx\n", + eraseoffset, merip->erasesize); + retval = -1; + } else if (!is_unlock && !lock_status) { + printk("Cannot lock sector at address %x length %x\n", + eraseoffset, merip->erasesize); + retval = -1; + } + } + eraseoffset += erasesize; + eraseblocks --; + } + } + return retval; +} + +static int amd_flash_unlock(struct mtd_info *mtd, loff_t ofs, size_t len) +{ + return amd_flash_do_unlock(mtd, ofs, len, 1); +} + +static int amd_flash_lock(struct mtd_info *mtd, loff_t ofs, size_t len) +{ + return amd_flash_do_unlock(mtd, ofs, len, 0); +} + + +/* + * Reads JEDEC manufacturer ID and device ID and returns the index of the first + * matching table entry (-1 if not found or alias for already found chip). + */ +static int probe_new_chip(struct mtd_info *mtd, __u32 base, + struct flchip *chips, + struct amd_flash_private *private, + const struct amd_flash_info *table, int table_size) +{ + __u32 mfr_id; + __u32 dev_id; + struct map_info *map = mtd->priv; + struct amd_flash_private temp; + int i; + + temp.device_type = DEVICE_TYPE_X16; // Assume X16 (FIXME) + temp.interleave = 2; + map->fldrv_priv = &temp; + + /* Enter autoselect mode. */ + send_cmd(map, base, CMD_RESET_DATA); + send_cmd(map, base, CMD_MANUFACTURER_UNLOCK_DATA); + + mfr_id = wide_read(map, base + (map->buswidth * ADDR_MANUFACTURER)); + dev_id = wide_read(map, base + (map->buswidth * ADDR_DEVICE_ID)); + + if ((map->buswidth == 4) && ((mfr_id >> 16) == (mfr_id & 0xffff)) && + ((dev_id >> 16) == (dev_id & 0xffff))) { + mfr_id &= 0xffff; + dev_id &= 0xffff; + } else { + temp.interleave = 1; + } + + for (i = 0; i < table_size; i++) { + if ((mfr_id == table[i].mfr_id) && + (dev_id == table[i].dev_id)) { + if (chips) { + int j; + + /* Is this an alias for an already found chip? + * In that case that chip should be in + * autoselect mode now. + */ + for (j = 0; j < private->numchips; j++) { + __u32 mfr_id_other; + __u32 dev_id_other; + + mfr_id_other = + wide_read(map, chips[j].start + + (map->buswidth * + ADDR_MANUFACTURER + )); + dev_id_other = + wide_read(map, chips[j].start + + (map->buswidth * + ADDR_DEVICE_ID)); + if (temp.interleave == 2) { + mfr_id_other &= 0xffff; + dev_id_other &= 0xffff; + } + if ((mfr_id_other == mfr_id) && + (dev_id_other == dev_id)) { + + /* Exit autoselect mode. */ + send_cmd(map, base, + CMD_RESET_DATA); + + return -1; + } + } + + if (private->numchips == MAX_AMD_CHIPS) { + printk(KERN_WARNING + "%s: Too many flash chips " + "detected. Increase " + "MAX_AMD_CHIPS from %d.\n", + map->name, MAX_AMD_CHIPS); + + return -1; + } + + chips[private->numchips].start = base; + chips[private->numchips].state = FL_READY; + chips[private->numchips].mutex = + &chips[private->numchips]._spinlock; + private->numchips++; + } + + printk("%s: Found %d x %ldMiB %s at 0x%x\n", map->name, + temp.interleave, (table[i].size)/(1024*1024), + table[i].name, base); + + mtd->size += table[i].size * temp.interleave; + mtd->numeraseregions += table[i].numeraseregions; + + break; + } + } + + /* Exit autoselect mode. */ + send_cmd(map, base, CMD_RESET_DATA); + + if (i == table_size) { + printk(KERN_DEBUG "%s: unknown flash device at 0x%x, " + "mfr id 0x%x, dev id 0x%x\n", map->name, + base, mfr_id, dev_id); + map->fldrv_priv = NULL; + + return -1; + } + + private->device_type = temp.device_type; + private->interleave = temp.interleave; + + return i; +} + + + +static struct mtd_info *amd_flash_probe(struct map_info *map) +{ + static const struct amd_flash_info table[] = { + { + .mfr_id = MANUFACTURER_AMD, + .dev_id = AM29LV160DT, + .name = "AMD AM29LV160DT", + .size = 0x00200000, + .numeraseregions = 4, + .regions = { + { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 }, + { .offset = 0x1F0000, .erasesize = 0x08000, .numblocks = 1 }, + { .offset = 0x1F8000, .erasesize = 0x02000, .numblocks = 2 }, + { .offset = 0x1FC000, .erasesize = 0x04000, .numblocks = 1 } + } + }, { + .mfr_id = MANUFACTURER_AMD, + .dev_id = AM29LV160DB, + .name = "AMD AM29LV160DB", + .size = 0x00200000, + .numeraseregions = 4, + .regions = { + { .offset = 0x000000, .erasesize = 0x04000, .numblocks = 1 }, + { .offset = 0x004000, .erasesize = 0x02000, .numblocks = 2 }, + { .offset = 0x008000, .erasesize = 0x08000, .numblocks = 1 }, + { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 } + } + }, { + .mfr_id = MANUFACTURER_TOSHIBA, + .dev_id = TC58FVT160, + .name = "Toshiba TC58FVT160", + .size = 0x00200000, + .numeraseregions = 4, + .regions = { + { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 }, + { .offset = 0x1F0000, .erasesize = 0x08000, .numblocks = 1 }, + { .offset = 0x1F8000, .erasesize = 0x02000, .numblocks = 2 }, + { .offset = 0x1FC000, .erasesize = 0x04000, .numblocks = 1 } + } + }, { + .mfr_id = MANUFACTURER_FUJITSU, + .dev_id = MBM29LV160TE, + .name = "Fujitsu MBM29LV160TE", + .size = 0x00200000, + .numeraseregions = 4, + .regions = { + { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 }, + { .offset = 0x1F0000, .erasesize = 0x08000, .numblocks = 1 }, + { .offset = 0x1F8000, .erasesize = 0x02000, .numblocks = 2 }, + { .offset = 0x1FC000, .erasesize = 0x04000, .numblocks = 1 } + } + }, { + .mfr_id = MANUFACTURER_TOSHIBA, + .dev_id = TC58FVB160, + .name = "Toshiba TC58FVB160", + .size = 0x00200000, + .numeraseregions = 4, + .regions = { + { .offset = 0x000000, .erasesize = 0x04000, .numblocks = 1 }, + { .offset = 0x004000, .erasesize = 0x02000, .numblocks = 2 }, + { .offset = 0x008000, .erasesize = 0x08000, .numblocks = 1 }, + { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 } + } + }, { + .mfr_id = MANUFACTURER_FUJITSU, + .dev_id = MBM29LV160BE, + .name = "Fujitsu MBM29LV160BE", + .size = 0x00200000, + .numeraseregions = 4, + .regions = { + { .offset = 0x000000, .erasesize = 0x04000, .numblocks = 1 }, + { .offset = 0x004000, .erasesize = 0x02000, .numblocks = 2 }, + { .offset = 0x008000, .erasesize = 0x08000, .numblocks = 1 }, + { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 } + } + }, { + .mfr_id = MANUFACTURER_AMD, + .dev_id = AM29LV800BB, + .name = "AMD AM29LV800BB", + .size = 0x00100000, + .numeraseregions = 4, + .regions = { + { .offset = 0x000000, .erasesize = 0x04000, .numblocks = 1 }, + { .offset = 0x004000, .erasesize = 0x02000, .numblocks = 2 }, + { .offset = 0x008000, .erasesize = 0x08000, .numblocks = 1 }, + { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 15 } + } + }, { + .mfr_id = MANUFACTURER_AMD, + .dev_id = AM29F800BB, + .name = "AMD AM29F800BB", + .size = 0x00100000, + .numeraseregions = 4, + .regions = { + { .offset = 0x000000, .erasesize = 0x04000, .numblocks = 1 }, + { .offset = 0x004000, .erasesize = 0x02000, .numblocks = 2 }, + { .offset = 0x008000, .erasesize = 0x08000, .numblocks = 1 }, + { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 15 } + } + }, { + .mfr_id = MANUFACTURER_AMD, + .dev_id = AM29LV800BT, + .name = "AMD AM29LV800BT", + .size = 0x00100000, + .numeraseregions = 4, + .regions = { + { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 15 }, + { .offset = 0x0F0000, .erasesize = 0x08000, .numblocks = 1 }, + { .offset = 0x0F8000, .erasesize = 0x02000, .numblocks = 2 }, + { .offset = 0x0FC000, .erasesize = 0x04000, .numblocks = 1 } + } + }, { + .mfr_id = MANUFACTURER_AMD, + .dev_id = AM29F800BT, + .name = "AMD AM29F800BT", + .size = 0x00100000, + .numeraseregions = 4, + .regions = { + { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 15 }, + { .offset = 0x0F0000, .erasesize = 0x08000, .numblocks = 1 }, + { .offset = 0x0F8000, .erasesize = 0x02000, .numblocks = 2 }, + { .offset = 0x0FC000, .erasesize = 0x04000, .numblocks = 1 } + } + }, { + .mfr_id = MANUFACTURER_AMD, + .dev_id = AM29LV800BB, + .name = "AMD AM29LV800BB", + .size = 0x00100000, + .numeraseregions = 4, + .regions = { + { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 15 }, + { .offset = 0x0F0000, .erasesize = 0x08000, .numblocks = 1 }, + { .offset = 0x0F8000, .erasesize = 0x02000, .numblocks = 2 }, + { .offset = 0x0FC000, .erasesize = 0x04000, .numblocks = 1 } + } + }, { + .mfr_id = MANUFACTURER_FUJITSU, + .dev_id = MBM29LV800BB, + .name = "Fujitsu MBM29LV800BB", + .size = 0x00100000, + .numeraseregions = 4, + .regions = { + { .offset = 0x000000, .erasesize = 0x04000, .numblocks = 1 }, + { .offset = 0x004000, .erasesize = 0x02000, .numblocks = 2 }, + { .offset = 0x008000, .erasesize = 0x08000, .numblocks = 1 }, + { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 15 } + } + }, { + .mfr_id = MANUFACTURER_ST, + .dev_id = M29W800T, + .name = "ST M29W800T", + .size = 0x00100000, + .numeraseregions = 4, + .regions = { + { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 15 }, + { .offset = 0x0F0000, .erasesize = 0x08000, .numblocks = 1 }, + { .offset = 0x0F8000, .erasesize = 0x02000, .numblocks = 2 }, + { .offset = 0x0FC000, .erasesize = 0x04000, .numblocks = 1 } + } + }, { + .mfr_id = MANUFACTURER_ST, + .dev_id = M29W160DT, + .name = "ST M29W160DT", + .size = 0x00200000, + .numeraseregions = 4, + .regions = { + { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 }, + { .offset = 0x1F0000, .erasesize = 0x08000, .numblocks = 1 }, + { .offset = 0x1F8000, .erasesize = 0x02000, .numblocks = 2 }, + { .offset = 0x1FC000, .erasesize = 0x04000, .numblocks = 1 } + } + }, { + .mfr_id = MANUFACTURER_ST, + .dev_id = M29W160DB, + .name = "ST M29W160DB", + .size = 0x00200000, + .numeraseregions = 4, + .regions = { + { .offset = 0x000000, .erasesize = 0x04000, .numblocks = 1 }, + { .offset = 0x004000, .erasesize = 0x02000, .numblocks = 2 }, + { .offset = 0x008000, .erasesize = 0x08000, .numblocks = 1 }, + { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 } + } + }, { + .mfr_id = MANUFACTURER_AMD, + .dev_id = AM29BDS323D, + .name = "AMD AM29BDS323D", + .size = 0x00400000, + .numeraseregions = 3, + .regions = { + { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 48 }, + { .offset = 0x300000, .erasesize = 0x10000, .numblocks = 15 }, + { .offset = 0x3f0000, .erasesize = 0x02000, .numblocks = 8 }, + } + }, { + .mfr_id = MANUFACTURER_AMD, + .dev_id = AM29BDS643D, + .name = "AMD AM29BDS643D", + .size = 0x00800000, + .numeraseregions = 3, + .regions = { + { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 96 }, + { .offset = 0x600000, .erasesize = 0x10000, .numblocks = 31 }, + { .offset = 0x7f0000, .erasesize = 0x02000, .numblocks = 8 }, + } + }, { + .mfr_id = MANUFACTURER_ATMEL, + .dev_id = AT49xV16x, + .name = "Atmel AT49xV16x", + .size = 0x00200000, + .numeraseregions = 2, + .regions = { + { .offset = 0x000000, .erasesize = 0x02000, .numblocks = 8 }, + { .offset = 0x010000, .erasesize = 0x10000, .numblocks = 31 } + } + }, { + .mfr_id = MANUFACTURER_ATMEL, + .dev_id = AT49xV16xT, + .name = "Atmel AT49xV16xT", + .size = 0x00200000, + .numeraseregions = 2, + .regions = { + { .offset = 0x000000, .erasesize = 0x10000, .numblocks = 31 }, + { .offset = 0x1F0000, .erasesize = 0x02000, .numblocks = 8 } + } + } + }; + + struct mtd_info *mtd; + struct flchip chips[MAX_AMD_CHIPS]; + int table_pos[MAX_AMD_CHIPS]; + struct amd_flash_private temp; + struct amd_flash_private *private; + u_long size; + unsigned long base; + int i; + int reg_idx; + int offset; + + mtd = (struct mtd_info*)kmalloc(sizeof(*mtd), GFP_KERNEL); + if (!mtd) { + printk(KERN_WARNING + "%s: kmalloc failed for info structure\n", map->name); + return NULL; + } + memset(mtd, 0, sizeof(*mtd)); + mtd->priv = map; + + memset(&temp, 0, sizeof(temp)); + + printk("%s: Probing for AMD compatible flash...\n", map->name); + + if ((table_pos[0] = probe_new_chip(mtd, 0, NULL, &temp, table, + sizeof(table)/sizeof(table[0]))) + == -1) { + printk(KERN_WARNING + "%s: Found no AMD compatible device at location zero\n", + map->name); + kfree(mtd); + + return NULL; + } + + chips[0].start = 0; + chips[0].state = FL_READY; + chips[0].mutex = &chips[0]._spinlock; + temp.numchips = 1; + for (size = mtd->size; size > 1; size >>= 1) { + temp.chipshift++; + } + switch (temp.interleave) { + case 2: + temp.chipshift += 1; + break; + case 4: + temp.chipshift += 2; + break; + } + + /* Find out if there are any more chips in the map. */ + for (base = (1 << temp.chipshift); + base < map->size; + base += (1 << temp.chipshift)) { + int numchips = temp.numchips; + table_pos[numchips] = probe_new_chip(mtd, base, chips, + &temp, table, sizeof(table)/sizeof(table[0])); + } + + mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) * + mtd->numeraseregions, GFP_KERNEL); + if (!mtd->eraseregions) { + printk(KERN_WARNING "%s: Failed to allocate " + "memory for MTD erase region info\n", map->name); + kfree(mtd); + map->fldrv_priv = NULL; + return NULL; + } + + reg_idx = 0; + offset = 0; + for (i = 0; i < temp.numchips; i++) { + int dev_size; + int j; + + dev_size = 0; + for (j = 0; j < table[table_pos[i]].numeraseregions; j++) { + mtd->eraseregions[reg_idx].offset = offset + + (table[table_pos[i]].regions[j].offset * + temp.interleave); + mtd->eraseregions[reg_idx].erasesize = + table[table_pos[i]].regions[j].erasesize * + temp.interleave; + mtd->eraseregions[reg_idx].numblocks = + table[table_pos[i]].regions[j].numblocks; + if (mtd->erasesize < + mtd->eraseregions[reg_idx].erasesize) { + mtd->erasesize = + mtd->eraseregions[reg_idx].erasesize; + } + dev_size += mtd->eraseregions[reg_idx].erasesize * + mtd->eraseregions[reg_idx].numblocks; + reg_idx++; + } + offset += dev_size; + } + mtd->type = MTD_NORFLASH; + mtd->flags = MTD_CAP_NORFLASH; + mtd->name = map->name; + mtd->erase = amd_flash_erase; + mtd->read = amd_flash_read; + mtd->write = amd_flash_write; + mtd->sync = amd_flash_sync; + mtd->suspend = amd_flash_suspend; + mtd->resume = amd_flash_resume; + mtd->lock = amd_flash_lock; + mtd->unlock = amd_flash_unlock; + + private = kmalloc(sizeof(*private) + (sizeof(struct flchip) * + temp.numchips), GFP_KERNEL); + if (!private) { + printk(KERN_WARNING + "%s: kmalloc failed for private structure\n", map->name); + kfree(mtd); + map->fldrv_priv = NULL; + return NULL; + } + memcpy(private, &temp, sizeof(temp)); + memcpy(private->chips, chips, + sizeof(struct flchip) * private->numchips); + for (i = 0; i < private->numchips; i++) { + init_waitqueue_head(&private->chips[i].wq); + spin_lock_init(&private->chips[i]._spinlock); + } + + map->fldrv_priv = private; + + map->fldrv = &amd_flash_chipdrv; + + __module_get(THIS_MODULE); + return mtd; +} + + + +static inline int read_one_chip(struct map_info *map, struct flchip *chip, + loff_t adr, size_t len, u_char *buf) +{ + DECLARE_WAITQUEUE(wait, current); + unsigned long timeo = jiffies + HZ; + +retry: + spin_lock_bh(chip->mutex); + + if (chip->state != FL_READY){ + printk(KERN_INFO "%s: waiting for chip to read, state = %d\n", + map->name, chip->state); + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + + spin_unlock_bh(chip->mutex); + + schedule(); + remove_wait_queue(&chip->wq, &wait); + + if(signal_pending(current)) { + return -EINTR; + } + + timeo = jiffies + HZ; + + goto retry; + } + + adr += chip->start; + + chip->state = FL_READY; + + map_copy_from(map, buf, adr, len); + + wake_up(&chip->wq); + spin_unlock_bh(chip->mutex); + + return 0; +} + + + +static int amd_flash_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf) +{ + struct map_info *map = mtd->priv; + struct amd_flash_private *private = map->fldrv_priv; + unsigned long ofs; + int chipnum; + int ret = 0; + + if ((from + len) > mtd->size) { + printk(KERN_WARNING "%s: read request past end of device " + "(0x%lx)\n", map->name, (unsigned long)from + len); + + return -EINVAL; + } + + /* Offset within the first chip that the first read should start. */ + chipnum = (from >> private->chipshift); + ofs = from - (chipnum << private->chipshift); + + *retlen = 0; + + while (len) { + unsigned long this_len; + + if (chipnum >= private->numchips) { + break; + } + + if ((len + ofs - 1) >> private->chipshift) { + this_len = (1 << private->chipshift) - ofs; + } else { + this_len = len; + } + + ret = read_one_chip(map, &private->chips[chipnum], ofs, + this_len, buf); + if (ret) { + break; + } + + *retlen += this_len; + len -= this_len; + buf += this_len; + + ofs = 0; + chipnum++; + } + + return ret; +} + + + +static int write_one_word(struct map_info *map, struct flchip *chip, + unsigned long adr, __u32 datum) +{ + unsigned long timeo = jiffies + HZ; + struct amd_flash_private *private = map->fldrv_priv; + DECLARE_WAITQUEUE(wait, current); + int ret = 0; + int times_left; + +retry: + spin_lock_bh(chip->mutex); + + if (chip->state != FL_READY){ + printk("%s: waiting for chip to write, state = %d\n", + map->name, chip->state); + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + + spin_unlock_bh(chip->mutex); + + schedule(); + remove_wait_queue(&chip->wq, &wait); + printk(KERN_INFO "%s: woke up to write\n", map->name); + if(signal_pending(current)) + return -EINTR; + + timeo = jiffies + HZ; + + goto retry; + } + + chip->state = FL_WRITING; + + adr += chip->start; + ENABLE_VPP(map); + send_cmd(map, chip->start, CMD_PROGRAM_UNLOCK_DATA); + wide_write(map, datum, adr); + + times_left = 500000; + while (times_left-- && flash_is_busy(map, adr, private->interleave)) { + if (need_resched()) { + spin_unlock_bh(chip->mutex); + schedule(); + spin_lock_bh(chip->mutex); + } + } + + if (!times_left) { + printk(KERN_WARNING "%s: write to 0x%lx timed out!\n", + map->name, adr); + ret = -EIO; + } else { + __u32 verify; + if ((verify = wide_read(map, adr)) != datum) { + printk(KERN_WARNING "%s: write to 0x%lx failed. " + "datum = %x, verify = %x\n", + map->name, adr, datum, verify); + ret = -EIO; + } + } + + DISABLE_VPP(map); + chip->state = FL_READY; + wake_up(&chip->wq); + spin_unlock_bh(chip->mutex); + + return ret; +} + + + +static int amd_flash_write(struct mtd_info *mtd, loff_t to , size_t len, + size_t *retlen, const u_char *buf) +{ + struct map_info *map = mtd->priv; + struct amd_flash_private *private = map->fldrv_priv; + int ret = 0; + int chipnum; + unsigned long ofs; + unsigned long chipstart; + + *retlen = 0; + if (!len) { + return 0; + } + + chipnum = to >> private->chipshift; + ofs = to - (chipnum << private->chipshift); + chipstart = private->chips[chipnum].start; + + /* If it's not bus-aligned, do the first byte write. */ + if (ofs & (map->buswidth - 1)) { + unsigned long bus_ofs = ofs & ~(map->buswidth - 1); + int i = ofs - bus_ofs; + int n = 0; + u_char tmp_buf[4]; + __u32 datum; + + map_copy_from(map, tmp_buf, + bus_ofs + private->chips[chipnum].start, + map->buswidth); + while (len && i < map->buswidth) + tmp_buf[i++] = buf[n++], len--; + + if (map->buswidth == 2) { + datum = *(__u16*)tmp_buf; + } else if (map->buswidth == 4) { + datum = *(__u32*)tmp_buf; + } else { + return -EINVAL; /* should never happen, but be safe */ + } + + ret = write_one_word(map, &private->chips[chipnum], bus_ofs, + datum); + if (ret) { + return ret; + } + + ofs += n; + buf += n; + (*retlen) += n; + + if (ofs >> private->chipshift) { + chipnum++; + ofs = 0; + if (chipnum == private->numchips) { + return 0; + } + } + } + + /* We are now aligned, write as much as possible. */ + while(len >= map->buswidth) { + __u32 datum; + + if (map->buswidth == 1) { + datum = *(__u8*)buf; + } else if (map->buswidth == 2) { + datum = *(__u16*)buf; + } else if (map->buswidth == 4) { + datum = *(__u32*)buf; + } else { + return -EINVAL; + } + + ret = write_one_word(map, &private->chips[chipnum], ofs, datum); + + if (ret) { + return ret; + } + + ofs += map->buswidth; + buf += map->buswidth; + (*retlen) += map->buswidth; + len -= map->buswidth; + + if (ofs >> private->chipshift) { + chipnum++; + ofs = 0; + if (chipnum == private->numchips) { + return 0; + } + chipstart = private->chips[chipnum].start; + } + } + + if (len & (map->buswidth - 1)) { + int i = 0, n = 0; + u_char tmp_buf[2]; + __u32 datum; + + map_copy_from(map, tmp_buf, + ofs + private->chips[chipnum].start, + map->buswidth); + while (len--) { + tmp_buf[i++] = buf[n++]; + } + + if (map->buswidth == 2) { + datum = *(__u16*)tmp_buf; + } else if (map->buswidth == 4) { + datum = *(__u32*)tmp_buf; + } else { + return -EINVAL; /* should never happen, but be safe */ + } + + ret = write_one_word(map, &private->chips[chipnum], ofs, datum); + + if (ret) { + return ret; + } + + (*retlen) += n; + } + + return 0; +} + + + +static inline int erase_one_block(struct map_info *map, struct flchip *chip, + unsigned long adr, u_long size) +{ + unsigned long timeo = jiffies + HZ; + struct amd_flash_private *private = map->fldrv_priv; + DECLARE_WAITQUEUE(wait, current); + +retry: + spin_lock_bh(chip->mutex); + + if (chip->state != FL_READY){ + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + + spin_unlock_bh(chip->mutex); + + schedule(); + remove_wait_queue(&chip->wq, &wait); + + if (signal_pending(current)) { + return -EINTR; + } + + timeo = jiffies + HZ; + + goto retry; + } + + chip->state = FL_ERASING; + + adr += chip->start; + ENABLE_VPP(map); + send_cmd(map, chip->start, CMD_SECTOR_ERASE_UNLOCK_DATA); + send_cmd_to_addr(map, chip->start, CMD_SECTOR_ERASE_UNLOCK_DATA_2, adr); + + timeo = jiffies + (HZ * 20); + + spin_unlock_bh(chip->mutex); + msleep(1000); + spin_lock_bh(chip->mutex); + + while (flash_is_busy(map, adr, private->interleave)) { + + if (chip->state != FL_ERASING) { + /* Someone's suspended the erase. Sleep */ + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + + spin_unlock_bh(chip->mutex); + printk(KERN_INFO "%s: erase suspended. Sleeping\n", + map->name); + schedule(); + remove_wait_queue(&chip->wq, &wait); + + if (signal_pending(current)) { + return -EINTR; + } + + timeo = jiffies + (HZ*2); /* FIXME */ + spin_lock_bh(chip->mutex); + continue; + } + + /* OK Still waiting */ + if (time_after(jiffies, timeo)) { + chip->state = FL_READY; + spin_unlock_bh(chip->mutex); + printk(KERN_WARNING "%s: waiting for erase to complete " + "timed out.\n", map->name); + DISABLE_VPP(map); + + return -EIO; + } + + /* Latency issues. Drop the lock, wait a while and retry */ + spin_unlock_bh(chip->mutex); + + if (need_resched()) + schedule(); + else + udelay(1); + + spin_lock_bh(chip->mutex); + } + + /* Verify every single word */ + { + int address; + int error = 0; + __u8 verify; + + for (address = adr; address < (adr + size); address++) { + if ((verify = map_read8(map, address)) != 0xFF) { + error = 1; + break; + } + } + if (error) { + chip->state = FL_READY; + spin_unlock_bh(chip->mutex); + printk(KERN_WARNING + "%s: verify error at 0x%x, size %ld.\n", + map->name, address, size); + DISABLE_VPP(map); + + return -EIO; + } + } + + DISABLE_VPP(map); + chip->state = FL_READY; + wake_up(&chip->wq); + spin_unlock_bh(chip->mutex); + + return 0; +} + + + +static int amd_flash_erase(struct mtd_info *mtd, struct erase_info *instr) +{ + struct map_info *map = mtd->priv; + struct amd_flash_private *private = map->fldrv_priv; + unsigned long adr, len; + int chipnum; + int ret = 0; + int i; + int first; + struct mtd_erase_region_info *regions = mtd->eraseregions; + + if (instr->addr > mtd->size) { + return -EINVAL; + } + + if ((instr->len + instr->addr) > mtd->size) { + return -EINVAL; + } + + /* Check that both start and end of the requested erase are + * aligned with the erasesize at the appropriate addresses. + */ + + i = 0; + + /* Skip all erase regions which are ended before the start of + the requested erase. Actually, to save on the calculations, + we skip to the first erase region which starts after the + start of the requested erase, and then go back one. + */ + + while ((i < mtd->numeraseregions) && + (instr->addr >= regions[i].offset)) { + i++; + } + i--; + + /* OK, now i is pointing at the erase region in which this + * erase request starts. Check the start of the requested + * erase range is aligned with the erase size which is in + * effect here. + */ + + if (instr->addr & (regions[i].erasesize-1)) { + return -EINVAL; + } + + /* Remember the erase region we start on. */ + + first = i; + + /* Next, check that the end of the requested erase is aligned + * with the erase region at that address. + */ + + while ((i < mtd->numeraseregions) && + ((instr->addr + instr->len) >= regions[i].offset)) { + i++; + } + + /* As before, drop back one to point at the region in which + * the address actually falls. + */ + + i--; + + if ((instr->addr + instr->len) & (regions[i].erasesize-1)) { + return -EINVAL; + } + + chipnum = instr->addr >> private->chipshift; + adr = instr->addr - (chipnum << private->chipshift); + len = instr->len; + + i = first; + + while (len) { + ret = erase_one_block(map, &private->chips[chipnum], adr, + regions[i].erasesize); + + if (ret) { + return ret; + } + + adr += regions[i].erasesize; + len -= regions[i].erasesize; + + if ((adr % (1 << private->chipshift)) == + ((regions[i].offset + (regions[i].erasesize * + regions[i].numblocks)) + % (1 << private->chipshift))) { + i++; + } + + if (adr >> private->chipshift) { + adr = 0; + chipnum++; + if (chipnum >= private->numchips) { + break; + } + } + } + + instr->state = MTD_ERASE_DONE; + mtd_erase_callback(instr); + + return 0; +} + + + +static void amd_flash_sync(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct amd_flash_private *private = map->fldrv_priv; + int i; + struct flchip *chip; + int ret = 0; + DECLARE_WAITQUEUE(wait, current); + + for (i = 0; !ret && (i < private->numchips); i++) { + chip = &private->chips[i]; + + retry: + spin_lock_bh(chip->mutex); + + switch(chip->state) { + case FL_READY: + case FL_STATUS: + case FL_CFI_QUERY: + case FL_JEDEC_QUERY: + chip->oldstate = chip->state; + chip->state = FL_SYNCING; + /* No need to wake_up() on this state change - + * as the whole point is that nobody can do anything + * with the chip now anyway. + */ + case FL_SYNCING: + spin_unlock_bh(chip->mutex); + break; + + default: + /* Not an idle state */ + add_wait_queue(&chip->wq, &wait); + + spin_unlock_bh(chip->mutex); + + schedule(); + + remove_wait_queue(&chip->wq, &wait); + + goto retry; + } + } + + /* Unlock the chips again */ + for (i--; i >= 0; i--) { + chip = &private->chips[i]; + + spin_lock_bh(chip->mutex); + + if (chip->state == FL_SYNCING) { + chip->state = chip->oldstate; + wake_up(&chip->wq); + } + spin_unlock_bh(chip->mutex); + } +} + + + +static int amd_flash_suspend(struct mtd_info *mtd) +{ +printk("amd_flash_suspend(): not implemented!\n"); + return -EINVAL; +} + + + +static void amd_flash_resume(struct mtd_info *mtd) +{ +printk("amd_flash_resume(): not implemented!\n"); +} + + + +static void amd_flash_destroy(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct amd_flash_private *private = map->fldrv_priv; + kfree(private); +} + +int __init amd_flash_init(void) +{ + register_mtd_chip_driver(&amd_flash_chipdrv); + return 0; +} + +void __exit amd_flash_exit(void) +{ + unregister_mtd_chip_driver(&amd_flash_chipdrv); +} + +module_init(amd_flash_init); +module_exit(amd_flash_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Jonas Holmberg <jonas.holmberg@axis.com>"); +MODULE_DESCRIPTION("Old MTD chip driver for AMD flash chips"); diff --git a/drivers/mtd/chips/cfi_cmdset_0001.c b/drivers/mtd/chips/cfi_cmdset_0001.c new file mode 100644 index 000000000000..c268bcd71720 --- /dev/null +++ b/drivers/mtd/chips/cfi_cmdset_0001.c @@ -0,0 +1,2160 @@ +/* + * Common Flash Interface support: + * Intel Extended Vendor Command Set (ID 0x0001) + * + * (C) 2000 Red Hat. GPL'd + * + * $Id: cfi_cmdset_0001.c,v 1.164 2004/11/16 18:29:00 dwmw2 Exp $ + * + * + * 10/10/2000 Nicolas Pitre <nico@cam.org> + * - completely revamped method functions so they are aware and + * independent of the flash geometry (buswidth, interleave, etc.) + * - scalability vs code size is completely set at compile-time + * (see include/linux/mtd/cfi.h for selection) + * - optimized write buffer method + * 02/05/2002 Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com> + * - reworked lock/unlock/erase support for var size flash + */ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/sched.h> +#include <linux/init.h> +#include <asm/io.h> +#include <asm/byteorder.h> + +#include <linux/errno.h> +#include <linux/slab.h> +#include <linux/delay.h> +#include <linux/interrupt.h> +#include <linux/mtd/xip.h> +#include <linux/mtd/map.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/compatmac.h> +#include <linux/mtd/cfi.h> + +/* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */ +/* #define CMDSET0001_DISABLE_WRITE_SUSPEND */ + +// debugging, turns off buffer write mode if set to 1 +#define FORCE_WORD_WRITE 0 + +#define MANUFACTURER_INTEL 0x0089 +#define I82802AB 0x00ad +#define I82802AC 0x00ac +#define MANUFACTURER_ST 0x0020 +#define M50LPW080 0x002F + +static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); +//static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *); +//static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *); +static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); +static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); +static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *); +static void cfi_intelext_sync (struct mtd_info *); +static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len); +static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len); +static int cfi_intelext_suspend (struct mtd_info *); +static void cfi_intelext_resume (struct mtd_info *); + +static void cfi_intelext_destroy(struct mtd_info *); + +struct mtd_info *cfi_cmdset_0001(struct map_info *, int); + +static struct mtd_info *cfi_intelext_setup (struct mtd_info *); +static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **); + +static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char **mtdbuf); +static void cfi_intelext_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, + size_t len); + +static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode); +static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr); +#include "fwh_lock.h" + + + +/* + * *********** SETUP AND PROBE BITS *********** + */ + +static struct mtd_chip_driver cfi_intelext_chipdrv = { + .probe = NULL, /* Not usable directly */ + .destroy = cfi_intelext_destroy, + .name = "cfi_cmdset_0001", + .module = THIS_MODULE +}; + +/* #define DEBUG_LOCK_BITS */ +/* #define DEBUG_CFI_FEATURES */ + +#ifdef DEBUG_CFI_FEATURES +static void cfi_tell_features(struct cfi_pri_intelext *extp) +{ + int i; + printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport); + printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported"); + printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported"); + printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported"); + printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported"); + printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported"); + printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported"); + printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported"); + printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported"); + printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported"); + printk(" - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported"); + for (i=10; i<32; i++) { + if (extp->FeatureSupport & (1<<i)) + printk(" - Unknown Bit %X: supported\n", i); + } + + printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport); + printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported"); + for (i=1; i<8; i++) { + if (extp->SuspendCmdSupport & (1<<i)) + printk(" - Unknown Bit %X: supported\n", i); + } + + printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask); + printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no"); + printk(" - Valid Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no"); + for (i=2; i<16; i++) { + if (extp->BlkStatusRegMask & (1<<i)) + printk(" - Unknown Bit %X Active: yes\n",i); + } + + printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n", + extp->VccOptimal >> 4, extp->VccOptimal & 0xf); + if (extp->VppOptimal) + printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n", + extp->VppOptimal >> 4, extp->VppOptimal & 0xf); +} +#endif + +#ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE +/* Some Intel Strata Flash prior to FPO revision C has bugs in this area */ +static void fixup_intel_strataflash(struct mtd_info *mtd, void* param) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + struct cfi_pri_amdstd *extp = cfi->cmdset_priv; + + printk(KERN_WARNING "cfi_cmdset_0001: Suspend " + "erase on write disabled.