diff options
author | Boris Brezillon <boris.brezillon@bootlin.com> | 2018-02-05 23:02:04 +0100 |
---|---|---|
committer | Boris Brezillon <boris.brezillon@bootlin.com> | 2018-02-16 10:09:34 +0100 |
commit | 93db446a424cee9387b532995e6b516667079555 (patch) | |
tree | 39c7900ae38d890fb971ea5fc6f194f7e66fa797 /drivers/mtd/nand/gpmi-nand | |
parent | mtd: nand: Add missing copyright information (diff) | |
download | linux-93db446a424cee9387b532995e6b516667079555.tar.xz linux-93db446a424cee9387b532995e6b516667079555.zip |
mtd: nand: move raw NAND related code to the raw/ subdir
As part of the process of sharing more code between different NAND
based devices, we need to move all raw NAND related code to the raw/
subdirectory.
Signed-off-by: Boris Brezillon <boris.brezillon@bootlin.com>
Diffstat (limited to 'drivers/mtd/nand/gpmi-nand')
-rw-r--r-- | drivers/mtd/nand/gpmi-nand/Makefile | 3 | ||||
-rw-r--r-- | drivers/mtd/nand/gpmi-nand/bch-regs.h | 128 | ||||
-rw-r--r-- | drivers/mtd/nand/gpmi-nand/gpmi-lib.c | 1510 | ||||
-rw-r--r-- | drivers/mtd/nand/gpmi-nand/gpmi-nand.c | 2182 | ||||
-rw-r--r-- | drivers/mtd/nand/gpmi-nand/gpmi-nand.h | 315 | ||||
-rw-r--r-- | drivers/mtd/nand/gpmi-nand/gpmi-regs.h | 187 |
6 files changed, 0 insertions, 4325 deletions
diff --git a/drivers/mtd/nand/gpmi-nand/Makefile b/drivers/mtd/nand/gpmi-nand/Makefile deleted file mode 100644 index 3a462487c35e..000000000000 --- a/drivers/mtd/nand/gpmi-nand/Makefile +++ /dev/null @@ -1,3 +0,0 @@ -obj-$(CONFIG_MTD_NAND_GPMI_NAND) += gpmi_nand.o -gpmi_nand-objs += gpmi-nand.o -gpmi_nand-objs += gpmi-lib.o diff --git a/drivers/mtd/nand/gpmi-nand/bch-regs.h b/drivers/mtd/nand/gpmi-nand/bch-regs.h deleted file mode 100644 index 05bb91f2f4c4..000000000000 --- a/drivers/mtd/nand/gpmi-nand/bch-regs.h +++ /dev/null @@ -1,128 +0,0 @@ -/* - * Freescale GPMI NAND Flash Driver - * - * Copyright 2008-2011 Freescale Semiconductor, Inc. - * Copyright 2008 Embedded Alley Solutions, Inc. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License along - * with this program; if not, write to the Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - */ -#ifndef __GPMI_NAND_BCH_REGS_H -#define __GPMI_NAND_BCH_REGS_H - -#define HW_BCH_CTRL 0x00000000 -#define HW_BCH_CTRL_SET 0x00000004 -#define HW_BCH_CTRL_CLR 0x00000008 -#define HW_BCH_CTRL_TOG 0x0000000c - -#define BM_BCH_CTRL_COMPLETE_IRQ_EN (1 << 8) -#define BM_BCH_CTRL_COMPLETE_IRQ (1 << 0) - -#define HW_BCH_STATUS0 0x00000010 -#define HW_BCH_MODE 0x00000020 -#define HW_BCH_ENCODEPTR 0x00000030 -#define HW_BCH_DATAPTR 0x00000040 -#define HW_BCH_METAPTR 0x00000050 -#define HW_BCH_LAYOUTSELECT 0x00000070 - -#define HW_BCH_FLASH0LAYOUT0 0x00000080 - -#define BP_BCH_FLASH0LAYOUT0_NBLOCKS 24 -#define BM_BCH_FLASH0LAYOUT0_NBLOCKS (0xff << BP_BCH_FLASH0LAYOUT0_NBLOCKS) -#define BF_BCH_FLASH0LAYOUT0_NBLOCKS(v) \ - (((v) << BP_BCH_FLASH0LAYOUT0_NBLOCKS) & BM_BCH_FLASH0LAYOUT0_NBLOCKS) - -#define BP_BCH_FLASH0LAYOUT0_META_SIZE 16 -#define BM_BCH_FLASH0LAYOUT0_META_SIZE (0xff << BP_BCH_FLASH0LAYOUT0_META_SIZE) -#define BF_BCH_FLASH0LAYOUT0_META_SIZE(v) \ - (((v) << BP_BCH_FLASH0LAYOUT0_META_SIZE)\ - & BM_BCH_FLASH0LAYOUT0_META_SIZE) - -#define BP_BCH_FLASH0LAYOUT0_ECC0 12 -#define BM_BCH_FLASH0LAYOUT0_ECC0 (0xf << BP_BCH_FLASH0LAYOUT0_ECC0) -#define MX6Q_BP_BCH_FLASH0LAYOUT0_ECC0 11 -#define MX6Q_BM_BCH_FLASH0LAYOUT0_ECC0 (0x1f << MX6Q_BP_BCH_FLASH0LAYOUT0_ECC0) -#define BF_BCH_FLASH0LAYOUT0_ECC0(v, x) \ - (GPMI_IS_MX6(x) \ - ? (((v) << MX6Q_BP_BCH_FLASH0LAYOUT0_ECC0) \ - & MX6Q_BM_BCH_FLASH0LAYOUT0_ECC0) \ - : (((v) << BP_BCH_FLASH0LAYOUT0_ECC0) \ - & BM_BCH_FLASH0LAYOUT0_ECC0) \ - ) - -#define MX6Q_BP_BCH_FLASH0LAYOUT0_GF_13_14 10 -#define MX6Q_BM_BCH_FLASH0LAYOUT0_GF_13_14 \ - (0x1 << MX6Q_BP_BCH_FLASH0LAYOUT0_GF_13_14) -#define BF_BCH_FLASH0LAYOUT0_GF(v, x) \ - ((GPMI_IS_MX6(x) && ((v) == 14)) \ - ? (((1) << MX6Q_BP_BCH_FLASH0LAYOUT0_GF_13_14) \ - & MX6Q_BM_BCH_FLASH0LAYOUT0_GF_13_14) \ - : 0 \ - ) - -#define BP_BCH_FLASH0LAYOUT0_DATA0_SIZE 0 -#define BM_BCH_FLASH0LAYOUT0_DATA0_SIZE \ - (0xfff << BP_BCH_FLASH0LAYOUT0_DATA0_SIZE) -#define MX6Q_BM_BCH_FLASH0LAYOUT0_DATA0_SIZE \ - (0x3ff << BP_BCH_FLASH0LAYOUT0_DATA0_SIZE) -#define BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(v, x) \ - (GPMI_IS_MX6(x) \ - ? (((v) >> 2) & MX6Q_BM_BCH_FLASH0LAYOUT0_DATA0_SIZE) \ - : ((v) & BM_BCH_FLASH0LAYOUT0_DATA0_SIZE) \ - ) - -#define HW_BCH_FLASH0LAYOUT1 0x00000090 - -#define BP_BCH_FLASH0LAYOUT1_PAGE_SIZE 16 -#define BM_BCH_FLASH0LAYOUT1_PAGE_SIZE \ - (0xffff << BP_BCH_FLASH0LAYOUT1_PAGE_SIZE) -#define BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(v) \ - (((v) << BP_BCH_FLASH0LAYOUT1_PAGE_SIZE) \ - & BM_BCH_FLASH0LAYOUT1_PAGE_SIZE) - -#define BP_BCH_FLASH0LAYOUT1_ECCN 12 -#define BM_BCH_FLASH0LAYOUT1_ECCN (0xf << BP_BCH_FLASH0LAYOUT1_ECCN) -#define MX6Q_BP_BCH_FLASH0LAYOUT1_ECCN 11 -#define MX6Q_BM_BCH_FLASH0LAYOUT1_ECCN (0x1f << MX6Q_BP_BCH_FLASH0LAYOUT1_ECCN) -#define BF_BCH_FLASH0LAYOUT1_ECCN(v, x) \ - (GPMI_IS_MX6(x) \ - ? (((v) << MX6Q_BP_BCH_FLASH0LAYOUT1_ECCN) \ - & MX6Q_BM_BCH_FLASH0LAYOUT1_ECCN) \ - : (((v) << BP_BCH_FLASH0LAYOUT1_ECCN) \ - & BM_BCH_FLASH0LAYOUT1_ECCN) \ - ) - -#define MX6Q_BP_BCH_FLASH0LAYOUT1_GF_13_14 10 -#define MX6Q_BM_BCH_FLASH0LAYOUT1_GF_13_14 \ - (0x1 << MX6Q_BP_BCH_FLASH0LAYOUT1_GF_13_14) -#define BF_BCH_FLASH0LAYOUT1_GF(v, x) \ - ((GPMI_IS_MX6(x) && ((v) == 14)) \ - ? (((1) << MX6Q_BP_BCH_FLASH0LAYOUT1_GF_13_14) \ - & MX6Q_BM_BCH_FLASH0LAYOUT1_GF_13_14) \ - : 0 \ - ) - -#define BP_BCH_FLASH0LAYOUT1_DATAN_SIZE 0 -#define BM_BCH_FLASH0LAYOUT1_DATAN_SIZE \ - (0xfff << BP_BCH_FLASH0LAYOUT1_DATAN_SIZE) -#define MX6Q_BM_BCH_FLASH0LAYOUT1_DATAN_SIZE \ - (0x3ff << BP_BCH_FLASH0LAYOUT1_DATAN_SIZE) -#define BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(v, x) \ - (GPMI_IS_MX6(x) \ - ? (((v) >> 2) & MX6Q_BM_BCH_FLASH0LAYOUT1_DATAN_SIZE) \ - : ((v) & BM_BCH_FLASH0LAYOUT1_DATAN_SIZE) \ - ) - -#define HW_BCH_VERSION 0x00000160 -#endif diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-lib.c b/drivers/mtd/nand/gpmi-nand/gpmi-lib.c deleted file mode 100644 index 97787246af41..000000000000 --- a/drivers/mtd/nand/gpmi-nand/gpmi-lib.c +++ /dev/null @@ -1,1510 +0,0 @@ -/* - * Freescale GPMI NAND Flash Driver - * - * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. - * Copyright (C) 2008 Embedded Alley Solutions, Inc. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License along - * with this program; if not, write to the Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - */ -#include <linux/delay.h> -#include <linux/clk.h> -#include <linux/slab.h> - -#include "gpmi-nand.h" -#include "gpmi-regs.h" -#include "bch-regs.h" - -static struct timing_threshold timing_default_threshold = { - .max_data_setup_cycles = (BM_GPMI_TIMING0_DATA_SETUP >> - BP_GPMI_TIMING0_DATA_SETUP), - .internal_data_setup_in_ns = 0, - .max_sample_delay_factor = (BM_GPMI_CTRL1_RDN_DELAY >> - BP_GPMI_CTRL1_RDN_DELAY), - .max_dll_clock_period_in_ns = 32, - .max_dll_delay_in_ns = 16, -}; - -#define MXS_SET_ADDR 0x4 -#define MXS_CLR_ADDR 0x8 -/* - * Clear the bit and poll it cleared. This is usually called with - * a reset address and mask being either SFTRST(bit 31) or CLKGATE - * (bit 30). - */ -static int clear_poll_bit(void __iomem *addr, u32 mask) -{ - int timeout = 0x400; - - /* clear the bit */ - writel(mask, addr + MXS_CLR_ADDR); - - /* - * SFTRST needs 3 GPMI clocks to settle, the reference manual - * recommends to wait 1us. - */ - udelay(1); - - /* poll the bit becoming clear */ - while ((readl(addr) & mask) && --timeout) - /* nothing */; - - return !timeout; -} - -#define MODULE_CLKGATE (1 << 30) -#define MODULE_SFTRST (1 << 31) -/* - * The current mxs_reset_block() will do two things: - * [1] enable the module. - * [2] reset the module. - * - * In most of the cases, it's ok. - * But in MX23, there is a hardware bug in the BCH block (see erratum #2847). - * If you try to soft reset the BCH block, it becomes unusable until - * the next hard reset. This case occurs in the NAND boot mode. When the board - * boots by NAND, the ROM of the chip will initialize the BCH blocks itself. - * So If the driver tries to reset the BCH again, the BCH will not work anymore. - * You will see a DMA timeout in this case. The bug has been fixed - * in the following chips, such as MX28. - * - * To avoid this bug, just add a new parameter `just_enable` for - * the mxs_reset_block(), and rewrite it here. - */ -static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable) -{ - int ret; - int timeout = 0x400; - - /* clear and poll SFTRST */ - ret = clear_poll_bit(reset_addr, MODULE_SFTRST); - if (unlikely(ret)) - goto error; - - /* clear CLKGATE */ - writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR); - - if (!just_enable) { - /* set SFTRST to reset the block */ - writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR); - udelay(1); - - /* poll CLKGATE becoming set */ - while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout) - /* nothing */; - if (unlikely(!timeout)) - goto error; - } - - /* clear and poll SFTRST */ - ret = clear_poll_bit(reset_addr, MODULE_SFTRST); - if (unlikely(ret)) - goto error; - - /* clear and poll CLKGATE */ - ret = clear_poll_bit(reset_addr, MODULE_CLKGATE); - if (unlikely(ret)) - goto error; - - return 0; - -error: - pr_err("%s(%p): module reset timeout\n", __func__, reset_addr); - return -ETIMEDOUT; -} - -static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v) -{ - struct clk *clk; - int ret; - int i; - - for (i = 0; i < GPMI_CLK_MAX; i++) { - clk = this->resources.clock[i]; - if (!clk) - break; - - if (v) { - ret = clk_prepare_enable(clk); - if (ret) - goto err_clk; - } else { - clk_disable_unprepare(clk); - } - } - return 0; - -err_clk: - for (; i > 0; i--) - clk_disable_unprepare(this->resources.clock[i - 1]); - return ret; -} - -#define gpmi_enable_clk(x) __gpmi_enable_clk(x, true) -#define gpmi_disable_clk(x) __gpmi_enable_clk(x, false) - -int gpmi_init(struct gpmi_nand_data *this) -{ - struct resources *r = &this->resources; - int ret; - - ret = gpmi_enable_clk(this); - if (ret) - return ret; - ret = gpmi_reset_block(r->gpmi_regs, false); - if (ret) - goto err_out; - - /* - * Reset BCH here, too. We got failures otherwise :( - * See later BCH reset for explanation of MX23 handling - */ - ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this)); - if (ret) - goto err_out; - - - /* Choose NAND mode. */ - writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR); - - /* Set the IRQ polarity. */ - writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY, - r->gpmi_regs + HW_GPMI_CTRL1_SET); - - /* Disable Write-Protection. */ - writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET); - - /* Select BCH ECC. */ - writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET); - - /* - * Decouple the chip select from dma channel. We use dma0 for all - * the chips. - */ - writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET); - - gpmi_disable_clk(this); - return 0; -err_out: - gpmi_disable_clk(this); - return ret; -} - -/* This function is very useful. It is called only when the bug occur. */ -void gpmi_dump_info(struct gpmi_nand_data *this) -{ - struct resources *r = &this->resources; - struct bch_geometry *geo = &this->bch_geometry; - u32 reg; - int i; - - dev_err(this->dev, "Show GPMI registers :\n"); - for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) { - reg = readl(r->gpmi_regs + i * 0x10); - dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); - } - - /* start to print out the BCH info */ - dev_err(this->dev, "Show BCH registers :\n"); - for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) { - reg = readl(r->bch_regs + i * 0x10); - dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); - } - dev_err(this->dev, "BCH Geometry :\n" - "GF length : %u\n" - "ECC Strength : %u\n" - "Page Size in Bytes : %u\n" - "Metadata Size in Bytes : %u\n" - "ECC Chunk Size in Bytes: %u\n" - "ECC Chunk Count : %u\n" - "Payload Size in Bytes : %u\n" - "Auxiliary Size in Bytes: %u\n" - "Auxiliary Status Offset: %u\n" - "Block Mark Byte Offset : %u\n" - "Block Mark Bit Offset : %u\n", - geo->gf_len, - geo->ecc_strength, - geo->page_size, - geo->metadata_size, - geo->ecc_chunk_size, - geo->ecc_chunk_count, - geo->payload_size, - geo->auxiliary_size, - geo->auxiliary_status_offset, - geo->block_mark_byte_offset, - geo->block_mark_bit_offset); -} - -/* Configures the geometry for BCH. */ -int bch_set_geometry(struct gpmi_nand_data *this) -{ - struct resources *r = &this->resources; - struct bch_geometry *bch_geo = &this->bch_geometry; - unsigned int block_count; - unsigned int block_size; - unsigned int metadata_size; - unsigned int ecc_strength; - unsigned int page_size; - unsigned int gf_len; - int ret; - - if (common_nfc_set_geometry(this)) - return !0; - - block_count = bch_geo->ecc_chunk_count - 1; - block_size = bch_geo->ecc_chunk_size; - metadata_size = bch_geo->metadata_size; - ecc_strength = bch_geo->ecc_strength >> 1; - page_size = bch_geo->page_size; - gf_len = bch_geo->gf_len; - - ret = gpmi_enable_clk(this); - if (ret) - return ret; - - /* - * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this - * chip, otherwise it will lock up. So we skip resetting BCH on the MX23. - * On the other hand, the MX28 needs the reset, because one case has been - * seen where the BCH produced ECC errors constantly after 10000 - * consecutive reboots. The latter case has not been seen on the MX23 - * yet, still we don't know if it could happen there as well. - */ - ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this)); - if (ret) - goto err_out; - - /* Configure layout 0. */ - writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count) - | BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size) - | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) - | BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) - | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this), - r->bch_regs + HW_BCH_FLASH0LAYOUT0); - - writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) - | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) - | BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) - | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this), - r->bch_regs + HW_BCH_FLASH0LAYOUT1); - - /* Set *all* chip selects to use layout 0. */ - writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT); - - /* Enable interrupts. */ - writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, - r->bch_regs + HW_BCH_CTRL_SET); - - gpmi_disable_clk(this); - return 0; -err_out: - gpmi_disable_clk(this); - return ret; -} - -/* Converts time in nanoseconds to cycles. */ -static unsigned int ns_to_cycles(unsigned int time, - unsigned int period, unsigned int min) -{ - unsigned int k; - - k = (time + period - 1) / period; - return max(k, min); -} - -#define DEF_MIN_PROP_DELAY 5 -#define DEF_MAX_PROP_DELAY 9 -/* Apply timing to current hardware conditions. */ -static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this, - struct gpmi_nfc_hardware_timing *hw) -{ - struct timing_threshold *nfc = &timing_default_threshold; - struct resources *r = &this->resources; - struct nand_chip *nand = &this->nand; - struct nand_timing target = this->timing; - bool improved_timing_is_available; - unsigned long clock_frequency_in_hz; - unsigned int clock_period_in_ns; - bool dll_use_half_periods; - unsigned int dll_delay_shift; - unsigned int max_sample_delay_in_ns; - unsigned int address_setup_in_cycles; - unsigned int data_setup_in_ns; - unsigned int data_setup_in_cycles; - unsigned int data_hold_in_cycles; - int ideal_sample_delay_in_ns; - unsigned int sample_delay_factor; - int tEYE; - unsigned int min_prop_delay_in_ns = DEF_MIN_PROP_DELAY; - unsigned int max_prop_delay_in_ns = DEF_MAX_PROP_DELAY; - - /* - * If there are multiple chips, we need to relax the timings to allow - * for signal distortion due to higher capacitance. - */ - if (nand->numchips > 2) { - target.data_setup_in_ns += 10; - target.data_hold_in_ns += 10; - target.address_setup_in_ns += 10; - } else if (nand->numchips > 1) { - target.data_setup_in_ns += 5; - target.data_hold_in_ns += 5; - target.address_setup_in_ns += 5; - } - - /* Check if improved timing information is available. */ - improved_timing_is_available = - (target.tREA_in_ns >= 0) && - (target.tRLOH_in_ns >= 0) && - (target.tRHOH_in_ns >= 0); - - /* Inspect the clock. */ - nfc->clock_frequency_in_hz = clk_get_rate(r->clock[0]); - clock_frequency_in_hz = nfc->clock_frequency_in_hz; - clock_period_in_ns = NSEC_PER_SEC / clock_frequency_in_hz; - - /* - * The NFC quantizes setup and hold parameters in terms of clock cycles. - * Here, we quantize the setup and hold timing parameters to the - * next-highest clock period to make sure we apply at least the - * specified times. - * - * For data setup and data hold, the hardware interprets a value of zero - * as the largest possible delay. This is not what's intended by a zero - * in the input parameter, so we impose a minimum of one cycle. - */ - data_setup_in_cycles = ns_to_cycles(target.data_setup_in_ns, - clock_period_in_ns, 1); - data_hold_in_cycles = ns_to_cycles(target.data_hold_in_ns, - clock_period_in_ns, 1); - address_setup_in_cycles = ns_to_cycles(target.address_setup_in_ns, - clock_period_in_ns, 0); - - /* - * The clock's period affects the sample delay in a number of ways: - * - * (1) The NFC HAL tells us the maximum clock period the sample delay - * DLL can tolerate. If the clock period is greater than half that - * maximum, we must configure the DLL to be driven by half periods. - * - * (2) We need to convert from an ideal sample delay, in ns, to a - * "sample delay factor," which the NFC uses. This factor depends on - * whether we're driving the DLL with full or half periods. - * Paraphrasing the reference manual: - * - * AD = SDF x 0.125 x RP - * - * where: - * - * AD is the applied delay, in ns. - * SDF is the sample delay factor, which is dimensionless. - * RP is the reference period, in ns, which is a full clock period - * if the DLL is being driven by full periods, or half that if - * the DLL is being driven by half periods. - * - * Let's re-arrange this in a way that's more useful to us: - * - * 8 - * SDF = AD x ---- - * RP - * - * The reference period is either the clock period or half that, so this - * is: - * - * 8 AD x DDF - * SDF = AD x ----- = -------- - * f x P P - * - * where: - * - * f is 1 or 1/2, depending