\n"); + extp->SuspendCmdSupport &= ~1; +} +#endif + +#ifdef CMDSET0001_DISABLE_WRITE_SUSPEND +static void fixup_no_write_suspend(struct mtd_info *mtd, void* param) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + struct cfi_pri_intelext *cfip = cfi->cmdset_priv; + + if (cfip && (cfip->FeatureSupport&4)) { + cfip->FeatureSupport &= ~4; + printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n"); + } +} +#endif + +static void fixup_st_m28w320ct(struct mtd_info *mtd, void* param) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + + cfi->cfiq->BufWriteTimeoutTyp = 0; /* Not supported */ + cfi->cfiq->BufWriteTimeoutMax = 0; /* Not supported */ +} + +static void fixup_st_m28w320cb(struct mtd_info *mtd, void* param) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + + /* Note this is done after the region info is endian swapped */ + cfi->cfiq->EraseRegionInfo[1] = + (cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e; +}; + +static void fixup_use_point(struct mtd_info *mtd, void *param) +{ + struct map_info *map = mtd->priv; + if (!mtd->point && map_is_linear(map)) { + mtd->point = cfi_intelext_point; + mtd->unpoint = cfi_intelext_unpoint; + } +} + +static void fixup_use_write_buffers(struct mtd_info *mtd, void *param) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + if (cfi->cfiq->BufWriteTimeoutTyp) { + printk(KERN_INFO "Using buffer write method\n" ); + mtd->write = cfi_intelext_write_buffers; + } +} + +static struct cfi_fixup cfi_fixup_table[] = { +#ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE + { CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash, NULL }, +#endif +#ifdef CMDSET0001_DISABLE_WRITE_SUSPEND + { CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend, NULL }, +#endif +#if !FORCE_WORD_WRITE + { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL }, +#endif + { CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct, NULL }, + { CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb, NULL }, + { 0, 0, NULL, NULL } +}; + +static struct cfi_fixup jedec_fixup_table[] = { + { MANUFACTURER_INTEL, I82802AB, fixup_use_fwh_lock, NULL, }, + { MANUFACTURER_INTEL, I82802AC, fixup_use_fwh_lock, NULL, }, + { MANUFACTURER_ST, M50LPW080, fixup_use_fwh_lock, NULL, }, + { 0, 0, NULL, NULL } +}; +static struct cfi_fixup fixup_table[] = { + /* The CFI vendor ids and the JEDEC vendor IDs appear + * to be common. It is like the devices id's are as + * well. This table is to pick all cases where + * we know that is the case. + */ + { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point, NULL }, + { 0, 0, NULL, NULL } +}; + +static inline struct cfi_pri_intelext * +read_pri_intelext(struct map_info *map, __u16 adr) +{ + struct cfi_pri_intelext *extp; + unsigned int extp_size = sizeof(*extp); + + again: + extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp"); + if (!extp) + return NULL; + + /* Do some byteswapping if necessary */ + extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport); + extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask); + extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr); + + if (extp->MajorVersion == '1' && extp->MinorVersion == '3') { + unsigned int extra_size = 0; + int nb_parts, i; + + /* Protection Register info */ + extra_size += (extp->NumProtectionFields - 1) * (4 + 6); + + /* Burst Read info */ + extra_size += 6; + + /* Number of hardware-partitions */ + extra_size += 1; + if (extp_size < sizeof(*extp) + extra_size) + goto need_more; + nb_parts = extp->extra[extra_size - 1]; + + for (i = 0; i < nb_parts; i++) { + struct cfi_intelext_regioninfo *rinfo; + rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size]; + extra_size += sizeof(*rinfo); + if (extp_size < sizeof(*extp) + extra_size) + goto need_more; + rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions); + extra_size += (rinfo->NumBlockTypes - 1) + * sizeof(struct cfi_intelext_blockinfo); + } + + if (extp_size < sizeof(*extp) + extra_size) { + need_more: + extp_size = sizeof(*extp) + extra_size; + kfree(extp); + if (extp_size > 4096) { + printk(KERN_ERR + "%s: cfi_pri_intelext is too fat\n", + __FUNCTION__); + return NULL; + } + goto again; + } + } + + return extp; +} + +/* This routine is made available to other mtd code via + * inter_module_register. It must only be accessed through + * inter_module_get which will bump the use count of this module. The + * addresses passed back in cfi are valid as long as the use count of + * this module is non-zero, i.e. between inter_module_get and + * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000. + */ +struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary) +{ + struct cfi_private *cfi = map->fldrv_priv; + struct mtd_info *mtd; + int i; + + mtd = kmalloc(sizeof(*mtd), GFP_KERNEL); + if (!mtd) { + printk(KERN_ERR "Failed to allocate memory for MTD device\n"); + return NULL; + } + memset(mtd, 0, sizeof(*mtd)); + mtd->priv = map; + mtd->type = MTD_NORFLASH; + + /* Fill in the default mtd operations */ + mtd->erase = cfi_intelext_erase_varsize; + mtd->read = cfi_intelext_read; + mtd->write = cfi_intelext_write_words; + mtd->sync = cfi_intelext_sync; + mtd->lock = cfi_intelext_lock; + mtd->unlock = cfi_intelext_unlock; + mtd->suspend = cfi_intelext_suspend; + mtd->resume = cfi_intelext_resume; + mtd->flags = MTD_CAP_NORFLASH; + mtd->name = map->name; + + if (cfi->cfi_mode == CFI_MODE_CFI) { + /* + * It's a real CFI chip, not one for which the probe + * routine faked a CFI structure. So we read the feature + * table from it. + */ + __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR; + struct cfi_pri_intelext *extp; + + extp = read_pri_intelext(map, adr); + if (!extp) { + kfree(mtd); + return NULL; + } + + /* Install our own private info structure */ + cfi->cmdset_priv = extp; + + cfi_fixup(mtd, cfi_fixup_table); + +#ifdef DEBUG_CFI_FEATURES + /* Tell the user about it in lots of lovely detail */ + cfi_tell_features(extp); +#endif + + if(extp->SuspendCmdSupport & 1) { + printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n"); + } + } + else if (cfi->cfi_mode == CFI_MODE_JEDEC) { + /* Apply jedec specific fixups */ + cfi_fixup(mtd, jedec_fixup_table); + } + /* Apply generic fixups */ + cfi_fixup(mtd, fixup_table); + + for (i=0; i< cfi->numchips; i++) { + cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp; + cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp; + cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp; + cfi->chips[i].ref_point_counter = 0; + } + + map->fldrv = &cfi_intelext_chipdrv; + + return cfi_intelext_setup(mtd); +} + +static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + unsigned long offset = 0; + int i,j; + unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave; + + //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips); + + mtd->size = devsize * cfi->numchips; + + mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips; + mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) + * mtd->numeraseregions, GFP_KERNEL); + if (!mtd->eraseregions) { + printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n"); + goto setup_err; + } + + for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { + unsigned long ernum, ersize; + ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave; + ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1; + + if (mtd->erasesize < ersize) { + mtd->erasesize = ersize; + } + for (j=0; j<cfi->numchips; j++) { + mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset; + mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize; + mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum; + } + offset += (ersize * ernum); + } + + if (offset != devsize) { + /* Argh */ + printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize); + goto setup_err; + } + + for (i=0; i<mtd->numeraseregions;i++){ + printk(KERN_DEBUG "%d: offset=0x%x,size=0x%x,blocks=%d\n", + i,mtd->eraseregions[i].offset, + mtd->eraseregions[i].erasesize, + mtd->eraseregions[i].numblocks); + } + +#if 0 + mtd->read_user_prot_reg = cfi_intelext_read_user_prot_reg; + mtd->read_fact_prot_reg = cfi_intelext_read_fact_prot_reg; +#endif + + /* This function has the potential to distort the reality + a bit and therefore should be called last. */ + if (cfi_intelext_partition_fixup(mtd, &cfi) != 0) + goto setup_err; + + __module_get(THIS_MODULE); + return mtd; + + setup_err: + if(mtd) { + if(mtd->eraseregions) + kfree(mtd->eraseregions); + kfree(mtd); + } + kfree(cfi->cmdset_priv); + return NULL; +} + +static int cfi_intelext_partition_fixup(struct mtd_info *mtd, + struct cfi_private **pcfi) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = *pcfi; + struct cfi_pri_intelext *extp = cfi->cmdset_priv; + + /* + * Probing of multi-partition flash ships. + * + * To support multiple partitions when available, we simply arrange + * for each of them to have their own flchip structure even if they + * are on the same physical chip. This means completely recreating + * a new cfi_private structure right here which is a blatent code + * layering violation, but this is still the least intrusive + * arrangement at this point. This can be rearranged in the future + * if someone feels motivated enough. --nico + */ + if (extp && extp->MajorVersion == '1' && extp->MinorVersion == '3' + && extp->FeatureSupport & (1 << 9)) { + struct cfi_private *newcfi; + struct flchip *chip; + struct flchip_shared *shared; + int offs, numregions, numparts, partshift, numvirtchips, i, j; + + /* Protection Register info */ + offs = (extp->NumProtectionFields - 1) * (4 + 6); + + /* Burst Read info */ + offs += 6; + + /* Number of partition regions */ + numregions = extp->extra[offs]; + offs += 1; + + /* Number of hardware partitions */ + numparts = 0; + for (i = 0; i < numregions; i++) { + struct cfi_intelext_regioninfo *rinfo; + rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs]; + numparts += rinfo->NumIdentPartitions; + offs += sizeof(*rinfo) + + (rinfo->NumBlockTypes - 1) * + sizeof(struct cfi_intelext_blockinfo); + } + + /* + * All functions below currently rely on all chips having + * the same geometry so we'll just assume that all hardware + * partitions are of the same size too. + */ + partshift = cfi->chipshift - __ffs(numparts); + + if ((1 << partshift) < mtd->erasesize) { + printk( KERN_ERR + "%s: bad number of hw partitions (%d)\n", + __FUNCTION__, numparts); + return -EINVAL; + } + + numvirtchips = cfi->numchips * numparts; + newcfi = kmalloc(sizeof(struct cfi_private) + numvirtchips * sizeof(struct flchip), GFP_KERNEL); + if (!newcfi) + return -ENOMEM; + shared = kmalloc(sizeof(struct flchip_shared) * cfi->numchips, GFP_KERNEL); + if (!shared) { + kfree(newcfi); + return -ENOMEM; + } + memcpy(newcfi, cfi, sizeof(struct cfi_private)); + newcfi->numchips = numvirtchips; + newcfi->chipshift = partshift; + + chip = &newcfi->chips[0]; + for (i = 0; i < cfi->numchips; i++) { + shared[i].writing = shared[i].erasing = NULL; + spin_lock_init(&shared[i].lock); + for (j = 0; j < numparts; j++) { + *chip = cfi->chips[i]; + chip->start += j << partshift; + chip->priv = &shared[i]; + /* those should be reset too since + they create memory references. */ + init_waitqueue_head(&chip->wq); + spin_lock_init(&chip->_spinlock); + chip->mutex = &chip->_spinlock; + chip++; + } + } + + printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips " + "--> %d partitions of %d KiB\n", + map->name, cfi->numchips, cfi->interleave, + newcfi->numchips, 1<<(newcfi->chipshift-10)); + + map->fldrv_priv = newcfi; + *pcfi = newcfi; + kfree(cfi); + } + + return 0; +} + +/* + * *********** CHIP ACCESS FUNCTIONS *********** + */ + +static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode) +{ + DECLARE_WAITQUEUE(wait, current); + struct cfi_private *cfi = map->fldrv_priv; + map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01); + unsigned long timeo; + struct cfi_pri_intelext *cfip = cfi->cmdset_priv; + + resettime: + timeo = jiffies + HZ; + retry: + if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)) { + /* + * OK. We have possibility for contension on the write/erase + * operations which are global to the real chip and not per + * partition. So let's fight it over in the partition which + * currently has authority on the operation. + * + * The rules are as follows: + * + * - any write operation must own shared->writing. + * + * - any erase operation must own _both_ shared->writing and + * shared->erasing. + * + * - contension arbitration is handled in the owner's context. + * + * The 'shared' struct can be read when its lock is taken. + * However any writes to it can only be made when the current + * owner's lock is also held. + */ + struct flchip_shared *shared = chip->priv; + struct flchip *contender; + spin_lock(&shared->lock); + contender = shared->writing; + if (contender && contender != chip) { + /* + * The engine to perform desired operation on this + * partition is already in use by someone else. + * Let's fight over it in the context of the chip + * currently using it. If it is possible to suspend, + * that other partition will do just that, otherwise + * it'll happily send us to sleep. In any case, when + * get_chip returns success we're clear to go ahead. + */ + int ret = spin_trylock(contender->mutex); + spin_unlock(&shared->lock); + if (!ret) + goto retry; + spin_unlock(chip->mutex); + ret = get_chip(map, contender, contender->start, mode); + spin_lock(chip->mutex); + if (ret) { + spin_unlock(contender->mutex); + return ret; + } + timeo = jiffies + HZ; + spin_lock(&shared->lock); + } + + /* We now own it */ + shared->writing = chip; + if (mode == FL_ERASING) + shared->erasing = chip; + if (contender && contender != chip) + spin_unlock(contender->mutex); + spin_unlock(&shared->lock); + } + + switch (chip->state) { + + case FL_STATUS: + for (;;) { + status = map_read(map, adr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + + /* At this point we're fine with write operations + in other partitions as they don't conflict. */ + if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS)) + break; + + if (time_after(jiffies, timeo)) { + printk(KERN_ERR "Waiting for chip to be ready timed out. Status %lx\n", + status.x[0]); + return -EIO; + } + spin_unlock(chip->mutex); + cfi_udelay(1); + spin_lock(chip->mutex); + /* Someone else might have been playing with it. */ + goto retry; + } + + case FL_READY: + case FL_CFI_QUERY: + case FL_JEDEC_QUERY: + return 0; + + case FL_ERASING: + if (!cfip || + !(cfip->FeatureSupport & 2) || + !(mode == FL_READY || mode == FL_POINT || + (mode == FL_WRITING && (cfip->SuspendCmdSupport & 1)))) + goto sleep; + + + /* Erase suspend */ + map_write(map, CMD(0xB0), adr); + + /* If the flash has finished erasing, then 'erase suspend' + * appears to make some (28F320) flash devices switch to + * 'read' mode. Make sure that we switch to 'read status' + * mode so we get the right data. --rmk + */ + map_write(map, CMD(0x70), adr); + chip->oldstate = FL_ERASING; + chip->state = FL_ERASE_SUSPENDING; + chip->erase_suspended = 1; + for (;;) { + status = map_read(map, adr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + + if (time_after(jiffies, timeo)) { + /* Urgh. Resume and pretend we weren't here. */ + map_write(map, CMD(0xd0), adr); + /* Make sure we're in 'read status' mode if it had finished */ + map_write(map, CMD(0x70), adr); + chip->state = FL_ERASING; + chip->oldstate = FL_READY; + printk(KERN_ERR "Chip not ready after erase " + "suspended: status = 0x%lx\n", status.x[0]); + return -EIO; + } + + spin_unlock(chip->mutex); + cfi_udelay(1); + spin_lock(chip->mutex); + /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING. + So we can just loop here. */ + } + chip->state = FL_STATUS; + return 0; + + case FL_XIP_WHILE_ERASING: + if (mode != FL_READY && mode != FL_POINT && + (mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1))) + goto sleep; + chip->oldstate = chip->state; + chip->state = FL_READY; + return 0; + + case FL_POINT: + /* Only if there's no operation suspended... */ + if (mode == FL_READY && chip->oldstate == FL_READY) + return 0; + + default: + sleep: + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + spin_unlock(chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + spin_lock(chip->mutex); + goto resettime; + } +} + +static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr) +{ + struct cfi_private *cfi = map->fldrv_priv; + + if (chip->priv) { + struct flchip_shared *shared = chip->priv; + spin_lock(&shared->lock); + if (shared->writing == chip && chip->oldstate == FL_READY) { + /* We own the ability to write, but we're done */ + shared->writing = shared->erasing; + if (shared->writing && shared->writing != chip) { + /* give back ownership to who we loaned it from */ + struct flchip *loaner = shared->writing; + spin_lock(loaner->mutex); + spin_unlock(&shared->lock); + spin_unlock(chip->mutex); + put_chip(map, loaner, loaner->start); + spin_lock(chip->mutex); + spin_unlock(loaner->mutex); + wake_up(&chip->wq); + return; + } + shared->erasing = NULL; + shared->writing = NULL; + } else if (shared->erasing == chip && shared->writing != chip) { + /* + * We own the ability to erase without the ability + * to write, which means the erase was suspended + * and some other partition is currently writing. + * Don't let the switch below mess things up since + * we don't have ownership to resume anything. + */ + spin_unlock(&shared->lock); + wake_up(&chip->wq); + return; + } + spin_unlock(&shared->lock); + } + + switch(chip->oldstate) { + case FL_ERASING: + chip->state = chip->oldstate; + /* What if one interleaved chip has finished and the + other hasn't? The old code would leave the finished + one in READY mode. That's bad, and caused -EROFS + errors to be returned from do_erase_oneblock because + that's the only bit it checked for at the time. + As the state machine appears to explicitly allow + sending the 0x70 (Read Status) command to an erasing + chip and expecting it to be ignored, that's what we + do. */ + map_write(map, CMD(0xd0), adr); + map_write(map, CMD(0x70), adr); + chip->oldstate = FL_READY; + chip->state = FL_ERASING; + break; + + case FL_XIP_WHILE_ERASING: + chip->state = chip->oldstate; + chip->oldstate = FL_READY; + break; + + case FL_READY: + case FL_STATUS: + case FL_JEDEC_QUERY: + /* We should really make set_vpp() count, rather than doing this */ + DISABLE_VPP(map); + break; + default: + printk(KERN_ERR "put_chip() called with oldstate %d!!\n", chip->oldstate); + } + wake_up(&chip->wq); +} + +#ifdef CONFIG_MTD_XIP + +/* + * No interrupt what so ever can be serviced while the flash isn't in array + * mode. This is ensured by the xip_disable() and xip_enable() functions + * enclosing any code path where the flash is known not to be in array mode. + * And within a XIP disabled code path, only functions marked with __xipram + * may be called and nothing else (it's a good thing to inspect generated + * assembly to make sure inline functions were actually inlined and that gcc + * didn't emit calls to its own support functions). Also configuring MTD CFI + * support to a single buswidth and a single interleave is also recommended. + * Note that not only IRQs are disabled but the preemption count is also + * increased to prevent other locking primitives (namely spin_unlock) from + * decrementing the preempt count to zero and scheduling the CPU away while + * not in array mode. + */ + +static void xip_disable(struct map_info *map, struct flchip *chip, + unsigned long adr) +{ + /* TODO: chips with no XIP use should ignore and return */ + (void) map_read(map, adr); /* ensure mmu mapping is up to date */ + preempt_disable(); + local_irq_disable(); +} + +static void __xipram xip_enable(struct map_info *map, struct flchip *chip, + unsigned long adr) +{ + struct cfi_private *cfi = map->fldrv_priv; + if (chip->state != FL_POINT && chip->state != FL_READY) { + map_write(map, CMD(0xff), adr); + chip->state = FL_READY; + } + (void) map_read(map, adr); + asm volatile (".rep 8; nop; .endr"); /* fill instruction prefetch */ + local_irq_enable(); + preempt_enable(); +} + +/* + * When a delay is required for the flash operation to complete, the + * xip_udelay() function is polling for both the given timeout and pending + * (but still masked) hardware interrupts. Whenever there is an interrupt + * pending then the flash erase or write operation is suspended, array mode + * restored and interrupts unmasked. Task scheduling might also happen at that + * point. The CPU eventually returns from the interrupt or the call to + * schedule() and the suspended flash operation is resumed for the remaining + * of the delay period. + * + * Warning: this function _will_ fool interrupt latency tracing tools. + */ + +static void __xipram xip_udelay(struct map_info *map, struct flchip *chip, + unsigned long adr, int usec) +{ + struct cfi_private *cfi = map->fldrv_priv; + struct cfi_pri_intelext *cfip = cfi->cmdset_priv; + map_word status, OK = CMD(0x80); + unsigned long suspended, start = xip_currtime(); + flstate_t oldstate, newstate; + + do { + cpu_relax(); + if (xip_irqpending() && cfip && + ((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) || + (chip->state == FL_WRITING && (cfip->FeatureSupport&4))) && + (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) { + /* + * Let's suspend the erase or write operation when + * supported. Note that we currently don't try to + * suspend interleaved chips if there is already + * another operation suspended (imagine what happens + * when one chip was already done with the current + * operation while another chip suspended it, then + * we resume the whole thing at once). Yes, it + * can happen! + */ + map_write(map, CMD(0xb0), adr); + map_write(map, CMD(0x70), adr); + usec -= xip_elapsed_since(start); + suspended = xip_currtime(); + do { + if (xip_elapsed_since(suspended) > 100000) { + /* + * The chip doesn't want to suspend + * after waiting for 100 msecs. + * This is a critical error but there + * is not much we can do here. + */ + return; + } + status = map_read(map, adr); + } while (!map_word_andequal(map, status, OK, OK)); + + /* Suspend succeeded */ + oldstate = chip->state; + if (oldstate == FL_ERASING) { + if (!map_word_bitsset(map, status, CMD(0x40))) + break; + newstate = FL_XIP_WHILE_ERASING; + chip->erase_suspended = 1; + } else { + if (!map_word_bitsset(map, status, CMD(0x04))) + break; + newstate = FL_XIP_WHILE_WRITING; + chip->write_suspended = 1; + } + chip->state = newstate; + map_write(map, CMD(0xff), adr); + (void) map_read(map, adr); + asm volatile (".rep 8; nop; .endr"); + local_irq_enable(); + preempt_enable(); + asm volatile (".rep 8; nop; .endr"); + cond_resched(); + + /* + * We're back. However someone else might have + * decided to go write to the chip if we are in + * a suspended erase state. If so let's wait + * until it's done. + */ + preempt_disable(); + while (chip->state != newstate) { + DECLARE_WAITQUEUE(wait, current); + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + preempt_enable(); + schedule(); + remove_wait_queue(&chip->wq, &wait); + preempt_disable(); + } + /* Disallow XIP again */ + local_irq_disable(); + + /* Resume the write or erase operation */ + map_write(map, CMD(0xd0), adr); + map_write(map, CMD(0x70), adr); + chip->state = oldstate; + start = xip_currtime(); + } else if (usec >= 1000000/HZ) { + /* + * Try to save on CPU power when waiting delay + * is at least a system timer tick period. + * No need to be extremely accurate here. + */ + xip_cpu_idle(); + } + status = map_read(map, adr); + } while (!map_word_andequal(map, status, OK, OK) + && xip_elapsed_since(start) < usec); +} + +#define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec) + +/* + * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while + * the flash is actively programming or erasing since we have to poll for + * the operation to complete anyway. We can't do that in a generic way with + * a XIP setup so do it before the actual flash operation in this case. + */ +#undef INVALIDATE_CACHED_RANGE +#define INVALIDATE_CACHED_RANGE(x...) +#define XIP_INVAL_CACHED_RANGE(map, from, size) \ + do { if(map->inval_cache) map->inval_cache(map, from, size); } while(0) + +/* + * Extra notes: + * + * Activating this XIP support changes the way the code works a bit. For + * example the code to suspend the current process when concurrent access + * happens is never executed because xip_udelay() will always return with the + * same chip state as it was entered with. This is why there is no care for + * the presence of add_wait_queue() or schedule() calls from within a couple + * xip_disable()'d areas of code, like in do_erase_oneblock for example. + * The queueing and scheduling are always happening within xip_udelay(). + * + * Similarly, get_chip() and put_chip() just happen to always be executed + * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state + * is in array mode, therefore never executing many cases therein and not + * causing any problem with XIP. + */ + +#else + +#define xip_disable(map, chip, adr) +#define xip_enable(map, chip, adr) + +#define UDELAY(map, chip, adr, usec) cfi_udelay(usec) + +#define XIP_INVAL_CACHED_RANGE(x...) + +#endif + +static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len) +{ + unsigned long cmd_addr; + struct cfi_private *cfi = map->fldrv_priv; + int ret = 0; + + adr += chip->start; + + /* Ensure cmd read/writes are aligned. */ + cmd_addr = adr & ~(map_bankwidth(map)-1); + + spin_lock(chip->mutex); + + ret = get_chip(map, chip, cmd_addr, FL_POINT); + + if (!ret) { + if (chip->state != FL_POINT && chip->state != FL_READY) + map_write(map, CMD(0xff), cmd_addr); + + chip->state = FL_POINT; + chip->ref_point_counter++; + } + spin_unlock(chip->mutex); + + return ret; +} + +static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char **mtdbuf) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + unsigned long ofs; + int chipnum; + int ret = 0; + + if (!map->virt || (from + len > mtd->size)) + return -EINVAL; + + *mtdbuf = (void *)map->virt + from; + *retlen = 0; + + /* Now lock the chip(s) to POINT state */ + + /* ofs: offset within the first chip that the first read should start */ + chipnum = (from >> cfi->chipshift); + ofs = from - (chipnum << cfi->chipshift); + + while (len) { + unsigned long thislen; + + if (chipnum >= cfi->numchips) + break; + + if ((len + ofs -1) >> cfi->chipshift) + thislen = (1<<cfi->chipshift) - ofs; + else + thislen = len; + + ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen); + if (ret) + break; + + *retlen += thislen; + len -= thislen; + + ofs = 0; + chipnum++; + } + return 0; +} + +static void cfi_intelext_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, size_t len) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + unsigned long ofs; + int chipnum; + + /* Now unlock the chip(s) POINT state */ + + /* ofs: offset within the first chip that the first read should start */ + chipnum = (from >> cfi->chipshift); + ofs = from - (chipnum << cfi->chipshift); + + while (len) { + unsigned long thislen; + struct flchip *chip; + + chip = &cfi->chips[chipnum]; + if (chipnum >= cfi->numchips) + break; + + if ((len + ofs -1) >> cfi->chipshift) + thislen = (1<<cfi->chipshift) - ofs; + else + thislen = len; + + spin_lock(chip->mutex); + if (chip->state == FL_POINT) { + chip->ref_point_counter--; + if(chip->ref_point_counter == 0) + chip->state = FL_READY; + } else + printk(KERN_ERR "Warning: unpoint called on non pointed region\n"); /* Should this give an error? */ + + put_chip(map, chip, chip->start); + spin_unlock(chip->mutex); + + len -= thislen; + ofs = 0; + chipnum++; + } +} + +static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf) +{ + unsigned long cmd_addr; + struct cfi_private *cfi = map->fldrv_priv; + int ret; + + adr += chip->start; + + /* Ensure cmd read/writes are aligned. */ + cmd_addr = adr & ~(map_bankwidth(map)-1); + + spin_lock(chip->mutex); + ret = get_chip(map, chip, cmd_addr, FL_READY); + if (ret) { + spin_unlock(chip->mutex); + return ret; + } + + if (chip->state != FL_POINT && chip->state != FL_READY) { + map_write(map, CMD(0xff), cmd_addr); + + chip->state = FL_READY; + } + + map_copy_from(map, buf, adr, len); + + put_chip(map, chip, cmd_addr); + + spin_unlock(chip->mutex); + return 0; +} + +static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + unsigned long ofs; + int chipnum; + int ret = 0; + + /* ofs: offset within the first chip that the first read should start */ + chipnum = (from >> cfi->chipshift); + ofs = from - (chipnum << cfi->chipshift); + + *retlen = 0; + + while (len) { + unsigned long thislen; + + if (chipnum >= cfi->numchips) + break; + + if ((len + ofs -1) >> cfi->chipshift) + thislen = (1<<cfi->chipshift) - ofs; + else + thislen = len; + + ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf); + if (ret) + break; + + *retlen += thislen; + len -= thislen; + buf += thislen; + + ofs = 0; + chipnum++; + } + return ret; +} + +#if 0 +static int __xipram cfi_intelext_read_prot_reg (struct mtd_info *mtd, + loff_t from, size_t len, + size_t *retlen, + u_char *buf, + int base_offst, int reg_sz) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + struct cfi_pri_intelext *extp = cfi->cmdset_priv; + struct flchip *chip; + int ofs_factor = cfi->interleave * cfi->device_type; + int count = len; + int chip_num, offst; + int ret; + + chip_num = ((unsigned int)from/reg_sz); + offst = from - (reg_sz*chip_num)+base_offst; + + while (count) { + /* Calculate which chip & protection register offset we need */ + + if (chip_num >= cfi->numchips) + goto out; + + chip = &cfi->chips[chip_num]; + + spin_lock(chip->mutex); + ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY); + if (ret) { + spin_unlock(chip->mutex); + return (len-count)?:ret; + } + + xip_disable(map, chip, chip->start); + + if (chip->state != FL_JEDEC_QUERY) { + map_write(map, CMD(0x90), chip->start); + chip->state = FL_JEDEC_QUERY; + } + + while (count && ((offst-base_offst) < reg_sz)) { + *buf = map_read8(map,(chip->start+((extp->ProtRegAddr+1)*ofs_factor)+offst)); + buf++; + offst++; + count--; + } + + xip_enable(map, chip, chip->start); + put_chip(map, chip, chip->start); + spin_unlock(chip->mutex); + + /* Move on to the next chip */ + chip_num++; + offst = base_offst; + } + + out: + return len-count; +} + +static int cfi_intelext_read_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + struct cfi_pri_intelext *extp=cfi->cmdset_priv; + int base_offst,reg_sz; + + /* Check that we actually have some protection registers */ + if(!extp || !(extp->FeatureSupport&64)){ + printk(KERN_WARNING "%s: This flash device has no protection data to read!\n",map->name); + return 0; + } + + base_offst=(1<<extp->FactProtRegSize); + reg_sz=(1<<extp->UserProtRegSize); + + return cfi_intelext_read_prot_reg(mtd, from, len, retlen, buf, base_offst, reg_sz); +} + +static int cfi_intelext_read_fact_prot_reg (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + struct cfi_pri_intelext *extp=cfi->cmdset_priv; + int base_offst,reg_sz; + + /* Check that we actually have some protection registers */ + if(!extp || !(extp->FeatureSupport&64)){ + printk(KERN_WARNING "%s: This flash device has no protection data to read!\n",map->name); + return 0; + } + + base_offst=0; + reg_sz=(1<<extp->FactProtRegSize); + + return cfi_intelext_read_prot_reg(mtd, from, len, retlen, buf, base_offst, reg_sz); +} +#endif + +static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, + unsigned long adr, map_word datum) +{ + struct cfi_private *cfi = map->fldrv_priv; + map_word status, status_OK; + unsigned long timeo; + int z, ret=0; + + adr += chip->start; + + /* Let's determine this according to the interleave only once */ + status_OK = CMD(0x80); + + spin_lock(chip->mutex); + ret = get_chip(map, chip, adr, FL_WRITING); + if (ret) { + spin_unlock(chip->mutex); + return ret; + } + + XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map)); + ENABLE_VPP(map); + xip_disable(map, chip, adr); + map_write(map, CMD(0x40), adr); + map_write(map, datum, adr); + chip->state = FL_WRITING; + + spin_unlock(chip->mutex); + INVALIDATE_CACHED_RANGE(map, adr, map_bankwidth(map)); + UDELAY(map, chip, adr, chip->word_write_time); + spin_lock(chip->mutex); + + timeo = jiffies + (HZ/2); + z = 0; + for (;;) { + if (chip->state != FL_WRITING) { + /* Someone's suspended the write. Sleep */ + DECLARE_WAITQUEUE(wait, current); + + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + spin_unlock(chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + timeo = jiffies + (HZ / 2); /* FIXME */ + spin_lock(chip->mutex); + continue; + } + + status = map_read(map, adr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + + /* OK Still waiting */ + if (time_after(jiffies, timeo)) { + chip->state = FL_STATUS; + xip_enable(map, chip, adr); + printk(KERN_ERR "waiting for chip to be ready timed out in word write\n"); + ret = -EIO; + goto out; + } + + /* Latency issues. Drop the lock, wait a while and retry */ + spin_unlock(chip->mutex); + z++; + UDELAY(map, chip, adr, 1); + spin_lock(chip->mutex); + } + if (!z) { + chip->word_write_time--; + if (!chip->word_write_time) + chip->word_write_time++; + } + if (z > 1) + chip->word_write_time++; + + /* Done and happy. */ + chip->state = FL_STATUS; + + /* check for lock bit */ + if (map_word_bitsset(map, status, CMD(0x02))) { + /* clear status */ + map_write(map, CMD(0x50), adr); + /* put back into read status register mode */ + map_write(map, CMD(0x70), adr); + ret = -EROFS; + } + + xip_enable(map, chip, adr); + out: put_chip(map, chip, adr); + spin_unlock(chip->mutex); + + return ret; +} + + +static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int ret = 0; + int chipnum; + unsigned long ofs; + + *retlen = 0; + if (!len) + return 0; + + chipnum = to >> cfi->chipshift; + ofs = to - (chipnum << cfi->chipshift); + + /* If it's not bus-aligned, do the first byte write */ + if (ofs & (map_bankwidth(map)-1)) { + unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1); + int gap = ofs - bus_ofs; + int n; + map_word datum; + + n = min_t(int, len, map_bankwidth(map)-gap); + datum = map_word_ff(map); + datum = map_word_load_partial(map, datum, buf, gap, n); + + ret = do_write_oneword(map, &cfi->chips[chipnum], + bus_ofs, datum); + if (ret) + return ret; + + len -= n; + ofs += n; + buf += n; + (*retlen) += n; + + if (ofs >> cfi->chipshift) { + chipnum ++; + ofs = 0; + if (chipnum == cfi->numchips) + return 0; + } + } + + while(len >= map_bankwidth(map)) { + map_word datum = map_word_load(map, buf); + + ret = do_write_oneword(map, &cfi->chips[chipnum], + ofs, datum); + if (ret) + return ret; + + ofs += map_bankwidth(map); + buf += map_bankwidth(map); + (*retlen) += map_bankwidth(map); + len -= map_bankwidth(map); + + if (ofs >> cfi->chipshift) { + chipnum ++; + ofs = 0; + if (chipnum == cfi->numchips) + return 0; + } + } + + if (len & (map_bankwidth(map)-1)) { + map_word datum; + + datum = map_word_ff(map); + datum = map_word_load_partial(map, datum, buf, 0, len); + + ret = do_write_oneword(map, &cfi->chips[chipnum], + ofs, datum); + if (ret) + return ret; + + (*retlen) += len; + } + + return 0; +} + + +static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip, + unsigned long adr, const u_char *buf, int len) +{ + struct cfi_private *cfi = map->fldrv_priv; + map_word status, status_OK; + unsigned long cmd_adr, timeo; + int wbufsize, z, ret=0, bytes, words; + + wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; + adr += chip->start; + cmd_adr = adr & ~(wbufsize-1); + + /* Let's determine this according to the interleave only once */ + status_OK = CMD(0x80); + + spin_lock(chip->mutex); + ret = get_chip(map, chip, cmd_adr, FL_WRITING); + if (ret) { + spin_unlock(chip->mutex); + return ret; + } + + XIP_INVAL_CACHED_RANGE(map, adr, len); + ENABLE_VPP(map); + xip_disable(map, chip, cmd_adr); + + /* §4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set + [...], the device will not accept any more Write to Buffer commands". + So we must check here and reset those bits if they're set. Otherwise + we're just pissing in the wind */ + if (chip->state != FL_STATUS) + map_write(map, CMD(0x70), cmd_adr); + status = map_read(map, cmd_adr); + if (map_word_bitsset(map, status, CMD(0x30))) { + xip_enable(map, chip, cmd_adr); + printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]); + xip_disable(map, chip, cmd_adr); + map_write(map, CMD(0x50), cmd_adr); + map_write(map, CMD(0x70), cmd_adr); + } + + chip->state = FL_WRITING_TO_BUFFER; + + z = 0; + for (;;) { + map_write(map, CMD(0xe8), cmd_adr); + + status = map_read(map, cmd_adr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + + spin_unlock(chip->mutex); + UDELAY(map, chip, cmd_adr, 1); + spin_lock(chip->mutex); + + if (++z > 20) { + /* Argh. Not ready for write to buffer */ + map_word Xstatus; + map_write(map, CMD(0x70), cmd_adr); + chip->state = FL_STATUS; + Xstatus = map_read(map, cmd_adr); + /* Odd. Clear status bits */ + map_write(map, CMD(0x50), cmd_adr); + map_write(map, CMD(0x70), cmd_adr); + xip_enable(map, chip, cmd_adr); + printk(KERN_ERR "Chip not ready for buffer write. status = %lx, Xstatus = %lx\n", + status.x[0], Xstatus.x[0]); + ret = -EIO; + goto out; + } + } + + /* Write length of data to come */ + bytes = len & (map_bankwidth(map)-1); + words = len / map_bankwidth(map); + map_write(map, CMD(words - !bytes), cmd_adr ); + + /* Write data */ + z = 0; + while(z < words * map_bankwidth(map)) { + map_word datum = map_word_load(map, buf); + map_write(map, datum, adr+z); + + z += map_bankwidth(map); + buf += map_bankwidth(map); + } + + if (bytes) { + map_word datum; + + datum = map_word_ff(map); + datum = map_word_load_partial(map, datum, buf, 0, bytes); + map_write(map, datum, adr+z); + } + + /* GO GO GO */ + map_write(map, CMD(0xd0), cmd_adr); + chip->state = FL_WRITING; + + spin_unlock(chip->mutex); + INVALIDATE_CACHED_RANGE(map, adr, len); + UDELAY(map, chip, cmd_adr, chip->buffer_write_time); + spin_lock(chip->mutex); + + timeo = jiffies + (HZ/2); + z = 0; + for (;;) { + if (chip->state != FL_WRITING) { + /* Someone's suspended the write. Sleep */ + DECLARE_WAITQUEUE(wait, current); + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + spin_unlock(chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + timeo = jiffies + (HZ / 2); /* FIXME */ + spin_lock(chip->mutex); + continue; + } + + status = map_read(map, cmd_adr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + + /* OK Still waiting */ + if (time_after(jiffies, timeo)) { + chip->state = FL_STATUS; + xip_enable(map, chip, cmd_adr); + printk(KERN_ERR "waiting for chip to be ready timed out in bufwrite\n"); + ret = -EIO; + goto out; + } + + /* Latency issues. Drop the lock, wait a while and retry */ + spin_unlock(chip->mutex); + UDELAY(map, chip, cmd_adr, 1); + z++; + spin_lock(chip->mutex); + } + if (!z) { + chip->buffer_write_time--; + if (!chip->buffer_write_time) + chip->buffer_write_time++; + } + if (z > 1) + chip->buffer_write_time++; + + /* Done and happy. */ + chip->state = FL_STATUS; + + /* check for lock bit */ + if (map_word_bitsset(map, status, CMD(0x02))) { + /* clear status */ + map_write(map, CMD(0x50), cmd_adr); + /* put back into read status register mode */ + map_write(map, CMD(0x70), adr); + ret = -EROFS; + } + + xip_enable(map, chip, cmd_adr); + out: put_chip(map, chip, cmd_adr); + spin_unlock(chip->mutex); + return ret; +} + +static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to, + size_t len, size_t *retlen, const u_char *buf) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; + int ret = 0; + int chipnum; + unsigned long ofs; + + *retlen = 0; + if (!len) + return 0; + + chipnum = to >> cfi->chipshift; + ofs = to - (chipnum << cfi->chipshift); + + /* If it's not bus-aligned, do the first word write */ + if (ofs & (map_bankwidth(map)-1)) { + size_t local_len = (-ofs)&(map_bankwidth(map)-1); + if (local_len > len) + local_len = len; + ret = cfi_intelext_write_words(mtd, to, local_len, + retlen, buf); + if (ret) + return ret; + ofs += local_len; + buf += local_len; + len -= local_len; + + if (ofs >> cfi->chipshift) { + chipnum ++; + ofs = 0; + if (chipnum == cfi->numchips) + return 0; + } + } + + while(len) { + /* We must not cross write block boundaries */ + int size = wbufsize - (ofs & (wbufsize-1)); + + if (size > len) + size = len; + ret = do_write_buffer(map, &cfi->chips[chipnum], + ofs, buf, size); + if (ret) + return ret; + + ofs += size; + buf += size; + (*retlen) += size; + len -= size; + + if (ofs >> cfi->chipshift) { + chipnum ++; + ofs = 0; + if (chipnum == cfi->numchips) + return 0; + } + } + return 0; +} + +static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, + unsigned long adr, int len, void *thunk) +{ + struct cfi_private *cfi = map->fldrv_priv; + map_word status, status_OK; + unsigned long timeo; + int retries = 3; + DECLARE_WAITQUEUE(wait, current); + int ret = 0; + + adr += chip->start; + + /* Let's determine this according to the interleave only once */ + status_OK = CMD(0x80); + + retry: + spin_lock(chip->mutex); + ret = get_chip(map, chip, adr, FL_ERASING); + if (ret) { + spin_unlock(chip->mutex); + return ret; + } + + XIP_INVAL_CACHED_RANGE(map, adr, len); + ENABLE_VPP(map); + xip_disable(map, chip, adr); + + /* Clear the status register first */ + map_write(map, CMD(0x50), adr); + + /* Now erase */ + map_write(map, CMD(0x20), adr); + map_write(map, CMD(0xD0), adr); + chip->state = FL_ERASING; + chip->erase_suspended = 0; + + spin_unlock(chip->mutex); + INVALIDATE_CACHED_RANGE(map, adr, len); + UDELAY(map, chip, adr, chip->erase_time*1000/2); + spin_lock(chip->mutex); + + /* FIXME. Use a timer to check this, and return immediately. */ + /* Once the state machine's known to be working I'll do that */ + + timeo = jiffies + (HZ*20); + for (;;) { + if (chip->state != FL_ERASING) { + /* Someone's suspended the erase. Sleep */ + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + spin_unlock(chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + spin_lock(chip->mutex); + continue; + } + if (chip->erase_suspended) { + /* This erase was suspended and resumed. + Adjust the timeout */ + timeo = jiffies + (HZ*20); /* FIXME */ + chip->erase_suspended = 0; + } + + status = map_read(map, adr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + + /* OK Still waiting */ + if (time_after(jiffies, timeo)) { + map_word Xstatus; + map_write(map, CMD(0x70), adr); + chip->state = FL_STATUS; + Xstatus = map_read(map, adr); + /* Clear status bits */ + map_write(map, CMD(0x50), adr); + map_write(map, CMD(0x70), adr); + xip_enable(map, chip, adr); + printk(KERN_ERR "waiting for erase at %08lx to complete timed out. status = %lx, Xstatus = %lx.\n", + adr, status.x[0], Xstatus.x[0]); + ret = -EIO; + goto out; + } + + /* Latency issues. Drop the lock, wait a while and retry */ + spin_unlock(chip->mutex); + UDELAY(map, chip, adr, 1000000/HZ); + spin_lock(chip->mutex); + } + + /* We've broken this before. It doesn't hurt to be safe */ + map_write(map, CMD(0x70), adr); + chip->state = FL_STATUS; + status = map_read(map, adr); + + /* check for lock bit */ + if (map_word_bitsset(map, status, CMD(0x3a))) { + unsigned char chipstatus; + + /* Reset the error bits */ + map_write(map, CMD(0x50), adr); + map_write(map, CMD(0x70), adr); + xip_enable(map, chip, adr); + + chipstatus = status.x[0]; + if (!map_word_equal(map, status, CMD(chipstatus))) { + int i, w; + for (w=0; w<map_words(map); w++) { + for (i = 0; i<cfi_interleave(cfi); i++) { + chipstatus |= status.x[w] >> (cfi->device_type * 8); + } + } + printk(KERN_WARNING "Status is not identical for all chips: 0x%lx. Merging to give 0x%02x\n", + status.x[0], chipstatus); + } + + if ((chipstatus & 0x30) == 0x30) { + printk(KERN_NOTICE "Chip reports improper command sequence: status 0x%x\n", chipstatus); + ret = -EIO; + } else if (chipstatus & 0x02) { + /* Protection bit set */ + ret = -EROFS; + } else if (chipstatus & 0x8) { + /* Voltage */ + printk(KERN_WARNING "Chip reports voltage low on erase: status 0x%x\n", chipstatus); + ret = -EIO; + } else if (chipstatus & 0x20) { + if (retries--) { + printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr, chipstatus); + timeo = jiffies + HZ; + put_chip(map, chip, adr); + spin_unlock(chip->mutex); + goto retry; + } + printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x\n", adr, chipstatus); + ret = -EIO; + } + } else { + xip_enable(map, chip, adr); + ret = 0; + } + + out: put_chip(map, chip, adr); + spin_unlock(chip->mutex); + return ret; +} + +int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr) +{ + unsigned long ofs, len; + int ret; + + ofs = instr->addr; + len = instr->len; + + ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL); + if (ret) + return ret; + + instr->state = MTD_ERASE_DONE; + mtd_erase_callback(instr); + + return 0; +} + +static void cfi_intelext_sync (struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int i; + struct flchip *chip; + int ret = 0; + + for (i=0; !ret && i<cfi->numchips; i++) { + chip = &cfi->chips[i]; + + spin_lock(chip->mutex); + ret = get_chip(map, chip, chip->start, FL_SYNCING); + + if (!ret) { + chip->oldstate = chip->state; + chip->state = FL_SYNCING; + /* No need to wake_up() on this state change - + * as the whole point is that nobody can do anything + * with the chip now anyway. + */ + } + spin_unlock(chip->mutex); + } + + /* Unlock the chips again */ + + for (i--; i >=0; i--) { + chip = &cfi->chips[i]; + + spin_lock(chip->mutex); + + if (chip->state == FL_SYNCING) { + chip->state = chip->oldstate; + wake_up(&chip->wq); + } + spin_unlock(chip->mutex); + } +} + +#ifdef DEBUG_LOCK_BITS +static int __xipram do_printlockstatus_oneblock(struct map_info *map, + struct flchip *chip, + unsigned long adr, + int len, void *thunk) +{ + struct cfi_private *cfi = map->fldrv_priv; + int status, ofs_factor = cfi->interleave * cfi->device_type; + + xip_disable(map, chip, adr+(2*ofs_factor)); + cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL); + chip->state = FL_JEDEC_QUERY; + status = cfi_read_query(map, adr+(2*ofs_factor)); + xip_enable(map, chip, 0); + printk(KERN_DEBUG "block status register for 0x%08lx is %x\n", + adr, status); + return 0; +} +#endif + +#define DO_XXLOCK_ONEBLOCK_LOCK ((void *) 1) +#define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *) 2) + +static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip, + unsigned long adr, int len, void *thunk) +{ + struct cfi_private *cfi = map->fldrv_priv; + map_word status, status_OK; + unsigned long timeo = jiffies + HZ; + int ret; + + adr += chip->start; + + /* Let's determine this according to the interleave only once */ + status_OK = CMD(0x80); + + spin_lock(chip->mutex); + ret = get_chip(map, chip, adr, FL_LOCKING); + if (ret) { + spin_unlock(chip->mutex); + return ret; + } + + ENABLE_VPP(map); + xip_disable(map, chip, adr); + + map_write(map, CMD(0x60), adr); + if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) { + map_write(map, CMD(0x01), adr); + chip->state = FL_LOCKING; + } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) { + map_write(map, CMD(0xD0), adr); + chip->state = FL_UNLOCKING; + } else + BUG(); + + spin_unlock(chip->mutex); + UDELAY(map, chip, adr, 1000000/HZ); + spin_lock(chip->mutex); + + /* FIXME. Use a timer to check this, and return immediately. */ + /* Once the state machine's known to be working I'll do that */ + + timeo = jiffies + (HZ*20); + for (;;) { + + status = map_read(map, adr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + + /* OK Still waiting */ + if (time_after(jiffies, timeo)) { + map_word Xstatus; + map_write(map, CMD(0x70), adr); + chip->state = FL_STATUS; + Xstatus = map_read(map, adr); + xip_enable(map, chip, adr); + printk(KERN_ERR "waiting for unlock to complete timed out. status = %lx, Xstatus = %lx.\n", + status.x[0], Xstatus.x[0]); + put_chip(map, chip, adr); + spin_unlock(chip->mutex); + return -EIO; + } + + /* Latency issues. Drop the lock, wait a while and retry */ + spin_unlock(chip->mutex); + UDELAY(map, chip, adr, 1); + spin_lock(chip->mutex); + } + + /* Done and happy. */ + chip->state = FL_STATUS; + xip_enable(map, chip, adr); + put_chip(map, chip, adr); + spin_unlock(chip->mutex); + return 0; +} + +static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len) +{ + int ret; + +#ifdef DEBUG_LOCK_BITS + printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n", + __FUNCTION__, ofs, len); + cfi_varsize_frob(mtd, do_printlockstatus_oneblock, + ofs, len, 0); +#endif + + ret = cfi_varsize_frob(mtd, do_xxlock_oneblock, + ofs, len, DO_XXLOCK_ONEBLOCK_LOCK); + +#ifdef DEBUG_LOCK_BITS + printk(KERN_DEBUG "%s: lock status after, ret=%d\n", + __FUNCTION__, ret); + cfi_varsize_frob(mtd, do_printlockstatus_oneblock, + ofs, len, 0); +#endif + + return ret; +} + +static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len) +{ + int ret; + +#ifdef DEBUG_LOCK_BITS + printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n", + __FUNCTION__, ofs, len); + cfi_varsize_frob(mtd, do_printlockstatus_oneblock, + ofs, len, 0); +#endif + + ret = cfi_varsize_frob(mtd, do_xxlock_oneblock, + ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK); + +#ifdef DEBUG_LOCK_BITS + printk(KERN_DEBUG "%s: lock status after, ret=%d\n", + __FUNCTION__, ret); + cfi_varsize_frob(mtd, do_printlockstatus_oneblock, + ofs, len, 0); +#endif + + return ret; +} + +static int cfi_intelext_suspend(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int i; + struct flchip *chip; + int ret = 0; + + for (i=0; !ret && i<cfi->numchips; i++) { + chip = &cfi->chips[i]; + + spin_lock(chip->mutex); + + switch (chip->state) { + case FL_READY: + case FL_STATUS: + case FL_CFI_QUERY: + case FL_JEDEC_QUERY: + if (chip->oldstate == FL_READY) { + chip->oldstate = chip->state; + chip->state = FL_PM_SUSPENDED; + /* No need to wake_up() on this state change - + * as the whole point is that nobody can do anything + * with the chip now anyway. + */ + } else { + /* There seems to be an operation pending. We must wait for it. */ + printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate); + ret = -EAGAIN; + } + break; + default: + /* Should we actually wait? Once upon a time these routines weren't + allowed to. Or should we return -EAGAIN, because the upper layers + ought to have already shut down anything which was using the device + anyway? The latter for now. */ + printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->oldstate); + ret = -EAGAIN; + case FL_PM_SUSPENDED: + break; + } + spin_unlock(chip->mutex); + } + + /* Unlock the chips again */ + + if (ret) { + for (i--; i >=0; i--) { + chip = &cfi->chips[i]; + + spin_lock(chip->mutex); + + if (chip->state == FL_PM_SUSPENDED) { + /* No need to force it into a known state here, + because we're returning failure, and it didn't + get power cycled */ + chip->state = chip->oldstate; + chip->oldstate = FL_READY; + wake_up(&chip->wq); + } + spin_unlock(chip->mutex); + } + } + + return ret; +} + +static void cfi_intelext_resume(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int i; + struct flchip *chip; + + for (i=0; i<cfi->numchips; i++) { + + chip = &cfi->chips[i]; + + spin_lock(chip->mutex); + + /* Go to known state. Chip may have been power cycled */ + if (chip->state == FL_PM_SUSPENDED) { + map_write(map, CMD(0xFF), cfi->chips[i].start); + chip->oldstate = chip->state = FL_READY; + wake_up(&chip->wq); + } + + spin_unlock(chip->mutex); + } +} + +static void cfi_intelext_destroy(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + kfree(cfi->cmdset_priv); + kfree(cfi->cfiq); + kfree(cfi->chips[0].priv); + kfree(cfi); + kfree(mtd->eraseregions); +} + +static char im_name_1[]="cfi_cmdset_0001"; +static char im_name_3[]="cfi_cmdset_0003"; + +static int __init cfi_intelext_init(void) +{ + inter_module_register(im_name_1, THIS_MODULE, &cfi_cmdset_0001); + inter_module_register(im_name_3, THIS_MODULE, &cfi_cmdset_0001); + return 0; +} + +static void __exit cfi_intelext_exit(void) +{ + inter_module_unregister(im_name_1); + inter_module_unregister(im_name_3); +} + +module_init(cfi_intelext_init); +module_exit(cfi_intelext_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al."); +MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips"); diff --git a/drivers/mtd/chips/cfi_cmdset_0002.c b/drivers/mtd/chips/cfi_cmdset_0002.c new file mode 100644 index 000000000000..fca8ff6f7e14 --- /dev/null +++ b/drivers/mtd/chips/cfi_cmdset_0002.c @@ -0,0 +1,1515 @@ +/* + * Common Flash Interface support: + * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002) + * + * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp> + * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com> + * + * 2_by_8 routines added by Simon Munton + * + * 4_by_16 work by Carolyn J. Smith + * + * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com + * + * This code is GPL + * + * $Id: cfi_cmdset_0002.c,v 1.114 2004/12/11 15:43:53 dedekind Exp $ + * + */ + +#include <linux/config.h> +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/sched.h> +#include <linux/init.h> +#include <asm/io.h> +#include <asm/byteorder.h> + +#include <linux/errno.h> +#include <linux/slab.h> +#include <linux/delay.h> +#include <linux/interrupt.h> +#include <linux/mtd/compatmac.h> +#include <linux/mtd/map.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/cfi.h> + +#define AMD_BOOTLOC_BUG +#define FORCE_WORD_WRITE 0 + +#define MAX_WORD_RETRIES 3 + +#define MANUFACTURER_AMD 0x0001 +#define MANUFACTURER_SST 0x00BF +#define SST49LF004B 0x0060 + +static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); +static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); +static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); +static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *); +static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *); +static void cfi_amdstd_sync (struct mtd_info *); +static int cfi_amdstd_suspend (struct mtd_info *); +static void cfi_amdstd_resume (struct mtd_info *); +static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); + +static void cfi_amdstd_destroy(struct mtd_info *); + +struct mtd_info *cfi_cmdset_0002(struct map_info *, int); +static struct mtd_info *cfi_amdstd_setup (struct mtd_info *); + +static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode); +static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr); +#include "fwh_lock.h" + +static struct mtd_chip_driver cfi_amdstd_chipdrv = { + .probe = NULL, /* Not usable directly */ + .destroy = cfi_amdstd_destroy, + .name = "cfi_cmdset_0002", + .module = THIS_MODULE +}; + + +/* #define DEBUG_CFI_FEATURES */ + + +#ifdef DEBUG_CFI_FEATURES +static void cfi_tell_features(struct cfi_pri_amdstd *extp) +{ + const char* erase_suspend[3] = { + "Not supported", "Read only", "Read/write" + }; + const char* top_bottom[6] = { + "No WP", "8x8KiB sectors at top & bottom, no WP", + "Bottom boot", "Top boot", + "Uniform, Bottom WP", "Uniform, Top WP" + }; + + printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1); + printk(" Address sensitive unlock: %s\n", + (extp->SiliconRevision & 1) ? "Not required" : "Required"); + + if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend)) + printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]); + else + printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend); + + if (extp->BlkProt == 0) + printk(" Block protection: Not supported\n"); + else + printk(" Block protection: %d sectors per group\n", extp->BlkProt); + + + printk(" Temporary block unprotect: %s\n", + extp->TmpBlkUnprotect ? "Supported" : "Not supported"); + printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot); + printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps); + printk(" Burst mode: %s\n", + extp->BurstMode ? "Supported" : "Not supported"); + if (extp->PageMode == 0) + printk(" Page mode: Not supported\n"); + else + printk(" Page mode: %d word page\n", extp->PageMode << 2); + + printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n", + extp->VppMin >> 4, extp->VppMin & 0xf); + printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n", + extp->VppMax >> 4, extp->VppMax & 0xf); + + if (extp->TopBottom < ARRAY_SIZE(top_bottom)) + printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]); + else + printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom); +} +#endif + +#ifdef AMD_BOOTLOC_BUG +/* Wheee. Bring me the head of someone at AMD. */ +static void fixup_amd_bootblock(struct mtd_info *mtd, void* param) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + struct cfi_pri_amdstd *extp = cfi->cmdset_priv; + __u8 major = extp->MajorVersion; + __u8 minor = extp->MinorVersion; + + if (((major << 8) | minor) < 0x3131) { + /* CFI version 1.0 => don't trust bootloc */ + if (cfi->id & 0x80) { + printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id); + extp->TopBottom = 3; /* top boot */ + } else { + extp->TopBottom = 2; /* bottom boot */ + } + } +} +#endif + +static void fixup_use_write_buffers(struct mtd_info *mtd, void *param) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + if (cfi->cfiq->BufWriteTimeoutTyp) { + DEBUG(MTD_DEBUG_LEVEL1, "Using buffer write method\n" ); + mtd->write = cfi_amdstd_write_buffers; + } +} + +static void fixup_use_secsi(struct mtd_info *mtd, void *param) +{ + /* Setup for chips with a secsi area */ + mtd->read_user_prot_reg = cfi_amdstd_secsi_read; + mtd->read_fact_prot_reg = cfi_amdstd_secsi_read; +} + +static void fixup_use_erase_chip(struct mtd_info *mtd, void *param) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + if ((cfi->cfiq->NumEraseRegions == 1) && + ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) { + mtd->erase = cfi_amdstd_erase_chip; + } + +} + +static struct cfi_fixup cfi_fixup_table[] = { +#ifdef AMD_BOOTLOC_BUG + { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock, NULL }, +#endif + { CFI_MFR_AMD, 0x0050, fixup_use_secsi, NULL, }, + { CFI_MFR_AMD, 0x0053, fixup_use_secsi, NULL, }, + { CFI_MFR_AMD, 0x0055, fixup_use_secsi, NULL, }, + { CFI_MFR_AMD, 0x0056, fixup_use_secsi, NULL, }, + { CFI_MFR_AMD, 0x005C, fixup_use_secsi, NULL, }, + { CFI_MFR_AMD, 0x005F, fixup_use_secsi, NULL, }, +#if !FORCE_WORD_WRITE + { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL, }, +#endif + { 0, 0, NULL, NULL } +}; +static struct cfi_fixup jedec_fixup_table[] = { + { MANUFACTURER_SST, SST49LF004B, fixup_use_fwh_lock, NULL, }, + { 0, 0, NULL, NULL } +}; + +static struct cfi_fixup fixup_table[] = { + /* The CFI vendor ids and the JEDEC vendor IDs appear + * to be common. It is like the devices id's are as + * well. This table is to pick all cases where + * we know that is the case. + */ + { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip, NULL }, + { 0, 0, NULL, NULL } +}; + + +struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary) +{ + struct cfi_private *cfi = map->fldrv_priv; + struct mtd_info *mtd; + int i; + + mtd = kmalloc(sizeof(*mtd), GFP_KERNEL); + if (!mtd) { + printk(KERN_WARNING "Failed to allocate memory for MTD device\n"); + return NULL; + } + memset(mtd, 0, sizeof(*mtd)); + mtd->priv = map; + mtd->type = MTD_NORFLASH; + + /* Fill in the default mtd operations */ + mtd->erase = cfi_amdstd_erase_varsize; + mtd->write = cfi_amdstd_write_words; + mtd->read = cfi_amdstd_read; + mtd->sync = cfi_amdstd_sync; + mtd->suspend = cfi_amdstd_suspend; + mtd->resume = cfi_amdstd_resume; + mtd->flags = MTD_CAP_NORFLASH; + mtd->name = map->name; + + if (cfi->cfi_mode==CFI_MODE_CFI){ + unsigned char bootloc; + /* + * It's a real CFI chip, not one for which the probe + * routine faked a CFI structure. So we read the feature + * table from it. + */ + __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR; + struct cfi_pri_amdstd *extp; + + extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu"); + if (!extp) { + kfree(mtd); + return NULL; + } + + /* Install our own private info structure */ + cfi->cmdset_priv = extp; + + /* Apply cfi device specific fixups */ + cfi_fixup(mtd, cfi_fixup_table); + +#ifdef DEBUG_CFI_FEATURES + /* Tell the user about it in lots of lovely detail */ + cfi_tell_features(extp); +#endif + + bootloc = extp->TopBottom; + if ((bootloc != 2) && (bootloc != 3)) { + printk(KERN_WARNING "%s: CFI does not contain boot " + "bank location. Assuming top.\n", map->name); + bootloc = 2; + } + + if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) { + printk(KERN_WARNING "%s: Swapping erase regions for broken CFI table.\n", map->name); + + for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) { + int j = (cfi->cfiq->NumEraseRegions-1)-i; + __u32 swap; + + swap = cfi->cfiq->EraseRegionInfo[i]; + cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j]; + cfi->cfiq->EraseRegionInfo[j] = swap; + } + } + /* Set the default CFI lock/unlock addresses */ + cfi->addr_unlock1 = 0x555; + cfi->addr_unlock2 = 0x2aa; + /* Modify the unlock address if we are in compatibility mode */ + if ( /* x16 in x8 mode */ + ((cfi->device_type == CFI_DEVICETYPE_X8) && + (cfi->cfiq->InterfaceDesc == 2)) || + /* x32 in x16 mode */ + ((cfi->device_type == CFI_DEVICETYPE_X16) && + (cfi->cfiq->InterfaceDesc == 4))) + { + cfi->addr_unlock1 = 0xaaa; + cfi->addr_unlock2 = 0x555; + } + + } /* CFI mode */ + else if (cfi->cfi_mode == CFI_MODE_JEDEC) { + /* Apply jedec specific fixups */ + cfi_fixup(mtd, jedec_fixup_table); + } + /* Apply generic fixups */ + cfi_fixup(mtd, fixup_table); + + for (i=0; i< cfi->numchips; i++) { + cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp; + cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp; + cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp; + } + + map->fldrv = &cfi_amdstd_chipdrv; + + return cfi_amdstd_setup(mtd); +} + + +static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave; + unsigned long offset = 0; + int i,j; + + printk(KERN_NOTICE "number of %s chips: %d\n", + (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips); + /* Select the correct geometry setup */ + mtd->size = devsize * cfi->numchips; + + mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips; + mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) + * mtd->numeraseregions, GFP_KERNEL); + if (!mtd->eraseregions) { + printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n"); + goto setup_err; + } + + for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { + unsigned long ernum, ersize; + ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave; + ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1; + + if (mtd->erasesize < ersize) { + mtd->erasesize = ersize; + } + for (j=0; j<cfi->numchips; j++) { + mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset; + mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize; + mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum; + } + offset += (ersize * ernum); + } + if (offset != devsize) { + /* Argh */ + printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize); + goto setup_err; + } +#if 0 + // debug + for (i=0; i<mtd->numeraseregions;i++){ + printk("%d: offset=0x%x,size=0x%x,blocks=%d\n", + i,mtd->eraseregions[i].offset, + mtd->eraseregions[i].erasesize, + mtd->eraseregions[i].numblocks); + } +#endif + + /* FIXME: erase-suspend-program is broken. See + http://lists.infradead.org/pipermail/linux-mtd/2003-December/009001.html */ + printk(KERN_NOTICE "cfi_cmdset_0002: Disabling erase-suspend-program due to code brokenness.\n"); + + __module_get(THIS_MODULE); + return mtd; + + setup_err: + if(mtd) { + if(mtd->eraseregions) + kfree(mtd->eraseregions); + kfree(mtd); + } + kfree(cfi->cmdset_priv); + kfree(cfi->cfiq); + return NULL; +} + +/* + * Return true if the chip is ready. + * + * Ready is one of: read mode, query mode, erase-suspend-read mode (in any + * non-suspended sector) and is indicated by no toggle bits toggling. + * + * Note that anything more complicated than checking if no bits are toggling + * (including checking DQ5 for an error status) is tricky to get working + * correctly and is therefore not done (particulary with interleaved chips + * as each chip must be checked independantly of the others). + */ +static int chip_ready(struct map_info *map, unsigned long addr) +{ + map_word d, t; + + d = map_read(map, addr); + t = map_read(map, addr); + + return map_word_equal(map, d, t); +} + +static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode) +{ + DECLARE_WAITQUEUE(wait, current); + struct cfi_private *cfi = map->fldrv_priv; + unsigned long timeo; + struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv; + + resettime: + timeo = jiffies + HZ; + retry: + switch (chip->state) { + + case FL_STATUS: + for (;;) { + if (chip_ready(map, adr)) + break; + + if (time_after(jiffies, timeo)) { + printk(KERN_ERR "Waiting for chip to be ready timed out.\n"); + cfi_spin_unlock(chip->mutex); + return -EIO; + } + cfi_spin_unlock(chip->mutex); + cfi_udelay(1); + cfi_spin_lock(chip->mutex); + /* Someone else might have been playing with it. */ + goto retry; + } + + case FL_READY: + case FL_CFI_QUERY: + case FL_JEDEC_QUERY: + return 0; + + case FL_ERASING: + if (mode == FL_WRITING) /* FIXME: Erase-suspend-program appears broken. */ + goto sleep; + + if (!(mode == FL_READY || mode == FL_POINT + || !cfip + || (mode == FL_WRITING && (cfip->EraseSuspend & 0x2)) + || (mode == FL_WRITING && (cfip->EraseSuspend & 0x1)))) + goto sleep; + + /* We could check to see if we're trying to access the sector + * that is currently being erased. However, no user will try + * anything like that so we just wait for the timeout. */ + + /* Erase suspend */ + /* It's harmless to issue the Erase-Suspend and Erase-Resume + * commands when the erase algorithm isn't in progress. */ + map_write(map, CMD(0xB0), chip->in_progress_block_addr); + chip->oldstate = FL_ERASING; + chip->state = FL_ERASE_SUSPENDING; + chip->erase_suspended = 1; + for (;;) { + if (chip_ready(map, adr)) + break; + + if (time_after(jiffies, timeo)) { + /* Should have suspended the erase by now. + * Send an Erase-Resume command as either + * there was an error (so leave the erase + * routine to recover from it) or we trying to + * use the erase-in-progress sector. */ + map_write(map, CMD(0x30), chip->in_progress_block_addr); + chip->state = FL_ERASING; + chip->oldstate = FL_READY; + printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__); + return -EIO; + } + + cfi_spin_unlock(chip->mutex); + cfi_udelay(1); + cfi_spin_lock(chip->mutex); + /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING. + So we can just loop here. */ + } + chip->state = FL_READY; + return 0; + + case FL_POINT: + /* Only if there's no operation suspended... */ + if (mode == FL_READY && chip->oldstate == FL_READY) + return 0; + + default: + sleep: + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + cfi_spin_unlock(chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + cfi_spin_lock(chip->mutex); + goto resettime; + } +} + + +static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr) +{ + struct cfi_private *cfi = map->fldrv_priv; + + switch(chip->oldstate) { + case FL_ERASING: + chip->state = chip->oldstate; + map_write(map, CMD(0x30), chip->in_progress_block_addr); + chip->oldstate = FL_READY; + chip->state = FL_ERASING; + break; + + case FL_READY: + case FL_STATUS: + /* We should really make set_vpp() count, rather than doing this */ + DISABLE_VPP(map); + break; + default: + printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate); + } + wake_up(&chip->wq); +} + + +static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf) +{ + unsigned long cmd_addr; + struct cfi_private *cfi = map->fldrv_priv; + int ret; + + adr += chip->start; + + /* Ensure cmd read/writes are aligned. */ + cmd_addr = adr & ~(map_bankwidth(map)-1); + + cfi_spin_lock(chip->mutex); + ret = get_chip(map, chip, cmd_addr, FL_READY); + if (ret) { + cfi_spin_unlock(chip->mutex); + return ret; + } + + if (chip->state != FL_POINT && chip->state != FL_READY) { + map_write(map, CMD(0xf0), cmd_addr); + chip->state = FL_READY; + } + + map_copy_from(map, buf, adr, len); + + put_chip(map, chip, cmd_addr); + + cfi_spin_unlock(chip->mutex); + return 0; +} + + +static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + unsigned long ofs; + int chipnum; + int ret = 0; + + /* ofs: offset within the first chip that the first read should start */ + + chipnum = (from >> cfi->chipshift); + ofs = from - (chipnum << cfi->chipshift); + + + *retlen = 0; + + while (len) { + unsigned long thislen; + + if (chipnum >= cfi->numchips) + break; + + if ((len + ofs -1) >> cfi->chipshift) + thislen = (1<<cfi->chipshift) - ofs; + else + thislen = len; + + ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf); + if (ret) + break; + + *retlen += thislen; + len -= thislen; + buf += thislen; + + ofs = 0; + chipnum++; + } + return ret; +} + + +static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf) +{ + DECLARE_WAITQUEUE(wait, current); + unsigned long timeo = jiffies + HZ; + struct cfi_private *cfi = map->fldrv_priv; + + retry: + cfi_spin_lock(chip->mutex); + + if (chip->state != FL_READY){ +#if 0 + printk(KERN_DEBUG "Waiting for chip to read, status = %d\n", chip->state); +#endif + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + + cfi_spin_unlock(chip->mutex); + + schedule(); + remove_wait_queue(&chip->wq, &wait); +#if 0 + if(signal_pending(current)) + return -EINTR; +#endif + timeo = jiffies + HZ; + + goto retry; + } + + adr += chip->start; + + chip->state = FL_READY; + + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + + map_copy_from(map, buf, adr, len); + + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + + wake_up(&chip->wq); + cfi_spin_unlock(chip->mutex); + + return 0; +} + +static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + unsigned long ofs; + int chipnum; + int ret = 0; + + + /* ofs: offset within the first chip that the first read should start */ + + /* 8 secsi bytes per chip */ + chipnum=from>>3; + ofs=from & 7; + + + *retlen = 0; + + while (len) { + unsigned long thislen; + + if (chipnum >= cfi->numchips) + break; + + if ((len + ofs -1) >> 3) + thislen = (1<<3) - ofs; + else + thislen = len; + + ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf); + if (ret) + break; + + *retlen += thislen; + len -= thislen; + buf += thislen; + + ofs = 0; + chipnum++; + } + return ret; +} + + +static int do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum) +{ + struct cfi_private *cfi = map->fldrv_priv; + unsigned long timeo = jiffies + HZ; + /* + * We use a 1ms + 1 jiffies generic timeout for writes (most devices + * have a max write time of a few hundreds usec). However, we should + * use the maximum timeout value given by the chip at probe time + * instead. Unfortunately, struct flchip does have a field for + * maximum timeout, only for typical which can be far too short + * depending of the conditions. The ' + 1' is to avoid having a + * timeout of 0 jiffies if HZ is smaller than 1000. + */ + unsigned long uWriteTimeout = ( HZ / 1000 ) + 1; + int ret = 0; + map_word oldd; + int retry_cnt = 0; + + adr += chip->start; + + cfi_spin_lock(chip->mutex); + ret = get_chip(map, chip, adr, FL_WRITING); + if (ret) { + cfi_spin_unlock(chip->mutex); + return ret; + } + + DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n", + __func__, adr, datum.x[0] ); + + /* + * Check for a NOP for the case when the datum to write is already + * present - it saves time and works around buggy chips that corrupt + * data at other locations when 0xff is written to a location that + * already contains 0xff. + */ + oldd = map_read(map, adr); + if (map_word_equal(map, oldd, datum)) { + DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): NOP\n", + __func__); + goto op_done; + } + + ENABLE_VPP(map); + retry: + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + map_write(map, datum, adr); + chip->state = FL_WRITING; + + cfi_spin_unlock(chip->mutex); + cfi_udelay(chip->word_write_time); + cfi_spin_lock(chip->mutex); + + /* See comment above for timeout value. */ + timeo = jiffies + uWriteTimeout; + for (;;) { + if (chip->state != FL_WRITING) { + /* Someone's suspended the write. Sleep */ + DECLARE_WAITQUEUE(wait, current); + + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + cfi_spin_unlock(chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + timeo = jiffies + (HZ / 2); /* FIXME */ + cfi_spin_lock(chip->mutex); + continue; + } + + if (chip_ready(map, adr)) + goto op_done; + + if (time_after(jiffies, timeo)) + break; + + /* Latency issues. Drop the lock, wait a while and retry */ + cfi_spin_unlock(chip->mutex); + cfi_udelay(1); + cfi_spin_lock(chip->mutex); + } + + printk(KERN_WARNING "MTD %s(): software timeout\n", __func__); + + /* reset on all failures. */ + map_write( map, CMD(0xF0), chip->start ); + /* FIXME - should have reset delay before continuing */ + if (++retry_cnt <= MAX_WORD_RETRIES) + goto retry; + + ret = -EIO; + op_done: + chip->state = FL_READY; + put_chip(map, chip, adr); + cfi_spin_unlock(chip->mutex); + + return ret; +} + + +static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int ret = 0; + int chipnum; + unsigned long ofs, chipstart; + DECLARE_WAITQUEUE(wait, current); + + *retlen = 0; + if (!len) + return 0; + + chipnum = to >> cfi->chipshift; + ofs = to - (chipnum << cfi->chipshift); + chipstart = cfi->chips[chipnum].start; + + /* If it's not bus-aligned, do the first byte write */ + if (ofs & (map_bankwidth(map)-1)) { + unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1); + int i = ofs - bus_ofs; + int n = 0; + map_word tmp_buf; + + retry: + cfi_spin_lock(cfi->chips[chipnum].mutex); + + if (cfi->chips[chipnum].state != FL_READY) { +#if 0 + printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state); +#endif + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&cfi->chips[chipnum].wq, &wait); + + cfi_spin_unlock(cfi->chips[chipnum].mutex); + + schedule(); + remove_wait_queue(&cfi->chips[chipnum].wq, &wait); +#if 0 + if(signal_pending(current)) + return -EINTR; +#endif + goto retry; + } + + /* Load 'tmp_buf' with old contents of flash */ + tmp_buf = map_read(map, bus_ofs+chipstart); + + cfi_spin_unlock(cfi->chips[chipnum].mutex); + + /* Number of bytes to copy from buffer */ + n = min_t(int, len, map_bankwidth(map)-i); + + tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n); + + ret = do_write_oneword(map, &cfi->chips[chipnum], + bus_ofs, tmp_buf); + if (ret) + return ret; + + ofs += n; + buf += n; + (*retlen) += n; + len -= n; + + if (ofs >> cfi->chipshift) { + chipnum ++; + ofs = 0; + if (chipnum == cfi->numchips) + return 0; + } + } + + /* We are now aligned, write as much as possible */ + while(len >= map_bankwidth(map)) { + map_word datum; + + datum = map_word_load(map, buf); + + ret = do_write_oneword(map, &cfi->chips[chipnum], + ofs, datum); + if (ret) + return ret; + + ofs += map_bankwidth(map); + buf += map_bankwidth(map); + (*retlen) += map_bankwidth(map); + len -= map_bankwidth(map); + + if (ofs >> cfi->chipshift) { + chipnum ++; + ofs = 0; + if (chipnum == cfi->numchips) + return 0; + chipstart = cfi->chips[chipnum].start; + } + } + + /* Write the trailing bytes if any */ + if (len & (map_bankwidth(map)-1)) { + map_word tmp_buf; + + retry1: + cfi_spin_lock(cfi->chips[chipnum].mutex); + + if (cfi->chips[chipnum].state != FL_READY) { +#if 0 + printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state); +#endif + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&cfi->chips[chipnum].wq, &wait); + + cfi_spin_unlock(cfi->chips[chipnum].mutex); + + schedule(); + remove_wait_queue(&cfi->chips[chipnum].wq, &wait); +#if 