on how we're driving the DLL. - * P is the clock period. - * DDF is the DLL Delay Factor, a dimensionless value that - * incorporates all the constants in the conversion. - * - * DDF will be either 8 or 16, both of which are powers of two. We can - * reduce the cost of this conversion by using bit shifts instead of - * multiplication or division. Thus: - * - * AD << DDS - * SDF = --------- - * P - * - * or - * - * AD = (SDF >> DDS) x P - * - * where: - * - * DDS is the DLL Delay Shift, the logarithm to base 2 of the DDF. - */ - if (clock_period_in_ns > (nfc->max_dll_clock_period_in_ns >> 1)) { - dll_use_half_periods = true; - dll_delay_shift = 3 + 1; - } else { - dll_use_half_periods = false; - dll_delay_shift = 3; - } - - /* - * Compute the maximum sample delay the NFC allows, under current - * conditions. If the clock is running too slowly, no sample delay is - * possible. - */ - if (clock_period_in_ns > nfc->max_dll_clock_period_in_ns) - max_sample_delay_in_ns = 0; - else { - /* - * Compute the delay implied by the largest sample delay factor - * the NFC allows. - */ - max_sample_delay_in_ns = - (nfc->max_sample_delay_factor * clock_period_in_ns) >> - dll_delay_shift; - - /* - * Check if the implied sample delay larger than the NFC - * actually allows. - */ - if (max_sample_delay_in_ns > nfc->max_dll_delay_in_ns) - max_sample_delay_in_ns = nfc->max_dll_delay_in_ns; - } - - /* - * Check if improved timing information is available. If not, we have to - * use a less-sophisticated algorithm. - */ - if (!improved_timing_is_available) { - /* - * Fold the read setup time required by the NFC into the ideal - * sample delay. - */ - ideal_sample_delay_in_ns = target.gpmi_sample_delay_in_ns + - nfc->internal_data_setup_in_ns; - - /* - * The ideal sample delay may be greater than the maximum - * allowed by the NFC. If so, we can trade off sample delay time - * for more data setup time. - * - * In each iteration of the following loop, we add a cycle to - * the data setup time and subtract a corresponding amount from - * the sample delay until we've satisified the constraints or - * can't do any better. - */ - while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) && - (data_setup_in_cycles < nfc->max_data_setup_cycles)) { - - data_setup_in_cycles++; - ideal_sample_delay_in_ns -= clock_period_in_ns; - - if (ideal_sample_delay_in_ns < 0) - ideal_sample_delay_in_ns = 0; - - } - - /* - * Compute the sample delay factor that corresponds most closely - * to the ideal sample delay. If the result is too large for the - * NFC, use the maximum value. - * - * Notice that we use the ns_to_cycles function to compute the - * sample delay factor. We do this because the form of the - * computation is the same as that for calculating cycles. - */ - sample_delay_factor = - ns_to_cycles( - ideal_sample_delay_in_ns << dll_delay_shift, - clock_period_in_ns, 0); - - if (sample_delay_factor > nfc->max_sample_delay_factor) - sample_delay_factor = nfc->max_sample_delay_factor; - - /* Skip to the part where we return our results. */ - goto return_results; - } - - /* - * If control arrives here, we have more detailed timing information, - * so we can use a better algorithm. - */ - - /* - * Fold the read setup time required by the NFC into the maximum - * propagation delay. - */ - max_prop_delay_in_ns += nfc->internal_data_setup_in_ns; - - /* - * Earlier, we computed the number of clock cycles required to satisfy - * the data setup time. Now, we need to know the actual nanoseconds. - */ - data_setup_in_ns = clock_period_in_ns * data_setup_in_cycles; - - /* - * Compute tEYE, the width of the data eye when reading from the NAND - * Flash. The eye width is fundamentally determined by the data setup - * time, perturbed by propagation delays and some characteristics of the - * NAND Flash device. - * - * start of the eye = max_prop_delay + tREA - * end of the eye = min_prop_delay + tRHOH + data_setup - */ - tEYE = (int)min_prop_delay_in_ns + (int)target.tRHOH_in_ns + - (int)data_setup_in_ns; - - tEYE -= (int)max_prop_delay_in_ns + (int)target.tREA_in_ns; - - /* - * The eye must be open. If it's not, we can try to open it by - * increasing its main forcer, the data setup time. - * - * In each iteration of the following loop, we increase the data setup - * time by a single clock cycle. We do this until either the eye is - * open or we run into NFC limits. - */ - while ((tEYE <= 0) && - (data_setup_in_cycles < nfc->max_data_setup_cycles)) { - /* Give a cycle to data setup. */ - data_setup_in_cycles++; - /* Synchronize the data setup time with the cycles. */ - data_setup_in_ns += clock_period_in_ns; - /* Adjust tEYE accordingly. */ - tEYE += clock_period_in_ns; - } - - /* - * When control arrives here, the eye is open. The ideal time to sample - * the data is in the center of the eye: - * - * end of the eye + start of the eye - * --------------------------------- - data_setup - * 2 - * - * After some algebra, this simplifies to the code immediately below. - */ - ideal_sample_delay_in_ns = - ((int)max_prop_delay_in_ns + - (int)target.tREA_in_ns + - (int)min_prop_delay_in_ns + - (int)target.tRHOH_in_ns - - (int)data_setup_in_ns) >> 1; - - /* - * The following figure illustrates some aspects of a NAND Flash read: - * - * - * __ _____________________________________ - * RDN \_________________/ - * - * <---- tEYE -----> - * /-----------------\ - * Read Data ----------------------------< >--------- - * \-----------------/ - * ^ ^ ^ ^ - * | | | | - * |<--Data Setup -->|<--Delay Time -->| | - * | | | | - * | | | - * | |<-- Quantized Delay Time -->| - * | | | - * - * - * We have some issues we must now address: - * - * (1) The *ideal* sample delay time must not be negative. If it is, we - * jam it to zero. - * - * (2) The *ideal* sample delay time must not be greater than that - * allowed by the NFC. If it is, we can increase the data setup - * time, which will reduce the delay between the end of the data - * setup and the center of the eye. It will also make the eye - * larger, which might help with the next issue... - * - * (3) The *quantized* sample delay time must not fall either before the - * eye opens or after it closes (the latter is the problem - * illustrated in the above figure). - */ - - /* Jam a negative ideal sample delay to zero. */ - if (ideal_sample_delay_in_ns < 0) - ideal_sample_delay_in_ns = 0; - - /* - * Extend the data setup as needed to reduce the ideal sample delay - * below the maximum permitted by the NFC. - */ - while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) && - (data_setup_in_cycles < nfc->max_data_setup_cycles)) { - - /* Give a cycle to data setup. */ - data_setup_in_cycles++; - /* Synchronize the data setup time with the cycles. */ - data_setup_in_ns += clock_period_in_ns; - /* Adjust tEYE accordingly. */ - tEYE += clock_period_in_ns; - - /* - * Decrease the ideal sample delay by one half cycle, to keep it - * in the middle of the eye. - */ - ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1); - - /* Jam a negative ideal sample delay to zero. */ - if (ideal_sample_delay_in_ns < 0) - ideal_sample_delay_in_ns = 0; - } - - /* - * Compute the sample delay factor that corresponds to the ideal sample - * delay. If the result is too large, then use the maximum allowed - * value. - * - * Notice that we use the ns_to_cycles function to compute the sample - * delay factor. We do this because the form of the computation is the - * same as that for calculating cycles. - */ - sample_delay_factor = - ns_to_cycles(ideal_sample_delay_in_ns << dll_delay_shift, - clock_period_in_ns, 0); - - if (sample_delay_factor > nfc->max_sample_delay_factor) - sample_delay_factor = nfc->max_sample_delay_factor; - - /* - * These macros conveniently encapsulate a computation we'll use to - * continuously evaluate whether or not the data sample delay is inside - * the eye. - */ - #define IDEAL_DELAY ((int) ideal_sample_delay_in_ns) - - #define QUANTIZED_DELAY \ - ((int) ((sample_delay_factor * clock_period_in_ns) >> \ - dll_delay_shift)) - - #define DELAY_ERROR (abs(QUANTIZED_DELAY - IDEAL_DELAY)) - - #define SAMPLE_IS_NOT_WITHIN_THE_EYE (DELAY_ERROR > (tEYE >> 1)) - - /* - * While the quantized sample time falls outside the eye, reduce the - * sample delay or extend the data setup to move the sampling point back - * toward the eye. Do not allow the number of data setup cycles to - * exceed the maximum allowed by the NFC. - */ - while (SAMPLE_IS_NOT_WITHIN_THE_EYE && - (data_setup_in_cycles < nfc->max_data_setup_cycles)) { - /* - * If control arrives here, the quantized sample delay falls - * outside the eye. Check if it's before the eye opens, or after - * the eye closes. - */ - if (QUANTIZED_DELAY > IDEAL_DELAY) { - /* - * If control arrives here, the quantized sample delay - * falls after the eye closes. Decrease the quantized - * delay time and then go back to re-evaluate. - */ - if (sample_delay_factor != 0) - sample_delay_factor--; - continue; - } - - /* - * If control arrives here, the quantized sample delay falls - * before the eye opens. Shift the sample point by increasing - * data setup time. This will also make the eye larger. - */ - - /* Give a cycle to data setup. */ - data_setup_in_cycles++; - /* Synchronize