0 + if(signal_pending(current)) + return -EINTR; +#endif + goto retry1; + } + + tmp_buf = map_read(map, ofs + chipstart); + + cfi_spin_unlock(cfi->chips[chipnum].mutex); + + tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len); + + ret = do_write_oneword(map, &cfi->chips[chipnum], + ofs, tmp_buf); + if (ret) + return ret; + + (*retlen) += len; + } + + return 0; +} + + +/* + * FIXME: interleaved mode not tested, and probably not supported! + */ +static inline int do_write_buffer(struct map_info *map, struct flchip *chip, + unsigned long adr, const u_char *buf, int len) +{ + struct cfi_private *cfi = map->fldrv_priv; + unsigned long timeo = jiffies + HZ; + /* see comments in do_write_oneword() regarding uWriteTimeo. */ + unsigned long uWriteTimeout = ( HZ / 1000 ) + 1; + int ret = -EIO; + unsigned long cmd_adr; + int z, words; + map_word datum; + + adr += chip->start; + cmd_adr = adr; + + cfi_spin_lock(chip->mutex); + ret = get_chip(map, chip, adr, FL_WRITING); + if (ret) { + cfi_spin_unlock(chip->mutex); + return ret; + } + + datum = map_word_load(map, buf); + + DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n", + __func__, adr, datum.x[0] ); + + ENABLE_VPP(map); + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); + //cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + + /* Write Buffer Load */ + map_write(map, CMD(0x25), cmd_adr); + + chip->state = FL_WRITING_TO_BUFFER; + + /* Write length of data to come */ + words = len / map_bankwidth(map); + map_write(map, CMD(words - 1), cmd_adr); + /* Write data */ + z = 0; + while(z < words * map_bankwidth(map)) { + datum = map_word_load(map, buf); + map_write(map, datum, adr + z); + + z += map_bankwidth(map); + buf += map_bankwidth(map); + } + z -= map_bankwidth(map); + + adr += z; + + /* Write Buffer Program Confirm: GO GO GO */ + map_write(map, CMD(0x29), cmd_adr); + chip->state = FL_WRITING; + + cfi_spin_unlock(chip->mutex); + cfi_udelay(chip->buffer_write_time); + cfi_spin_lock(chip->mutex); + + timeo = jiffies + uWriteTimeout; + + for (;;) { + if (chip->state != FL_WRITING) { + /* Someone's suspended the write. Sleep */ + DECLARE_WAITQUEUE(wait, current); + + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + cfi_spin_unlock(chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + timeo = jiffies + (HZ / 2); /* FIXME */ + cfi_spin_lock(chip->mutex); + continue; + } + + if (chip_ready(map, adr)) + goto op_done; + + if( time_after(jiffies, timeo)) + break; + + /* Latency issues. Drop the lock, wait a while and retry */ + cfi_spin_unlock(chip->mutex); + cfi_udelay(1); + cfi_spin_lock(chip->mutex); + } + + printk(KERN_WARNING "MTD %s(): software timeout\n", + __func__ ); + + /* reset on all failures. */ + map_write( map, CMD(0xF0), chip->start ); + /* FIXME - should have reset delay before continuing */ + + ret = -EIO; + op_done: + chip->state = FL_READY; + put_chip(map, chip, adr); + cfi_spin_unlock(chip->mutex); + + return ret; +} + + +static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; + int ret = 0; + int chipnum; + unsigned long ofs; + + *retlen = 0; + if (!len) + return 0; + + chipnum = to >> cfi->chipshift; + ofs = to - (chipnum << cfi->chipshift); + + /* If it's not bus-aligned, do the first word write */ + if (ofs & (map_bankwidth(map)-1)) { + size_t local_len = (-ofs)&(map_bankwidth(map)-1); + if (local_len > len) + local_len = len; + ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift), + local_len, retlen, buf); + if (ret) + return ret; + ofs += local_len; + buf += local_len; + len -= local_len; + + if (ofs >> cfi->chipshift) { + chipnum ++; + ofs = 0; + if (chipnum == cfi->numchips) + return 0; + } + } + + /* Write buffer is worth it only if more than one word to write... */ + while (len >= map_bankwidth(map) * 2) { + /* We must not cross write block boundaries */ + int size = wbufsize - (ofs & (wbufsize-1)); + + if (size > len) + size = len; + if (size % map_bankwidth(map)) + size -= size % map_bankwidth(map); + + ret = do_write_buffer(map, &cfi->chips[chipnum], + ofs, buf, size); + if (ret) + return ret; + + ofs += size; + buf += size; + (*retlen) += size; + len -= size; + + if (ofs >> cfi->chipshift) { + chipnum ++; + ofs = 0; + if (chipnum == cfi->numchips) + return 0; + } + } + + if (len) { + size_t retlen_dregs = 0; + + ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift), + len, &retlen_dregs, buf); + + *retlen += retlen_dregs; + return ret; + } + + return 0; +} + + +/* + * Handle devices with one erase region, that only implement + * the chip erase command. + */ +static inline int do_erase_chip(struct map_info *map, struct flchip *chip) +{ + struct cfi_private *cfi = map->fldrv_priv; + unsigned long timeo = jiffies + HZ; + unsigned long int adr; + DECLARE_WAITQUEUE(wait, current); + int ret = 0; + + adr = cfi->addr_unlock1; + + cfi_spin_lock(chip->mutex); + ret = get_chip(map, chip, adr, FL_WRITING); + if (ret) { + cfi_spin_unlock(chip->mutex); + return ret; + } + + DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n", + __func__, chip->start ); + + ENABLE_VPP(map); + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + + chip->state = FL_ERASING; + chip->erase_suspended = 0; + chip->in_progress_block_addr = adr; + + cfi_spin_unlock(chip->mutex); + msleep(chip->erase_time/2); + cfi_spin_lock(chip->mutex); + + timeo = jiffies + (HZ*20); + + for (;;) { + if (chip->state != FL_ERASING) { + /* Someone's suspended the erase. Sleep */ + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + cfi_spin_unlock(chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + cfi_spin_lock(chip->mutex); + continue; + } + if (chip->erase_suspended) { + /* This erase was suspended and resumed. + Adjust the timeout */ + timeo = jiffies + (HZ*20); /* FIXME */ + chip->erase_suspended = 0; + } + + if (chip_ready(map, adr)) + goto op_done; + + if (time_after(jiffies, timeo)) + break; + + /* Latency issues. Drop the lock, wait a while and retry */ + cfi_spin_unlock(chip->mutex); + set_current_state(TASK_UNINTERRUPTIBLE); + schedule_timeout(1); + cfi_spin_lock(chip->mutex); + } + + printk(KERN_WARNING "MTD %s(): software timeout\n", + __func__ ); + + /* reset on all failures. */ + map_write( map, CMD(0xF0), chip->start ); + /* FIXME - should have reset delay before continuing */ + + ret = -EIO; + op_done: + chip->state = FL_READY; + put_chip(map, chip, adr); + cfi_spin_unlock(chip->mutex); + + return ret; +} + + +static inline int do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk) +{ + struct cfi_private *cfi = map->fldrv_priv; + unsigned long timeo = jiffies + HZ; + DECLARE_WAITQUEUE(wait, current); + int ret = 0; + + adr += chip->start; + + cfi_spin_lock(chip->mutex); + ret = get_chip(map, chip, adr, FL_ERASING); + if (ret) { + cfi_spin_unlock(chip->mutex); + return ret; + } + + DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n", + __func__, adr ); + + ENABLE_VPP(map); + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); + map_write(map, CMD(0x30), adr); + + chip->state = FL_ERASING; + chip->erase_suspended = 0; + chip->in_progress_block_addr = adr; + + cfi_spin_unlock(chip->mutex); + msleep(chip->erase_time/2); + cfi_spin_lock(chip->mutex); + + timeo = jiffies + (HZ*20); + + for (;;) { + if (chip->state != FL_ERASING) { + /* Someone's suspended the erase. Sleep */ + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + cfi_spin_unlock(chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + cfi_spin_lock(chip->mutex); + continue; + } + if (chip->erase_suspended) { + /* This erase was suspended and resumed. + Adjust the timeout */ + timeo = jiffies + (HZ*20); /* FIXME */ + chip->erase_suspended = 0; + } + + if (chip_ready(map, adr)) + goto op_done; + + if (time_after(jiffies, timeo)) + break; + + /* Latency issues. Drop the lock, wait a while and retry */ + cfi_spin_unlock(chip->mutex); + set_current_state(TASK_UNINTERRUPTIBLE); + schedule_timeout(1); + cfi_spin_lock(chip->mutex); + } + + printk(KERN_WARNING "MTD %s(): software timeout\n", + __func__ ); + + /* reset on all failures. */ + map_write( map, CMD(0xF0), chip->start ); + /* FIXME - should have reset delay before continuing */ + + ret = -EIO; + op_done: + chip->state = FL_READY; + put_chip(map, chip, adr); + cfi_spin_unlock(chip->mutex); + return ret; +} + + +int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr) +{ + unsigned long ofs, len; + int ret; + + ofs = instr->addr; + len = instr->len; + + ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL); + if (ret) + return ret; + + instr->state = MTD_ERASE_DONE; + mtd_erase_callback(instr); + + return 0; +} + + +static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int ret = 0; + + if (instr->addr != 0) + return -EINVAL; + + if (instr->len != mtd->size) + return -EINVAL; + + ret = do_erase_chip(map, &cfi->chips[0]); + if (ret) + return ret; + + instr->state = MTD_ERASE_DONE; + mtd_erase_callback(instr); + + return 0; +} + + +static void cfi_amdstd_sync (struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int i; + struct flchip *chip; + int ret = 0; + DECLARE_WAITQUEUE(wait, current); + + for (i=0; !ret && i<cfi->numchips; i++) { + chip = &cfi->chips[i]; + + retry: + cfi_spin_lock(chip->mutex); + + switch(chip->state) { + case FL_READY: + case FL_STATUS: + case FL_CFI_QUERY: + case FL_JEDEC_QUERY: + chip->oldstate = chip->state; + chip->state = FL_SYNCING; + /* No need to wake_up() on this state change - + * as the whole point is that nobody can do anything + * with the chip now anyway. + */ + case FL_SYNCING: + cfi_spin_unlock(chip->mutex); + break; + + default: + /* Not an idle state */ + add_wait_queue(&chip->wq, &wait); + + cfi_spin_unlock(chip->mutex); + + schedule(); + + remove_wait_queue(&chip->wq, &wait); + + goto retry; + } + } + + /* Unlock the chips again */ + + for (i--; i >=0; i--) { + chip = &cfi->chips[i]; + + cfi_spin_lock(chip->mutex); + + if (chip->state == FL_SYNCING) { + chip->state = chip->oldstate; + wake_up(&chip->wq); + } + cfi_spin_unlock(chip->mutex); + } +} + + +static int cfi_amdstd_suspend(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int i; + struct flchip *chip; + int ret = 0; + + for (i=0; !ret && i<cfi->numchips; i++) { + chip = &cfi->chips[i]; + + cfi_spin_lock(chip->mutex); + + switch(chip->state) { + case FL_READY: + case FL_STATUS: + case FL_CFI_QUERY: + case FL_JEDEC_QUERY: + chip->oldstate = chip->state; + chip->state = FL_PM_SUSPENDED; + /* No need to wake_up() on this state change - + * as the whole point is that nobody can do anything + * with the chip now anyway. + */ + case FL_PM_SUSPENDED: + break; + + default: + ret = -EAGAIN; + break; + } + cfi_spin_unlock(chip->mutex); + } + + /* Unlock the chips again */ + + if (ret) { + for (i--; i >=0; i--) { + chip = &cfi->chips[i]; + + cfi_spin_lock(chip->mutex); + + if (chip->state == FL_PM_SUSPENDED) { + chip->state = chip->oldstate; + wake_up(&chip->wq); + } + cfi_spin_unlock(chip->mutex); + } + } + + return ret; +} + + +static void cfi_amdstd_resume(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int i; + struct flchip *chip; + + for (i=0; i<cfi->numchips; i++) { + + chip = &cfi->chips[i]; + + cfi_spin_lock(chip->mutex); + + if (chip->state == FL_PM_SUSPENDED) { + chip->state = FL_READY; + map_write(map, CMD(0xF0), chip->start); + wake_up(&chip->wq); + } + else + printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n"); + + cfi_spin_unlock(chip->mutex); + } +} + +static void cfi_amdstd_destroy(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + kfree(cfi->cmdset_priv); + kfree(cfi->cfiq); + kfree(cfi); + kfree(mtd->eraseregions); +} + +static char im_name[]="cfi_cmdset_0002"; + + +static int __init cfi_amdstd_init(void) +{ + inter_module_register(im_name, THIS_MODULE, &cfi_cmdset_0002); + return 0; +} + + +static void __exit cfi_amdstd_exit(void) +{ + inter_module_unregister(im_name); +} + + +module_init(cfi_amdstd_init); +module_exit(cfi_amdstd_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al."); +MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips"); diff --git a/drivers/mtd/chips/cfi_cmdset_0020.c b/drivers/mtd/chips/cfi_cmdset_0020.c new file mode 100644 index 000000000000..8c24e18db3b4 --- /dev/null +++ b/drivers/mtd/chips/cfi_cmdset_0020.c @@ -0,0 +1,1418 @@ +/* + * Common Flash Interface support: + * ST Advanced Architecture Command Set (ID 0x0020) + * + * (C) 2000 Red Hat. GPL'd + * + * $Id: cfi_cmdset_0020.c,v 1.17 2004/11/20 12:49:04 dwmw2 Exp $ + * + * 10/10/2000 Nicolas Pitre <nico@cam.org> + * - completely revamped method functions so they are aware and + * independent of the flash geometry (buswidth, interleave, etc.) + * - scalability vs code size is completely set at compile-time + * (see include/linux/mtd/cfi.h for selection) + * - optimized write buffer method + * 06/21/2002 Joern Engel <joern@wh.fh-wedel.de> and others + * - modified Intel Command Set 0x0001 to support ST Advanced Architecture + * (command set 0x0020) + * - added a writev function + */ + +#include <linux/version.h> +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/sched.h> +#include <linux/init.h> +#include <asm/io.h> +#include <asm/byteorder.h> + +#include <linux/errno.h> +#include <linux/slab.h> +#include <linux/delay.h> +#include <linux/interrupt.h> +#include <linux/mtd/map.h> +#include <linux/mtd/cfi.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/compatmac.h> + + +static int cfi_staa_read(struct mtd_info *, loff_t, size_t, size_t *, u_char *); +static int cfi_staa_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); +static int cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs, + unsigned long count, loff_t to, size_t *retlen); +static int cfi_staa_erase_varsize(struct mtd_info *, struct erase_info *); +static void cfi_staa_sync (struct mtd_info *); +static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, size_t len); +static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, size_t len); +static int cfi_staa_suspend (struct mtd_info *); +static void cfi_staa_resume (struct mtd_info *); + +static void cfi_staa_destroy(struct mtd_info *); + +struct mtd_info *cfi_cmdset_0020(struct map_info *, int); + +static struct mtd_info *cfi_staa_setup (struct map_info *); + +static struct mtd_chip_driver cfi_staa_chipdrv = { + .probe = NULL, /* Not usable directly */ + .destroy = cfi_staa_destroy, + .name = "cfi_cmdset_0020", + .module = THIS_MODULE +}; + +/* #define DEBUG_LOCK_BITS */ +//#define DEBUG_CFI_FEATURES + +#ifdef DEBUG_CFI_FEATURES +static void cfi_tell_features(struct cfi_pri_intelext *extp) +{ + int i; + printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport); + printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported"); + printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported"); + printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported"); + printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported"); + printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported"); + printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported"); + printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported"); + printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported"); + printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported"); + for (i=9; i<32; i++) { + if (extp->FeatureSupport & (1<<i)) + printk(" - Unknown Bit %X: supported\n", i); + } + + printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport); + printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported"); + for (i=1; i<8; i++) { + if (extp->SuspendCmdSupport & (1<<i)) + printk(" - Unknown Bit %X: supported\n", i); + } + + printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask); + printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no"); + printk(" - Valid Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no"); + for (i=2; i<16; i++) { + if (extp->BlkStatusRegMask & (1<<i)) + printk(" - Unknown Bit %X Active: yes\n",i); + } + + printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n", + extp->VccOptimal >> 8, extp->VccOptimal & 0xf); + if (extp->VppOptimal) + printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n", + extp->VppOptimal >> 8, extp->VppOptimal & 0xf); +} +#endif + +/* This routine is made available to other mtd code via + * inter_module_register. It must only be accessed through + * inter_module_get which will bump the use count of this module. The + * addresses passed back in cfi are valid as long as the use count of + * this module is non-zero, i.e. between inter_module_get and + * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000. + */ +struct mtd_info *cfi_cmdset_0020(struct map_info *map, int primary) +{ + struct cfi_private *cfi = map->fldrv_priv; + int i; + + if (cfi->cfi_mode) { + /* + * It's a real CFI chip, not one for which the probe + * routine faked a CFI structure. So we read the feature + * table from it. + */ + __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR; + struct cfi_pri_intelext *extp; + + extp = (struct cfi_pri_intelext*)cfi_read_pri(map, adr, sizeof(*extp), "ST Microelectronics"); + if (!extp) + return NULL; + + /* Do some byteswapping if necessary */ + extp->FeatureSupport = cfi32_to_cpu(extp->FeatureSupport); + extp->BlkStatusRegMask = cfi32_to_cpu(extp->BlkStatusRegMask); + +#ifdef DEBUG_CFI_FEATURES + /* Tell the user about it in lots of lovely detail */ + cfi_tell_features(extp); +#endif + + /* Install our own private info structure */ + cfi->cmdset_priv = extp; + } + + for (i=0; i< cfi->numchips; i++) { + cfi->chips[i].word_write_time = 128; + cfi->chips[i].buffer_write_time = 128; + cfi->chips[i].erase_time = 1024; + } + + return cfi_staa_setup(map); +} + +static struct mtd_info *cfi_staa_setup(struct map_info *map) +{ + struct cfi_private *cfi = map->fldrv_priv; + struct mtd_info *mtd; + unsigned long offset = 0; + int i,j; + unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave; + + mtd = kmalloc(sizeof(*mtd), GFP_KERNEL); + //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips); + + if (!mtd) { + printk(KERN_ERR "Failed to allocate memory for MTD device\n"); + kfree(cfi->cmdset_priv); + return NULL; + } + + memset(mtd, 0, sizeof(*mtd)); + mtd->priv = map; + mtd->type = MTD_NORFLASH; + mtd->size = devsize * cfi->numchips; + + mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips; + mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) + * mtd->numeraseregions, GFP_KERNEL); + if (!mtd->eraseregions) { + printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n"); + kfree(cfi->cmdset_priv); + kfree(mtd); + return NULL; + } + + for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { + unsigned long ernum, ersize; + ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave; + ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1; + + if (mtd->erasesize < ersize) { + mtd->erasesize = ersize; + } + for (j=0; j<cfi->numchips; j++) { + mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset; + mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize; + mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum; + } + offset += (ersize * ernum); + } + + if (offset != devsize) { + /* Argh */ + printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize); + kfree(mtd->eraseregions); + kfree(cfi->cmdset_priv); + kfree(mtd); + return NULL; + } + + for (i=0; i<mtd->numeraseregions;i++){ + printk(KERN_DEBUG "%d: offset=0x%x,size=0x%x,blocks=%d\n", + i,mtd->eraseregions[i].offset, + mtd->eraseregions[i].erasesize, + mtd->eraseregions[i].numblocks); + } + + /* Also select the correct geometry setup too */ + mtd->erase = cfi_staa_erase_varsize; + mtd->read = cfi_staa_read; + mtd->write = cfi_staa_write_buffers; + mtd->writev = cfi_staa_writev; + mtd->sync = cfi_staa_sync; + mtd->lock = cfi_staa_lock; + mtd->unlock = cfi_staa_unlock; + mtd->suspend = cfi_staa_suspend; + mtd->resume = cfi_staa_resume; + mtd->flags = MTD_CAP_NORFLASH; + mtd->flags |= MTD_ECC; /* FIXME: Not all STMicro flashes have this */ + mtd->eccsize = 8; /* FIXME: Should be 0 for STMicro flashes w/out ECC */ + map->fldrv = &cfi_staa_chipdrv; + __module_get(THIS_MODULE); + mtd->name = map->name; + return mtd; +} + + +static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf) +{ + map_word status, status_OK; + unsigned long timeo; + DECLARE_WAITQUEUE(wait, current); + int suspended = 0; + unsigned long cmd_addr; + struct cfi_private *cfi = map->fldrv_priv; + + adr += chip->start; + + /* Ensure cmd read/writes are aligned. */ + cmd_addr = adr & ~(map_bankwidth(map)-1); + + /* Let's determine this according to the interleave only once */ + status_OK = CMD(0x80); + + timeo = jiffies + HZ; + retry: + spin_lock_bh(chip->mutex); + + /* Check that the chip's ready to talk to us. + * If it's in FL_ERASING state, suspend it and make it talk now. + */ + switch (chip->state) { + case FL_ERASING: + if (!(((struct cfi_pri_intelext *)cfi->cmdset_priv)->FeatureSupport & 2)) + goto sleep; /* We don't support erase suspend */ + + map_write (map, CMD(0xb0), cmd_addr); + /* If the flash has finished erasing, then 'erase suspend' + * appears to make some (28F320) flash devices switch to + * 'read' mode. Make sure that we switch to 'read status' + * mode so we get the right data. --rmk + */ + map_write(map, CMD(0x70), cmd_addr); + chip->oldstate = FL_ERASING; + chip->state = FL_ERASE_SUSPENDING; + // printk("Erase suspending at 0x%lx\n", cmd_addr); + for (;;) { + status = map_read(map, cmd_addr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + + if (time_after(jiffies, timeo)) { + /* Urgh */ + map_write(map, CMD(0xd0), cmd_addr); + /* make sure we're in 'read status' mode */ + map_write(map, CMD(0x70), cmd_addr); + chip->state = FL_ERASING; + spin_unlock_bh(chip->mutex); + printk(KERN_ERR "Chip not ready after erase " + "suspended: status = 0x%lx\n", status.x[0]); + return -EIO; + } + + spin_unlock_bh(chip->mutex); + cfi_udelay(1); + spin_lock_bh(chip->mutex); + } + + suspended = 1; + map_write(map, CMD(0xff), cmd_addr); + chip->state = FL_READY; + break; + +#if 0 + case FL_WRITING: + /* Not quite yet */ +#endif + + case FL_READY: + break; + + case FL_CFI_QUERY: + case FL_JEDEC_QUERY: + map_write(map, CMD(0x70), cmd_addr); + chip->state = FL_STATUS; + + case FL_STATUS: + status = map_read(map, cmd_addr); + if (map_word_andequal(map, status, status_OK, status_OK)) { + map_write(map, CMD(0xff), cmd_addr); + chip->state = FL_READY; + break; + } + + /* Urgh. Chip not yet ready to talk to us. */ + if (time_after(jiffies, timeo)) { + spin_unlock_bh(chip->mutex); + printk(KERN_ERR "waiting for chip to be ready timed out in read. WSM status = %lx\n", status.x[0]); + return -EIO; + } + + /* Latency issues. Drop the lock, wait a while and retry */ + spin_unlock_bh(chip->mutex); + cfi_udelay(1); + goto retry; + + default: + sleep: + /* Stick ourselves on a wait queue to be woken when + someone changes the status */ + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + spin_unlock_bh(chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + timeo = jiffies + HZ; + goto retry; + } + + map_copy_from(map, buf, adr, len); + + if (suspended) { + chip->state = chip->oldstate; + /* What if one interleaved chip has finished and the + other hasn't? The old code would leave the finished + one in READY mode. That's bad, and caused -EROFS + errors to be returned from do_erase_oneblock because + that's the only bit it checked for at the time. + As the state machine appears to explicitly allow + sending the 0x70 (Read Status) command to an erasing + chip and expecting it to be ignored, that's what we + do. */ + map_write(map, CMD(0xd0), cmd_addr); + map_write(map, CMD(0x70), cmd_addr); + } + + wake_up(&chip->wq); + spin_unlock_bh(chip->mutex); + return 0; +} + +static int cfi_staa_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + unsigned long ofs; + int chipnum; + int ret = 0; + + /* ofs: offset within the first chip that the first read should start */ + chipnum = (from >> cfi->chipshift); + ofs = from - (chipnum << cfi->chipshift); + + *retlen = 0; + + while (len) { + unsigned long thislen; + + if (chipnum >= cfi->numchips) + break; + + if ((len + ofs -1) >> cfi->chipshift) + thislen = (1<<cfi->chipshift) - ofs; + else + thislen = len; + + ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf); + if (ret) + break; + + *retlen += thislen; + len -= thislen; + buf += thislen; + + ofs = 0; + chipnum++; + } + return ret; +} + +static inline int do_write_buffer(struct map_info *map, struct flchip *chip, + unsigned long adr, const u_char *buf, int len) +{ + struct cfi_private *cfi = map->fldrv_priv; + map_word status, status_OK; + unsigned long cmd_adr, timeo; + DECLARE_WAITQUEUE(wait, current); + int wbufsize, z; + + /* M58LW064A requires bus alignment for buffer wriets -- saw */ + if (adr & (map_bankwidth(map)-1)) + return -EINVAL; + + wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; + adr += chip->start; + cmd_adr = adr & ~(wbufsize-1); + + /* Let's determine this according to the interleave only once */ + status_OK = CMD(0x80); + + timeo = jiffies + HZ; + retry: + +#ifdef DEBUG_CFI_FEATURES + printk("%s: chip->state[%d]\n", __FUNCTION__, chip->state); +#endif + spin_lock_bh(chip->mutex); + + /* Check that the chip's ready to talk to us. + * Later, we can actually think about interrupting it + * if it's in FL_ERASING state. + * Not just yet, though. + */ + switch (chip->state) { + case FL_READY: + break; + + case FL_CFI_QUERY: + case FL_JEDEC_QUERY: + map_write(map, CMD(0x70), cmd_adr); + chip->state = FL_STATUS; +#ifdef DEBUG_CFI_FEATURES + printk("%s: 1 status[%x]\n", __FUNCTION__, map_read(map, cmd_adr)); +#endif + + case FL_STATUS: + status = map_read(map, cmd_adr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + /* Urgh. Chip not yet ready to talk to us. */ + if (time_after(jiffies, timeo)) { + spin_unlock_bh(chip->mutex); + printk(KERN_ERR "waiting for chip to be ready timed out in buffer write Xstatus = %lx, status = %lx\n", + status.x[0], map_read(map, cmd_adr).x[0]); + return -EIO; + } + + /* Latency issues. Drop the lock, wait a while and retry */ + spin_unlock_bh(chip->mutex); + cfi_udelay(1); + goto retry; + + default: + /* Stick ourselves on a wait queue to be woken when + someone changes the status */ + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + spin_unlock_bh(chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + timeo = jiffies + HZ; + goto retry; + } + + ENABLE_VPP(map); + map_write(map, CMD(0xe8), cmd_adr); + chip->state = FL_WRITING_TO_BUFFER; + + z = 0; + for (;;) { + status = map_read(map, cmd_adr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + + spin_unlock_bh(chip->mutex); + cfi_udelay(1); + spin_lock_bh(chip->mutex); + + if (++z > 100) { + /* Argh. Not ready for write to buffer */ + DISABLE_VPP(map); + map_write(map, CMD(0x70), cmd_adr); + chip->state = FL_STATUS; + spin_unlock_bh(chip->mutex); + printk(KERN_ERR "Chip not ready for buffer write. Xstatus = %lx\n", status.x[0]); + return -EIO; + } + } + + /* Write length of data to come */ + map_write(map, CMD(len/map_bankwidth(map)-1), cmd_adr ); + + /* Write data */ + for (z = 0; z < len; + z += map_bankwidth(map), buf += map_bankwidth(map)) { + map_word d; + d = map_word_load(map, buf); + map_write(map, d, adr+z); + } + /* GO GO GO */ + map_write(map, CMD(0xd0), cmd_adr); + chip->state = FL_WRITING; + + spin_unlock_bh(chip->mutex); + cfi_udelay(chip->buffer_write_time); + spin_lock_bh(chip->mutex); + + timeo = jiffies + (HZ/2); + z = 0; + for (;;) { + if (chip->state != FL_WRITING) { + /* Someone's suspended the write. Sleep */ + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + spin_unlock_bh(chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + timeo = jiffies + (HZ / 2); /* FIXME */ + spin_lock_bh(chip->mutex); + continue; + } + + status = map_read(map, cmd_adr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + + /* OK Still waiting */ + if (time_after(jiffies, timeo)) { + /* clear status */ + map_write(map, CMD(0x50), cmd_adr); + /* put back into read status register mode */ + map_write(map, CMD(0x70), adr); + chip->state = FL_STATUS; + DISABLE_VPP(map); + spin_unlock_bh(chip->mutex); + printk(KERN_ERR "waiting for chip to be ready timed out in bufwrite\n"); + return -EIO; + } + + /* Latency issues. Drop the lock, wait a while and retry */ + spin_unlock_bh(chip->mutex); + cfi_udelay(1); + z++; + spin_lock_bh(chip->mutex); + } + if (!z) { + chip->buffer_write_time--; + if (!chip->buffer_write_time) + chip->buffer_write_time++; + } + if (z > 1) + chip->buffer_write_time++; + + /* Done and happy. */ + DISABLE_VPP(map); + chip->state = FL_STATUS; + + /* check for errors: 'lock bit', 'VPP', 'dead cell'/'unerased cell' or 'incorrect cmd' -- saw */ + if (map_word_bitsset(map, status, CMD(0x3a))) { +#ifdef DEBUG_CFI_FEATURES + printk("%s: 2 status[%lx]\n", __FUNCTION__, status.x[0]); +#endif + /* clear status */ + map_write(map, CMD(0x50), cmd_adr); + /* put back into read status register mode */ + map_write(map, CMD(0x70), adr); + wake_up(&chip->wq); + spin_unlock_bh(chip->mutex); + return map_word_bitsset(map, status, CMD(0x02)) ? -EROFS : -EIO; + } + wake_up(&chip->wq); + spin_unlock_bh(chip->mutex); + + return 0; +} + +static int cfi_staa_write_buffers (struct mtd_info *mtd, loff_t to, + size_t len, size_t *retlen, const u_char *buf) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; + int ret = 0; + int chipnum; + unsigned long ofs; + + *retlen = 0; + if (!len) + return 0; + + chipnum = to >> cfi->chipshift; + ofs = to - (chipnum << cfi->chipshift); + +#ifdef DEBUG_CFI_FEATURES + printk("%s: map_bankwidth(map)[%x]\n", __FUNCTION__, map_bankwidth(map)); + printk("%s: chipnum[%x] wbufsize[%x]\n", __FUNCTION__, chipnum, wbufsize); + printk("%s: ofs[%x] len[%x]\n", __FUNCTION__, ofs, len); +#endif + + /* Write buffer is worth it only if more than one word to write... */ + while (len > 0) { + /* We must not cross write block boundaries */ + int size = wbufsize - (ofs & (wbufsize-1)); + + if (size > len) + size = len; + + ret = do_write_buffer(map, &cfi->chips[chipnum], + ofs, buf, size); + if (ret) + return ret; + + ofs += size; + buf += size; + (*retlen) += size; + len -= size; + + if (ofs >> cfi->chipshift) { + chipnum ++; + ofs = 0; + if (chipnum == cfi->numchips) + return 0; + } + } + + return 0; +} + +/* + * Writev for ECC-Flashes is a little more complicated. We need to maintain + * a small buffer for this. + * XXX: If the buffer size is not a multiple of 2, this will break + */ +#define ECCBUF_SIZE (mtd->eccsize) +#define ECCBUF_DIV(x) ((x) & ~(ECCBUF_SIZE - 1)) +#define ECCBUF_MOD(x) ((x) & (ECCBUF_SIZE - 1)) +static int +cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs, + unsigned long count, loff_t to, size_t *retlen) +{ + unsigned long i; + size_t totlen = 0, thislen; + int ret = 0; + size_t buflen = 0; + static char *buffer; + + if (!ECCBUF_SIZE) { + /* We should fall back to a general writev implementation. + * Until that is written, just break. + */ + return -EIO; + } + buffer = kmalloc(ECCBUF_SIZE, GFP_KERNEL); + if (!buffer) + return -ENOMEM; + + for (i=0; i<count; i++) { + size_t elem_len = vecs[i].iov_len; + void *elem_base = vecs[i].iov_base; + if (!elem_len) /* FIXME: Might be unnecessary. Check that */ + continue; + if (buflen) { /* cut off head */ + if (buflen + elem_len < ECCBUF_SIZE) { /* just accumulate */ + memcpy(buffer+buflen, elem_base, elem_len); + buflen += elem_len; + continue; + } + memcpy(buffer+buflen, elem_base, ECCBUF_SIZE-buflen); + ret = mtd->write(mtd, to, ECCBUF_SIZE, &thislen, buffer); + totlen += thislen; + if (ret || thislen != ECCBUF_SIZE) + goto write_error; + elem_len -= thislen-buflen; + elem_base += thislen-buflen; + to += ECCBUF_SIZE; + } + if (ECCBUF_DIV(elem_len)) { /* write clean aligned data */ + ret = mtd->write(mtd, to, ECCBUF_DIV(elem_len), &thislen, elem_base); + totlen += thislen; + if (ret || thislen != ECCBUF_DIV(elem_len)) + goto write_error; + to += thislen; + } + buflen = ECCBUF_MOD(elem_len); /* cut off tail */ + if (buflen) { + memset(buffer, 0xff, ECCBUF_SIZE); + memcpy(buffer, elem_base + thislen, buflen); + } + } + if (buflen) { /* flush last page, even if not full */ + /* This is sometimes intended behaviour, really */ + ret = mtd->write(mtd, to, buflen, &thislen, buffer); + totlen += thislen; + if (ret || thislen != ECCBUF_SIZE) + goto write_error; + } +write_error: + if (retlen) + *retlen = totlen; + return ret; +} + + +static inline int do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr) +{ + struct cfi_private *cfi = map->fldrv_priv; + map_word status, status_OK; + unsigned long timeo; + int retries = 3; + DECLARE_WAITQUEUE(wait, current); + int ret = 0; + + adr += chip->start; + + /* Let's determine this according to the interleave only once */ + status_OK = CMD(0x80); + + timeo = jiffies + HZ; +retry: + spin_lock_bh(chip->mutex); + + /* Check that the chip's ready to talk to us. */ + switch (chip->state) { + case FL_CFI_QUERY: + case FL_JEDEC_QUERY: + case FL_READY: + map_write(map, CMD(0x70), adr); + chip->state = FL_STATUS; + + case FL_STATUS: + status = map_read(map, adr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + + /* Urgh. Chip not yet ready to talk to us. */ + if (time_after(jiffies, timeo)) { + spin_unlock_bh(chip->mutex); + printk(KERN_ERR "waiting for chip to be ready timed out in erase\n"); + return -EIO; + } + + /* Latency issues. Drop the lock, wait a while and retry */ + spin_unlock_bh(chip->mutex); + cfi_udelay(1); + goto retry; + + default: + /* Stick ourselves on a wait queue to be woken when + someone changes the status */ + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + spin_unlock_bh(chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + timeo = jiffies + HZ; + goto retry; + } + + ENABLE_VPP(map); + /* Clear the status register first */ + map_write(map, CMD(0x50), adr); + + /* Now erase */ + map_write(map, CMD(0x20), adr); + map_write(map, CMD(0xD0), adr); + chip->state = FL_ERASING; + + spin_unlock_bh(chip->mutex); + msleep(1000); + spin_lock_bh(chip->mutex); + + /* FIXME. Use a timer to check this, and return immediately. */ + /* Once the state machine's known to be working I'll do that */ + + timeo = jiffies + (HZ*20); + for (;;) { + if (chip->state != FL_ERASING) { + /* Someone's suspended the erase. Sleep */ + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + spin_unlock_bh(chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + timeo = jiffies + (HZ*20); /* FIXME */ + spin_lock_bh(chip->mutex); + continue; + } + + status = map_read(map, adr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + + /* OK Still waiting */ + if (time_after(jiffies, timeo)) { + map_write(map, CMD(0x70), adr); + chip->state = FL_STATUS; + printk(KERN_ERR "waiting for erase to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]); + DISABLE_VPP(map); + spin_unlock_bh(chip->mutex); + return -EIO; + } + + /* Latency issues. Drop the lock, wait a while and retry */ + spin_unlock_bh(chip->mutex); + cfi_udelay(1); + spin_lock_bh(chip->mutex); + } + + DISABLE_VPP(map); + ret = 0; + + /* We've broken this before. It doesn't hurt to be safe */ + map_write(map, CMD(0x70), adr); + chip->state = FL_STATUS; + status = map_read(map, adr); + + /* check for lock bit */ + if (map_word_bitsset(map, status, CMD(0x3a))) { + unsigned char chipstatus = status.x[0]; + if (!map_word_equal(map, status, CMD(chipstatus))) { + int i, w; + for (w=0; w<map_words(map); w++) { + for (i = 0; i<cfi_interleave(cfi); i++) { + chipstatus |= status.x[w] >> (cfi->device_type * 8); + } + } + printk(KERN_WARNING "Status is not identical for all chips: 0x%lx. Merging to give 0x%02x\n", + status.x[0], chipstatus); + } + /* Reset the error bits */ + map_write(map, CMD(0x50), adr); + map_write(map, CMD(0x70), adr); + + if ((chipstatus & 0x30) == 0x30) { + printk(KERN_NOTICE "Chip reports improper command sequence: status 0x%x\n", chipstatus); + ret = -EIO; + } else if (chipstatus & 0x02) { + /* Protection bit set */ + ret = -EROFS; + } else if (chipstatus & 0x8) { + /* Voltage */ + printk(KERN_WARNING "Chip reports voltage low on erase: status 0x%x\n", chipstatus); + ret = -EIO; + } else if (chipstatus & 0x20) { + if (retries--) { + printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr, chipstatus); + timeo = jiffies + HZ; + chip->state = FL_STATUS; + spin_unlock_bh(chip->mutex); + goto retry; + } + printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x\n", adr, chipstatus); + ret = -EIO; + } + } + + wake_up(&chip->wq); + spin_unlock_bh(chip->mutex); + return ret; +} + +int cfi_staa_erase_varsize(struct mtd_info *mtd, struct erase_info *instr) +{ struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + unsigned long adr, len; + int chipnum, ret = 0; + int i, first; + struct mtd_erase_region_info *regions = mtd->eraseregions; + + if (instr->addr > mtd->size) + return -EINVAL; + + if ((instr->len + instr->addr) > mtd->size) + return -EINVAL; + + /* Check that both start and end of the requested erase are + * aligned with the erasesize at the appropriate addresses. + */ + + i = 0; + + /* Skip all erase regions which are ended before the start of + the requested erase. Actually, to save on the calculations, + we skip to the first erase region which starts after the + start of the requested erase, and then go back one. + */ + + while (i < mtd->numeraseregions && instr->addr >= regions[i].offset) + i++; + i--; + + /* OK, now i is pointing at the erase region in which this + erase request starts. Check the start of the requested + erase range is aligned with the erase size which is in + effect here. + */ + + if (instr->addr & (regions[i].erasesize-1)) + return -EINVAL; + + /* Remember the erase region we start on */ + first = i; + + /* Next, check that the end of the requested erase is aligned + * with the erase region at that address. + */ + + while (i<mtd->numeraseregions && (instr->addr + instr->len) >= regions[i].offset) + i++; + + /* As before, drop back one to point at the region in which + the address actually falls + */ + i--; + + if ((instr->addr + instr->len) & (regions[i].erasesize-1)) + return -EINVAL; + + chipnum = instr->addr >> cfi->chipshift; + adr = instr->addr - (chipnum << cfi->chipshift); + len = instr->len; + + i=first; + + while(len) { + ret = do_erase_oneblock(map, &cfi->chips[chipnum], adr); + + if (ret) + return ret; + + adr += regions[i].erasesize; + len -= regions[i].erasesize; + + if (adr % (1<< cfi->chipshift) == ((regions[i].offset + (regions[i].erasesize * regions[i].numblocks)) %( 1<< cfi->chipshift))) + i++; + + if (adr >> cfi->chipshift) { + adr = 0; + chipnum++; + + if (chipnum >= cfi->numchips) + break; + } + } + + instr->state = MTD_ERASE_DONE; + mtd_erase_callback(instr); + + return 0; +} + +static void cfi_staa_sync (struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int i; + struct flchip *chip; + int ret = 0; + DECLARE_WAITQUEUE(wait, current); + + for (i=0; !ret && i<cfi->numchips; i++) { + chip = &cfi->chips[i]; + + retry: + spin_lock_bh(chip->mutex); + + switch(chip->state) { + case FL_READY: + case FL_STATUS: + case FL_CFI_QUERY: + case FL_JEDEC_QUERY: + chip->oldstate = chip->state; + chip->state = FL_SYNCING; + /* No need to wake_up() on this state change - + * as the whole point is that nobody can do anything + * with the chip now anyway. + */ + case FL_SYNCING: + spin_unlock_bh(chip->mutex); + break; + + default: + /* Not an idle state */ + add_wait_queue(&chip->wq, &wait); + + spin_unlock_bh(chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + + goto retry; + } + } + + /* Unlock the chips again */ + + for (i--; i >=0; i--) { + chip = &cfi->chips[i]; + + spin_lock_bh(chip->mutex); + + if (chip->state == FL_SYNCING) { + chip->state = chip->oldstate; + wake_up(&chip->wq); + } + spin_unlock_bh(chip->mutex); + } +} + +static inline int do_lock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr) +{ + struct cfi_private *cfi = map->fldrv_priv; + map_word status, status_OK; + unsigned long timeo = jiffies + HZ; + DECLARE_WAITQUEUE(wait, current); + + adr += chip->start; + + /* Let's determine this according to the interleave only once */ + status_OK = CMD(0x80); + + timeo = jiffies + HZ; +retry: + spin_lock_bh(chip->mutex); + + /* Check that the chip's ready to talk to us. */ + switch (chip->state) { + case FL_CFI_QUERY: + case FL_JEDEC_QUERY: + case FL_READY: + map_write(map, CMD(0x70), adr); + chip->state = FL_STATUS; + + case FL_STATUS: + status = map_read(map, adr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + + /* Urgh. Chip not yet ready to talk to us. */ + if (time_after(jiffies, timeo)) { + spin_unlock_bh(chip->mutex); + printk(KERN_ERR "waiting for chip to be ready timed out in lock\n"); + return -EIO; + } + + /* Latency issues. Drop the lock, wait a while and retry */ + spin_unlock_bh(chip->mutex); + cfi_udelay(1); + goto retry; + + default: + /* Stick ourselves on a wait queue to be woken when + someone changes the status */ + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + spin_unlock_bh(chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + timeo = jiffies + HZ; + goto retry; + } + + ENABLE_VPP(map); + map_write(map, CMD(0x60), adr); + map_write(map, CMD(0x01), adr); + chip->state = FL_LOCKING; + + spin_unlock_bh(chip->mutex); + msleep(1000); + spin_lock_bh(chip->mutex); + + /* FIXME. Use a timer to check this, and return immediately. */ + /* Once the state machine's known to be working I'll do that */ + + timeo = jiffies + (HZ*2); + for (;;) { + + status = map_read(map, adr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + + /* OK Still waiting */ + if (time_after(jiffies, timeo)) { + map_write(map, CMD(0x70), adr); + chip->state = FL_STATUS; + printk(KERN_ERR "waiting for lock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]); + DISABLE_VPP(map); + spin_unlock_bh(chip->mutex); + return -EIO; + } + + /* Latency issues. Drop the lock, wait a while and retry */ + spin_unlock_bh(chip->mutex); + cfi_udelay(1); + spin_lock_bh(chip->mutex); + } + + /* Done and happy. */ + chip->state = FL_STATUS; + DISABLE_VPP(map); + wake_up(&chip->wq); + spin_unlock_bh(chip->mutex); + return 0; +} +static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, size_t len) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + unsigned long adr; + int chipnum, ret = 0; +#ifdef DEBUG_LOCK_BITS + int ofs_factor = cfi->interleave * cfi->device_type; +#endif + + if (ofs & (mtd->erasesize - 1)) + return -EINVAL; + + if (len & (mtd->erasesize -1)) + return -EINVAL; + + if ((len + ofs) > mtd->size) + return -EINVAL; + + chipnum = ofs >> cfi->chipshift; + adr = ofs - (chipnum << cfi->chipshift); + + while(len) { + +#ifdef DEBUG_LOCK_BITS + cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL); + printk("before lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor))); + cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL); +#endif + + ret = do_lock_oneblock(map, &cfi->chips[chipnum], adr); + +#ifdef DEBUG_LOCK_BITS + cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL); + printk("after lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor))); + cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL); +#endif + + if (ret) + return ret; + + adr += mtd->erasesize; + len -= mtd->erasesize; + + if (adr >> cfi->chipshift) { + adr = 0; + chipnum++; + + if (chipnum >= cfi->numchips) + break; + } + } + return 0; +} +static inline int do_unlock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr) +{ + struct cfi_private *cfi = map->fldrv_priv; + map_word status, status_OK; + unsigned long timeo = jiffies + HZ; + DECLARE_WAITQUEUE(wait, current); + + adr += chip->start; + + /* Let's determine this according to the interleave only once */ + status_OK = CMD(0x80); + + timeo = jiffies + HZ; +retry: + spin_lock_bh(chip->mutex); + + /* Check that the chip's ready to talk to us. */ + switch (chip->state) { + case FL_CFI_QUERY: + case FL_JEDEC_QUERY: + case FL_READY: + map_write(map, CMD(0x70), adr); + chip->state = FL_STATUS; + + case FL_STATUS: + status = map_read(map, adr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + + /* Urgh. Chip not yet ready to talk to us. */ + if (time_after(jiffies, timeo)) { + spin_unlock_bh(chip->mutex); + printk(KERN_ERR "waiting for chip to be ready timed out in unlock\n"); + return -EIO; + } + + /* Latency issues. Drop the lock, wait a while and retry */ + spin_unlock_bh(chip->mutex); + cfi_udelay(1); + goto retry; + + default: + /* Stick ourselves on a wait queue to be woken when + someone changes the status */ + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + spin_unlock_bh(chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + timeo = jiffies + HZ; + goto retry; + } + + ENABLE_VPP(map); + map_write(map, CMD(0x60), adr); + map_write(map, CMD(0xD0), adr); + chip->state = FL_UNLOCKING; + + spin_unlock_bh(chip->mutex); + msleep(1000); + spin_lock_bh(chip->mutex); + + /* FIXME. Use a timer to check this, and return immediately. */ + /* Once the state machine's known to be working I'll do that */ + + timeo = jiffies + (HZ*2); + for (;;) { + + status = map_read(map, adr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + + /* OK Still waiting */ + if (time_after(jiffies, timeo)) { + map_write(map, CMD(0x70), adr); + chip->state = FL_STATUS; + printk(KERN_ERR "waiting for unlock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]); + DISABLE_VPP(map); + spin_unlock_bh(chip->mutex); + return -EIO; + } + + /* Latency issues. Drop the unlock, wait a while and retry */ + spin_unlock_bh(chip->mutex); + cfi_udelay(1); + spin_lock_bh(chip->mutex); + } + + /* Done and happy. */ + chip->state = FL_STATUS; + DISABLE_VPP(map); + wake_up(&chip->wq); + spin_unlock_bh(chip->mutex); + return 0; +} +static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, size_t len) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + unsigned long adr; + int chipnum, ret = 0; +#ifdef DEBUG_LOCK_BITS + int ofs_factor = cfi->interleave * cfi->device_type; +#endif + + chipnum = ofs >> cfi->chipshift; + adr = ofs - (chipnum << cfi->chipshift); + +#ifdef DEBUG_LOCK_BITS + { + unsigned long temp_adr = adr; + unsigned long temp_len = len; + + cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL); + while (temp_len) { + printk("before unlock %x: block status register is %x\n",temp_adr,cfi_read_query(map, temp_adr+(2*ofs_factor))); + temp_adr += mtd->erasesize; + temp_len -= mtd->erasesize; + } + cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL); + } +#endif + + ret = do_unlock_oneblock(map, &cfi->chips[chipnum], adr); + +#ifdef DEBUG_LOCK_BITS + cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL); + printk("after unlock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor))); + cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL); +#endif + + return ret; +} + +static int cfi_staa_suspend(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int i; + struct flchip *chip; + int ret = 0; + + for (i=0; !ret && i<cfi->numchips; i++) { + chip = &cfi->chips[i]; + + spin_lock_bh(chip->mutex); + + switch(chip->state) { + case FL_READY: + case FL_STATUS: + case FL_CFI_QUERY: + case FL_JEDEC_QUERY: + chip->oldstate = chip->state; + chip->state = FL_PM_SUSPENDED; + /* No need to wake_up() on this state change - + * as the whole point is that nobody can do anything + * with the chip now anyway. + */ + case FL_PM_SUSPENDED: + break; + + default: + ret = -EAGAIN; + break; + } + spin_unlock_bh(chip->mutex); + } + + /* Unlock the chips again */ + + if (ret) { + for (i--; i >=0; i--) { + chip = &cfi->chips[i]; + + spin_lock_bh(chip->mutex); + + if (chip->state == FL_PM_SUSPENDED) { + /* No need to force it into a known state here, + because we're returning failure, and it didn't + get power cycled */ + chip->state = chip->oldstate; + wake_up(&chip->wq); + } + spin_unlock_bh(chip->mutex); + } + } + + return ret; +} + +static void cfi_staa_resume(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int i; + struct flchip *chip; + + for (i=0; i<cfi->numchips; i++) { + + chip = &cfi->chips[i]; + + spin_lock_bh(chip->mutex); + + /* Go to known state. Chip may have been power cycled */ + if (chip->state == FL_PM_SUSPENDED) { + map_write(map, CMD(0xFF), 0); + chip->state = FL_READY; + wake_up(&chip->wq); + } + + spin_unlock_bh(chip->mutex); + } +} + +static void cfi_staa_destroy(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + kfree(cfi->cmdset_priv); + kfree(cfi); +} + +static char im_name[]="cfi_cmdset_0020"; + +static int __init cfi_staa_init(void) +{ + inter_module_register(im_name, THIS_MODULE, &cfi_cmdset_0020); + return 0; +} + +static void __exit cfi_staa_exit(void) +{ + inter_module_unregister(im_name); +} + +module_init(cfi_staa_init); +module_exit(cfi_staa_exit); + +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/chips/cfi_probe.c b/drivers/mtd/chips/cfi_probe.c new file mode 100644 index 000000000000..cf750038ce6a --- /dev/null +++ b/drivers/mtd/chips/cfi_probe.c @@ -0,0 +1,445 @@ +/* + Common Flash Interface probe code. + (C) 2000 Red Hat. GPL'd. + $Id: cfi_probe.c,v 1.83 2004/11/16 18:19:02 nico Exp $ +*/ + +#include <linux/config.h> +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/init.h> +#include <asm/io.h> +#include <asm/byteorder.h> +#include <linux/errno.h> +#include <linux/slab.h> +#include <linux/interrupt.h> + +#include <linux/mtd/xip.h> +#include <linux/mtd/map.h> +#include <linux/mtd/cfi.h> +#include <linux/mtd/gen_probe.h> + +//#define DEBUG_CFI + +#ifdef DEBUG_CFI +static void print_cfi_ident(struct cfi_ident *); +#endif + +static int cfi_probe_chip(struct map_info *map, __u32 base, + unsigned long *chip_map, struct cfi_private *cfi); +static int cfi_chip_setup(struct map_info *map, struct cfi_private *cfi); + +struct mtd_info *cfi_probe(struct map_info *map); + +#ifdef CONFIG_MTD_XIP + +/* only needed for short periods, so this is rather simple */ +#define xip_disable() local_irq_disable() + +#define xip_allowed(base, map) \ +do { \ + (void) map_read(map, base); \ + asm volatile (".rep 8; nop; .endr"); \ + local_irq_enable(); \ +} while (0) + +#define xip_enable(base, map, cfi) \ +do { \ + cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); \ + cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); \ + xip_allowed(base, map); \ +} while (0) + +#define xip_disable_qry(base, map, cfi) \ +do { \ + xip_disable(); \ + cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); \ + cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); \ + cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL); \ +} while (0) + +#else + +#define xip_disable() do { } while (0) +#define xip_allowed(base, map) do { } while (0) +#define xip_enable(base, map, cfi) do { } while (0) +#define xip_disable_qry(base, map, cfi) do { } while (0) + +#endif + +/* check for QRY. + in: interleave,type,mode + ret: table index, <0 for error + */ +static int __xipram qry_present(struct map_info *map, __u32 base, + struct cfi_private *cfi) +{ + int osf = cfi->interleave * cfi->device_type; // scale factor + map_word val[3]; + map_word qry[3]; + + qry[0] = cfi_build_cmd('Q', map, cfi); + qry[1] = cfi_build_cmd('R', map, cfi); + qry[2] = cfi_build_cmd('Y', map, cfi); + + val[0] = map_read(map, base + osf*0x10); + val[1] = map_read(map, base + osf*0x11); + val[2] = map_read(map, base + osf*0x12); + + if (!map_word_equal(map, qry[0], val[0])) + return 0; + + if (!map_word_equal(map, qry[1], val[1])) + return 0; + + if (!map_word_equal(map, qry[2], val[2])) + return 0; + + return 1; // "QRY" found +} + +static int __xipram cfi_probe_chip(struct map_info *map, __u32 base, + unsigned long *chip_map, struct cfi_private *cfi) +{ + int i; + + if ((base + 0) >= map->size) { + printk(KERN_NOTICE + "Probe at base[0x00](0x%08lx) past the end of the map(0x%08lx)\n", + (unsigned long)base, map->size -1); + return 0; + } + if ((base + 0xff) >= map->size) { + printk(KERN_NOTICE + "Probe at base[0x55](0x%08lx) past the end of the map(0x%08lx)\n", + (unsigned long)base + 0x55, map->size -1); + return 0; + } + + xip_disable(); + cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL); + + if (!qry_present(map,base,cfi)) { + xip_enable(base, map, cfi); + return 0; + } + + if (!cfi->numchips) { + /* This is the first time we're called. Set up the CFI + stuff accordingly and return */ + return cfi_chip_setup(map, cfi); + } + + /* Check each previous chip to see if it's an alias */ + for (i=0; i < (base >> cfi->chipshift); i++) { + unsigned long start; + if(!test_bit(i, chip_map)) { + /* Skip location; no valid chip at this address */ + continue; + } + start = i << cfi->chipshift; + /* This chip should be in read mode if it's one + we've already touched. */ + if (qry_present(map, start, cfi)) { + /* Eep. This chip also had the QRY marker. + * Is it an alias for the new one? */ + cfi_send_gen_cmd(0xF0, 0, start, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0xFF, 0, start, map, cfi, cfi->device_type, NULL); + + /* If the QRY marker goes away, it's an alias */ + if (!qry_present(map, start, cfi)) { + xip_allowed(base, map); + printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n", + map->name, base, start); + return 0; + } + /* Yes, it's actually got QRY for data. Most + * unfortunate. Stick the new chip in read mode + * too and if it's the same, assume it's an alias. */ + /* FIXME: Use other modes to do a proper check */ + cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0xFF, 0, start, map, cfi, cfi->device_type, NULL); + + if (qry_present(map, base, cfi)) { + xip_allowed(base, map); + printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n", + map->name, base, start); + return 0; + } + } + } + + /* OK, if we got to here, then none of the previous chips appear to + be aliases for the current one. */ + set_bit((base >> cfi->chipshift), chip_map); /* Update chip map */ + cfi->numchips++; + + /* Put it back into Read Mode */ + cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); + xip_allowed(base, map); + + printk(KERN_INFO "%s: Found %d x%d devices at 0x%x in %d-bit bank\n", + map->name, cfi->interleave, cfi->device_type*8, base, + map->bankwidth*8); + + return 1; +} + +static int __xipram cfi_chip_setup(struct map_info *map, + struct cfi_private *cfi) +{ + int ofs_factor = cfi->interleave*cfi->device_type; + __u32 base = 0; + int num_erase_regions = cfi_read_query(map, base + (0x10 + 28)*ofs_factor); + int i; + + xip_enable(base, map, cfi); +#ifdef DEBUG_CFI + printk("Number of erase regions: %d\n", num_erase_regions); +#endif + if (!num_erase_regions) + return 0; + + cfi->cfiq = kmalloc(sizeof(struct cfi_ident) + num_erase_regions * 4, GFP_KERNEL); + if (!cfi->cfiq) { + printk(KERN_WARNING "%s: kmalloc failed for CFI ident structure\n", map->name); + return 0; + } + + memset(cfi->cfiq,0,sizeof(struct cfi_ident)); + + cfi->cfi_mode = CFI_MODE_CFI; + + /* Read the CFI info structure */ + xip_disable_qry(base, map, cfi); + for (i=0; i<(sizeof(struct cfi_ident) + num_erase_regions * 4); i++) + ((unsigned char *)cfi->cfiq)[i] = cfi_read_query(map,base + (0x10 + i)*ofs_factor); + + /* Note we put the device back into Read Mode BEFORE going into Auto + * Select Mode, as some devices support nesting of modes, others + * don't. This way should always work. + * On cmdset 0001 the writes of 0xaa and 0x55 are not needed, and + * so should be treated as nops or illegal (and so put the device + * back into Read Mode, which is a nop in this case). + */ + cfi_send_gen_cmd(0xf0, 0, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0xaa, 0x555, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, 0x2aa, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x90, 0x555, base, map, cfi, cfi->device_type, NULL); + cfi->mfr = cfi_read_query(map, base); + cfi->id = cfi_read_query(map, base + ofs_factor); + + /* Put it back into Read Mode */ + cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); + /* ... even if it's an Intel chip */ + cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); + xip_allowed(base, map); + + /* Do any necessary byteswapping */ + cfi->cfiq->P_ID = le16_to_cpu(cfi->cfiq->P_ID); + + cfi->cfiq->P_ADR = le16_to_cpu(cfi->cfiq->P_ADR); + cfi->cfiq->A_ID = le16_to_cpu(cfi->cfiq->A_ID); + cfi->cfiq->A_ADR = le16_to_cpu(cfi->cfiq->A_ADR); + cfi->cfiq->InterfaceDesc = le16_to_cpu(cfi->cfiq->InterfaceDesc); + cfi->cfiq->MaxBufWriteSize = le16_to_cpu(cfi->cfiq->MaxBufWriteSize); + +#ifdef DEBUG_CFI + /* Dump the information therein */ + print_cfi_ident(cfi->cfiq); +#endif + + for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { + cfi->cfiq->EraseRegionInfo[i] = le32_to_cpu(cfi->cfiq->EraseRegionInfo[i]); + +#ifdef DEBUG_CFI + printk(" Erase Region #%d: BlockSize 0x%4.4X bytes, %d blocks\n", + i, (cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff, + (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1); +#endif + } + + printk(KERN_INFO "%s: Found %d x%d devices at 0x%x in %d-bit bank\n", + map->name, cfi->interleave, cfi->device_type*8, base, + map->bankwidth*8); + + return 1; +} + +#ifdef DEBUG_CFI +static char *vendorname(__u16 vendor) +{ + switch (vendor) { + case P_ID_NONE: + return "None"; + + case P_ID_INTEL_EXT: + return "Intel/Sharp Extended"; + + case P_ID_AMD_STD: + return "AMD/Fujitsu Standard"; + + case P_ID_INTEL_STD: + return "Intel/Sharp Standard"; + + case P_ID_AMD_EXT: + return "AMD/Fujitsu Extended"; + + case P_ID_WINBOND: + return "Winbond Standard"; + + case P_ID_ST_ADV: + return "ST Advanced"; + + case P_ID_MITSUBISHI_STD: + return "Mitsubishi Standard"; + + case P_ID_MITSUBISHI_EXT: + return "Mitsubishi Extended"; + + case P_ID_SST_PAGE: + return "SST Page Write"; + + case P_ID_INTEL_PERFORMANCE: + return "Intel Performance Code"; + + case P_ID_INTEL_DATA: + return "Intel Data"; + + case P_ID_RESERVED: + return "Not Allowed / Reserved for Future Use"; + + default: + return "Unknown"; + } +} + + +static void print_cfi_ident(struct cfi_ident *cfip) +{ +#if 0 + if (cfip->qry[0] != 'Q' || cfip->qry[1] != 'R' || cfip->qry[2] != 'Y') { + printk("Invalid CFI ident structure.\n"); + return; + } +#endif + printk("Primary Vendor Command Set: %4.4X (%s)\n", cfip->P_ID, vendorname(cfip->P_ID)); + if (cfip->P_ADR) + printk("Primary Algorithm Table at %4.4X\n", cfip->P_ADR); + else + printk("No Primary Algorithm Table\n"); + + printk("Alternative Vendor Command Set: %4.4X (%s)\n", cfip->A_ID, vendorname(cfip->A_ID)); + if (cfip->A_ADR) + printk("Alternate Algorithm Table at %4.4X\n", cfip->A_ADR); + else + printk("No Alternate Algorithm Table\n"); + + + printk("Vcc Minimum: %2d.%d V\n", cfip->VccMin >> 4, cfip->VccMin & 0xf); + printk("Vcc Maximum: %2d.%d V\n", cfip->VccMax >> 4, cfip->VccMax & 0xf); + if (cfip->VppMin) { + printk("Vpp Minimum: %2d.%d V\n", cfip->VppMin >> 4, cfip->VppMin & 0xf); + printk("Vpp Maximum: %2d.%d V\n", cfip->VppMax >> 4, cfip->VppMax & 0xf); + } + else + printk("No Vpp line\n"); + + printk("Typical byte/word write timeout: %d µs\n", 1<<cfip->WordWriteTimeoutTyp); + printk("Maximum byte/word write timeout: %d µs\n", (1<<cfip->WordWriteTimeoutMax) * (1<<cfip->WordWriteTimeoutTyp)); + + if (cfip->BufWriteTimeoutTyp || cfip->BufWriteTimeoutMax) { + printk("Typical full buffer write timeout: %d µs\n", 1<<cfip->BufWriteTimeoutTyp); + printk("Maximum full buffer write timeout: %d µs\n", (1<<cfip->BufWriteTimeoutMax) * (1<<cfip->BufWriteTimeoutTyp)); + } + else + printk("Full buffer write not supported\n"); + + printk("Typical block erase timeout: %d ms\n", 1<<cfip->BlockEraseTimeoutTyp); + printk("Maximum block erase timeout: %d ms\n", (1<<cfip->BlockEraseTimeoutMax) * (1<<cfip->BlockEraseTimeoutTyp)); + if (cfip->ChipEraseTimeoutTyp || cfip->ChipEraseTimeoutMax) { + printk("Typical chip erase timeout: %d ms\n", 1<<cfip->ChipEraseTimeoutTyp); + printk("Maximum chip erase timeout: %d ms\n", (1<<cfip->ChipEraseTimeoutMax) * (1<<cfip->ChipEraseTimeoutTyp)); + } + else + printk("Chip erase not supported\n"); + + printk("Device size: 0x%X bytes (%d MiB)\n", 1 << cfip->DevSize, 1<< (cfip->DevSize - 20)); + printk("Flash Device Interface description: 0x%4.4X\n", cfip->InterfaceDesc); + switch(cfip->InterfaceDesc) { + case 0: + printk(" - x8-only asynchronous interface\n"); + break; + + case 1: + printk(" - x16-only asynchronous interface\n"); + break; + + case 2: + printk(" - supports x8 and x16 via BYTE# with asynchronous interface\n"); + break; + + case 3: + printk(" - x32-only asynchronous interface\n"); + break; + + case 4: + printk(" - supports x16 and x32 via Word# with asynchronous interface\n"); + break; + + case 65535: + printk(" - Not Allowed / Reserved\n"); + break; + + default: + printk(" - Unknown\n"); + break; + } + + printk("Max. bytes in buffer write: 0x%x\n", 1<< cfip->MaxBufWriteSize); + printk("Number of Erase Block Regions: %d\n", cfip->NumEraseRegions); + +} +#endif /* DEBUG_CFI */ + +static struct chip_probe cfi_chip_probe = { + .name = "CFI", + .probe_chip = cfi_probe_chip +}; + +struct mtd_info *cfi_probe(struct map_info *map) +{ + /* + * Just use the generic probe stuff to call our CFI-specific + * chip_probe routine in all the possible permutations, etc. + */ + return mtd_do_chip_probe(map, &cfi_chip_probe); +} + +static struct mtd_chip_driver cfi_chipdrv = { + .probe = cfi_probe, + .name = "cfi_probe", + .module = THIS_MODULE +}; + +int __init cfi_probe_init(void) +{ + register_mtd_chip_driver(&cfi_chipdrv); + return 0; +} + +static void __exit cfi_probe_exit(void) +{ + unregister_mtd_chip_driver(&cfi_chipdrv); +} + +module_init(cfi_probe_init); +module_exit(cfi_probe_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al."); +MODULE_DESCRIPTION("Probe code for CFI-compliant flash chips"); diff --git a/drivers/mtd/chips/cfi_util.c b/drivers/mtd/chips/cfi_util.c new file mode 100644 index 000000000000..2b2ede2bfcca --- /dev/null +++ b/drivers/mtd/chips/cfi_util.c @@ -0,0 +1,196 @@ +/* + * Common Flash Interface support: + * Generic utility functions not dependant on command set + * + * Copyright (C) 2002 Red Hat + * Copyright (C) 2003 STMicroelectronics Limited + * + * This code is covered by the GPL. + * + * $Id: cfi_util.c,v 1.8 2004/12/14 19:55:56 nico Exp $ + * + */ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/sched.h> +#include <asm/io.h> +#include <asm/byteorder.h> + +#include <linux/errno.h> +#include <linux/slab.h> +#include <linux/delay.h> +#include <linux/interrupt.h> +#include <linux/mtd/xip.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> +#include <linux/mtd/cfi.h> +#include <linux/mtd/compatmac.h> + +struct cfi_extquery * +__xipram cfi_read_pri(struct map_info *map, __u16 adr, __u16 size, const char* name) +{ + struct cfi_private *cfi = map->fldrv_priv; + __u32 base = 0; // cfi->chips[0].start; + int ofs_factor = cfi->interleave * cfi->device_type; + int i; + struct cfi_extquery *extp = NULL; + + printk(" %s Extended Query Table at 0x%4.4X\n", name, adr); + if (!adr) + goto out; + + extp = kmalloc(size, GFP_KERNEL); + if (!extp) { + printk(KERN_ERR "Failed to allocate memory\n"); + goto out; + } + +#ifdef CONFIG_MTD_XIP + local_irq_disable(); +#endif + + /* Switch it into Query Mode */ + cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL); + + /* Read in the Extended Query Table */ + for (i=0; i<size; i++) { + ((unsigned char *)extp)[i] = + cfi_read_query(map, base+((adr+i)*ofs_factor)); + } + + /* Make sure it returns to read mode */ + cfi_send_gen_cmd(0xf0, 0, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0xff, 0, base, map, cfi, cfi->device_type, NULL); + +#ifdef CONFIG_MTD_XIP + (void) map_read(map, base); + asm volatile (".rep 8; nop; .endr"); + local_irq_enable(); +#endif + + if (extp->MajorVersion != '1' || + (extp->MinorVersion < '0' || extp->MinorVersion > '3')) { + printk(KERN_WARNING " Unknown %s Extended Query " + "version %c.%c.\n", name, extp->MajorVersion, + extp->MinorVersion); + kfree(extp); + extp = NULL; + } + + out: return extp; +} + +EXPORT_SYMBOL(cfi_read_pri); + +void cfi_fixup(struct mtd_info *mtd, struct cfi_fixup *fixups) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + struct cfi_fixup *f; + + for (f=fixups; f->fixup; f++) { + if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi->mfr)) && + ((f->id == CFI_ID_ANY) || (f->id == cfi->id))) { + f->fixup(mtd, f->param); + } + } +} + +EXPORT_SYMBOL(cfi_fixup); + +int cfi_varsize_frob(struct mtd_info *mtd, varsize_frob_t frob, + loff_t ofs, size_t len, void *thunk) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + unsigned long adr; + int chipnum, ret = 0; + int i, first; + struct mtd_erase_region_info *regions = mtd->eraseregions; + + if (ofs > mtd->size) + return -EINVAL; + + if ((len + ofs) > mtd->size) + return -EINVAL; + + /* Check that both start and end of the requested erase are + * aligned with the erasesize at the appropriate addresses. + */ + + i = 0; + + /* Skip all erase regions which are ended before the start of + the requested erase. Actually, to save on the calculations, + we skip to the first erase region which starts after the + start of the requested erase, and then go back one. + */ + + while (i < mtd->numeraseregions && ofs >= regions[i].offset) + i++; + i--; + + /* OK, now i is pointing at the erase region in which this + erase request starts. Check the start of the requested + erase range is aligned with the erase size which is in + effect here. + */ + + if (ofs & (regions[i].erasesize-1)) + return -EINVAL; + + /* Remember the erase region we start on */ + first = i; + + /* Next, check that the end of the requested erase is aligned + * with the erase region at that address. + */ + + while (i<mtd->numeraseregions && (ofs + len) >= regions[i].offset) + i++; + + /* As before, drop back one to point at the region in which + the address actually falls + */ + i--; + + if ((ofs + len) & (regions[i].erasesize-1)) + return -EINVAL; + + chipnum = ofs >> cfi->chipshift; + adr = ofs - (chipnum << cfi->chipshift); + + i=first; + + while(len) { + int size = regions[i].erasesize; + + ret = (*frob)(map, &cfi->chips[chipnum], adr, size, thunk); + + if (ret) + return ret; + + adr += size; + ofs += size; + len -= size; + + if (ofs == regions[i].offset + size * regions[i].numblocks) + i++; + + if (adr >> cfi->chipshift) { + adr = 0; + chipnum++; + + if (chipnum >= cfi->numchips) + break; + } + } + + return 0; +} + +EXPORT_SYMBOL(cfi_varsize_frob); + +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/chips/chipreg.c b/drivers/mtd/chips/chipreg.c new file mode 100644 index 000000000000..d7d739a108ae --- /dev/null +++ b/drivers/mtd/chips/chipreg.c @@ -0,0 +1,111 @@ +/* + * $Id: chipreg.c,v 1.17 2004/11/16 18:29:00 dwmw2 Exp $ + * + * Registration for chip drivers + * + */ + +#include <linux/kernel.h> +#include <linux/config.h> +#include <linux/module.h> +#include <linux/kmod.h> +#include <linux/spinlock.h> +#include <linux/slab.h> +#include <linux/mtd/map.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/compatmac.h> + +static DEFINE_SPINLOCK(chip_drvs_lock); +static LIST_HEAD(chip_drvs_list); + +void register_mtd_chip_driver(struct mtd_chip_driver *drv) +{ + spin_lock(&chip_drvs_lock); + list_add(&drv->list, &chip_drvs_list); + spin_unlock(&chip_drvs_lock); +} + +void unregister_mtd_chip_driver(struct mtd_chip_driver *drv) +{ + spin_lock(&chip_drvs_lock); + list_del(&drv->list); + spin_unlock(&chip_drvs_lock); +} + +static struct mtd_chip_driver *get_mtd_chip_driver (const char *name) +{ + struct list_head *pos; + struct mtd_chip_driver *ret = NULL, *this; + + spin_lock(&chip_drvs_lock); + + list_for_each(pos, &chip_drvs_list) { + this = list_entry(pos, typeof(*this), list); + + if (!strcmp(this->name, name)) { + ret = this; + break; + } + } + if (ret && !try_module_get(ret->module)) + ret = NULL; + + spin_unlock(&chip_drvs_lock); + + return ret; +} + + /* Hide all the horrid details, like some silly person taking + get_module_symbol() away from us, from the caller. */ + +struct mtd_info *do_map_probe(const char *name, struct map_info *map) +{ + struct mtd_chip_driver *drv; + struct mtd_info *ret; + + drv = get_mtd_chip_driver(name); + + if (!drv && !request_module("%s", name)) + drv = get_mtd_chip_driver(name); + + if (!drv) + return NULL; + + ret = drv->probe(map); + + /* We decrease the use count here. It may have been a + probe-only module, which is no longer required from this + point, having given us a handle on (and increased the use + count of) the actual driver code. + */ + module_put(drv->module); + + if (ret) + return ret; + + return NULL; +} +/* + * Destroy an MTD device which was created for a map device. + * Make sure the MTD device is already unregistered before calling this + */ +void map_destroy(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + + if (map->fldrv->destroy) + map->fldrv->destroy(mtd); + + module_put(map->fldrv->module); + + kfree(mtd); +} + +EXPORT_SYMBOL(register_mtd_chip_driver); +EXPORT_SYMBOL(unregister_mtd_chip_driver); +EXPORT_SYMBOL(do_map_probe); +EXPORT_SYMBOL(map_destroy); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); +MODULE_DESCRIPTION("Core routines for registering and invoking MTD chip drivers"); diff --git a/drivers/mtd/chips/fwh_lock.h b/drivers/mtd/chips/fwh_lock.h new file mode 100644 index 000000000000..fbf44708a861 --- /dev/null +++ b/drivers/mtd/chips/fwh_lock.h @@ -0,0 +1,107 @@ +#ifndef FWH_LOCK_H +#define FWH_LOCK_H + + +enum fwh_lock_state { + FWH_UNLOCKED = 0, + FWH_DENY_WRITE = 1, + FWH_IMMUTABLE = 2, + FWH_DENY_READ = 4, +}; + +struct fwh_xxlock_thunk { + enum fwh_lock_state val; + flstate_t state; +}; + + +#define FWH_XXLOCK_ONEBLOCK_LOCK ((struct fwh_xxlock_thunk){ FWH_DENY_WRITE, FL_LOCKING}) +#define FWH_XXLOCK_ONEBLOCK_UNLOCK ((struct fwh_xxlock_thunk){ FWH_UNLOCKED, FL_UNLOCKING}) + +/* + * This locking/unlock is specific to firmware hub parts. Only one + * is known that supports the Intel command set. Firmware + * hub parts cannot be interleaved as they are on the LPC bus + * so this code has not been tested with interleaved chips, + * and will likely fail in that context. + */ +static int fwh_xxlock_oneblock(struct map_info *map, struct flchip *chip, + unsigned long adr, int len, void *thunk) +{ + struct cfi_private *cfi = map->fldrv_priv; + struct fwh_xxlock_thunk *xxlt = (struct fwh_xxlock_thunk *)thunk; + int ret; + + /* Refuse the operation if the we cannot look behind the chip */ + if (chip->start < 0x400000) { + DEBUG( MTD_DEBUG_LEVEL3, + "MTD %s(): chip->start: %lx wanted >= 0x400000\n", + __func__, chip->start ); + return -EIO; + } + /* + * lock block registers: + * - on 64k boundariesand + * - bit 1 set high + * - block lock registers are 4MiB lower - overflow subtract (danger) + * + * The address manipulation is first done on the logical address + * which is 0 at the start of the chip, and then the offset of + * the individual chip is addted to it. Any other order a weird + * map offset could cause problems. + */ + adr = (adr & ~0xffffUL) | 0x2; + adr += chip->start - 0x400000; + + /* + * This is easy because these are writes to registers and not writes + * to flash memory - that means that we don't have to check status + * and timeout. + */ + cfi_spin_lock(chip->mutex); + ret = get_chip(map, chip, adr, FL_LOCKING); + if (ret) { + cfi_spin_unlock(chip->mutex); + return ret; + } + + chip->state = xxlt->state; + map_write(map, CMD(xxlt->val), adr); + + /* Done and happy. */ + chip->state = FL_READY; + put_chip(map, chip, adr); + cfi_spin_unlock(chip->mutex); + return 0; +} + + +static int fwh_lock_varsize(struct mtd_info *mtd, loff_t ofs, size_t len) +{ + int ret; + + ret = cfi_varsize_frob(mtd, fwh_xxlock_oneblock, ofs, len, + (void *)&FWH_XXLOCK_ONEBLOCK_LOCK); + + return ret; +} + + +static int fwh_unlock_varsize(struct mtd_info *mtd, loff_t ofs, size_t len) +{ + int ret; + + ret = cfi_varsize_frob(mtd, fwh_xxlock_oneblock, ofs, len, + (void *)&FWH_XXLOCK_ONEBLOCK_UNLOCK); + + return ret; +} + +static void fixup_use_fwh_lock(struct mtd_info *mtd, void *param) +{ + printk(KERN_NOTICE "using fwh lock/unlock method\n"); + /* Setup for the chips with the fwh lock method */ + mtd->lock = fwh_lock_varsize; + mtd->unlock = fwh_unlock_varsize; +} +#endif /* FWH_LOCK_H */ diff --git a/drivers/mtd/chips/gen_probe.c b/drivers/mtd/chips/gen_probe.c new file mode 100644 index 000000000000..fc982c4671f0 --- /dev/null +++ b/drivers/mtd/chips/gen_probe.c @@ -0,0 +1,255 @@ +/* + * Routines common to all CFI-type probes. + * (C) 2001-2003 Red Hat, Inc. + * GPL'd + * $Id: gen_probe.c,v 1.21 2004/08/14 15:14:05 dwmw2 Exp $ + */ + +#include <linux/kernel.h> +#include <linux/slab.