the data setup time with the cycles. */ - data_setup_in_ns += clock_period_in_ns; - /* Adjust tEYE accordingly. */ - tEYE += clock_period_in_ns; - - /* - * Decrease the ideal sample delay by one half cycle, to keep it - * in the middle of the eye. - */ - ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1); - - /* ...and one less period for the delay time. */ - ideal_sample_delay_in_ns -= clock_period_in_ns; - - /* Jam a negative ideal sample delay to zero. */ - if (ideal_sample_delay_in_ns < 0) - ideal_sample_delay_in_ns = 0; - - /* - * We have a new ideal sample delay, so re-compute the quantized - * delay. - */ - sample_delay_factor = - ns_to_cycles( - ideal_sample_delay_in_ns << dll_delay_shift, - clock_period_in_ns, 0); - - if (sample_delay_factor > nfc->max_sample_delay_factor) - sample_delay_factor = nfc->max_sample_delay_factor; - } - - /* Control arrives here when we're ready to return our results. */ -return_results: - hw->data_setup_in_cycles = data_setup_in_cycles; - hw->data_hold_in_cycles = data_hold_in_cycles; - hw->address_setup_in_cycles = address_setup_in_cycles; - hw->use_half_periods = dll_use_half_periods; - hw->sample_delay_factor = sample_delay_factor; - hw->device_busy_timeout = GPMI_DEFAULT_BUSY_TIMEOUT; - hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS; - - /* Return success. */ - return 0; -} - -/* - * <1> Firstly, we should know what's the GPMI-clock means. - * The GPMI-clock is the internal clock in the gpmi nand controller. - * If you set 100MHz to gpmi nand controller, the GPMI-clock's period - * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period. - * - * <2> Secondly, we should know what's the frequency on the nand chip pins. - * The frequency on the nand chip pins is derived from the GPMI-clock. - * We can get it from the following equation: - * - * F = G / (DS + DH) - * - * F : the frequency on the nand chip pins. - * G : the GPMI clock, such as 100MHz. - * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP - * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD - * - * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz, - * the nand EDO(extended Data Out) timing could be applied. - * The GPMI implements a feedback read strobe to sample the read data. - * The feedback read strobe can be delayed to support the nand EDO timing - * where the read strobe may deasserts before the read data is valid, and - * read data is valid for some time after read strobe. - * - * The following figure illustrates some aspects of a NAND Flash read: - * - * |<---tREA---->| - * | | - * | | | - * |<--tRP-->| | - * | | | - * __ ___|__________________________________ - * RDN \________/ | - * | - * /---------\ - * Read Data --------------< >--------- - * \---------/ - * | | - * |<-D->| - * FeedbackRDN ________ ____________ - * \___________/ - * - * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY. - * - * - * <4> Now, we begin to describe how to compute the right RDN_DELAY. - * - * 4.1) From the aspect of the nand chip pins: - * Delay = (tREA + C - tRP) {1} - * - * tREA : the maximum read access time. From the ONFI nand standards, - * we know that tREA is 16ns in mode 5, tREA is 20ns is mode 4. - * Please check it in : www.onfi.org - * C : a constant for adjust the delay. default is 4. - * tRP : the read pulse width. - * Specified by the HW_GPMI_TIMING0:DATA_SETUP: - * tRP = (GPMI-clock-period) * DATA_SETUP - * - * 4.2) From the aspect of the GPMI nand controller: - * Delay = RDN_DELAY * 0.125 * RP {2} - * - * RP : the DLL reference period. - * if (GPMI-clock-period > DLL_THRETHOLD) - * RP = GPMI-clock-period / 2; - * else - * RP = GPMI-clock-period; - * - * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period - * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD - * is 16ns, but in mx6q, we use 12ns. - * - * 4.3) since {1} equals {2}, we get: - * - * (tREA + 4 - tRP) * 8 - * RDN_DELAY = --------------------- {3} - * RP - * - * 4.4) We only support the fastest asynchronous mode of ONFI nand. - * For some ONFI nand, the mode 4 is the fastest mode; - * while for some ONFI nand, the mode 5 is the fastest mode. - * So we only support the mode 4 and mode 5. It is no need to - * support other modes. - */ -static void gpmi_compute_edo_timing(struct gpmi_nand_data *this, - struct gpmi_nfc_hardware_timing *hw) -{ - struct resources *r = &this->resources; - unsigned long rate = clk_get_rate(r->clock[0]); - int mode = this->timing_mode; - int dll_threshold = this->devdata->max_chain_delay; - unsigned long delay; - unsigned long clk_period; - int t_rea; - int c = 4; - int t_rp; - int rp; - - /* - * [1] for GPMI_HW_GPMI_TIMING0: - * The async mode requires 40MHz for mode 4, 50MHz for mode 5. - * The GPMI can support 100MHz at most. So if we want to - * get the 40MHz or 50MHz, we have to set DS=1, DH=1. - * Set the ADDRESS_SETUP to 0 in mode 4. - */ - hw->data_setup_in_cycles = 1; - hw->data_hold_in_cycles = 1; - hw->address_setup_in_cycles = ((mode == 5) ? 1 : 0); - - /* [2] for GPMI_HW_GPMI_TIMING1 */ - hw->device_busy_timeout = 0x9000; - - /* [3] for GPMI_HW_GPMI_CTRL1 */ - hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; - - /* - * Enlarge 10 times for the numerator and denominator in {3}. - * This make us to get more accurate result. - */ - clk_period = NSEC_PER_SEC / (rate / 10); - dll_threshold *= 10; - t_rea = ((mode == 5) ? 16 : 20) * 10; - c *= 10; - - t_rp = clk_period * 1; /* DATA_SETUP is 1 */ - - if (clk_period > dll_threshold) { - hw->use_half_periods = 1; - rp = clk_period / 2; - } else { - hw->use_half_periods = 0; - rp = clk_period; - } - - /* - * Multiply the numerator with 10, we could do a round off: - * 7.8 round up to 8; 7.4 round down to 7. - */ - delay = (((t_rea + c - t_rp) * 8) * 10) / rp; - delay = (delay + 5) / 10; - - hw->sample_delay_factor = delay; -} - -static int enable_edo_mode(struct gpmi_nand_data *this, int mode) -{ - struct resources *r = &this->resources; - struct nand_chip *nand = &this->nand; - struct mtd_info *mtd = nand_to_mtd(nand); - uint8_t *feature; - unsigned long rate; - int ret; - - feature = kzalloc(ONFI_SUBFEATURE_PARAM_LEN, GFP_KERNEL); - if (!feature) - return -ENOMEM; - - nand->select_chip(mtd, 0); - - /* [1] send SET FEATURE command to NAND */ - feature[0] = mode; - ret = nand->onfi_set_features(mtd, nand, - ONFI_FEATURE_ADDR_TIMING_MODE, feature); - if (ret) - goto err_out; - - /* [2] send GET FEATURE command to double-check the timing mode */ - memset(feature, 0, ONFI_SUBFEATURE_PARAM_LEN); - ret = nand->onfi_get_features(mtd, nand, - ONFI_FEATURE_ADDR_TIMING_MODE, feature); - if (ret || feature[0] != mode) - goto err_out; - - nand->select_chip(mtd, -1); - - /* [3] set the main IO clock, 100MHz for mode 5, 80MHz for mode 4. */ - rate = (mode == 5) ? 100000000 : 80000000; - clk_set_rate(r->clock[0], rate); - - /* Let the gpmi_begin() re-compute the timing again. */ - this->flags &= ~GPMI_TIMING_INIT_OK; - - this->flags |= GPMI_ASYNC_EDO_ENABLED; - this->timing_mode = mode; - kfree(feature); - dev_info(this->dev, "enable the asynchronous EDO mode %d\n", mode); - return 0; - -err_out: - nand->select_chip(mtd, -1); - kfree(feature); - dev_err(this->dev, "mode:%d ,failed in set feature.\n", mode); - return -EINVAL; -} - -int gpmi_extra_init(struct gpmi_nand_data *this) -{ - struct nand_chip *chip = &this->nand; - - /* Enable the asynchronous EDO feature. */ - if (GPMI_IS_MX6(this) && chip->onfi_version) { - int mode = onfi_get_async_timing_mode(chip); - - /* We only support the timing mode 4 and mode 5. */ - if (mode & ONFI_TIMING_MODE_5) - mode = 5; - else if (mode & ONFI_TIMING_MODE_4) - mode = 4; - else - return 0; - - return enable_edo_mode(this, mode); - } - return 0; -} - -/* Begin the I/O */ -void gpmi_begin(struct gpmi_nand_data *this) -{ - struct resources *r = &this->resources; - void __iomem *gpmi_regs = r->gpmi_regs; - unsigned int clock_period_in_ns; - uint32_t reg; - unsigned int dll_wait_time_in_us; - struct gpmi_nfc_hardware_timing hw; - int ret; - - /* Enable the clock. */ - ret = gpmi_enable_clk(this); - if (ret) { - dev_err(this->dev, "We failed in enable the clk\n"); - goto err_out; - } - - /* Only initialize the timing once */ - if (this->flags & GPMI_TIMING_INIT_OK) - return; - this->flags |= GPMI_TIMING_INIT_OK; - - if (this->flags & GPMI_ASYNC_EDO_ENABLED) - gpmi_compute_edo_timing(this, &hw); - else - gpmi_nfc_compute_hardware_timing(this, &hw); - - /* [1] Set HW_GPMI_TIMING0 */ - reg = BF_GPMI_TIMING0_ADDRESS_SETUP(hw.address_setup_in_cycles) | - BF_GPMI_TIMING0_DATA_HOLD(hw.data_hold_in_cycles) | - BF_GPMI_TIMING0_DATA_SETUP(hw.data_setup_in_cycles); - - writel(reg, gpmi_regs + HW_GPMI_TIMING0); - - /* [2] Set HW_GPMI_TIMING1 */ - writel(BF_GPMI_TIMING1_BUSY_TIMEOUT(hw.device_busy_timeout), - gpmi_regs + HW_GPMI_TIMING1); - - /* [3] The following code is to set the HW_GPMI_CTRL1. */ - - /* Set the WRN_DLY_SEL */ - writel(BM_GPMI_CTRL1_WRN_DLY_SEL, gpmi_regs + HW_GPMI_CTRL1_CLR); - writel(BF_GPMI_CTRL1_WRN_DLY_SEL(hw.wrn_dly_sel), - gpmi_regs + HW_GPMI_CTRL1_SET); - - /* DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD. */ - writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_CLR); - - /* Clear out the DLL control fields. */ - reg = BM_GPMI_CTRL1_RDN_DELAY | BM_GPMI_CTRL1_HALF_PERIOD; - writel(reg, gpmi_regs + HW_GPMI_CTRL1_CLR); - - /* If no sample delay is called for, return immediately. */ - if (!hw.sample_delay_factor) - return; - - /* Set RDN_DELAY or HALF_PERIOD. */ - reg = ((hw.use_half_periods) ? BM_GPMI_CTRL1_HALF_PERIOD : 0) - | BF_GPMI_CTRL1_RDN_DELAY(hw.sample_delay_factor); - - writel(reg, gpmi_regs + HW_GPMI_CTRL1_SET); - - /* At last, we enable the DLL. */ - writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_SET); - - /* - * After we enable the GPMI DLL, we have to wait 64 clock cycles before - * we can use the GPMI. Calculate the amount of time we need to wait, - * in microseconds. - */ - clock_period_in_ns = NSEC_PER_SEC / clk_get_rate(r->clock[0]); - dll_wait_time_in_us = (clock_period_in_ns * 64) / 1000; - - if (!dll_wait_time_in_us) - dll_wait_time_in_us = 1; - - /* Wait for the DLL to settle. */ - udelay(dll_wait_time_in_us); - -err_out: - return; -} - -void gpmi_end(struct gpmi_nand_data *this) -{ - gpmi_disable_clk(this); -} - -/* Clears a BCH interrupt. */ -void gpmi_clear_bch(struct gpmi_nand_data *this) -{ - struct resources *r = &this->resources; - writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR); -} - -/* Returns the Ready/Busy status of the given chip. */ -int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip) -{ - struct resources *r = &this->resources; - uint32_t mask = 0; - uint32_t reg = 0; - - if (GPMI_IS_MX23(this)) { - mask = MX23_BM_GPMI_DEBUG_READY0 << chip; - reg = readl(r->gpmi_regs + HW_GPMI_DEBUG); - } else if (GPMI_IS_MX28(this) || GPMI_IS_MX6(this)) { - /* - * In the imx6, all the ready/busy pins are bound - * together. So we only need to check chip 0. - */ - if (GPMI_IS_MX6(this)) - chip = 0; - - /* MX28 shares the same R/B register as MX6Q. */ - mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip); - reg = readl(r->gpmi_regs + HW_GPMI_STAT); - } else - dev_err(this->dev, "unknown arch.\n"); - return reg & mask; -} - -static inline void set_dma_type(struct gpmi_nand_data *this, - enum dma_ops_type type) -{ - this->last_dma_type = this->dma_type; - this->dma_type = type; -} - -int gpmi_send_command(struct gpmi_nand_data *this) -{ - struct dma_chan *channel = get_dma_chan(this); - struct dma_async_tx_descriptor *desc; - struct scatterlist *sgl; - int chip = this->current_chip; - u32 pio[3]; - - /* [1] send out the PIO words */ - pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE) - | BM_GPMI_CTRL0_WORD_LENGTH - | BF_GPMI_CTRL0_CS(chip, this) - | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) - | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE) - | BM_GPMI_CTRL0_ADDRESS_INCREMENT - | BF_GPMI_CTRL0_XFER_COUNT(this->command_length); - pio[1] = pio[2] = 0; - desc = dmaengine_prep_slave_sg(channel, - (struct scatterlist *)pio, - ARRAY_SIZE(pio), DMA_TRANS_NONE, 0); - if (!desc) - return -EINVAL; - - /* [2] send out the COMMAND + ADDRESS string stored in @buffer */ - sgl = &this->cmd_sgl; - - sg_init_one(sgl, this->cmd_buffer, this->command_length); - dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE); - desc = dmaengine_prep_slave_sg(channel, - sgl, 1, DMA_MEM_TO_DEV, - DMA_PREP_INTERRUPT | DMA_CTRL_ACK); - if (!desc) - return -EINVAL; - - /* [3] submit the DMA */ - set_dma_type(this, DMA_FOR_COMMAND); - return start_dma_without_bch_irq(this, desc); -} - -int gpmi_send_data(struct gpmi_nand_data *this) -{ - struct dma_async_tx_descriptor *desc; - struct dma_chan *channel = get_dma_chan(this); - int chip = this->current_chip; - uint32_t command_mode; - uint32_t address; - u32 pio[2]; - - /* [1] PIO */ - command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE; - address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; - - pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) - | BM_GPMI_CTRL0_WORD_LENGTH - | BF_GPMI_CTRL0_CS(chip, this) - | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) - | BF_GPMI_CTRL0_ADDRESS(address) - | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len); - pio[1] = 0; - desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio, - ARRAY_SIZE(pio), DMA_TRANS_NONE, 0); - if (!desc) - return -EINVAL; - - /* [2] send DMA request */ - prepare_data_dma(this, DMA_TO_DEVICE); - desc = dmaengine_prep_slave_sg(channel, &this->data_sgl, - 1, DMA_MEM_TO_DEV, - DMA_PREP_INTERRUPT | DMA_CTRL_ACK); - if (!desc) - return -EINVAL; - - /* [3] submit the DMA */ - set_dma_type(this, DMA_FOR_WRITE_DATA); - return start_dma_without_bch_irq(this, desc); -} - -int gpmi_read_data(struct gpmi_nand_data *this) -{ - struct dma_async_tx_descriptor *desc; - struct dma_chan *channel = get_dma_chan(this); - int chip = this->current_chip; - u32 pio[2]; - - /* [1] : send PIO */ - pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ) - | BM_GPMI_CTRL0_WORD_LENGTH - | BF_GPMI_CTRL0_CS(chip, this) - | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) - | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) - | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len); - pio[1] = 0; - desc = dmaengine_prep_slave_sg(channel, - (struct scatterlist *)pio, - ARRAY_SIZE(pio), DMA_TRANS_NONE, 0); - if (!desc) - return -EINVAL; - - /* [2] : send DMA request */ - prepare_data_dma(this, DMA_FROM_DEVICE); - desc = dmaengine_prep_slave_sg(channel, &this->data_sgl, - 1, DMA_DEV_TO_MEM, - DMA_PREP_INTERRUPT | DMA_CTRL_ACK); - if (!desc) - return -EINVAL; - - /* [3] : submit the DMA */ - set_dma_type(this, DMA_FOR_READ_DATA); - return start_dma_without_bch_irq(this, desc); -} - -int gpmi_send_page(struct gpmi_nand_data *this, - dma_addr_t payload, dma_addr_t auxiliary) -{ - struct bch_geometry *geo = &this->bch_geometry; - uint32_t command_mode; - uint32_t address; - uint32_t ecc_command; - uint32_t buffer_mask; - struct dma_async_tx_descriptor *desc; - struct dma_chan *channel = get_dma_chan(this); - int chip = this->current_chip; - u32 pio[6]; - - /* A DMA descriptor that does an ECC page read. */ - command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE; - address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; - ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE; - buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE | - BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY; - - pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) - | BM_GPMI_CTRL0_WORD_LENGTH - | BF_GPMI_CTRL0_CS(chip, this) - | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) - | BF_GPMI_CTRL0_ADDRESS(address) - | BF_GPMI_CTRL0_XFER_COUNT(0); - pio[1] = 0; - pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC - | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command) - | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask); - pio[3] = geo->page_size; - pio[4] = payload; - pio[5] = auxiliary; - - desc = dmaengine_prep_slave_sg(channel, - (struct scatterlist *)pio, - ARRAY_SIZE(pio), DMA_TRANS_NONE, - DMA_CTRL_ACK); - if (!desc) - return -EINVAL; - - set_dma_type(this, DMA_FOR_WRITE_ECC_PAGE); - return start_dma_with_bch_irq(this, desc); -} - -int gpmi_read_page(struct gpmi_nand_data *this, - dma_addr_t payload, dma_addr_t auxiliary) -{ - struct bch_geometry *geo = &this->bch_geometry; - uint32_t command_mode; - uint32_t address; - uint32_t ecc_command; - uint32_t buffer_mask; - struct dma_async_tx_descriptor *desc; - struct dma_chan *channel = get_dma_chan(this); - int chip = this->current_chip; - u32 pio[6]; - - /* [1] Wait for the chip to report ready. */ - command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY; - address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; - - pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) - | BM_GPMI_CTRL0_WORD_LENGTH - | BF_GPMI_CTRL0_CS(chip, this) - | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) - | BF_GPMI_CTRL0_ADDRESS(address) - | BF_GPMI_CTRL0_XFER_COUNT(0); - pio[1] = 0; - desc = dmaengine_prep_slave_sg(channel, - (struct scatterlist *)pio, 2, - DMA_TRANS_NONE, 0); - if (!desc) - return -EINVAL; - - /* [2] Enable the BCH block and read. */ - command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ; - address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; - ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE; - buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE - | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY; - - pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) - | BM_GPMI_CTRL0_WORD_LENGTH - | BF_GPMI_CTRL0_CS(chip, this) - | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) - | BF_GPMI_CTRL0_ADDRESS(address) - | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size); - - pio[1] = 0; - pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC - | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command) - | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask); - pio[3] = geo->page_size; - pio[4] = payload; - pio[5] = auxiliary; - desc = dmaengine_prep_slave_sg(channel, - (struct scatterlist *)pio, - ARRAY_SIZE(pio), DMA_TRANS_NONE, - DMA_PREP_INTERRUPT | DMA_CTRL_ACK); - if (!desc) - return -EINVAL; - - /* [3] Disable the BCH block */ - command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY; - address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; - - pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) - | BM_GPMI_CTRL0_WORD_LENGTH - | BF_GPMI_CTRL0_CS(chip, this) - | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) - | BF_GPMI_CTRL0_ADDRESS(address) - | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size); - pio[1] = 0; - pio[2] = 0; /* clear GPMI_HW_GPMI_ECCCTRL, disable the BCH. */ - desc = dmaengine_prep_slave_sg(channel, - (struct scatterlist *)pio, 3, - DMA_TRANS_NONE, - DMA_PREP_INTERRUPT | DMA_CTRL_ACK); - if (!desc) - return -EINVAL; - - /* [4] submit the DMA */ - set_dma_type(this, DMA_FOR_READ_ECC_PAGE); - return start_dma_with_bch_irq(this, desc); -} - -/** - * gpmi_copy_bits - copy bits from one memory region to another - * @dst: destination buffer - * @dst_bit_off: bit offset we're starting to write at - * @src: source buffer - * @src_bit_off: bit offset we're starting to read from - * @nbits: number of bits to copy - * - * This functions copies bits from one memory region to another, and is used by - * the GPMI driver to copy ECC sections which are not guaranteed to be byte - * aligned. - * - * src and dst should not overlap. - * - */ -void gpmi_copy_bits(u8 *dst, size_t dst_bit_off, - const u8 *src, size_t src_bit_off, - size_t nbits) -{ - size_t i; - size_t nbytes; - u32 src_buffer = 0; - size_t bits_in_src_buffer = 0; - - if (!nbits) - return; - - /* - * Move src and dst pointers to the closest byte pointer and store bit - * offsets within a byte. - */ - src += src_bit_off / 8; - src_bit_off %= 8; - - dst += dst_bit_off / 8; - dst_bit_off %= 8; - - /* - * Initialize the src_buffer value with bits available in the first - * byte of data so that we end up with a byte aligned src pointer. - */ - if (src_bit_off) { - src_buffer = src[0] >> src_bit_off; - if (nbits >= (8 - src_bit_off)) { - bits_in_src_buffer += 8 - src_bit_off; - } else { - src_buffer &= GENMASK(nbits - 1, 0); - bits_in_src_buffer += nbits; - } - nbits -= bits_in_src_buffer; - src++; - } - - /* Calculate the number of bytes that can be copied from src to dst. */ - nbytes = nbits / 8; - - /* Try to align dst to a byte boundary. */ - if (dst_bit_off) { - if (bits_in_src_buffer < (8 - dst_bit_off) && nbytes) { - src_buffer |= src[0] << bits_in_src_buffer; - bits_in_src_buffer += 8; - src++; - nbytes--; - } - - if (bits_in_src_buffer >= (8 - dst_bit_off)) { - dst[0] &= GENMASK(dst_bit_off - 1, 0); - dst[0] |= src_buffer << dst_bit_off; - src_buffer >>= (8 - dst_bit_off); - bits_in_src_buffer -= (8 - dst_bit_off); - dst_bit_off = 0; - dst++; - if (bits_in_src_buffer > 7) { - bits_in_src_buffer -= 8; - dst[0] = src_buffer; - dst++; - src_buffer >>= 8; - } - } - } - - if (!bits_in_src_buffer && !dst_bit_off) { - /* - * Both src and dst pointers are byte aligned, thus we can - * just use the optimized memcpy function. - */ - if (nbytes) - memcpy(dst, src, nbytes); - } else { - /* - * src buffer is not byte aligned, hence we have to copy each - * src byte to the src_buffer variable before extracting a byte - * to store in dst. - */ - for (i = 0; i < nbytes; i++) { - src_buffer |= src[i] << bits_in_src_buffer; - dst[i] = src_buffer; - src_buffer >>= 8; - } - } - /* Update dst and src pointers */ - dst += nbytes; - src += nbytes; - - /* - * nbits is the number of remaining bits. It should not exceed 8 as - * we've already copied as much bytes as possible. - */ - nbits %= 8; - - /* - * If there's no more bits to copy to the destination and src buffer - * was already byte aligned, then we're done. - */ - if (!nbits && !bits_in_src_buffer) - return; - - /* Copy the remaining bits to src_buffer */ - if (nbits) - src_buffer |= (*src & GENMASK(nbits - 1, 0)) << - bits_in_src_buffer; - bits_in_src_buffer += nbits; - - /* - * In case there were not enough bits to get a byte aligned dst buffer - * prepare the src_buffer variable to match the dst organization (shift - * src_buffer by dst_bit_off and retrieve the least significant bits - * from dst). - */ - if (dst_bit_off) - src_buffer = (src_buffer << dst_bit_off) | - (*dst & GENMASK(dst_bit_off - 1, 0)); - bits_in_src_buffer += dst_bit_off; - - /* - * Keep most significant bits from dst if we end up with an unaligned - * number of bits. - */ - nbytes = bits_in_src_buffer / 8; - if (bits_in_src_buffer % 8) { - src_buffer |= (dst[nbytes] & - GENMASK(7, bits_in_src_buffer % 8)) << - (nbytes * 8); - nbytes++; - } - - /* Copy the remaining bytes to dst */ - for (i = 0; i < nbytes; i++) { - dst[i] = src_buffer; - src_buffer >>= 8; - } -} diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-nand.c b/drivers/mtd/nand/gpmi-nand/gpmi-nand.c deleted file mode 100644 index 61fdd733492f..000000000000 --- a/drivers/mtd/nand/gpmi-nand/gpmi-nand.c +++ /dev/null @@ -1,2182 +0,0 @@ -/* - * Freescale GPMI NAND Flash Driver - * - * Copyright (C) 2010-2015 Freescale Semiconductor, Inc. - * Copyright (C) 2008 Embedded Alley Solutions, Inc. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License along - * with this program; if not, write to the Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - */ -#include <linux/clk.h> -#include <linux/slab.h> -#include <linux/sched/task_stack.h> -#include <linux/interrupt.h> -#include <linux/module.h> -#include <linux/mtd/partitions.h> -#include <linux/of.h> -#include <linux/of_device.h> -#include "gpmi-nand.h" -#include "bch-regs.h" - -/* Resource names for the GPMI NAND driver. */ -#define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand" -#define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch" -#define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch" - -/* add our owner bbt descriptor */ -static uint8_t scan_ff_pattern[] = { 0xff }; -static struct nand_bbt_descr gpmi_bbt_descr = { - .options = 0, - .offs = 0, - .len = 1, - .pattern = scan_ff_pattern -}; - -/* - * We may change the layout if we can get the ECC info from the datasheet, - * else we will use all the (page + OOB). - */ -static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct gpmi_nand_data *this = nand_get_controller_data(chip); - struct bch_geometry *geo = &this->bch_geometry; - - if (section) - return -ERANGE; - - oobregion->offset = 0; - oobregion->length = geo->page_size - mtd->writesize; - - return 0; -} - -static int gpmi_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct gpmi_nand_data *this = nand_get_controller_data(chip); - struct bch_geometry *geo = &this->bch_geometry; - - if (section) - return -ERANGE; - - /* The available oob size we have. */ - if (geo->page_size < mtd->writesize + mtd->oobsize) { - oobregion->offset = geo->page_size - mtd->writesize; - oobregion->length = mtd->oobsize - oobregion->offset; - } - - return 0; -} - -static const char * const gpmi_clks_for_mx2x[] = { - "gpmi_io", -}; - -static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = { - .ecc = gpmi_ooblayout_ecc, - .free = gpmi_ooblayout_free, -}; - -static const struct gpmi_devdata gpmi_devdata_imx23 = { - .type = IS_MX23, - .bch_max_ecc_strength = 20, - .max_chain_delay = 16, - .clks = gpmi_clks_for_mx2x, - .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), -}; - -static const struct gpmi_devdata gpmi_devdata_imx28 = { - .type = IS_MX28, - .bch_max_ecc_strength = 20, - .max_chain_delay = 16, - .clks = gpmi_clks_for_mx2x, - .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), -}; - -static const char * const gpmi_clks_for_mx6[] = { - "gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch", -}; - -static const struct gpmi_devdata gpmi_devdata_imx6q = { - .type = IS_MX6Q, - .bch_max_ecc_strength = 40, - .max_chain_delay = 12, - .clks = gpmi_clks_for_mx6, - .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), -}; - -static const struct gpmi_devdata gpmi_devdata_imx6sx = { - .type = IS_MX6SX, - .bch_max_ecc_strength = 62, - .max_chain_delay = 12, - .clks = gpmi_clks_for_mx6, - .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), -}; - -static const char * const gpmi_clks_for_mx7d[] = { - "gpmi_io", "gpmi_bch_apb", -}; - -static const struct gpmi_devdata gpmi_devdata_imx7d = { - .type = IS_MX7D, - .bch_max_ecc_strength = 62, - .max_chain_delay = 12, - .clks = gpmi_clks_for_mx7d, - .clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d), -}; - -static irqreturn_t bch_irq(int irq, void *cookie) -{ - struct gpmi_nand_data *this = cookie; - - gpmi_clear_bch(this); - complete(&this->bch_done); - return IRQ_HANDLED; -} - -/* - * Calculate the ECC strength by hand: - * E : The ECC strength. - * G : the length of Galois Field. - * N : The chunk count of per page. - * O : the oobsize of the NAND chip. - * M : the metasize of per page. - * - * The formula is : - * E * G * N - * ------------ <= (O - M) - * 8 - * - * So, we get E by: - * (O - M) * 8 - * E <= ------------- - * G * N - */ -static inline int get_ecc_strength(struct gpmi_nand_data *this) -{ - struct bch_geometry *geo = &this->bch_geometry; - struct mtd_info *mtd = nand_to_mtd(&this->nand); - int ecc_strength; - - ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8) - / (geo->gf_len * geo->ecc_chunk_count); - - /* We need the minor even number. */ - return round_down(ecc_strength, 2); -} - -static inline bool gpmi_check_ecc(struct gpmi_nand_data *this) -{ - struct bch_geometry *geo = &this->bch_geometry; - - /* Do the sanity check. */ - if (GPMI_IS_MX23(this) || GPMI_IS_MX28(this)) { - /* The mx23/mx28 only support the GF13. */ - if (geo->gf_len == 14) - return false; - } - return geo->ecc_strength <= this->devdata->bch_max_ecc_strength; -} - -/* - * If we can get the ECC information from the nand chip, we do not - * need to calculate them ourselves. - * - * We may have available oob space in this case. - */ -static int set_geometry_by_ecc_info(struct gpmi_nand_data *this) -{ - struct bch_geometry *geo = &this->bch_geometry; - struct nand_chip *chip = &this->nand; - struct mtd_info *mtd = nand_to_mtd(chip); - unsigned int block_mark_bit_offset; - - if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0)) - return -EINVAL; - - switch (chip->ecc_step_ds) { - case SZ_512: - geo->gf_len = 13; - break; - case SZ_1K: - geo->gf_len = 14; - break; - default: - dev_err(this->dev, - "unsupported nand chip. ecc bits : %d, ecc size : %d\n", - chip->ecc_strength_ds, chip->ecc_step_ds); - return -EINVAL; - } - geo->ecc_chunk_size = chip->ecc_step_ds; - geo->ecc_strength = round_up(chip->ecc_strength_ds, 2); - if (!gpmi_check_ecc(this)) - return -EINVAL; - - /* Keep the C >= O */ - if (geo->ecc_chunk_size < mtd->oobsize) { - dev_err(this->dev, - "unsupported nand chip. ecc size: %d, oob size : %d\n", - chip->ecc_step_ds, mtd->oobsize); - return -EINVAL; - } - - /* The default value, see comment in the legacy_set_geometry(). */ - geo->metadata_size = 10; - - geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; - - /* - * Now, the NAND chip with 2K page(data chunk is 512byte) shows below: - * - * | P | - * |<----------------------------------------------------->| - * | | - * | (Block Mark) | - * | P' | | | | - * |<-------------------------------------------->| D | | O' | - * | |<---->| |<--->| - * V V V V V - * +---+----------+-+----------+-+----------+-+----------+-+-----+ - * | M | data |E| data |E| data |E| data |E| | - * +---+----------+-+----------+-+----------+-+----------+-+-----+ - * ^ ^ - * | O | - * |<------------>| - * | | - * - * P : the page size for BCH module. - * E : The ECC strength. - * G : the length of Galois Field. - * N : The chunk count of per page. - * M : the metasize of per page. - * C : the ecc chunk size, aka the "data" above. - * P': the nand chip's page size. - * O : the nand chip's oob size. - * O': the free oob. - * - * The formula for P is : - * - * E * G * N - * P = ------------ + P' + M - * 8 - * - * The position of block mark moves forward in the ECC-based view - * of page, and the delta is: - * - * E * G * (N - 1) - * D = (---------------- + M) - * 8 - * - * Please see the comment in legacy_set_geometry(). - * With the condition C >= O , we still can get same result. - * So the bit position of the physical block mark within the ECC-based - * view of the page is : - * (P' - D) * 8 - */ - geo->page_size = mtd->writesize + geo->metadata_size + - (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; - - geo->payload_size = mtd->writesize; - - geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4); - geo->auxiliary_size = ALIGN(geo->metadata_size, 4) - + ALIGN(geo->ecc_chunk_count, 4); - - if (!this->swap_block_mark) - return 0; - - /* For bit swap. */ - block_mark_bit_offset = mtd->writesize * 8 - - (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) - + geo->metadata_size * 8); - - geo->block_mark_byte_offset = block_mark_bit_offset / 8; - geo->block_mark_bit_offset = block_mark_bit_offset % 8; - return 0; -} - -static int legacy_set_geometry(struct gpmi_nand_data *this) -{ - struct bch_geometry *geo = &this->bch_geometry; - struct mtd_info *mtd = nand_to_mtd(&this->nand); - unsigned int metadata_size; - unsigned int status_size; - unsigned int block_mark_bit_offset; - - /* - * The size of the metadata can be changed, though we set it to 10 - * bytes now. But it can't be too large, because we have to save - * enough space for BCH. - */ - geo->metadata_size = 10; - - /* The default for the length of Galois Field. */ - geo->gf_len = 13; - - /* The default for chunk size. */ - geo->ecc_chunk_size = 512; - while (geo->ecc_chunk_size < mtd->oobsize) { - geo->ecc_chunk_size *= 2; /* keep C >= O */ - geo->gf_len = 14; - } - - geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; - - /* We use the same ECC strength for all chunks. */ - geo->ecc_strength = get_ecc_strength(this); - if (!gpmi_check_ecc(this)) { - dev_err(this->dev, - "ecc strength: %d cannot be supported by the controller (%d)\n" - "try to use minimum ecc strength that NAND chip required\n", - geo->ecc_strength, - this->devdata->bch_max_ecc_strength); - return -EINVAL; - } - - geo->page_size = mtd->writesize + geo->metadata_size + - (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; - geo->payload_size = mtd->writesize; - - /* - * The auxiliary buffer contains the metadata and the ECC status. The - * metadata is padded to the nearest 32-bit boundary. The ECC status - * contains one byte for every ECC chunk, and is also padded to the - * nearest 32-bit boundary. - */ - metadata_size = ALIGN(geo->metadata_size, 4); - status_size = ALIGN(geo->ecc_chunk_count, 4); - - geo->auxiliary_size = metadata_size + status_size; - geo->auxiliary_status_offset = metadata_size; - - if (!this->swap_block_mark) - return 0; - - /* - * We need to compute the byte and bit offsets of - * the physical block mark within the ECC-based view of the page. - * - * NAND chip with 2K page shows below: - * (Block Mark) - * | | - * | D | - * |<---->| - * V V - * +---+----------+-+----------+-+----------+-+----------+-+ - * | M | data |E| data |E| data |E| data |E| - * +---+----------+-+----------+-+----------+-+----------+-+ - * - * The position of block mark moves forward in the ECC-based view - * of page, and the delta is: - * - * E * G * (N - 1) - * D = (---------------- + M) - * 8 - * - * With the formula to compute the ECC strength, and the condition - * : C >= O (C is the ecc chunk size) - * - * It's easy to deduce to the following result: - * - * E * G (O - M) C - M C - M - * ----------- <= ------- <= -------- < --------- - * 8 N N (N - 1) - * - * So, we get: - * - * E * G * (N - 1) - * D = (---------------- + M) < C - * 8 - * - * The above inequality means the position of block mark - * within the ECC-based view of the page is still in the data chunk, - * and it's NOT in the ECC bits of the chunk. - * - * Use the following to compute the bit position of the - * physical block mark within the ECC-based view of the page: - * (page_size - D) * 8 - * - * --Huang Shijie - */ - block_mark_bit_offset = mtd->writesize * 8 - - (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) - + geo->metadata_size * 8); - - geo->block_mark_byte_offset = block_mark_bit_offset / 8; - geo->block_mark_bit_offset = block_mark_bit_offset % 8; - return 0; -} - -int common_nfc_set_geometry(struct gpmi_nand_data *this) -{ - if ((of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc")) - || legacy_set_geometry(this)) - return set_geometry_by_ecc_info(this); - - return 0; -} - -struct dma_chan *get_dma_chan(struct gpmi_nand_data *this) -{ - /* We use the DMA channel 0 to access all the nand chips. */ - return this->dma_chans[0]; -} - -/* Can we use the upper's buffer directly for DMA? */ -void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr) -{ - struct scatterlist *sgl = &this->data_sgl; - int ret; - - /* first try to map the upper buffer directly */ - if (virt_addr_valid(this->upper_buf) && - !object_is_on_stack(this->upper_buf)) { - sg_init_one(sgl, this->upper_buf, this->upper_len); - ret = dma_map_sg(this->dev, sgl, 1, dr); - if (ret == 0) - goto map_fail; - - this->direct_dma_map_ok = true; - return; - } - -map_fail: - /* We have to use our own DMA buffer. */ - sg_init_one(sgl, this->data_buffer_dma, this->upper_len); - - if (dr == DMA_TO_DEVICE) - memcpy(this->data_buffer_dma, this->upper_buf, this->upper_len); - - dma_map_sg(this->dev, sgl, 1, dr); - - this->direct_dma_map_ok = false; -} - -/* This will be called after the DMA operation is finished. */ -static void dma_irq_callback(void *param) -{ - struct gpmi_nand_data *this = param; - struct completion *dma_c = &this->dma_done; - - switch (this->dma_type) { - case DMA_FOR_COMMAND: - dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE); - break; - - case DMA_FOR_READ_DATA: - dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE); - if (this->direct_dma_map_ok == false) - memcpy(this->upper_buf, this->data_buffer_dma, - this->upper_len); - break; - - case DMA_FOR_WRITE_DATA: - dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE); - break; - - case DMA_FOR_READ_ECC_PAGE: - case DMA_FOR_WRITE_ECC_PAGE: - /* We have to wait the BCH interrupt to finish. */ - break; - - default: - dev_err(this->dev, "in wrong DMA operation.