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> +#include <linux/mtd/cfi.h> +#include <linux/mtd/gen_probe.h> + +static struct mtd_info *check_cmd_set(struct map_info *, int); +static struct cfi_private *genprobe_ident_chips(struct map_info *map, + struct chip_probe *cp); +static int genprobe_new_chip(struct map_info *map, struct chip_probe *cp, + struct cfi_private *cfi); + +struct mtd_info *mtd_do_chip_probe(struct map_info *map, struct chip_probe *cp) +{ + struct mtd_info *mtd = NULL; + struct cfi_private *cfi; + + /* First probe the map to see if we have CFI stuff there. */ + cfi = genprobe_ident_chips(map, cp); + + if (!cfi) + return NULL; + + map->fldrv_priv = cfi; + /* OK we liked it. Now find a driver for the command set it talks */ + + mtd = check_cmd_set(map, 1); /* First the primary cmdset */ + if (!mtd) + mtd = check_cmd_set(map, 0); /* Then the secondary */ + + if (mtd) + return mtd; + + printk(KERN_WARNING"gen_probe: No supported Vendor Command Set found\n"); + + kfree(cfi->cfiq); + kfree(cfi); + map->fldrv_priv = NULL; + return NULL; +} +EXPORT_SYMBOL(mtd_do_chip_probe); + + +static struct cfi_private *genprobe_ident_chips(struct map_info *map, struct chip_probe *cp) +{ + struct cfi_private cfi; + struct cfi_private *retcfi; + unsigned long *chip_map; + int i, j, mapsize; + int max_chips; + + memset(&cfi, 0, sizeof(cfi)); + + /* Call the probetype-specific code with all permutations of + interleave and device type, etc. */ + if (!genprobe_new_chip(map, cp, &cfi)) { + /* The probe didn't like it */ + printk(KERN_DEBUG "%s: Found no %s device at location zero\n", + cp->name, map->name); + return NULL; + } + +#if 0 /* Let the CFI probe routine do this sanity check. The Intel and AMD + probe routines won't ever return a broken CFI structure anyway, + because they make them up themselves. + */ + if (cfi.cfiq->NumEraseRegions == 0) { + printk(KERN_WARNING "Number of erase regions is zero\n"); + kfree(cfi.cfiq); + return NULL; + } +#endif + cfi.chipshift = cfi.cfiq->DevSize; + + if (cfi_interleave_is_1(&cfi)) { + ; + } else if (cfi_interleave_is_2(&cfi)) { + cfi.chipshift++; + } else if (cfi_interleave_is_4((&cfi))) { + cfi.chipshift += 2; + } else if (cfi_interleave_is_8(&cfi)) { + cfi.chipshift += 3; + } else { + BUG(); + } + + cfi.numchips = 1; + + /* + * Allocate memory for bitmap of valid chips. + * Align bitmap storage size to full byte. + */ + max_chips = map->size >> cfi.chipshift; + mapsize = (max_chips / 8) + ((max_chips % 8) ? 1 : 0); + chip_map = kmalloc(mapsize, GFP_KERNEL); + if (!chip_map) { + printk(KERN_WARNING "%s: kmalloc failed for CFI chip map\n", map->name); + kfree(cfi.cfiq); + return NULL; + } + memset (chip_map, 0, mapsize); + + set_bit(0, chip_map); /* Mark first chip valid */ + + /* + * Now probe for other chips, checking sensibly for aliases while + * we're at it. The new_chip probe above should have let the first + * chip in read mode. + */ + + for (i = 1; i < max_chips; i++) { + cp->probe_chip(map, i << cfi.chipshift, chip_map, &cfi); + } + + /* + * Now allocate the space for the structures we need to return to + * our caller, and copy the appropriate data into them. + */ + + retcfi = kmalloc(sizeof(struct cfi_private) + cfi.numchips * sizeof(struct flchip), GFP_KERNEL); + + if (!retcfi) { + printk(KERN_WARNING "%s: kmalloc failed for CFI private structure\n", map->name); + kfree(cfi.cfiq); + kfree(chip_map); + return NULL; + } + + memcpy(retcfi, &cfi, sizeof(cfi)); + memset(&retcfi->chips[0], 0, sizeof(struct flchip) * cfi.numchips); + + for (i = 0, j = 0; (j < cfi.numchips) && (i < max_chips); i++) { + if(test_bit(i, chip_map)) { + struct flchip *pchip = &retcfi->chips[j++]; + + pchip->start = (i << cfi.chipshift); + pchip->state = FL_READY; + init_waitqueue_head(&pchip->wq); + spin_lock_init(&pchip->_spinlock); + pchip->mutex = &pchip->_spinlock; + } + } + + kfree(chip_map); + return retcfi; +} + + +static int genprobe_new_chip(struct map_info *map, struct chip_probe *cp, + struct cfi_private *cfi) +{ + int min_chips = (map_bankwidth(map)/4?:1); /* At most 4-bytes wide. */ + int max_chips = map_bankwidth(map); /* And minimum 1 */ + int nr_chips, type; + + for (nr_chips = min_chips; nr_chips <= max_chips; nr_chips <<= 1) { + + if (!cfi_interleave_supported(nr_chips)) + continue; + + cfi->interleave = nr_chips; + + /* Minimum device size. Don't look for one 8-bit device + in a 16-bit bus, etc. */ + type = map_bankwidth(map) / nr_chips; + + for (; type <= CFI_DEVICETYPE_X32; type<<=1) { + cfi->device_type = type; + + if (cp->probe_chip(map, 0, NULL, cfi)) + return 1; + } + } + return 0; +} + +typedef struct mtd_info *cfi_cmdset_fn_t(struct map_info *, int); + +extern cfi_cmdset_fn_t cfi_cmdset_0001; +extern cfi_cmdset_fn_t cfi_cmdset_0002; +extern cfi_cmdset_fn_t cfi_cmdset_0020; + +static inline struct mtd_info *cfi_cmdset_unknown(struct map_info *map, + int primary) +{ + struct cfi_private *cfi = map->fldrv_priv; + __u16 type = primary?cfi->cfiq->P_ID:cfi->cfiq->A_ID; +#if defined(CONFIG_MODULES) && defined(HAVE_INTER_MODULE) + char probename[32]; + cfi_cmdset_fn_t *probe_function; + + sprintf(probename, "cfi_cmdset_%4.4X", type); + + probe_function = inter_module_get_request(probename, probename); + + if (probe_function) { + struct mtd_info *mtd; + + mtd = (*probe_function)(map, primary); + /* If it was happy, it'll have increased its own use count */ + inter_module_put(probename); + return mtd; + } +#endif + printk(KERN_NOTICE "Support for command set %04X not present\n", + type); + + return NULL; +} + +static struct mtd_info *check_cmd_set(struct map_info *map, int primary) +{ + struct cfi_private *cfi = map->fldrv_priv; + __u16 type = primary?cfi->cfiq->P_ID:cfi->cfiq->A_ID; + + if (type == P_ID_NONE || type == P_ID_RESERVED) + return NULL; + + switch(type){ + /* Urgh. Ifdefs. The version with weak symbols was + * _much_ nicer. Shame it didn't seem to work on + * anything but x86, really. + * But we can't rely in inter_module_get() because + * that'd mean we depend on link order. + */ +#ifdef CONFIG_MTD_CFI_INTELEXT + case 0x0001: + case 0x0003: + return cfi_cmdset_0001(map, primary); +#endif +#ifdef CONFIG_MTD_CFI_AMDSTD + case 0x0002: + return cfi_cmdset_0002(map, primary); +#endif +#ifdef CONFIG_MTD_CFI_STAA + case 0x0020: + return cfi_cmdset_0020(map, primary); +#endif + } + + return cfi_cmdset_unknown(map, primary); +} + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); +MODULE_DESCRIPTION("Helper routines for flash chip probe code"); diff --git a/drivers/mtd/chips/jedec.c b/drivers/mtd/chips/jedec.c new file mode 100644 index 000000000000..62d235a9a4e2 --- /dev/null +++ b/drivers/mtd/chips/jedec.c @@ -0,0 +1,934 @@ + +/* JEDEC Flash Interface. + * This is an older type of interface for self programming flash. It is + * commonly use in older AMD chips and is obsolete compared with CFI. + * It is called JEDEC because the JEDEC association distributes the ID codes + * for the chips. + * + * See the AMD flash databook for information on how to operate the interface. + * + * This code does not support anything wider than 8 bit flash chips, I am + * not going to guess how to send commands to them, plus I expect they will + * all speak CFI.. + * + * $Id: jedec.c,v 1.22 2005/01/05 18:05:11 dwmw2 Exp $ + */ + +#include <linux/init.h> +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/mtd/jedec.h> +#include <linux/mtd/map.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/compatmac.h> + +static struct mtd_info *jedec_probe(struct map_info *); +static int jedec_probe8(struct map_info *map,unsigned long base, + struct jedec_private *priv); +static int jedec_probe16(struct map_info *map,unsigned long base, + struct jedec_private *priv); +static int jedec_probe32(struct map_info *map,unsigned long base, + struct jedec_private *priv); +static void jedec_flash_chip_scan(struct jedec_private *priv,unsigned long start, + unsigned long len); +static int flash_erase(struct mtd_info *mtd, struct erase_info *instr); +static int flash_write(struct mtd_info *mtd, loff_t start, size_t len, + size_t *retlen, const u_char *buf); + +static unsigned long my_bank_size; + +/* Listing of parts and sizes. We need this table to learn the sector + size of the chip and the total length */ +static const struct JEDECTable JEDEC_table[] = { + { + .jedec = 0x013D, + .name = "AMD Am29F017D", + .size = 2*1024*1024, + .sectorsize = 64*1024, + .capabilities = MTD_CAP_NORFLASH + }, + { + .jedec = 0x01AD, + .name = "AMD Am29F016", + .size = 2*1024*1024, + .sectorsize = 64*1024, + .capabilities = MTD_CAP_NORFLASH + }, + { + .jedec = 0x01D5, + .name = "AMD Am29F080", + .size = 1*1024*1024, + .sectorsize = 64*1024, + .capabilities = MTD_CAP_NORFLASH + }, + { + .jedec = 0x01A4, + .name = "AMD Am29F040", + .size = 512*1024, + .sectorsize = 64*1024, + .capabilities = MTD_CAP_NORFLASH + }, + { + .jedec = 0x20E3, + .name = "AMD Am29W040B", + .size = 512*1024, + .sectorsize = 64*1024, + .capabilities = MTD_CAP_NORFLASH + }, + { + .jedec = 0xC2AD, + .name = "Macronix MX29F016", + .size = 2*1024*1024, + .sectorsize = 64*1024, + .capabilities = MTD_CAP_NORFLASH + }, + { .jedec = 0x0 } +}; + +static const struct JEDECTable *jedec_idtoinf(__u8 mfr,__u8 id); +static void jedec_sync(struct mtd_info *mtd) {}; +static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf); +static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf); + +static struct mtd_info *jedec_probe(struct map_info *map); + + + +static struct mtd_chip_driver jedec_chipdrv = { + .probe = jedec_probe, + .name = "jedec", + .module = THIS_MODULE +}; + +/* Probe entry point */ + +static struct mtd_info *jedec_probe(struct map_info *map) +{ + struct mtd_info *MTD; + struct jedec_private *priv; + unsigned long Base; + unsigned long SectorSize; + unsigned count; + unsigned I,Uniq; + char Part[200]; + memset(&priv,0,sizeof(priv)); + + MTD = kmalloc(sizeof(struct mtd_info) + sizeof(struct jedec_private), GFP_KERNEL); + if (!MTD) + return NULL; + + memset(MTD, 0, sizeof(struct mtd_info) + sizeof(struct jedec_private)); + priv = (struct jedec_private *)&MTD[1]; + + my_bank_size = map->size; + + if (map->size/my_bank_size > MAX_JEDEC_CHIPS) + { + printk("mtd: Increase MAX_JEDEC_CHIPS, too many banks.\n"); + kfree(MTD); + return NULL; + } + + for (Base = 0; Base < map->size; Base += my_bank_size) + { + // Perhaps zero could designate all tests? + if (map->buswidth == 0) + map->buswidth = 1; + + if (map->buswidth == 1){ + if (jedec_probe8(map,Base,priv) == 0) { + printk("did recognize jedec chip\n"); + kfree(MTD); + return NULL; + } + } + if (map->buswidth == 2) + jedec_probe16(map,Base,priv); + if (map->buswidth == 4) + jedec_probe32(map,Base,priv); + } + + // Get the biggest sector size + SectorSize = 0; + for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) + { + // printk("priv->chips[%d].jedec is %x\n",I,priv->chips[I].jedec); + // printk("priv->chips[%d].sectorsize is %lx\n",I,priv->chips[I].sectorsize); + if (priv->chips[I].sectorsize > SectorSize) + SectorSize = priv->chips[I].sectorsize; + } + + // Quickly ensure that the other sector sizes are factors of the largest + for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) + { + if ((SectorSize/priv->chips[I].sectorsize)*priv->chips[I].sectorsize != SectorSize) + { + printk("mtd: Failed. Device has incompatible mixed sector sizes\n"); + kfree(MTD); + return NULL; + } + } + + /* Generate a part name that includes the number of different chips and + other configuration information */ + count = 1; + strlcpy(Part,map->name,sizeof(Part)-10); + strcat(Part," "); + Uniq = 0; + for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) + { + const struct JEDECTable *JEDEC; + + if (priv->chips[I+1].jedec == priv->chips[I].jedec) + { + count++; + continue; + } + + // Locate the chip in the jedec table + JEDEC = jedec_idtoinf(priv->chips[I].jedec >> 8,priv->chips[I].jedec); + if (JEDEC == 0) + { + printk("mtd: Internal Error, JEDEC not set\n"); + kfree(MTD); + return NULL; + } + + if (Uniq != 0) + strcat(Part,","); + Uniq++; + + if (count != 1) + sprintf(Part+strlen(Part),"%x*[%s]",count,JEDEC->name); + else + sprintf(Part+strlen(Part),"%s",JEDEC->name); + if (strlen(Part) > sizeof(Part)*2/3) + break; + count = 1; + } + + /* Determine if the chips are organized in a linear fashion, or if there + are empty banks. Note, the last bank does not count here, only the + first banks are important. Holes on non-bank boundaries can not exist + due to the way the detection algorithm works. */ + if (priv->size < my_bank_size) + my_bank_size = priv->size; + priv->is_banked = 0; + //printk("priv->size is %x, my_bank_size is %x\n",priv->size,my_bank_size); + //printk("priv->bank_fill[0] is %x\n",priv->bank_fill[0]); + if (!priv->size) { + printk("priv->size is zero\n"); + kfree(MTD); + return NULL; + } + if (priv->size/my_bank_size) { + if (priv->size/my_bank_size == 1) { + priv->size = my_bank_size; + } + else { + for (I = 0; I != priv->size/my_bank_size - 1; I++) + { + if (priv->bank_fill[I] != my_bank_size) + priv->is_banked = 1; + + /* This even could be eliminated, but new de-optimized read/write + functions have to be written */ + printk("priv->bank_fill[%d] is %lx, priv->bank_fill[0] is %lx\n",I,priv->bank_fill[I],priv->bank_fill[0]); + if (priv->bank_fill[I] != priv->bank_fill[0]) + { + printk("mtd: Failed. Cannot handle unsymmetric banking\n"); + kfree(MTD); + return NULL; + } + } + } + } + if (priv->is_banked == 1) + strcat(Part,", banked"); + + // printk("Part: '%s'\n",Part); + + memset(MTD,0,sizeof(*MTD)); + // strlcpy(MTD->name,Part,sizeof(MTD->name)); + MTD->name = map->name; + MTD->type = MTD_NORFLASH; + MTD->flags = MTD_CAP_NORFLASH; + MTD->erasesize = SectorSize*(map->buswidth); + // printk("MTD->erasesize is %x\n",(unsigned int)MTD->erasesize); + MTD->size = priv->size; + // printk("MTD->size is %x\n",(unsigned int)MTD->size); + //MTD->module = THIS_MODULE; // ? Maybe this should be the low level module? + MTD->erase = flash_erase; + if (priv->is_banked == 1) + MTD->read = jedec_read_banked; + else + MTD->read = jedec_read; + MTD->write = flash_write; + MTD->sync = jedec_sync; + MTD->priv = map; + map->fldrv_priv = priv; + map->fldrv = &jedec_chipdrv; + __module_get(THIS_MODULE); + return MTD; +} + +/* Helper for the JEDEC function, JEDEC numbers all have odd parity */ +static int checkparity(u_char C) +{ + u_char parity = 0; + while (C != 0) + { + parity ^= C & 1; + C >>= 1; + } + + return parity == 1; +} + + +/* Take an array of JEDEC numbers that represent interleved flash chips + and process them. Check to make sure they are good JEDEC numbers, look + them up and then add them to the chip list */ +static int handle_jedecs(struct map_info *map,__u8 *Mfg,__u8 *Id,unsigned Count, + unsigned long base,struct jedec_private *priv) +{ + unsigned I,J; + unsigned long Size; + unsigned long SectorSize; + const struct JEDECTable *JEDEC; + + // Test #2 JEDEC numbers exhibit odd parity + for (I = 0; I != Count; I++) + { + if (checkparity(Mfg[I]) == 0 || checkparity(Id[I]) == 0) + return 0; + } + + // Finally, just make sure all the chip sizes are the same + JEDEC = jedec_idtoinf(Mfg[0],Id[0]); + + if (JEDEC == 0) + { + printk("mtd: Found JEDEC flash chip, but do not have a table entry for %x:%x\n",Mfg[0],Mfg[1]); + return 0; + } + + Size = JEDEC->size; + SectorSize = JEDEC->sectorsize; + for (I = 0; I != Count; I++) + { + JEDEC = jedec_idtoinf(Mfg[0],Id[0]); + if (JEDEC == 0) + { + printk("mtd: Found JEDEC flash chip, but do not have a table entry for %x:%x\n",Mfg[0],Mfg[1]); + return 0; + } + + if (Size != JEDEC->size || SectorSize != JEDEC->sectorsize) + { + printk("mtd: Failed. Interleved flash does not have matching characteristics\n"); + return 0; + } + } + + // Load the Chips + for (I = 0; I != MAX_JEDEC_CHIPS; I++) + { + if (priv->chips[I].jedec == 0) + break; + } + + if (I + Count > MAX_JEDEC_CHIPS) + { + printk("mtd: Device has too many chips. Increase MAX_JEDEC_CHIPS\n"); + return 0; + } + + // Add them to the table + for (J = 0; J != Count; J++) + { + unsigned long Bank; + + JEDEC = jedec_idtoinf(Mfg[J],Id[J]); + priv->chips[I].jedec = (Mfg[J] << 8) | Id[J]; + priv->chips[I].size = JEDEC->size; + priv->chips[I].sectorsize = JEDEC->sectorsize; + priv->chips[I].base = base + J; + priv->chips[I].datashift = J*8; + priv->chips[I].capabilities = JEDEC->capabilities; + priv->chips[I].offset = priv->size + J; + + // log2 n :| + priv->chips[I].addrshift = 0; + for (Bank = Count; Bank != 1; Bank >>= 1, priv->chips[I].addrshift++); + + // Determine how filled this bank is. + Bank = base & (~(my_bank_size-1)); + if (priv->bank_fill[Bank/my_bank_size] < base + + (JEDEC->size << priv->chips[I].addrshift) - Bank) + priv->bank_fill[Bank/my_bank_size] = base + (JEDEC->size << priv->chips[I].addrshift) - Bank; + I++; + } + + priv->size += priv->chips[I-1].size*Count; + + return priv->chips[I-1].size; +} + +/* Lookup the chip information from the JEDEC ID table. */ +static const struct JEDECTable *jedec_idtoinf(__u8 mfr,__u8 id) +{ + __u16 Id = (mfr << 8) | id; + unsigned long I = 0; + for (I = 0; JEDEC_table[I].jedec != 0; I++) + if (JEDEC_table[I].jedec == Id) + return JEDEC_table + I; + return NULL; +} + +// Look for flash using an 8 bit bus interface +static int jedec_probe8(struct map_info *map,unsigned long base, + struct jedec_private *priv) +{ + #define flread(x) map_read8(map,base+x) + #define flwrite(v,x) map_write8(map,v,base+x) + + const unsigned long AutoSel1 = 0xAA; + const unsigned long AutoSel2 = 0x55; + const unsigned long AutoSel3 = 0x90; + const unsigned long Reset = 0xF0; + __u32 OldVal; + __u8 Mfg[1]; + __u8 Id[1]; + unsigned I; + unsigned long Size; + + // Wait for any write/erase operation to settle + OldVal = flread(base); + for (I = 0; OldVal != flread(base) && I < 10000; I++) + OldVal = flread(base); + + // Reset the chip + flwrite(Reset,0x555); + + // Send the sequence + flwrite(AutoSel1,0x555); + flwrite(AutoSel2,0x2AA); + flwrite(AutoSel3,0x555); + + // Get the JEDEC numbers + Mfg[0] = flread(0); + Id[0] = flread(1); + // printk("Mfg is %x, Id is %x\n",Mfg[0],Id[0]); + + Size = handle_jedecs(map,Mfg,Id,1,base,priv); + // printk("handle_jedecs Size is %x\n",(unsigned int)Size); + if (Size == 0) + { + flwrite(Reset,0x555); + return 0; + } + + + // Reset. + flwrite(Reset,0x555); + + return 1; + + #undef flread + #undef flwrite +} + +// Look for flash using a 16 bit bus interface (ie 2 8-bit chips) +static int jedec_probe16(struct map_info *map,unsigned long base, + struct jedec_private *priv) +{ + return 0; +} + +// Look for flash using a 32 bit bus interface (ie 4 8-bit chips) +static int jedec_probe32(struct map_info *map,unsigned long base, + struct jedec_private *priv) +{ + #define flread(x) map_read32(map,base+((x)<<2)) + #define flwrite(v,x) map_write32(map,v,base+((x)<<2)) + + const unsigned long AutoSel1 = 0xAAAAAAAA; + const unsigned long AutoSel2 = 0x55555555; + const unsigned long AutoSel3 = 0x90909090; + const unsigned long Reset = 0xF0F0F0F0; + __u32 OldVal; + __u8 Mfg[4]; + __u8 Id[4]; + unsigned I; + unsigned long Size; + + // Wait for any write/erase operation to settle + OldVal = flread(base); + for (I = 0; OldVal != flread(base) && I < 10000; I++) + OldVal = flread(base); + + // Reset the chip + flwrite(Reset,0x555); + + // Send the sequence + flwrite(AutoSel1,0x555); + flwrite(AutoSel2,0x2AA); + flwrite(AutoSel3,0x555); + + // Test #1, JEDEC numbers are readable from 0x??00/0x??01 + if (flread(0) != flread(0x100) || + flread(1) != flread(0x101)) + { + flwrite(Reset,0x555); + return 0; + } + + // Split up the JEDEC numbers + OldVal = flread(0); + for (I = 0; I != 4; I++) + Mfg[I] = (OldVal >> (I*8)); + OldVal = flread(1); + for (I = 0; I != 4; I++) + Id[I] = (OldVal >> (I*8)); + + Size = handle_jedecs(map,Mfg,Id,4,base,priv); + if (Size == 0) + { + flwrite(Reset,0x555); + return 0; + } + + /* Check if there is address wrap around within a single bank, if this + returns JEDEC numbers then we assume that it is wrap around. Notice + we call this routine with the JEDEC return still enabled, if two or + more flashes have a truncated address space the probe test will still + work */ + if (base + (Size<<2)+0x555 < map->size && + base + (Size<<2)+0x555 < (base & (~(my_bank_size-1))) + my_bank_size) + { + if (flread(base+Size) != flread(base+Size + 0x100) || + flread(base+Size + 1) != flread(base+Size + 0x101)) + { + jedec_probe32(map,base+Size,priv); + } + } + + // Reset. + flwrite(0xF0F0F0F0,0x555); + + return 1; + + #undef flread + #undef flwrite +} + +/* Linear read. */ +static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf) +{ + struct map_info *map = mtd->priv; + + map_copy_from(map, buf, from, len); + *retlen = len; + return 0; +} + +/* Banked read. Take special care to jump past the holes in the bank + mapping. This version assumes symetry in the holes.. */ +static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf) +{ + struct map_info *map = mtd->priv; + struct jedec_private *priv = map->fldrv_priv; + + *retlen = 0; + while (len > 0) + { + // Determine what bank and offset into that bank the first byte is + unsigned long bank = from & (~(priv->bank_fill[0]-1)); + unsigned long offset = from & (priv->bank_fill[0]-1); + unsigned long get = len; + if (priv->bank_fill[0] - offset < len) + get = priv->bank_fill[0] - offset; + + bank /= priv->bank_fill[0]; + map_copy_from(map,buf + *retlen,bank*my_bank_size + offset,get); + + len -= get; + *retlen += get; + from += get; + } + return 0; +} + +/* Pass the flags value that the flash return before it re-entered read + mode. */ +static void jedec_flash_failed(unsigned char code) +{ + /* Bit 5 being high indicates that there was an internal device + failure, erasure time limits exceeded or something */ + if ((code & (1 << 5)) != 0) + { + printk("mtd: Internal Flash failure\n"); + return; + } + printk("mtd: Programming didn't take\n"); +} + +/* This uses the erasure function described in the AMD Flash Handbook, + it will work for flashes with a fixed sector size only. Flashes with + a selection of sector sizes (ie the AMD Am29F800B) will need a different + routine. This routine tries to parallize erasing multiple chips/sectors + where possible */ +static int flash_erase(struct mtd_info *mtd, struct erase_info *instr) +{ + // Does IO to the currently selected chip + #define flread(x) map_read8(map,chip->base+((x)<<chip->addrshift)) + #define flwrite(v,x) map_write8(map,v,chip->base+((x)<<chip->addrshift)) + + unsigned long Time = 0; + unsigned long NoTime = 0; + unsigned long start = instr->addr, len = instr->len; + unsigned int I; + struct map_info *map = mtd->priv; + struct jedec_private *priv = map->fldrv_priv; + + // Verify the arguments.. + if (start + len > mtd->size || + (start % mtd->erasesize) != 0 || + (len % mtd->erasesize) != 0 || + (len/mtd->erasesize) == 0) + return -EINVAL; + + jedec_flash_chip_scan(priv,start,len); + + // Start the erase sequence on each chip + for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) + { + unsigned long off; + struct jedec_flash_chip *chip = priv->chips + I; + + if (chip->length == 0) + continue; + + if (chip->start + chip->length > chip->size) + { + printk("DIE\n"); + return -EIO; + } + + flwrite(0xF0,chip->start + 0x555); + flwrite(0xAA,chip->start + 0x555); + flwrite(0x55,chip->start + 0x2AA); + flwrite(0x80,chip->start + 0x555); + flwrite(0xAA,chip->start + 0x555); + flwrite(0x55,chip->start + 0x2AA); + + /* Once we start selecting the erase sectors the delay between each + command must not exceed 50us or it will immediately start erasing + and ignore the other sectors */ + for (off = 0; off < len; off += chip->sectorsize) + { + // Check to make sure we didn't timeout + flwrite(0x30,chip->start + off); + if (off == 0) + continue; + if ((flread(chip->start + off) & (1 << 3)) != 0) + { + printk("mtd: Ack! We timed out the erase timer!\n"); + return -EIO; + } + } + } + + /* We could split this into a timer routine and return early, performing + background erasure.. Maybe later if the need warrents */ + + /* Poll the flash for erasure completion, specs say this can take as long + as 480 seconds to do all the sectors (for a 2 meg flash). + Erasure time is dependent on chip age, temp and wear.. */ + + /* This being a generic routine assumes a 32 bit bus. It does read32s + and bundles interleved chips into the same grouping. This will work + for all bus widths */ + Time = 0; + NoTime = 0; + for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) + { + struct jedec_flash_chip *chip = priv->chips + I; + unsigned long off = 0; + unsigned todo[4] = {0,0,0,0}; + unsigned todo_left = 0; + unsigned J; + + if (chip->length == 0) + continue; + + /* Find all chips in this data line, realistically this is all + or nothing up to the interleve count */ + for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++) + { + if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) == + (chip->base & (~((1<<chip->addrshift)-1)))) + { + todo_left++; + todo[priv->chips[J].base & ((1<<chip->addrshift)-1)] = 1; + } + } + + /* printk("todo: %x %x %x %x\n",(short)todo[0],(short)todo[1], + (short)todo[2],(short)todo[3]); + */ + while (1) + { + __u32 Last[4]; + unsigned long Count = 0; + + /* During erase bit 7 is held low and bit 6 toggles, we watch this, + should it stop toggling or go high then the erase is completed, + or this is not really flash ;> */ + switch (map->buswidth) { + case 1: + Last[0] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off); + Last[1] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off); + Last[2] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off); + break; + case 2: + Last[0] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off); + Last[1] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off); + Last[2] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off); + break; + case 3: + Last[0] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off); + Last[1] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off); + Last[2] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off); + break; + } + Count = 3; + while (todo_left != 0) + { + for (J = 0; J != 4; J++) + { + __u8 Byte1 = (Last[(Count-1)%4] >> (J*8)) & 0xFF; + __u8 Byte2 = (Last[(Count-2)%4] >> (J*8)) & 0xFF; + __u8 Byte3 = (Last[(Count-3)%4] >> (J*8)) & 0xFF; + if (todo[J] == 0) + continue; + + if ((Byte1 & (1 << 7)) == 0 && Byte1 != Byte2) + { +// printk("Check %x %x %x\n",(short)J,(short)Byte1,(short)Byte2); + continue; + } + + if (Byte1 == Byte2) + { + jedec_flash_failed(Byte3); + return -EIO; + } + + todo[J] = 0; + todo_left--; + } + +/* if (NoTime == 0) + Time += HZ/10 - schedule_timeout(HZ/10);*/ + NoTime = 0; + + switch (map->buswidth) { + case 1: + Last[Count % 4] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off); + break; + case 2: + Last[Count % 4] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off); + break; + case 4: + Last[Count % 4] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off); + break; + } + Count++; + +/* // Count time, max of 15s per sector (according to AMD) + if (Time > 15*len/mtd->erasesize*HZ) + { + printk("mtd: Flash Erase Timed out\n"); + return -EIO; + } */ + } + + // Skip to the next chip if we used chip erase + if (chip->length == chip->size) + off = chip->size; + else + off += chip->sectorsize; + + if (off >= chip->length) + break; + NoTime = 1; + } + + for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++) + { + if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) == + (chip->base & (~((1<<chip->addrshift)-1)))) + priv->chips[J].length = 0; + } + } + + //printk("done\n"); + instr->state = MTD_ERASE_DONE; + mtd_erase_callback(instr); + return 0; + + #undef flread + #undef flwrite +} + +/* This is the simple flash writing function. It writes to every byte, in + sequence. It takes care of how to properly address the flash if + the flash is interleved. It can only be used if all the chips in the + array are identical!*/ +static int flash_write(struct mtd_info *mtd, loff_t start, size_t len, + size_t *retlen, const u_char *buf) +{ + /* Does IO to the currently selected chip. It takes the bank addressing + base (which is divisible by the chip size) adds the necessary lower bits + of addrshift (interleave index) and then adds the control register index. */ + #define flread(x) map_read8(map,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift)) + #define flwrite(v,x) map_write8(map,v,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift)) + + struct map_info *map = mtd->priv; + struct jedec_private *priv = map->fldrv_priv; + unsigned long base; + unsigned long off; + size_t save_len = len; + + if (start + len > mtd->size) + return -EIO; + + //printk("Here"); + + //printk("flash_write: start is %x, len is %x\n",start,(unsigned long)len); + while (len != 0) + { + struct jedec_flash_chip *chip = priv->chips; + unsigned long bank; + unsigned long boffset; + + // Compute the base of the flash. + off = ((unsigned long)start) % (chip->size << chip->addrshift); + base = start - off; + + // Perform banked addressing translation. + bank = base & (~(priv->bank_fill[0]-1)); + boffset = base & (priv->bank_fill[0]-1); + bank = (bank/priv->bank_fill[0])*my_bank_size; + base = bank + boffset; + + // printk("Flasing %X %X %X\n",base,chip->size,len); + // printk("off is %x, compare with %x\n",off,chip->size << chip->addrshift); + + // Loop over this page + for (; off != (chip->size << chip->addrshift) && len != 0; start++, len--, off++,buf++) + { + unsigned char oldbyte = map_read8(map,base+off); + unsigned char Last[4]; + unsigned long Count = 0; + + if (oldbyte == *buf) { + // printk("oldbyte and *buf is %x,len is %x\n",oldbyte,len); + continue; + } + if (((~oldbyte) & *buf) != 0) + printk("mtd: warn: Trying to set a 0 to a 1\n"); + + // Write + flwrite(0xAA,0x555); + flwrite(0x55,0x2AA); + flwrite(0xA0,0x555); + map_write8(map,*buf,base + off); + Last[0] = map_read8(map,base + off); + Last[1] = map_read8(map,base + off); + Last[2] = map_read8(map,base + off); + + /* Wait for the flash to finish the operation. We store the last 4 + status bytes that have been retrieved so we can determine why + it failed. The toggle bits keep toggling when there is a + failure */ + for (Count = 3; Last[(Count - 1) % 4] != Last[(Count - 2) % 4] && + Count < 10000; Count++) + Last[Count % 4] = map_read8(map,base + off); + if (Last[(Count - 1) % 4] != *buf) + { + jedec_flash_failed(Last[(Count - 3) % 4]); + return -EIO; + } + } + } + *retlen = save_len; + return 0; +} + +/* This is used to enhance the speed of the erase routine, + when things are being done to multiple chips it is possible to + parallize the operations, particularly full memory erases of multi + chip memories benifit */ +static void jedec_flash_chip_scan(struct jedec_private *priv,unsigned long start, + unsigned long len) +{ + unsigned int I; + + // Zero the records + for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) + priv->chips[I].start = priv->chips[I].length = 0; + + // Intersect the region with each chip + for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) + { + struct jedec_flash_chip *chip = priv->chips + I; + unsigned long ByteStart; + unsigned long ChipEndByte = chip->offset + (chip->size << chip->addrshift); + + // End is before this chip or the start is after it + if (start+len < chip->offset || + ChipEndByte - (1 << chip->addrshift) < start) + continue; + + if (start < chip->offset) + { + ByteStart = chip->offset; + chip->start = 0; + } + else + { + chip->start = (start - chip->offset + (1 << chip->addrshift)-1) >> chip->addrshift; + ByteStart = start; + } + + if (start + len >= ChipEndByte) + chip->length = (ChipEndByte - ByteStart) >> chip->addrshift; + else + chip->length = (start + len - ByteStart + (1 << chip->addrshift)-1) >> chip->addrshift; + } +} + +int __init jedec_init(void) +{ + register_mtd_chip_driver(&jedec_chipdrv); + return 0; +} + +static void __exit jedec_exit(void) +{ + unregister_mtd_chip_driver(&jedec_chipdrv); +} + +module_init(jedec_init); +module_exit(jedec_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Jason Gunthorpe <jgg@deltatee.com> et al."); +MODULE_DESCRIPTION("Old MTD chip driver for JEDEC-compliant flash chips"); diff --git a/drivers/mtd/chips/jedec_probe.c b/drivers/mtd/chips/jedec_probe.c new file mode 100644 index 000000000000..30325a25ab95 --- /dev/null +++ b/drivers/mtd/chips/jedec_probe.c @@ -0,0 +1,2127 @@ +/* + Common Flash Interface probe code. + (C) 2000 Red Hat. GPL'd. + $Id: jedec_probe.c,v 1.61 2004/11/19 20:52:16 thayne Exp $ + See JEDEC (http://www.jedec.org/) standard JESD21C (section 3.5) + for the standard this probe goes back to. + + Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com +*/ + +#include <linux/config.h> +#include <linux/module.h> +#include <linux/init.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <asm/io.h> +#include <asm/byteorder.h> +#include <linux/errno.h> +#include <linux/slab.h> +#include <linux/interrupt.h> +#include <linux/init.h> + +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> +#include <linux/mtd/cfi.h> +#include <linux/mtd/gen_probe.h> + +/* Manufacturers */ +#define MANUFACTURER_AMD 0x0001 +#define MANUFACTURER_ATMEL 0x001f +#define MANUFACTURER_FUJITSU 0x0004 +#define MANUFACTURER_HYUNDAI 0x00AD +#define MANUFACTURER_INTEL 0x0089 +#define MANUFACTURER_MACRONIX 0x00C2 +#define MANUFACTURER_NEC 0x0010 +#define MANUFACTURER_PMC 0x009D +#define MANUFACTURER_SST 0x00BF +#define MANUFACTURER_ST 0x0020 +#define MANUFACTURER_TOSHIBA 0x0098 +#define MANUFACTURER_WINBOND 0x00da + + +/* AMD */ +#define AM29DL800BB 0x22C8 +#define AM29DL800BT 0x224A + +#define AM29F800BB 0x2258 +#define AM29F800BT 0x22D6 +#define AM29LV400BB 0x22BA +#define AM29LV400BT 0x22B9 +#define AM29LV800BB 0x225B +#define AM29LV800BT 0x22DA +#define AM29LV160DT 0x22C4 +#define AM29LV160DB 0x2249 +#define AM29F017D 0x003D +#define AM29F016D 0x00AD +#define AM29F080 0x00D5 +#define AM29F040 0x00A4 +#define AM29LV040B 0x004F +#define AM29F032B 0x0041 +#define AM29F002T 0x00B0 + +/* Atmel */ +#define AT49BV512 0x0003 +#define AT29LV512 0x003d +#define AT49BV16X 0x00C0 +#define AT49BV16XT 0x00C2 +#define AT49BV32X 0x00C8 +#define AT49BV32XT 0x00C9 + +/* Fujitsu */ +#define MBM29F040C 0x00A4 +#define MBM29LV650UE 0x22D7 +#define MBM29LV320TE 0x22F6 +#define MBM29LV320BE 0x22F9 +#define MBM29LV160TE 0x22C4 +#define MBM29LV160BE 0x2249 +#define MBM29LV800BA 0x225B +#define MBM29LV800TA 0x22DA +#define MBM29LV400TC 0x22B9 +#define MBM29LV400BC 0x22BA + +/* Hyundai */ +#define HY29F002T 0x00B0 + +/* Intel */ +#define I28F004B3T 0x00d4 +#define I28F004B3B 0x00d5 +#define I28F400B3T 0x8894 +#define I28F400B3B 0x8895 +#define I28F008S5 0x00a6 +#define I28F016S5 0x00a0 +#define I28F008SA 0x00a2 +#define I28F008B3T 0x00d2 +#define I28F008B3B 0x00d3 +#define I28F800B3T 0x8892 +#define I28F800B3B 0x8893 +#define I28F016S3 0x00aa +#define I28F016B3T 0x00d0 +#define I28F016B3B 0x00d1 +#define I28F160B3T 0x8890 +#define I28F160B3B 0x8891 +#define I28F320B3T 0x8896 +#define I28F320B3B 0x8897 +#define I28F640B3T 0x8898 +#define I28F640B3B 0x8899 +#define I82802AB 0x00ad +#define I82802AC 0x00ac + +/* Macronix */ +#define MX29LV040C 0x004F +#define MX29LV160T 0x22C4 +#define MX29LV160B 0x2249 +#define MX29F016 0x00AD +#define MX29F002T 0x00B0 +#define MX29F004T 0x0045 +#define MX29F004B 0x0046 + +/* NEC */ +#define UPD29F064115 0x221C + +/* PMC */ +#define PM49FL002 0x006D +#define PM49FL004 0x006E +#define PM49FL008 0x006A + +/* ST - www.st.com */ +#define M29W800DT 0x00D7 +#define M29W800DB 0x005B +#define M29W160DT 0x22C4 +#define M29W160DB 0x2249 +#define M29W040B 0x00E3 +#define M50FW040 0x002C +#define M50FW080 0x002D +#define M50FW016 0x002E +#define M50LPW080 0x002F + +/* SST */ +#define SST29EE020 0x0010 +#define SST29LE020 0x0012 +#define SST29EE512 0x005d +#define SST29LE512 0x003d +#define SST39LF800 0x2781 +#define SST39LF160 0x2782 +#define SST39LF512 0x00D4 +#define SST39LF010 0x00D5 +#define SST39LF020 0x00D6 +#define SST39LF040 0x00D7 +#define SST39SF010A 0x00B5 +#define SST39SF020A 0x00B6 +#define SST49LF004B 0x0060 +#define SST49LF008A 0x005a +#define SST49LF030A 0x001C +#define SST49LF040A 0x0051 +#define SST49LF080A 0x005B + +/* Toshiba */ +#define TC58FVT160 0x00C2 +#define TC58FVB160 0x0043 +#define TC58FVT321 0x009A +#define TC58FVB321 0x009C +#define TC58FVT641 0x0093 +#define TC58FVB641 0x0095 + +/* Winbond */ +#define W49V002A 0x00b0 + + +/* + * Unlock address sets for AMD command sets. + * Intel command sets use the MTD_UADDR_UNNECESSARY. + * Each identifier, except MTD_UADDR_UNNECESSARY, and + * MTD_UADDR_NO_SUPPORT must be defined below in unlock_addrs[]. + * MTD_UADDR_NOT_SUPPORTED must be 0 so that structure + * initialization need not require initializing all of the + * unlock addresses for all bit widths. + */ +enum uaddr { + MTD_UADDR_NOT_SUPPORTED = 0, /* data width not supported */ + MTD_UADDR_0x0555_0x02AA, + MTD_UADDR_0x0555_0x0AAA, + MTD_UADDR_0x5555_0x2AAA, + MTD_UADDR_0x0AAA_0x0555, + MTD_UADDR_DONT_CARE, /* Requires an arbitrary address */ + MTD_UADDR_UNNECESSARY, /* Does not require any address */ +}; + + +struct unlock_addr { + u32 addr1; + u32 addr2; +}; + + +/* + * I don't like the fact that the first entry in unlock_addrs[] + * exists, but is for MTD_UADDR_NOT_SUPPORTED - and, therefore, + * should not be used. The problem is that structures with + * initializers have extra fields initialized to 0. It is _very_ + * desireable to have the unlock address entries for unsupported + * data widths automatically initialized - that means that + * MTD_UADDR_NOT_SUPPORTED must be 0 and the first entry here + * must go unused. + */ +static const struct unlock_addr unlock_addrs[] = { + [MTD_UADDR_NOT_SUPPORTED] = { + .addr1 = 0xffff, + .addr2 = 0xffff + }, + + [MTD_UADDR_0x0555_0x02AA] = { + .addr1 = 0x0555, + .addr2 = 0x02aa + }, + + [MTD_UADDR_0x0555_0x0AAA] = { + .addr1 = 0x0555, + .addr2 = 0x0aaa + }, + + [MTD_UADDR_0x5555_0x2AAA] = { + .addr1 = 0x5555, + .addr2 = 0x2aaa + }, + + [MTD_UADDR_0x0AAA_0x0555] = { + .addr1 = 0x0AAA, + .addr2 = 0x0555 + }, + + [MTD_UADDR_DONT_CARE] = { + .addr1 = 0x0000, /* Doesn't matter which address */ + .addr2 = 0x0000 /* is used - must be last entry */ + }, + + [MTD_UADDR_UNNECESSARY] = { + .addr1 = 0x0000, + .addr2 = 0x0000 + } +}; + + +struct amd_flash_info { + const __u16 mfr_id; + const __u16 dev_id; + const char *name; + const int DevSize; + const int NumEraseRegions; + const int CmdSet; + const __u8 uaddr[4]; /* unlock addrs for 8, 16, 32, 64 */ + const ulong regions[6]; +}; + +#define ERASEINFO(size,blocks) (size<<8)|(blocks-1) + +#define SIZE_64KiB 16 +#define SIZE_128KiB 17 +#define SIZE_256KiB 18 +#define SIZE_512KiB 19 +#define SIZE_1MiB 20 +#define SIZE_2MiB 21 +#define SIZE_4MiB 22 +#define SIZE_8MiB 23 + + +/* + * Please keep this list ordered by manufacturer! + * Fortunately, the list isn't searched often and so a + * slow, linear search isn't so bad. + */ +static const struct amd_flash_info jedec_table[] = { + { + .mfr_id = MANUFACTURER_AMD, + .dev_id = AM29F032B, + .name = "AMD AM29F032B", + .uaddr = { + [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ + }, + .DevSize = SIZE_4MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 1, + .regions = { + ERASEINFO(0x10000,64) + } + }, { + .mfr_id = MANUFACTURER_AMD, + .dev_id = AM29LV160DT, + .name = "AMD AM29LV160DT", + .uaddr = { + [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ + [1] = MTD_UADDR_0x0555_0x02AA /* x16 */ + }, + .DevSize = SIZE_2MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 4, + .regions = { + ERASEINFO(0x10000,31), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x04000,1) + } + }, { + .mfr_id = MANUFACTURER_AMD, + .dev_id = AM29LV160DB, + .name = "AMD AM29LV160DB", + .uaddr = { + [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ + [1] = MTD_UADDR_0x0555_0x02AA /* x16 */ + }, + .DevSize = SIZE_2MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 4, + .regions = { + ERASEINFO(0x04000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x08000,1), + ERASEINFO(0x10000,31) + } + }, { + .mfr_id = MANUFACTURER_AMD, + .dev_id = AM29LV400BB, + .name = "AMD AM29LV400BB", + .uaddr = { + [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ + [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ + }, + .DevSize = SIZE_512KiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 4, + .regions = { + ERASEINFO(0x04000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x08000,1), + ERASEINFO(0x10000,7) + } + }, { + .mfr_id = MANUFACTURER_AMD, + .dev_id = AM29LV400BT, + .name = "AMD AM29LV400BT", + .uaddr = { + [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ + [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ + }, + .DevSize = SIZE_512KiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 4, + .regions = { + ERASEINFO(0x10000,7), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x04000,1) + } + }, { + .mfr_id = MANUFACTURER_AMD, + .dev_id = AM29LV800BB, + .name = "AMD AM29LV800BB", + .uaddr = { + [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ + [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ + }, + .DevSize = SIZE_1MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 4, + .regions = { + ERASEINFO(0x04000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x08000,1), + ERASEINFO(0x10000,15), + } + }, { +/* add DL */ + .mfr_id = MANUFACTURER_AMD, + .dev_id = AM29DL800BB, + .name = "AMD AM29DL800BB", + .uaddr = { + [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ + [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ + }, + .DevSize = SIZE_1MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 6, + .regions = { + ERASEINFO(0x04000,1), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,4), + ERASEINFO(0x08000,1), + ERASEINFO(0x04000,1), + ERASEINFO(0x10000,14) + } + }, { + .mfr_id = MANUFACTURER_AMD, + .dev_id = AM29DL800BT, + .name = "AMD AM29DL800BT", + .uaddr = { + [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ + [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ + }, + .DevSize = SIZE_1MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 6, + .regions = { + ERASEINFO(0x10000,14), + ERASEINFO(0x04000,1), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,4), + ERASEINFO(0x08000,1), + ERASEINFO(0x04000,1) + } + }, { + .mfr_id = MANUFACTURER_AMD, + .dev_id = AM29F800BB, + .name = "AMD AM29F800BB", + .uaddr = { + [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ + [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ + }, + .DevSize = SIZE_1MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 4, + .regions = { + ERASEINFO(0x04000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x08000,1), + ERASEINFO(0x10000,15), + } + }, { + .mfr_id = MANUFACTURER_AMD, + .dev_id = AM29LV800BT, + .name = "AMD AM29LV800BT", + .uaddr = { + [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ + [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ + }, + .DevSize = SIZE_1MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 4, + .regions = { + ERASEINFO(0x10000,15), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x04000,1) + } + }, { + .mfr_id = MANUFACTURER_AMD, + .dev_id = AM29F800BT, + .name = "AMD AM29F800BT", + .uaddr = { + [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ + [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ + }, + .DevSize = SIZE_1MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 4, + .regions = { + ERASEINFO(0x10000,15), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x04000,1) + } + }, { + .mfr_id = MANUFACTURER_AMD, + .dev_id = AM29F017D, + .name = "AMD AM29F017D", + .uaddr = { + [0] = MTD_UADDR_DONT_CARE /* x8 */ + }, + .DevSize = SIZE_2MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 1, + .regions = { + ERASEINFO(0x10000,32), + } + }, { + .mfr_id = MANUFACTURER_AMD, + .dev_id = AM29F016D, + .name = "AMD AM29F016D", + .uaddr = { + [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ + }, + .DevSize = SIZE_2MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 1, + .regions = { + ERASEINFO(0x10000,32), + } + }, { + .mfr_id = MANUFACTURER_AMD, + .dev_id = AM29F080, + .name = "AMD AM29F080", + .uaddr = { + [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ + }, + .DevSize = SIZE_1MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 1, + .regions = { + ERASEINFO(0x10000,16), + } + }, { + .mfr_id = MANUFACTURER_AMD, + .dev_id = AM29F040, + .name = "AMD AM29F040", + .uaddr = { + [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ + }, + .DevSize = SIZE_512KiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 1, + .regions = { + ERASEINFO(0x10000,8), + } + }, { + .mfr_id = MANUFACTURER_AMD, + .dev_id = AM29LV040B, + .name = "AMD AM29LV040B", + .uaddr = { + [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ + }, + .DevSize = SIZE_512KiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 1, + .regions = { + ERASEINFO(0x10000,8), + } + }, { + .mfr_id = MANUFACTURER_AMD, + .dev_id = AM29F002T, + .name = "AMD AM29F002T", + .uaddr = { + [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ + }, + .DevSize = SIZE_256KiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 4, + .regions = { + ERASEINFO(0x10000,3), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x04000,1), + } + }, { + .mfr_id = MANUFACTURER_ATMEL, + .dev_id = AT49BV512, + .name = "Atmel AT49BV512", + .uaddr = { + [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ + }, + .DevSize = SIZE_64KiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 1, + .regions = { + ERASEINFO(0x10000,1) + } + }, { + .mfr_id = MANUFACTURER_ATMEL, + .dev_id = AT29LV512, + .name = "Atmel AT29LV512", + .uaddr = { + [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ + }, + .DevSize = SIZE_64KiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 1, + .regions = { + ERASEINFO(0x80,256), + ERASEINFO(0x80,256) + } + }, { + .mfr_id = MANUFACTURER_ATMEL, + .dev_id = AT49BV16X, + .name = "Atmel AT49BV16X", + .uaddr = { + [0] = MTD_UADDR_0x0555_0x0AAA, /* x8 */ + [1] = MTD_UADDR_0x0555_0x0AAA /* x16 */ + }, + .DevSize = SIZE_2MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 2, + .regions = { + ERASEINFO(0x02000,8), + ERASEINFO(0x10000,31) + } + }, { + .mfr_id = MANUFACTURER_ATMEL, + .dev_id = AT49BV16XT, + .name = "Atmel AT49BV16XT", + .uaddr = { + [0] = MTD_UADDR_0x0555_0x0AAA, /* x8 */ + [1] = MTD_UADDR_0x0555_0x0AAA /* x16 */ + }, + .DevSize = SIZE_2MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 2, + .regions = { + ERASEINFO(0x10000,31), + ERASEINFO(0x02000,8) + } + }, { + .mfr_id = MANUFACTURER_ATMEL, + .dev_id = AT49BV32X, + .name = "Atmel AT49BV32X", + .uaddr = { + [0] = MTD_UADDR_0x0555_0x0AAA, /* x8 */ + [1] = MTD_UADDR_0x0555_0x0AAA /* x16 */ + }, + .DevSize = SIZE_4MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 2, + .regions = { + ERASEINFO(0x02000,8), + ERASEINFO(0x10000,63) + } + }, { + .mfr_id = MANUFACTURER_ATMEL, + .dev_id = AT49BV32XT, + .name = "Atmel AT49BV32XT", + .uaddr = { + [0] = MTD_UADDR_0x0555_0x0AAA, /* x8 */ + [1] = MTD_UADDR_0x0555_0x0AAA /* x16 */ + }, + .DevSize = SIZE_4MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 2, + .regions = { + ERASEINFO(0x10000,63), + ERASEINFO(0x02000,8) + } + }, { + .mfr_id = MANUFACTURER_FUJITSU, + .dev_id = MBM29F040C, + .name = "Fujitsu MBM29F040C", + .uaddr = { + [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ + }, + .DevSize = SIZE_512KiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 1, + .regions = { + ERASEINFO(0x10000,8) + } + }, { + .mfr_id = MANUFACTURER_FUJITSU, + .dev_id = MBM29LV650UE, + .name = "Fujitsu MBM29LV650UE", + .uaddr = { + [0] = MTD_UADDR_DONT_CARE /* x16 */ + }, + .DevSize = SIZE_8MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 1, + .regions = { + ERASEINFO(0x10000,128) + } + }, { + .mfr_id = MANUFACTURER_FUJITSU, + .dev_id = MBM29LV320TE, + .name = "Fujitsu MBM29LV320TE", + .uaddr = { + [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ + [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ + }, + .DevSize = SIZE_4MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 2, + .regions = { + ERASEINFO(0x10000,63), + ERASEINFO(0x02000,8) + } + }, { + .mfr_id = MANUFACTURER_FUJITSU, + .dev_id = MBM29LV320BE, + .name = "Fujitsu MBM29LV320BE", + .uaddr = { + [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ + [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ + }, + .DevSize = SIZE_4MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 2, + .regions = { + ERASEINFO(0x02000,8), + ERASEINFO(0x10000,63) + } + }, { + .mfr_id = MANUFACTURER_FUJITSU, + .dev_id = MBM29LV160TE, + .name = "Fujitsu MBM29LV160TE", + .uaddr = { + [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ + [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ + }, + .DevSize = SIZE_2MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 4, + .regions = { + ERASEINFO(0x10000,31), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x04000,1) + } + }, { + .mfr_id = MANUFACTURER_FUJITSU, + .dev_id = MBM29LV160BE, + .name = "Fujitsu MBM29LV160BE", + .uaddr = { + [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ + [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ + }, + .DevSize = SIZE_2MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 4, + .regions = { + ERASEINFO(0x04000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x08000,1), + ERASEINFO(0x10000,31) + } + }, { + .mfr_id = MANUFACTURER_FUJITSU, + .dev_id = MBM29LV800BA, + .name = "Fujitsu MBM29LV800BA", + .uaddr = { + [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ + [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ + }, + .DevSize = SIZE_1MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 4, + .regions = { + ERASEINFO(0x04000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x08000,1), + ERASEINFO(0x10000,15) + } + }, { + .mfr_id = MANUFACTURER_FUJITSU, + .dev_id = MBM29LV800TA, + .name = "Fujitsu MBM29LV800TA", + .uaddr = { + [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ + [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ + }, + .DevSize = SIZE_1MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 4, + .regions = { + ERASEINFO(0x10000,15), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x04000,1) + } + }, { + .mfr_id = MANUFACTURER_FUJITSU, + .dev_id = MBM29LV400BC, + .name = "Fujitsu MBM29LV400BC", + .uaddr = { + [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ + [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ + }, + .DevSize = SIZE_512KiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 4, + .regions = { + ERASEINFO(0x04000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x08000,1), + ERASEINFO(0x10000,7) + } + }, { + .mfr_id = MANUFACTURER_FUJITSU, + .dev_id = MBM29LV400TC, + .name = "Fujitsu MBM29LV400TC", + .uaddr = { + [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ + [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ + }, + .DevSize = SIZE_512KiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 4, + .regions = { + ERASEINFO(0x10000,7), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x04000,1) + } + }, { + .mfr_id = MANUFACTURER_HYUNDAI, + .dev_id = HY29F002T, + .name = "Hyundai HY29F002T", + .uaddr = { + [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ + }, + .DevSize = SIZE_256KiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 4, + .regions = { + ERASEINFO(0x10000,3), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x04000,1), + } + }, { + .mfr_id = MANUFACTURER_INTEL, + .dev_id = I28F004B3B, + .name = "Intel 28F004B3B", + .uaddr = { + [0] = MTD_UADDR_UNNECESSARY, /* x8 */ + }, + .DevSize = SIZE_512KiB, + .CmdSet = P_ID_INTEL_STD, + .NumEraseRegions= 2, + .regions = { + ERASEINFO(0x02000, 8), + ERASEINFO(0x10000, 7), + } + }, { + .mfr_id = MANUFACTURER_INTEL, + .dev_id = I28F004B3T, + .name = "Intel 28F004B3T", + .uaddr = { + [0] = MTD_UADDR_UNNECESSARY, /* x8 */ + }, + .DevSize = SIZE_512KiB, + .CmdSet = P_ID_INTEL_STD, + .NumEraseRegions= 2, + .regions = { + ERASEINFO(0x10000, 7), + ERASEINFO(0x02000, 8), + } + }, { + .mfr_id = MANUFACTURER_INTEL, + .dev_id = I28F400B3B, + .name = "Intel 28F400B3B", + .uaddr = { + [0] = MTD_UADDR_UNNECESSARY, /* x8 */ + [1] = MTD_UADDR_UNNECESSARY, /* x16 */ + }, + .DevSize = SIZE_512KiB, + .CmdSet = P_ID_INTEL_STD, + .NumEraseRegions= 2, + .regions = { + ERASEINFO(0x02000, 8), + ERASEINFO(0x10000, 7), + } + }, { + .mfr_id = MANUFACTURER_INTEL, + .dev_id = I28F400B3T, + .name = "Intel 28F400B3T", + .uaddr = { + [0] = MTD_UADDR_UNNECESSARY, /* x8 */ + [1] = MTD_UADDR_UNNECESSARY, /* x16 */ + }, + .DevSize = SIZE_512KiB, + .CmdSet = P_ID_INTEL_STD, + .NumEraseRegions= 2, + .regions = { + ERASEINFO(0x10000, 7), + ERASEINFO(0x02000, 8), + } + }, { + .mfr_id = MANUFACTURER_INTEL, + .dev_id = I28F008B3B, + .name = "Intel 28F008B3B", + .uaddr = { + [0] = MTD_UADDR_UNNECESSARY, /* x8 */ + }, + .DevSize = SIZE_1MiB, + .CmdSet = P_ID_INTEL_STD, + .NumEraseRegions= 2, + .regions = { + ERASEINFO(0x02000, 8), + ERASEINFO(0x10000, 15), + } + }, { + .mfr_id = MANUFACTURER_INTEL, + .dev_id = I28F008B3T, + .name = "Intel 28F008B3T", + .uaddr = { + [0] = MTD_UADDR_UNNECESSARY, /* x8 */ + }, + .DevSize = SIZE_1MiB, + .CmdSet = P_ID_INTEL_STD, + .NumEraseRegions= 2, + .regions = { + ERASEINFO(0x10000, 15), + ERASEINFO(0x02000, 8), + } + }, { + .mfr_id = MANUFACTURER_INTEL, + .dev_id = I28F008S5, + .name = "Intel 28F008S5", + .uaddr = { + [0] = MTD_UADDR_UNNECESSARY, /* x8 */ + }, + .DevSize = SIZE_1MiB, + .CmdSet = P_ID_INTEL_EXT, + .NumEraseRegions= 1, + .regions = { + ERASEINFO(0x10000,16), + } + }, { + .mfr_id = MANUFACTURER_INTEL, + .dev_id = I28F016S5, + .name = "Intel 28F016S5", + .uaddr = { + [0] = MTD_UADDR_UNNECESSARY, /* x8 */ + }, + .DevSize = SIZE_2MiB, + .CmdSet = P_ID_INTEL_EXT, + .NumEraseRegions= 1, + .regions = { + ERASEINFO(0x10000,32), + } + }, { + .mfr_id = MANUFACTURER_INTEL, + .dev_id = I28F008SA, + .name = "Intel 28F008SA", + .uaddr = { + [0] = MTD_UADDR_UNNECESSARY, /* x8 */ + }, + .DevSize = SIZE_1MiB, + .CmdSet = P_ID_INTEL_STD, + .NumEraseRegions= 1, + .regions = { + ERASEINFO(0x10000, 16), + } + }, { + .mfr_id = MANUFACTURER_INTEL, + .dev_id = I28F800B3B, + .name = "Intel 28F800B3B", + .uaddr = { + [1] = MTD_UADDR_UNNECESSARY, /* x16 */ + }, + .DevSize = SIZE_1MiB, + .CmdSet = P_ID_INTEL_STD, + .NumEraseRegions= 2, + .regions = { + ERASEINFO(0x02000, 8), + ERASEINFO(0x10000, 15), + } + }, { + .mfr_id = MANUFACTURER_INTEL, + .dev_id = I28F800B3T, + .name = "Intel 28F800B3T", + .uaddr = { + [1] = MTD_UADDR_UNNECESSARY, /* x16 */ + }, + .DevSize = SIZE_1MiB, + .CmdSet = P_ID_INTEL_STD, + .NumEraseRegions= 2, + .regions = { + ERASEINFO(0x10000, 15), + ERASEINFO(0x02000, 8), + } + }, { + .mfr_id = MANUFACTURER_INTEL, + .dev_id = I28F016B3B, + .name = "Intel 28F016B3B", + .uaddr = { + [0] = MTD_UADDR_UNNECESSARY, /* x8 */ + }, + .DevSize = SIZE_2MiB, + .CmdSet = P_ID_INTEL_STD, + .NumEraseRegions= 2, + .regions = { + ERASEINFO(0x02000, 8), + ERASEINFO(0x10000, 31), + } + }, { + .mfr_id = MANUFACTURER_INTEL, + .dev_id = I28F016S3, + .name = "Intel I28F016S3", + .uaddr = { + [0] = MTD_UADDR_UNNECESSARY, /* x8 */ + }, + .DevSize = SIZE_2MiB, + .CmdSet = P_ID_INTEL_STD, + .NumEraseRegions= 1, + .regions = { + ERASEINFO(0x10000, 32), + } + }, { + .mfr_id = MANUFACTURER_INTEL, + .dev_id = I28F016B3T, + .name = "Intel 28F016B3T", + .uaddr = { + [0] = MTD_UADDR_UNNECESSARY, /* x8 */ + }, + .DevSize = SIZE_2MiB, + .CmdSet = P_ID_INTEL_STD, + .NumEraseRegions= 2, + .regions = { + ERASEINFO(0x10000, 31), + ERASEINFO(0x02000, 8), + } + }, { + .mfr_id = MANUFACTURER_INTEL, + .dev_id = I28F160B3B, + .name = "Intel 28F160B3B", + .uaddr = { + [1] = MTD_UADDR_UNNECESSARY, /* x16 */ + }, + .DevSize = SIZE_2MiB, + .CmdSet = P_ID_INTEL_STD, + .NumEraseRegions= 2, + .regions = { + ERASEINFO(0x02000, 8), + ERASEINFO(0x10000, 31), + } + }, { + .mfr_id = MANUFACTURER_INTEL, + .dev_id = I28F160B3T, + .name = "Intel 28F160B3T", + .uaddr = { + [1] = MTD_UADDR_UNNECESSARY, /* x16 */ + }, + .DevSize = SIZE_2MiB, + .CmdSet = P_ID_INTEL_STD, + .NumEraseRegions= 2, + .regions = { + ERASEINFO(0x10000, 31), + ERASEINFO(0x02000, 8), + } + }, { + .mfr_id = MANUFACTURER_INTEL, + .dev_id = I28F320B3B, + .name = "Intel 28F320B3B", + .uaddr = { + [1] = MTD_UADDR_UNNECESSARY, /* x16 */ + }, + .DevSize = SIZE_4MiB, + .CmdSet = P_ID_INTEL_STD, + .NumEraseRegions= 2, + .regions = { + ERASEINFO(0x02000, 8), + ERASEINFO(0x10000, 63), + } + }, { + .mfr_id = MANUFACTURER_INTEL, + .dev_id = I28F320B3T, + .name = "Intel 28F320B3T", + .uaddr = { + [1] = MTD_UADDR_UNNECESSARY, /* x16 */ + }, + .DevSize = SIZE_4MiB, + .CmdSet = P_ID_INTEL_STD, + .NumEraseRegions= 2, + .regions = { + ERASEINFO(0x10000, 63), + ERASEINFO(0x02000, 8), + } + }, { + .mfr_id = MANUFACTURER_INTEL, + .dev_id = I28F640B3B, + .name = "Intel 28F640B3B", + .uaddr = { + [1] = MTD_UADDR_UNNECESSARY, /* x16 */ + }, + .DevSize = SIZE_8MiB, + .CmdSet = P_ID_INTEL_STD, + .NumEraseRegions= 2, + .regions = { + ERASEINFO(0x02000, 8), + ERASEINFO(0x10000, 127), + } + }, { + .mfr_id = MANUFACTURER_INTEL, + .dev_id = I28F640B3T, + .name = "Intel 28F640B3T", + .uaddr = { + [1] = MTD_UADDR_UNNECESSARY, /* x16 */ + }, + .DevSize = SIZE_8MiB, + .CmdSet = P_ID_INTEL_STD, + .NumEraseRegions= 2, + .regions = { + ERASEINFO(0x10000, 127), + ERASEINFO(0x02000, 8), + } + }, { + .mfr_id = MANUFACTURER_INTEL, + .dev_id = I82802AB, + .name = "Intel 82802AB", + .uaddr = { + [0] = MTD_UADDR_UNNECESSARY, /* x8 */ + }, + .DevSize = SIZE_512KiB, + .CmdSet = P_ID_INTEL_EXT, + .NumEraseRegions= 1, + .regions = { + ERASEINFO(0x10000,8), + } + }, { + .mfr_id = MANUFACTURER_INTEL, + .dev_id = I82802AC, + .name = "Intel 82802AC", + .uaddr = { + [0] = MTD_UADDR_UNNECESSARY, /* x8 */ + }, + .DevSize = SIZE_1MiB, + .CmdSet = P_ID_INTEL_EXT, + .NumEraseRegions= 1, + .regions = { + ERASEINFO(0x10000,16), + } + }, { + .mfr_id = MANUFACTURER_MACRONIX, + .dev_id = MX29LV040C, + .name = "Macronix MX29LV040C", + .uaddr = { + [0] = MTD_UADDR_0x0555_0x02AA, /* x8 */ + }, + .DevSize = SIZE_512KiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 1, + .regions = { + ERASEINFO(0x10000,8), + } + }, { + .mfr_id = MANUFACTURER_MACRONIX, + .dev_id = MX29LV160T, + .name = "MXIC MX29LV160T", + .uaddr = { + [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ + [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ + }, + .DevSize = SIZE_2MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 4, + .regions = { + ERASEINFO(0x10000,31), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x04000,1) + } + }, { + .mfr_id = MANUFACTURER_NEC, + .dev_id = UPD29F064115, + .name = "NEC uPD29F064115", + .uaddr = { + [0] = MTD_UADDR_0x0555_0x02AA, /* x8 */ + [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ + }, + .DevSize = SIZE_8MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 3, + .regions = { + ERASEINFO(0x2000,8), + ERASEINFO(0x10000,126), + ERASEINFO(0x2000,8), + } + }, { + .mfr_id = MANUFACTURER_MACRONIX, + .dev_id = MX29LV160B, + .name = "MXIC MX29LV160B", + .uaddr = { + [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ + [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ + }, + .DevSize = SIZE_2MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 4, + .regions = { + ERASEINFO(0x04000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x08000,1), + ERASEINFO(0x10000,31) + } + }, { + .mfr_id = MANUFACTURER_MACRONIX, + .dev_id = MX29F016, + .name = "Macronix MX29F016", + .uaddr = { + [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ + }, + .DevSize = SIZE_2MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 1, + .regions = { + ERASEINFO(0x10000,32), + } + }, { + .mfr_id = MANUFACTURER_MACRONIX, + .dev_id = MX29F004T, + .name = "Macronix MX29F004T", + .uaddr = { + [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ + }, + .DevSize = SIZE_512KiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 4, + .regions = { + ERASEINFO(0x10000,7), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x04000,1), + } + }, { + .mfr_id = MANUFACTURER_MACRONIX, + .dev_id = MX29F004B, + .name = "Macronix MX29F004B", + .uaddr = { + [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ + }, + .DevSize = SIZE_512KiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 4, + .regions = { + ERASEINFO(0x04000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x08000,1), + ERASEINFO(0x10000,7), + } + }, { + .mfr_id = MANUFACTURER_MACRONIX, + .dev_id = MX29F002T, + .name = "Macronix MX29F002T", + .uaddr = { + [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ + }, + .DevSize = SIZE_256KiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 4, + .regions = { + ERASEINFO(0x10000,3), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x04000,1), + } + }, { + .mfr_id = MANUFACTURER_PMC, + .dev_id = PM49FL002, + .name = "PMC Pm49FL002", + .uaddr = { + [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ + }, + .DevSize = SIZE_256KiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 1, + .regions = { + ERASEINFO( 0x01000, 64 ) + } + }, { + .mfr_id = MANUFACTURER_PMC, + .dev_id = PM49FL004, + .name = "PMC Pm49FL004", + .uaddr = { + [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ + }, + .DevSize = SIZE_512KiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 1, + .regions = { + ERASEINFO( 0x01000, 128 ) + } + }, { + .mfr_id = MANUFACTURER_PMC, + .dev_id = PM49FL008, + .name = "PMC Pm49FL008", + .uaddr = { + [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ + }, + .DevSize = SIZE_1MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 1, + .regions = { + ERASEINFO( 0x01000, 256 ) + } + }, { + .mfr_id = MANUFACTURER_SST, + .dev_id = SST39LF512, + .name = "SST 39LF512", + .uaddr = { + [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ + }, + .DevSize = SIZE_64KiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 1, + .regions = { + ERASEINFO(0x01000,16), + } + }, { + .mfr_id = MANUFACTURER_SST, + .dev_id = SST39LF010, + .name = "SST 39LF010", + .uaddr = { + [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ + }, + .DevSize = SIZE_128KiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 1, + .regions = { + ERASEINFO(0x01000,32), + } + }, { + .mfr_id = MANUFACTURER_SST, + .dev_id = SST29EE020, + .name = "SST 29EE020", + .uaddr = { + [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ + }, + .DevSize = SIZE_256KiB, + .CmdSet = P_ID_SST_PAGE, + .NumEraseRegions= 1, + .regions = {ERASEINFO(0x01000,64), + } + }, { + .mfr_id = MANUFACTURER_SST, + .dev_id = SST29LE020, + .name = "SST 29LE020", + .uaddr = { + [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ + }, + .DevSize = SIZE_256KiB, + .CmdSet = P_ID_SST_PAGE, + .NumEraseRegions= 1, + .regions = {ERASEINFO(0x01000,64), + } + }, { + .mfr_id = MANUFACTURER_SST, + .dev_id = SST39LF020, + .name = "SST 39LF020", + .uaddr = { + [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ + }, + .DevSize = SIZE_256KiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 1, + .regions = { + ERASEINFO(0x01000,64), + } + }, { + .mfr_id = MANUFACTURER_SST, + .dev_id = SST39LF040, + .name = "SST 39LF040", + .uaddr = { + [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ + }, + .DevSize = SIZE_512KiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 1, + .regions = { + ERASEINFO(0x01000,128), + } + }, { + .mfr_id = MANUFACTURER_SST, + .dev_id = SST39SF010A, + .name = "SST 39SF010A", + .uaddr = { + [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ + }, + .DevSize = SIZE_128KiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 1, + .regions = { + ERASEINFO(0x01000,32), + } + }, { + .mfr_id = MANUFACTURER_SST, + .dev_id = SST39SF020A, + .name = "SST 39SF020A", + .uaddr = { + [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ + }, + .DevSize = SIZE_256KiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 1, + .regions = { + ERASEINFO(0x01000,64), + } + }, { + .mfr_id = MANUFACTURER_SST, + .dev_id = SST49LF004B, + .name = "SST 49LF004B", + .uaddr = { + [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ + }, + .DevSize = SIZE_512KiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 1, + .regions = { + ERASEINFO(0x01000,128), + } + }, { + .mfr_id = MANUFACTURER_SST, + .dev_id = SST49LF008A, + .name = "SST 49LF008A", + .uaddr = { + [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ + }, + .DevSize = SIZE_1MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 1, + .regions = { + ERASEINFO(0x01000,256), + } + }, { + .mfr_id = MANUFACTURER_SST, + .dev_id = SST49LF030A, + .name = "SST 49LF030A", + .uaddr = { + [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ + }, + .DevSize = SIZE_512KiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 1, + .regions = { + ERASEINFO(0x01000,96), + } + }, { + .mfr_id = MANUFACTURER_SST, + .dev_id = SST49LF040A, + .name = "SST 49LF040A", + .uaddr = { + [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ + }, + .DevSize = SIZE_512KiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 1, + .regions = { + ERASEINFO(0x01000,128), + } + }, { + .mfr_id = MANUFACTURER_SST, + .dev_id = SST49LF080A, + .name = "SST 49LF080A", + .uaddr = { + [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ + }, + .DevSize = SIZE_1MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 1, + .regions = { + ERASEINFO(0x01000,256), + } + }, { + .mfr_id = MANUFACTURER_SST, /* should be CFI */ + .dev_id = SST39LF160, + .name = "SST 39LF160", + .uaddr = { + [0] = MTD_UADDR_0x5555_0x2AAA, /* x8 */ + [1] = MTD_UADDR_0x5555_0x2AAA /* x16 */ + }, + .DevSize = SIZE_2MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 2, + .regions = { + ERASEINFO(0x1000,256), + ERASEINFO(0x1000,256) + } + + }, { + .mfr_id = MANUFACTURER_ST, /* FIXME - CFI device? */ + .dev_id = M29W800DT, + .name = "ST M29W800DT", + .uaddr = { + [0] = MTD_UADDR_0x5555_0x2AAA, /* x8 */ + [1] = MTD_UADDR_0x5555_0x2AAA /* x16 */ + }, + .DevSize = SIZE_1MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 4, + .regions = { + ERASEINFO(0x10000,15), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x04000,1) + } + }, { + .mfr_id = MANUFACTURER_ST, /* FIXME - CFI device? */ + .dev_id = M29W800DB, + .name = "ST M29W800DB", + .uaddr = { + [0] = MTD_UADDR_0x5555_0x2AAA, /* x8 */ + [1] = MTD_UADDR_0x5555_0x2AAA /* x16 */ + }, + .DevSize = SIZE_1MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 4, + .regions = { + ERASEINFO(0x04000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x08000,1), + ERASEINFO(0x10000,15) + } + }, { + .mfr_id = MANUFACTURER_ST, /* FIXME - CFI device? */ + .dev_id = M29W160DT, + .name = "ST M29W160DT", + .uaddr = { + [0] = MTD_UADDR_0x0555_0x02AA, /* x8 */ + [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ + }, + .DevSize = SIZE_2MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 4, + .regions = { + ERASEINFO(0x10000,31), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x04000,1) + } + }, { + .mfr_id = MANUFACTURER_ST, /* FIXME - CFI device? */ + .dev_id = M29W160DB, + .name = "ST M29W160DB", + .uaddr = { + [0] = MTD_UADDR_0x0555_0x02AA, /* x8 */ + [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ + }, + .DevSize = SIZE_2MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 4, + .regions = { + ERASEINFO(0x04000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x08000,1), + ERASEINFO(0x10000,31) + } + }, { + .mfr_id = MANUFACTURER_ST, + .dev_id = M29W040B, + .name = "ST M29W040B", + .uaddr = { + [0] = MTD_UADDR_0x0555_0x02AA /* x8 */ + }, + .DevSize = SIZE_512KiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 1, + .regions = { + ERASEINFO(0x10000,8), + } + }, { + .mfr_id = MANUFACTURER_ST, + .dev_id = M50FW040, + .name = "ST M50FW040", + .uaddr = { + [0] = MTD_UADDR_UNNECESSARY, /* x8 */ + }, + .DevSize = SIZE_512KiB, + .CmdSet = P_ID_INTEL_EXT, + .NumEraseRegions= 1, + .regions = { + ERASEINFO(0x10000,8), + } + }, { + .mfr_id = MANUFACTURER_ST, + .dev_id = M50FW080, + .name = "ST M50FW080", + .uaddr = { + [0] = MTD_UADDR_UNNECESSARY, /* x8 */ + }, + .DevSize = SIZE_1MiB, + .CmdSet = P_ID_INTEL_EXT, + .NumEraseRegions= 1, + .regions = { + ERASEINFO(0x10000,16), + } + }, { + .mfr_id = MANUFACTURER_ST, + .dev_id = M50FW016, + .name = "ST M50FW016", + .uaddr = { + [0] = MTD_UADDR_UNNECESSARY, /* x8 */ + }, + .DevSize = SIZE_2MiB, + .CmdSet = P_ID_INTEL_EXT, + .NumEraseRegions= 1, + .regions = { + ERASEINFO(0x10000,32), + } + }, { + .mfr_id = MANUFACTURER_ST, + .dev_id = M50LPW080, + .name = "ST M50LPW080", + .uaddr = { + [0] = MTD_UADDR_UNNECESSARY, /* x8 */ + }, + .DevSize = SIZE_1MiB, + .CmdSet = P_ID_INTEL_EXT, + .NumEraseRegions= 1, + .regions = { + ERASEINFO(0x10000,16), + } + }, { + .mfr_id = MANUFACTURER_TOSHIBA, + .dev_id = TC58FVT160, + .name = "Toshiba TC58FVT160", + .uaddr = { + [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ + [1] = MTD_UADDR_0x0555_0x02AA /* x16 */ + }, + .DevSize = SIZE_2MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 4, + .regions = { + ERASEINFO(0x10000,31), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x04000,1) + } + }, { + .mfr_id = MANUFACTURER_TOSHIBA, + .dev_id = TC58FVB160, + .name = "Toshiba TC58FVB160", + .uaddr = { + [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ + [1] = MTD_UADDR_0x0555_0x02AA /* x16 */ + }, + .DevSize = SIZE_2MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 4, + .regions = { + ERASEINFO(0x04000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x08000,1), + ERASEINFO(0x10000,31) + } + }, { + .mfr_id = MANUFACTURER_TOSHIBA, + .dev_id = TC58FVB321, + .name = "Toshiba TC58FVB321", + .uaddr = { + [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ + [1] = MTD_UADDR_0x0555_0x02AA /* x16 */ + }, + .DevSize = SIZE_4MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 2, + .regions = { + ERASEINFO(0x02000,8), + ERASEINFO(0x10000,63) + } + }, { + .mfr_id = MANUFACTURER_TOSHIBA, + .dev_id = TC58FVT321, + .name = "Toshiba TC58FVT321", + .uaddr = { + [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ + [1] = MTD_UADDR_0x0555_0x02AA /* x16 */ + }, + .DevSize = SIZE_4MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 2, + .regions = { + ERASEINFO(0x10000,63), + ERASEINFO(0x02000,8) + } + }, { + .mfr_id = MANUFACTURER_TOSHIBA, + .dev_id = TC58FVB641, + .name = "Toshiba TC58FVB641", + .uaddr = { + [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ + [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ + }, + .DevSize = SIZE_8MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 2, + .regions = { + ERASEINFO(0x02000,8), + ERASEINFO(0x10000,127) + } + }, { + .mfr_id = MANUFACTURER_TOSHIBA, + .dev_id = TC58FVT641, + .name = "Toshiba TC58FVT641", + .uaddr = { + [0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */ + [1] = MTD_UADDR_0x0555_0x02AA, /* x16 */ + }, + .DevSize = SIZE_8MiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 2, + .regions = { + ERASEINFO(0x10000,127), + ERASEINFO(0x02000,8) + } + }, { + .mfr_id = MANUFACTURER_WINBOND, + .dev_id = W49V002A, + .name = "Winbond W49V002A", + .uaddr = { + [0] = MTD_UADDR_0x5555_0x2AAA /* x8 */ + }, + .DevSize = SIZE_256KiB, + .CmdSet = P_ID_AMD_STD, + .NumEraseRegions= 4, + .regions = { + ERASEINFO(0x10000, 3), + ERASEINFO(0x08000, 1), + ERASEINFO(0x02000, 2), + ERASEINFO(0x04000, 1), + } + } +}; + + +static int cfi_jedec_setup(struct cfi_private *p_cfi, int index); + +static int jedec_probe_chip(struct map_info *map, __u32 base, + unsigned long *chip_map, struct cfi_private *cfi); + +static struct mtd_info *jedec_probe(struct map_info *map); + +static inline u32 jedec_read_mfr(struct map_info *map, __u32 base, + struct cfi_private *cfi) +{ + map_word result; + unsigned long mask; + u32 ofs = cfi_build_cmd_addr(0, cfi_interleave(cfi), cfi->device_type); + mask = (1 << (cfi->device_type * 8)) -1; + result = map_read(map, base + ofs); + return result.x[0] & mask; +} + +static inline u32 jedec_read_id(struct map_info *map, __u32 base, + struct cfi_private *cfi) +{ + map_word result; + unsigned long mask; + u32 ofs = cfi_build_cmd_addr(1, cfi_interleave(cfi), cfi->device_type); + mask = (1 << (cfi->device_type * 8)) -1; + result = map_read(map, base + ofs); + return result.x[0] & mask; +} + +static inline void jedec_reset(u32 base, struct map_info *map, + struct cfi_private *cfi) +{ + /* Reset */ + + /* after checking the datasheets for SST, MACRONIX and ATMEL + * (oh and incidentaly the jedec spec - 3.5.3.3) the reset + * sequence is *supposed* to be 0xaa at 0x5555, 0x55 at + * 0x2aaa, 0xF0 at 0x5555 this will not affect the AMD chips + * as they will ignore the writes and dont care what address + * the F0 is written to */ + if(cfi->addr_unlock1) { + DEBUG( MTD_DEBUG_LEVEL3, + "reset unlock called %x %x \n", + cfi->addr_unlock1,cfi->addr_unlock2); + cfi_send_gen_cmd(0xaa, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, base, map, cfi, cfi->device_type, NULL); + } + + cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL); + /* Some misdesigned intel chips do not respond for 0xF0 for a reset, + * so ensure we're in read mode. Send both the Intel and the AMD command + * for this. Intel uses 0xff for this, AMD uses 0xff for NOP, so + * this should be safe. + */ + cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); + /* FIXME - should have reset delay before continuing */ +} + + +static inline __u8 finfo_uaddr(const struct amd_flash_info *finfo, int device_type) +{ + int uaddr_idx; + __u8 uaddr = MTD_UADDR_NOT_SUPPORTED; + + switch ( device_type ) { + case CFI_DEVICETYPE_X8: uaddr_idx = 0; break; + case CFI_DEVICETYPE_X16: uaddr_idx = 1; break; + case CFI_DEVICETYPE_X32: uaddr_idx = 2; break; + default: + printk(KERN_NOTICE "MTD: %s(): unknown device_type %d\n", + __func__, device_type); + goto uaddr_done; + } + + uaddr = finfo->uaddr[uaddr_idx]; + + if (uaddr != MTD_UADDR_NOT_SUPPORTED ) { + /* ASSERT("The unlock addresses for non-8-bit mode + are bollocks. We don't really need an array."); */ + uaddr = finfo->uaddr[0]; + } + + uaddr_done: + return uaddr; +} + + +static int cfi_jedec_setup(struct cfi_private *p_cfi, int index) +{ + int i,num_erase_regions; + __u8 uaddr; + + printk("Found: %s\n",jedec_table[index].name); + + num_erase_regions = jedec_table[index].NumEraseRegions; + + p_cfi->cfiq = kmalloc(sizeof(struct cfi_ident) + num_erase_regions * 4, GFP_KERNEL); + if (!p_cfi->cfiq) { + //xx printk(KERN_WARNING "%s: kmalloc failed for CFI ident structure\n", map->name); + return 0; + } + + memset(p_cfi->cfiq,0,sizeof(struct cfi_ident)); + + p_cfi->cfiq->P_ID = jedec_table[index].CmdSet; + p_cfi->cfiq->NumEraseRegions = jedec_table[index].NumEraseRegions; + p_cfi->cfiq->DevSize = jedec_table[index].DevSize; + p_cfi->cfi_mode = CFI_MODE_JEDEC; + + for (i=0; i<num_erase_regions; i++){ + p_cfi->cfiq->EraseRegionInfo[i] = jedec_table[index].regions[i]; + } + p_cfi->cmdset_priv = NULL; + + /* This may be redundant for some cases, but it doesn't hurt */ + p_cfi->mfr = jedec_table[index].mfr_id; + p_cfi->id = jedec_table[index].dev_id; + + uaddr = finfo_uaddr(&jedec_table[index], p_cfi->device_type); + if ( uaddr == MTD_UADDR_NOT_SUPPORTED ) { + kfree( p_cfi->cfiq ); + return 0; + } + + p_cfi->addr_unlock1 = unlock_addrs[uaddr].addr1; + p_cfi->addr_unlock2 = unlock_addrs[uaddr].addr2; + + return 1; /* ok */ +} + + +/* + * There is a BIG problem properly ID'ing the JEDEC devic and guaranteeing + * the mapped address, unlock addresses, and proper chip ID. This function + * attempts to minimize errors. It is doubtfull that this probe will ever + * be perfect - consequently there should be some module parameters that + * could be manually specified to force the chip info. + */ +static inline int jedec_match( __u32 base, + struct map_info *map, + struct cfi_private *cfi, + const struct amd_flash_info *finfo ) +{ + int rc = 0; /* failure until all tests pass */ + u32 mfr, id; + __u8 uaddr; + + /* + * The IDs must match. For X16 and X32 devices operating in + * a lower width ( X8 or X16 ), the device ID's are usually just + * the lower byte(s) of the larger device ID for wider mode. If + * a part is found that doesn't fit this assumption (device id for + * smaller width mode is completely unrealated to full-width mode) + * then the jedec_table[] will have to be augmented with the IDs + * for different widths. + */ + switch (cfi->device_type) { + case CFI_DEVICETYPE_X8: + mfr = (__u8)finfo->mfr_id; + id = (__u8)finfo->dev_id; + break; + case CFI_DEVICETYPE_X16: + mfr = (__u16)finfo->mfr_id; + id = (__u16)finfo->dev_id; + break; + case CFI_DEVICETYPE_X32: + mfr = (__u16)finfo->mfr_id; + id = (__u32)finfo->dev_id; + break; + default: + printk(KERN_WARNING + "MTD %s(): Unsupported device type %d\n", + __func__, cfi->device_type); + goto match_done; + } + if ( cfi->mfr != mfr || cfi->id != id ) { + goto match_done; + } + + /* the part size must fit in the memory window */ + DEBUG( MTD_DEBUG_LEVEL3, + "MTD %s(): Check fit 0x%.8x + 0x%.8x = 0x%.8x\n", + __func__, base, 1 << finfo->DevSize, base + (1 << finfo->DevSize) ); + if ( base + cfi_interleave(cfi) * ( 1 << finfo->DevSize ) > map->size ) { + DEBUG( MTD_DEBUG_LEVEL3, + "MTD %s(): 0x%.4x 0x%.4x %dKiB doesn't fit\n", + __func__, finfo->mfr_id, finfo->dev_id, + 1 << finfo->DevSize ); + goto match_done; + } + + uaddr = finfo_uaddr(finfo, cfi->device_type); + if ( uaddr == MTD_UADDR_NOT_SUPPORTED ) { + goto match_done; + } + + DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): check unlock addrs 0x%.4x 0x%.4x\n", + __func__, cfi->addr_unlock1, cfi->addr_unlock2 ); + if ( MTD_UADDR_UNNECESSARY != uaddr && MTD_UADDR_DONT_CARE != uaddr + && ( unlock_addrs[uaddr].addr1 != cfi->addr_unlock1 || + unlock_addrs[uaddr].addr2 != cfi->addr_unlock2 ) ) { + DEBUG( MTD_DEBUG_LEVEL3, + "MTD %s(): 0x%.4x 0x%.4x did not match\n", + __func__, + unlock_addrs[uaddr].addr1, + unlock_addrs[uaddr].addr2); + goto match_done; + } + + /* + * Make sure the ID's dissappear when the device is taken out of + * ID mode. The only time this should fail when it should succeed + * is when the ID's are written as data to the same + * addresses. For this rare and unfortunate case the chip + * cannot be probed correctly. + * FIXME - write a driver that takes all of the chip info as + * module parameters, doesn't probe but forces a load. + */ + DEBUG( MTD_DEBUG_LEVEL3, + "MTD %s(): check ID's disappear when not in ID mode\n", + __func__ ); + jedec_reset( base, map, cfi ); + mfr = jedec_read_mfr( map, base, cfi ); + id = jedec_read_id( map, base, cfi ); + if ( mfr == cfi->mfr && id == cfi->id ) { + DEBUG( MTD_DEBUG_LEVEL3, + "MTD %s(): ID 0x%.2x:0x%.2x did not change after reset:\n" + "You might need to manually specify JEDEC parameters.\n", + __func__, cfi->mfr, cfi->id ); + goto match_done; + } + + /* all tests passed - mark as success */ + rc = 1; + + /* + * Put the device back in ID mode - only need to do this if we + * were truly frobbing a real device. + */ + DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): return to ID mode\n", __func__ ); + if(cfi->addr_unlock1) { + cfi_send_gen_cmd(0xaa, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, base, map, cfi, cfi->device_type, NULL); + } + cfi_send_gen_cmd(0x90, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL); + /* FIXME - should have a delay before continuing */ + + match_done: + return rc; +} + + +static int jedec_probe_chip(struct map_info *map, __u32 base, + unsigned long *chip_map, struct cfi_private *cfi) +{ + int i; + enum uaddr uaddr_idx = MTD_UADDR_NOT_SUPPORTED; + u32 probe_offset1, probe_offset2; + + retry: + if (!cfi->numchips) { + uaddr_idx++; + + if (MTD_UADDR_UNNECESSARY == uaddr_idx) + return 0; + + cfi->addr_unlock1 = unlock_addrs[uaddr_idx].addr1; + cfi->addr_unlock2 = unlock_addrs[uaddr_idx].addr2; + } + + /* Make certain we aren't probing past the end of map */ + if (base >= map->size) { + printk(KERN_NOTICE + "Probe at base(0x%08x) past the end of the map(0x%08lx)\n", + base, map->size -1); + return 0; + + } + /* Ensure the unlock addresses we try stay inside the map */ + probe_offset1 = cfi_build_cmd_addr( + cfi->addr_unlock1, + cfi_interleave(cfi), + cfi->device_type); + probe_offset2 = cfi_build_cmd_addr( + cfi->addr_unlock1, + cfi_interleave(cfi), + cfi->device_type); + if ( ((base + probe_offset1 + map_bankwidth(map)) >= map->size) || + ((base + probe_offset2 + map_bankwidth(map)) >= map->size)) + { + goto retry; + } + + /* Reset */ + jedec_reset(base, map, cfi); + + /* Autoselect Mode */ + if(cfi->addr_unlock1) { + cfi_send_gen_cmd(0xaa, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x55, cfi->addr_unlock2, base, map, cfi, cfi->device_type, NULL); + } + cfi_send_gen_cmd(0x90, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL); + /* FIXME - should have a delay before continuing */ + + if (!cfi->numchips) { + /* This is the first time we're called. Set up the CFI + stuff accordingly and return */ + + cfi->mfr = jedec_read_mfr(map, base, cfi); + cfi->id = jedec_read_id(map, base, cfi); + DEBUG(MTD_DEBUG_LEVEL3, + "Search for id:(%02x %02x) interleave(%d) type(%d)\n", + cfi->mfr, cfi->id, cfi_interleave(cfi), cfi->device_type); + for (i=0; i<sizeof(jedec_table)/sizeof(jedec_table[0]); i++) { + if ( jedec_match( base, map, cfi, &jedec_table[i] ) ) { + DEBUG( MTD_DEBUG_LEVEL3, + "MTD %s(): matched device 0x%x,0x%x unlock_addrs: 0x%.4x 0x%.4x\n", + __func__, cfi->mfr, cfi->id, + cfi->addr_unlock1, cfi->addr_unlock2 ); + if (!cfi_jedec_setup(cfi, i)) + return 0; + goto ok_out; + } + } + goto retry; + } else { + __u16 mfr; + __u16 id; + + /* Make sure it is a chip of the same manufacturer and id */ + mfr = jedec_read_mfr(map, base, cfi); + id = jedec_read_id(map, base, cfi); + + if ((mfr != cfi->mfr) || (id != cfi->id)) { + printk(KERN_DEBUG "%s: Found different chip or no chip at all (mfr 0x%x, id 0x%x) at 0x%x\n", + map->name, mfr, id, base); + jedec_reset(base, map, cfi); + return 0; + } + } + + /* Check each previous chip locations to see if it's an alias */ + for (i=0; i < (base >> cfi->chipshift); i++) { + unsigned long start; + if(!test_bit(i, chip_map)) { + continue; /* Skip location; no valid chip at this address */ + } + start = i << cfi->chipshift; + if (jedec_read_mfr(map, start, cfi) == cfi->mfr && + jedec_read_id(map, start, cfi) == cfi->id) { + /* Eep. This chip also looks like it's in autoselect mode. + Is it an alias for the new one? */ + jedec_reset(start, map, cfi); + + /* If the device IDs go away, it's an alias */ + if (jedec_read_mfr(map, base, cfi) != cfi->mfr || + jedec_read_id(map, base, cfi) != cfi->id) { + printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n", + map->name, base, start); + return 0; + } + + /* Yes, it's actually got the device IDs as data. Most + * unfortunate. Stick the new chip in read mode + * too and if it's the same, assume it's an alias. */ + /* FIXME: Use other modes to do a proper check */ + jedec_reset(base, map, cfi); + if (jedec_read_mfr(map, base, cfi) == cfi->mfr && + jedec_read_id(map, base, cfi) == cfi->id) { + printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n", + map->name, base, start); + return 0; + } + } + } + + /* OK, if we got to here, then none of the previous chips appear to + be aliases for the current one. */ + set_bit((base >> cfi->chipshift), chip_map); /* Update chip map */ + cfi->numchips++; + +ok_out: + /* Put it back into Read Mode */ + jedec_reset(base, map, cfi); + + printk(KERN_INFO "%s: Found %d x%d devices at 0x%x in %d-bit bank\n", + map->name, cfi_interleave(cfi), cfi->device_type*8, base, + map->bankwidth*8); + + return 1; +} + +static struct chip_probe jedec_chip_probe = { + .name = "JEDEC", + .probe_chip = jedec_probe_chip +}; + +static struct mtd_info *jedec_probe(struct map_info *map) +{ + /* + * Just use the generic probe stuff to call our CFI-specific + * chip_probe routine in all the possible permutations, etc. + */ + return mtd_do_chip_probe(map, &jedec_chip_probe); +} + +static struct mtd_chip_driver jedec_chipdrv = { + .probe = jedec_probe, + .name = "jedec_probe", + .module = THIS_MODULE +}; + +static int __init jedec_probe_init(void) +{ + register_mtd_chip_driver(&jedec_chipdrv); + return 0; +} + +static void __exit jedec_probe_exit(void) +{ + unregister_mtd_chip_driver(&jedec_chipdrv); +} + +module_init(jedec_probe_init); +module_exit(jedec_probe_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Erwin Authried <eauth@softsys.co.at> et al."); +MODULE_DESCRIPTION("Probe code for JEDEC-compliant flash chips"); diff --git a/drivers/mtd/chips/map_absent.c b/drivers/mtd/chips/map_absent.c new file mode 100644 index 000000000000..c6c83833cc32 --- /dev/null +++ b/drivers/mtd/chips/map_absent.c @@ -0,0 +1,117 @@ +/* + * Common code to handle absent "placeholder" devices + * Copyright 2001 Resilience Corporation <ebrower@resilience.com> + * $Id: map_absent.c,v 1.5 2004/11/16 18:29:00 dwmw2 Exp $ + * + * This map driver is used to allocate "placeholder" MTD + * devices on systems that have socketed/removable media. + * Use of this driver as a fallback preserves the expected + * registration of MTD device nodes regardless of probe outcome. + * A usage example is as follows: + * + * my_dev[i] = do_map_probe("cfi", &my_map[i]); + * if(NULL == my_dev[i]) { + * my_dev[i] = do_map_probe("map_absent", &my_map[i]); + * } + * + * Any device 'probed' with this driver will return -ENODEV + * upon open. + */ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/errno.h> +#include <linux/slab.h> +#include <linux/init.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> +#include <linux/mtd/compatmac.h> + +static int map_absent_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); +static int map_absent_write (struct mtd_info *, loff_t, size_t, size_t *, const u_char *); +static int map_absent_erase (struct mtd_info *, struct erase_info *); +static void map_absent_sync (struct mtd_info *); +static struct mtd_info *map_absent_probe(struct map_info *map); +static void map_absent_destroy (struct mtd_info *); + + +static struct mtd_chip_driver map_absent_chipdrv = { + .probe = map_absent_probe, + .destroy = map_absent_destroy, + .name = "map_absent", + .module = THIS_MODULE +}; + +static struct mtd_info *map_absent_probe(struct map_info *map) +{ + struct mtd_info *mtd; + + mtd = kmalloc(sizeof(*mtd), GFP_KERNEL); + if (!mtd) { + return NULL; + } + + memset(mtd, 0, sizeof(*mtd)); + + map->fldrv = &map_absent_chipdrv; + mtd->priv = map; + mtd->name = map->name; + mtd->type = MTD_ABSENT; + mtd->size = map->size; + mtd->erase = map_absent_erase; + mtd->read = map_absent_read; + mtd->write = map_absent_write; + mtd->sync = map_absent_sync; + mtd->flags = 0; + mtd->erasesize = PAGE_SIZE; + + __module_get(THIS_MODULE); + return mtd; +} + + +static int map_absent_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) +{ + *retlen = 0; + return -ENODEV; +} + +static int map_absent_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) +{ + *retlen = 0; + return -ENODEV; +} + +static int map_absent_erase(struct mtd_info *mtd, struct erase_info *instr) +{ + return -ENODEV; +} + +static void map_absent_sync(struct mtd_info *mtd) +{ + /* nop */ +} + +static void map_absent_destroy(struct mtd_info *mtd) +{ + /* nop */ +} + +static int __init map_absent_init(void) +{ + register_mtd_chip_driver(&map_absent_chipdrv); + return 0; +} + +static void __exit map_absent_exit(void) +{ + unregister_mtd_chip_driver(&map_absent_chipdrv); +} + +module_init(map_absent_init); +module_exit(map_absent_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Resilience Corporation - Eric Brower <ebrower@resilience.com>"); +MODULE_DESCRIPTION("Placeholder MTD chip driver for 'absent' chips"); diff --git a/drivers/mtd/chips/map_ram.c b/drivers/mtd/chips/map_ram.c new file mode 100644 index 000000000000..bd2e876a814b --- /dev/null +++ b/drivers/mtd/chips/map_ram.c @@ -0,0 +1,143 @@ +/* + * Common code to handle map devices which are simple RAM + * (C) 2000 Red Hat. GPL'd. + * $Id: map_ram.c,v 1.22 2005/01/05 18:05:12 dwmw2 Exp $ + */ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <asm/io.h> +#include <asm/byteorder.h> +#include <linux/errno.h> +#include <linux/slab.h> +#include <linux/init.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> +#include <linux/mtd/compatmac.h> + + +static int mapram_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); +static int mapram_write (struct mtd_info *, loff_t, size_t, size_t *, const u_char *); +static int mapram_erase (struct mtd_info *, struct erase_info *); +static void mapram_nop (struct mtd_info *); +static struct mtd_info *map_ram_probe(struct map_info *map); + + +static struct mtd_chip_driver mapram_chipdrv = { + .probe = map_ram_probe, + .name = "map_ram", + .module = THIS_MODULE +}; + +static struct mtd_info *map_ram_probe(struct map_info *map) +{ + struct mtd_info *mtd; + + /* Check the first byte is RAM */ +#if 0 + map_write8(map, 0x55, 0); + if (map_read8(map, 0) != 0x55) + return NULL; + + map_write8(map, 0xAA, 0); + if (map_read8(map, 0) != 0xAA) + return NULL; + + /* Check the last byte is RAM */ + map_write8(map, 0x55, map->size-1); + if (map_read8(map, map->size-1) != 0x55) + return NULL; + + map_write8(map, 0xAA, map->size-1); + if (map_read8(map, map->size-1) != 0xAA) + return NULL; +#endif + /* OK. It seems to be RAM. */ + + mtd = kmalloc(sizeof(*mtd), GFP_KERNEL); + if (!mtd) + return NULL; + + memset(mtd, 0, sizeof(*mtd)); + + map->fldrv = &mapram_chipdrv; + mtd->priv = map; + mtd->name = map->name; + mtd->type = MTD_RAM; + mtd->size = map->size; + mtd->erase = mapram_erase; + mtd->read = mapram_read; + mtd->write = mapram_write; + mtd->sync = mapram_nop; + mtd->flags = MTD_CAP_RAM | MTD_VOLATILE; + + mtd->erasesize = PAGE_SIZE; + while(mtd->size & (mtd->erasesize - 1)) + mtd->erasesize >>= 1; + + __module_get(THIS_MODULE); + return mtd; +} + + +static int mapram_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) +{ + struct map_info *map = mtd->priv; + + map_copy_from(map, buf, from, len); + *retlen = len; + return 0; +} + +static int mapram_write (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) +{ + struct map_info *map = mtd->priv; + + map_copy_to(map, to, buf, len); + *retlen = len; + return 0; +} + +static int mapram_erase (struct mtd_info *mtd, struct erase_info *instr) +{ + /* Yeah, it's inefficient. Who cares? It's faster than a _real_ + flash erase. */ + struct map_info *map = mtd->priv; + map_word allff; + unsigned long i; + + allff = map_word_ff(map); + + for (i=0; i<instr->len; i += map_bankwidth(map)) + map_write(map, allff, instr->addr + i); + + instr->state = MTD_ERASE_DONE; + + mtd_erase_callback(instr); + + return 0; +} + +static void mapram_nop(struct mtd_info *mtd) +{ + /* Nothing to see here */ +} + +static int __init map_ram_init(void) +{ + register_mtd_chip_driver(&mapram_chipdrv); + return 0; +} + +static void __exit map_ram_exit(void) +{ + unregister_mtd_chip_driver(&mapram_chipdrv); +} + +module_init(map_ram_init); +module_exit(map_ram_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); +MODULE_DESCRIPTION("MTD chip driver for RAM chips"); diff --git a/drivers/mtd/chips/map_rom.c b/drivers/mtd/chips/map_rom.c new file mode 100644 index 000000000000..624c12c232c8 --- /dev/null +++ b/drivers/mtd/chips/map_rom.c @@ -0,0 +1,94 @@ +/* + * Common code to handle map devices which are simple ROM + * (C) 2000 Red Hat. GPL'd. + * $Id: map_rom.c,v 1.23 2005/01/05 18:05:12 dwmw2 Exp $ + */ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <asm/io.h> +#include <asm/byteorder.h> +#include <linux/errno.h> +#include <linux/slab.h> +#include <linux/init.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/map.h> +#include <linux/mtd/compatmac.h> + +static int maprom_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); +static int maprom_write (struct mtd_info *, loff_t, size_t, size_t *, const u_char *); +static void maprom_nop (struct mtd_info *); +static struct mtd_info *map_rom_probe(struct map_info *map); + +static struct mtd_chip_driver maprom_chipdrv = { + .probe = map_rom_probe, + .name = "map_rom", + .module = THIS_MODULE +}; + +static struct mtd_info *map_rom_probe(struct map_info *map) +{ + struct mtd_info *mtd; + + mtd = kmalloc(sizeof(*mtd), GFP_KERNEL); + if (!mtd) + return NULL; + + memset(mtd, 0, sizeof(*mtd)); + + map->fldrv = &maprom_chipdrv; + mtd->priv = map; + mtd->name = map->name; + mtd->type = MTD_ROM; + mtd->size = map->size; + mtd->read = maprom_read; + mtd->write = maprom_write; + mtd->sync = maprom_nop; + mtd->flags = MTD_CAP_ROM; + mtd->erasesize = 131072; + while(mtd->size & (mtd->erasesize - 1)) + mtd->erasesize >>= 1; + + __module_get(THIS_MODULE); + return mtd; +} + + +static int maprom_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) +{ + struct map_info *map = mtd->priv; + + map_copy_from(map, buf, from, len); + *retlen = len; + return 0; +} + +static void maprom_nop(struct mtd_info *mtd) +{ + /* Nothing to see here */ +} + +static int maprom_write (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) +{ + printk(KERN_NOTICE "maprom_write called\n"); + return -EIO; +} + +static int __init map_rom_init(void) +{ + register_mtd_chip_driver(&maprom_chipdrv); + return 0; +} + +static void __exit map_rom_exit(void) +{ + unregister_mtd_chip_driver(&maprom_chipdrv); +} + +module_init(map_rom_init); +module_exit(map_rom_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); +MODULE_DESCRIPTION("MTD chip driver for ROM chips"); diff --git a/drivers/mtd/chips/sharp.c b/drivers/mtd/chips/sharp.c new file mode 100644 index 000000000000..c3cf0f63bc93 --- /dev/null +++ b/drivers/mtd/chips/sharp.c @@ -0,0 +1,596 @@ +/* + * MTD chip driver for pre-CFI Sharp flash chips + * + * Copyright 2000,2001 David A. Schleef <ds@schleef.org> + * 2000,2001 Lineo, Inc. + * + * $Id: sharp.c,v 1.14 2004/08/09 13:19:43 dwmw2 Exp $ + * + * Devices supported: + * LH28F016SCT Symmetrical block flash memory, 2Mx8 + * LH28F008SCT Symmetrical block flash memory, 1Mx8 + * + * Documentation: + * http://www.sharpmeg.com/datasheets/memic/flashcmp/ + * http://www.sharpmeg.com/datasheets/memic/flashcmp/01symf/16m/016sctl9.pdf + * 016sctl9.pdf + * + * Limitations: + * This driver only supports 4x1 arrangement of chips. + * Not tested on anything but PowerPC. + */ + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/types.h> +#include <linux/sched.h> +#include <linux/errno.h> +#include <linux/interrupt.h> +#include <linux/mtd/map.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/cfi.h> +#include <linux/delay.h> +#include <linux/init.h> + +#define CMD_RESET 0xffffffff +#define CMD_READ_ID 0x90909090 +#define CMD_READ_STATUS 0x70707070 +#define CMD_CLEAR_STATUS 0x50505050 +#define CMD_BLOCK_ERASE_1 0x20202020 +#define CMD_BLOCK_ERASE_2 0xd0d0d0d0 +#define CMD_BYTE_WRITE 0x40404040 +#define CMD_SUSPEND 0xb0b0b0b0 +#define CMD_RESUME 0xd0d0d0d0 +#define CMD_SET_BLOCK_LOCK_1 0x60606060 +#define CMD_SET_BLOCK_LOCK_2 0x01010101 +#define CMD_SET_MASTER_LOCK_1 0x60606060 +#define CMD_SET_MASTER_LOCK_2 0xf1f1f1f1 +#define CMD_CLEAR_BLOCK_LOCKS_1 0x60606060 +#define CMD_CLEAR_BLOCK_LOCKS_2 0xd0d0d0d0 + +#define SR_READY 0x80808080 // 1 = ready +#define SR_ERASE_SUSPEND 0x40404040 // 1 = block erase suspended +#define SR_ERROR_ERASE 0x20202020 // 1 = error in block erase or clear lock bits +#define SR_ERROR_WRITE 0x10101010 // 1 = error in byte write or set lock bit +#define SR_VPP 0x08080808 // 1 = Vpp is low +#define SR_WRITE_SUSPEND 0x04040404 // 1 = byte write suspended +#define SR_PROTECT 0x02020202 // 1 = lock bit set +#define SR_RESERVED 0x01010101 + +#define SR_ERRORS (SR_ERROR_ERASE|SR_ERROR_WRITE|SR_VPP|SR_PROTECT) + +/* Configuration options */ + +#undef AUTOUNLOCK /* automatically unlocks blocks before erasing */ + +struct mtd_info *sharp_probe(struct map_info *); + +static int sharp_probe_map(struct map_info *map,struct mtd_info *mtd); + +static int sharp_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf); +static int sharp_write(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, const u_char *buf); +static int sharp_erase(struct mtd_info *mtd, struct erase_info *instr); +static void sharp_sync(struct mtd_info *mtd); +static int sharp_suspend(struct mtd_info *mtd); +static void sharp_resume(struct mtd_info *mtd); +static void sharp_destroy(struct mtd_info *mtd); + +static int sharp_write_oneword(struct map_info *map, struct flchip *chip, + unsigned long adr, __u32 datum); +static int sharp_erase_oneblock(struct map_info *map, struct flchip *chip, + unsigned long adr); +#ifdef AUTOUNLOCK +static void sharp_unlock_oneblock(struct map_info *map, struct flchip *chip, + unsigned long adr); +#endif + + +struct sharp_info{ + struct flchip *chip; + int bogus; + int chipshift; + int numchips; + struct flchip chips[1]; +}; + +struct mtd_info *sharp_probe(struct map_info *map); +static void sharp_destroy(struct mtd_info *mtd); + +static struct mtd_chip_driver sharp_chipdrv = { + .probe = sharp_probe, + .destroy = sharp_destroy, + .name = "sharp", + .module = THIS_MODULE +}; + + +struct mtd_info *sharp_probe(struct map_info *map) +{ + struct mtd_info *mtd = NULL; + struct sharp_info *sharp = NULL; + int width; + + mtd = kmalloc(sizeof(*mtd), GFP_KERNEL); + if(!mtd) + return NULL; + + sharp = kmalloc(sizeof(*sharp), GFP_KERNEL); + if(!sharp) { + kfree(mtd); + return NULL; + } + + memset(mtd, 0, sizeof(*mtd)); + + width = sharp_probe_map(map,mtd); + if(!width){ + kfree(mtd); + kfree(sharp); + return NULL; + } + + mtd->priv = map; + mtd->type = MTD_NORFLASH; + mtd->erase = sharp_erase; + mtd->read = sharp_read; + mtd->write = sharp_write; + mtd->sync = sharp_sync; + mtd->suspend = sharp_suspend; + mtd->resume = sharp_resume; + mtd->flags = MTD_CAP_NORFLASH; + mtd->name = map->name; + + memset(sharp, 0, sizeof(*sharp)); + sharp->chipshift = 23; + sharp->numchips = 1; + sharp->chips[0].start = 0; + sharp->chips[0].state = FL_READY; + sharp->chips[0].mutex = &sharp->chips[0]._spinlock; + sharp->chips[0].word_write_time = 0; + init_waitqueue_head(&sharp->chips[0].wq); + spin_lock_init(&sharp->chips[0]._spinlock); + + map->fldrv = &sharp_chipdrv; + map->fldrv_priv = sharp; + + __module_get(THIS_MODULE); + return mtd; +} + +static int sharp_probe_map(struct map_info *map,struct mtd_info *mtd) +{ + unsigned long tmp; + unsigned long base = 0; + u32 read0, read4; + int width = 4; + + tmp = map_read32(map, base+0); + + map_write32(map, CMD_READ_ID, base+0); + + read0=map_read32(map, base+0); + read4=map_read32(map, base+4); + if(read0 == 0x89898989){ + printk("Looks like sharp flash\n"); + switch(read4){ + case 0xaaaaaaaa: + case 0xa0a0a0a0: + /* aa - LH28F016SCT-L95 2Mx8, 32 64k blocks*/ + /* a0 - LH28F016SCT-Z4 2Mx8, 32 64k blocks*/ + mtd->erasesize = 0x10000 * width; + mtd->size = 0x200000 * width; + return width; + case 0xa6a6a6a6: + /* a6 - LH28F008SCT-L12 1Mx8, 16 64k blocks*/ + /* a6 - LH28F008SCR-L85 1Mx8, 16 64k blocks*/ + mtd->erasesize = 0x10000 * width; + mtd->size = 0x100000 * width; + return width; +#if 0 + case 0x00000000: /* unknown */ + /* XX - LH28F004SCT 512kx8, 8 64k blocks*/ + mtd->erasesize = 0x10000 * width; + mtd->size = 0x80000 * width; + return width; +#endif + default: + printk("Sort-of looks like sharp flash, 0x%08x 0x%08x\n", + read0,read4); + } + }else if((map_read32(map, base+0) == CMD_READ_ID)){ + /* RAM, probably */ + printk("Looks like RAM\n"); + map_write32(map, tmp, base+0); + }else{ + printk("Doesn't look like sharp flash, 0x%08x 0x%08x\n", + read0,read4); + } + + return 0; +} + +/* This function returns with the chip->mutex lock held. */ +static int sharp_wait(struct map_info *map, struct flchip *chip) +{ + __u16 status; + unsigned long timeo = jiffies + HZ; + DECLARE_WAITQUEUE(wait, current); + int adr = 0; + +retry: + spin_lock_bh(chip->mutex); + + switch(chip->state){ + case FL_READY: + map_write32(map,CMD_READ_STATUS,adr); + chip->state = FL_STATUS; + case FL_STATUS: + status = map_read32(map,adr); +//printk("status=%08x\n",status); + + udelay(100); + if((status & SR_READY)!=SR_READY){ +//printk(".status=%08x\n",status); + udelay(100); + } + break; + default: + printk("Waiting for chip\n"); + + set_current_state(TASK_INTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + + spin_unlock_bh(chip->mutex); + + schedule(); + remove_wait_queue(&chip->wq, &wait); + + if(signal_pending(current)) + return -EINTR; + + timeo = jiffies + HZ; + + goto retry; + } + + map_write32(map,CMD_RESET, adr); + + chip->state = FL_READY; + + return 0; +} + +static void sharp_release(struct flchip *chip) +{ + wake_up(&chip->wq); + spin_unlock_bh(chip->mutex); +} + +static int sharp_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf) +{ + struct map_info *map = mtd->priv; + struct sharp_info *sharp = map->fldrv_priv; + int chipnum; + int ret = 0; + int ofs = 0; + + chipnum = (from >> sharp->chipshift); + ofs = from & ((1 << sharp->chipshift)-1); + + *retlen = 0; + + while(len){ + unsigned long thislen; + + if(chipnum>=sharp->numchips) + break; + + thislen = len; + if(ofs+thislen >= (1<<sharp->chipshift)) + thislen = (1<<sharp->chipshift) - ofs; + + ret = sharp_wait(map,&sharp->chips[chipnum]); + if(ret<0) + break; + + map_copy_from(map,buf,ofs,thislen); + + sharp_release(&sharp->chips[chipnum]); + + *retlen += thislen; + len -= thislen; + buf += thislen; + + ofs = 0; + chipnum++; + } + return ret; +} + +static int sharp_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + struct map_info *map = mtd->priv; + struct sharp_info *sharp = map->fldrv_priv; + int ret = 0; + int i,j; + int chipnum; + unsigned long ofs; + union { u32 l; unsigned char uc[4]; } tbuf; + + *retlen = 0; + + while(len){ + tbuf.l = 0xffffffff; + chipnum = to >> sharp->chipshift; + ofs = to & ((1<<sharp->chipshift)-1); + + j=0; + for(i=ofs&3;i<4 && len;i++){ + tbuf.uc[i] = *buf; + buf++; + to++; + len--; + j++; + } + sharp_write_oneword(map, &sharp->chips[chipnum], ofs&~3, tbuf.l); + if(ret<0) + return ret; + (*retlen)+=j; + } + + return 0; +} + +static int sharp_write_oneword(struct map_info *map, struct flchip *chip, + unsigned long adr, __u32 datum) +{ + int ret; + int timeo; + int try; + int i; + int status = 0; + + ret = sharp_wait(map,chip); + + for(try=0;try<10;try++){ + map_write32(map,CMD_BYTE_WRITE,adr); + /* cpu_to_le32 -> hack to fix the writel be->le conversion */ + map_write32(map,cpu_to_le32(datum),adr); + + chip->state = FL_WRITING; + + timeo = jiffies + (HZ/2); + + map_write32(map,CMD_READ_STATUS,adr); + for(i=0;i<100;i++){ + status = map_read32(map,adr); + if((status & SR_READY)==SR_READY) + break; + } + if(i==100){ + printk("sharp: timed out writing\n"); + } + + if(!(status&SR_ERRORS)) + break; + + printk("sharp: error writing byte at addr=%08lx status=%08x\n",adr,status); + + map_write32(map,CMD_CLEAR_STATUS,adr); + } + map_write32(map,CMD_RESET,adr); + chip->state = FL_READY; + + wake_up(&chip->wq); + spin_unlock_bh(chip->mutex); + + return 0; +} + +static int sharp_erase(struct mtd_info *mtd, struct erase_info *instr) +{ + struct map_info *map = mtd->priv; + struct sharp_info *sharp = map->fldrv_priv; + unsigned long adr,len; + int chipnum, ret=0; + +//printk("sharp_erase()\n"); + if(instr->addr & (mtd->erasesize - 1)) + return -EINVAL; + if(instr->len & (mtd->erasesize - 1)) + return -EINVAL; + if(instr->len + instr->addr > mtd->size) + return -EINVAL; + + chipnum = instr->addr >> sharp->chipshift; + adr = instr->addr & ((1<<sharp->chipshift)-1); + len = instr->len; + + while(len){ + ret = sharp_erase_oneblock(map, &sharp->chips[chipnum], adr); + if(ret)return ret; + + adr += mtd->erasesize; + len -= mtd->erasesize; + if(adr >> sharp->chipshift){ + adr = 0; + chipnum++; + if(chipnum>=sharp->numchips) + break; + } + } + + instr->state = MTD_ERASE_DONE; + mtd_erase_callback(instr); + + return 0; +} + +static int sharp_do_wait_for_ready(struct map_info *map, struct flchip *chip, + unsigned long adr) +{ + int ret; + unsigned long timeo; + int status; + DECLARE_WAITQUEUE(wait, current); + + map_write32(map,CMD_READ_STATUS,adr); + status = map_read32(map,adr); + + timeo = jiffies + HZ; + + while(time_before(jiffies, timeo)){ + map_write32(map,CMD_READ_STATUS,adr); + status = map_read32(map,adr); + if((status & SR_READY)==SR_READY){ + ret = 0; + goto out; + } + set_current_state(TASK_INTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + + //spin_unlock_bh(chip->mutex); + + schedule_timeout(1); + schedule(); + remove_wait_queue(&chip->wq, &wait); + + //spin_lock_bh(chip->mutex); + + if (signal_pending(current)){ + ret = -EINTR; + goto out; + } + + } + ret = -ETIME; +out: + return ret; +} + +static int sharp_erase_oneblock(struct map_info *map, struct flchip *chip, + unsigned long adr) +{ + int ret; + //int timeo; + int status; + //int i; + +//printk("sharp_erase_oneblock()\n"); + +#ifdef AUTOUNLOCK + /* This seems like a good place to do an unlock */ + sharp_unlock_oneblock(map,chip,adr); +#endif + + map_write32(map,CMD_BLOCK_ERASE_1,adr); + map_write32(map,CMD_BLOCK_ERASE_2,adr); + + chip->state = FL_ERASING; + + ret = sharp_do_wait_for_ready(map,chip,adr); + if(ret<0)return ret; + + map_write32(map,CMD_READ_STATUS,adr); + status = map_read32(map,adr); + + if(!(status&SR_ERRORS)){ + map_write32(map,CMD_RESET,adr); + chip->state = FL_READY; + //spin_unlock_bh(chip->mutex); + return 0; + } + + printk("sharp: error erasing block at addr=%08lx status=%08x\n",adr,status); + map_write32(map,CMD_CLEAR_STATUS,adr); + + //spin_unlock_bh(chip->mutex); + + return -EIO; +} + +#ifdef AUTOUNLOCK +static void sharp_unlock_oneblock(struct map_info *map, struct flchip *chip, + unsigned long adr) +{ + int i; + int status; + + map_write32(map,CMD_CLEAR_BLOCK_LOCKS_1,adr); + map_write32(map,CMD_CLEAR_BLOCK_LOCKS_2,adr); + + udelay(100); + + status = map_read32(map,adr); + printk("status=%08x\n",status); + + for(i=0;i<1000;i++){ + //map_write32(map,CMD_READ_STATUS,adr); + status = map_read32(map,adr); + if((status & SR_READY)==SR_READY) + break; + udelay(100); + } + if(i==1000){ + printk("sharp: timed out unlocking block\n"); + } + + if(!(status&SR_ERRORS)){ + map_write32(map,CMD_RESET,adr); + chip->state = FL_READY; + return; + } + + printk("sharp: error unlocking block at addr=%08lx status=%08x\n",adr,status); + map_write32(map,CMD_CLEAR_STATUS,adr); +} +#endif + +static void sharp_sync(struct mtd_info *mtd) +{ + //printk("sharp_sync()\n"); +} + +static int sharp_suspend(struct mtd_info *mtd) +{ + printk("sharp_suspend()\n"); + return -EINVAL; +} + +static void sharp_resume(struct mtd_info *mtd) +{ + printk("sharp_resume()\n"); + +} + +static void sharp_destroy(struct mtd_info *mtd) +{ + printk("sharp_destroy()\n"); + +} + +int __init sharp_probe_init(void) +{ + printk("MTD Sharp chip driver <ds@lineo.com>\n"); + + register_mtd_chip_driver(&sharp_chipdrv); + + return 0; +} + +static void __exit sharp_probe_exit(void) +{ + unregister_mtd_chip_driver(&sharp_chipdrv); +} + +module_init(sharp_probe_init); +module_exit(sharp_probe_exit); + + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("David Schleef <ds@schleef.org>"); +MODULE_DESCRIPTION("Old MTD chip driver for pre-CFI Sharp flash chips"); |