\n"); - } - - complete(dma_c); -} - -int start_dma_without_bch_irq(struct gpmi_nand_data *this, - struct dma_async_tx_descriptor *desc) -{ - struct completion *dma_c = &this->dma_done; - unsigned long timeout; - - init_completion(dma_c); - - desc->callback = dma_irq_callback; - desc->callback_param = this; - dmaengine_submit(desc); - dma_async_issue_pending(get_dma_chan(this)); - - /* Wait for the interrupt from the DMA block. */ - timeout = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000)); - if (!timeout) { - dev_err(this->dev, "DMA timeout, last DMA :%d\n", - this->last_dma_type); - gpmi_dump_info(this); - return -ETIMEDOUT; - } - return 0; -} - -/* - * This function is used in BCH reading or BCH writing pages. - * It will wait for the BCH interrupt as long as ONE second. - * Actually, we must wait for two interrupts : - * [1] firstly the DMA interrupt and - * [2] secondly the BCH interrupt. - */ -int start_dma_with_bch_irq(struct gpmi_nand_data *this, - struct dma_async_tx_descriptor *desc) -{ - struct completion *bch_c = &this->bch_done; - unsigned long timeout; - - /* Prepare to receive an interrupt from the BCH block. */ - init_completion(bch_c); - - /* start the DMA */ - start_dma_without_bch_irq(this, desc); - - /* Wait for the interrupt from the BCH block. */ - timeout = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000)); - if (!timeout) { - dev_err(this->dev, "BCH timeout, last DMA :%d\n", - this->last_dma_type); - gpmi_dump_info(this); - return -ETIMEDOUT; - } - return 0; -} - -static int acquire_register_block(struct gpmi_nand_data *this, - const char *res_name) -{ - struct platform_device *pdev = this->pdev; - struct resources *res = &this->resources; - struct resource *r; - void __iomem *p; - - r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name); - p = devm_ioremap_resource(&pdev->dev, r); - if (IS_ERR(p)) - return PTR_ERR(p); - - if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME)) - res->gpmi_regs = p; - else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME)) - res->bch_regs = p; - else - dev_err(this->dev, "unknown resource name : %s\n", res_name); - - return 0; -} - -static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h) -{ - struct platform_device *pdev = this->pdev; - const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME; - struct resource *r; - int err; - - r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name); - if (!r) { - dev_err(this->dev, "Can't get resource for %s\n", res_name); - return -ENODEV; - } - - err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this); - if (err) - dev_err(this->dev, "error requesting BCH IRQ\n"); - - return err; -} - -static void release_dma_channels(struct gpmi_nand_data *this) -{ - unsigned int i; - for (i = 0; i < DMA_CHANS; i++) - if (this->dma_chans[i]) { - dma_release_channel(this->dma_chans[i]); - this->dma_chans[i] = NULL; - } -} - -static int acquire_dma_channels(struct gpmi_nand_data *this) -{ - struct platform_device *pdev = this->pdev; - struct dma_chan *dma_chan; - - /* request dma channel */ - dma_chan = dma_request_slave_channel(&pdev->dev, "rx-tx"); - if (!dma_chan) { - dev_err(this->dev, "Failed to request DMA channel.\n"); - goto acquire_err; - } - - this->dma_chans[0] = dma_chan; - return 0; - -acquire_err: - release_dma_channels(this); - return -EINVAL; -} - -static int gpmi_get_clks(struct gpmi_nand_data *this) -{ - struct resources *r = &this->resources; - struct clk *clk; - int err, i; - - for (i = 0; i < this->devdata->clks_count; i++) { - clk = devm_clk_get(this->dev, this->devdata->clks[i]); - if (IS_ERR(clk)) { - err = PTR_ERR(clk); - goto err_clock; - } - - r->clock[i] = clk; - } - - if (GPMI_IS_MX6(this)) - /* - * Set the default value for the gpmi clock. - * - * If you want to use the ONFI nand which is in the - * Synchronous Mode, you should change the clock as you need. - */ - clk_set_rate(r->clock[0], 22000000); - - return 0; - -err_clock: - dev_dbg(this->dev, "failed in finding the clocks.\n"); - return err; -} - -static int acquire_resources(struct gpmi_nand_data *this) -{ - int ret; - - ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME); - if (ret) - goto exit_regs; - - ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME); - if (ret) - goto exit_regs; - - ret = acquire_bch_irq(this, bch_irq); - if (ret) - goto exit_regs; - - ret = acquire_dma_channels(this); - if (ret) - goto exit_regs; - - ret = gpmi_get_clks(this); - if (ret) - goto exit_clock; - return 0; - -exit_clock: - release_dma_channels(this); -exit_regs: - return ret; -} - -static void release_resources(struct gpmi_nand_data *this) -{ - release_dma_channels(this); -} - -static int init_hardware(struct gpmi_nand_data *this) -{ - int ret; - - /* - * This structure contains the "safe" GPMI timing that should succeed - * with any NAND Flash device - * (although, with less-than-optimal performance). - */ - struct nand_timing safe_timing = { - .data_setup_in_ns = 80, - .data_hold_in_ns = 60, - .address_setup_in_ns = 25, - .gpmi_sample_delay_in_ns = 6, - .tREA_in_ns = -1, - .tRLOH_in_ns = -1, - .tRHOH_in_ns = -1, - }; - - /* Initialize the hardwares. */ - ret = gpmi_init(this); - if (ret) - return ret; - - this->timing = safe_timing; - return 0; -} - -static int read_page_prepare(struct gpmi_nand_data *this, - void *destination, unsigned length, - void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, - void **use_virt, dma_addr_t *use_phys) -{ - struct device *dev = this->dev; - - if (virt_addr_valid(destination)) { - dma_addr_t dest_phys; - - dest_phys = dma_map_single(dev, destination, - length, DMA_FROM_DEVICE); - if (dma_mapping_error(dev, dest_phys)) { - if (alt_size < length) { - dev_err(dev, "Alternate buffer is too small\n"); - return -ENOMEM; - } - goto map_failed; - } - *use_virt = destination; - *use_phys = dest_phys; - this->direct_dma_map_ok = true; - return 0; - } - -map_failed: - *use_virt = alt_virt; - *use_phys = alt_phys; - this->direct_dma_map_ok = false; - return 0; -} - -static inline void read_page_end(struct gpmi_nand_data *this, - void *destination, unsigned length, - void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, - void *used_virt, dma_addr_t used_phys) -{ - if (this->direct_dma_map_ok) - dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE); -} - -static inline void read_page_swap_end(struct gpmi_nand_data *this, - void *destination, unsigned length, - void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, - void *used_virt, dma_addr_t used_phys) -{ - if (!this->direct_dma_map_ok) - memcpy(destination, alt_virt, length); -} - -static int send_page_prepare(struct gpmi_nand_data *this, - const void *source, unsigned length, - void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, - const void **use_virt, dma_addr_t *use_phys) -{ - struct device *dev = this->dev; - - if (virt_addr_valid(source)) { - dma_addr_t source_phys; - - source_phys = dma_map_single(dev, (void *)source, length, - DMA_TO_DEVICE); - if (dma_mapping_error(dev, source_phys)) { - if (alt_size < length) { - dev_err(dev, "Alternate buffer is too small\n"); - return -ENOMEM; - } - goto map_failed; - } - *use_virt = source; - *use_phys = source_phys; - return 0; - } -map_failed: - /* - * Copy the content of the source buffer into the alternate - * buffer and set up the return values accordingly. - */ - memcpy(alt_virt, source, length); - - *use_virt = alt_virt; - *use_phys = alt_phys; - return 0; -} - -static void send_page_end(struct gpmi_nand_data *this, - const void *source, unsigned length, - void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, - const void *used_virt, dma_addr_t used_phys) -{ - struct device *dev = this->dev; - if (used_virt == source) - dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE); -} - -static void gpmi_free_dma_buffer(struct gpmi_nand_data *this) -{ - struct device *dev = this->dev; - - if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt)) - dma_free_coherent(dev, this->page_buffer_size, - this->page_buffer_virt, - this->page_buffer_phys); - kfree(this->cmd_buffer); - kfree(this->data_buffer_dma); - kfree(this->raw_buffer); - - this->cmd_buffer = NULL; - this->data_buffer_dma = NULL; - this->raw_buffer = NULL; - this->page_buffer_virt = NULL; - this->page_buffer_size = 0; -} - -/* Allocate the DMA buffers */ -static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this) -{ - struct bch_geometry *geo = &this->bch_geometry; - struct device *dev = this->dev; - struct mtd_info *mtd = nand_to_mtd(&this->nand); - - /* [1] Allocate a command buffer. PAGE_SIZE is enough. */ - this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL); - if (this->cmd_buffer == NULL) - goto error_alloc; - - /* - * [2] Allocate a read/write data buffer. - * The gpmi_alloc_dma_buffer can be called twice. - * We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer - * is called before the nand_scan_ident; and we allocate a buffer - * of the real NAND page size when the gpmi_alloc_dma_buffer is - * called after the nand_scan_ident. - */ - this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE, - GFP_DMA | GFP_KERNEL); - if (this->data_buffer_dma == NULL) - goto error_alloc; - - /* - * [3] Allocate the page buffer. - * - * Both the payload buffer and the auxiliary buffer must appear on - * 32-bit boundaries. We presume the size of the payload buffer is a - * power of two and is much larger than four, which guarantees the - * auxiliary buffer will appear on a 32-bit boundary. - */ - this->page_buffer_size = geo->payload_size + geo->auxiliary_size; - this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size, - &this->page_buffer_phys, GFP_DMA); - if (!this->page_buffer_virt) - goto error_alloc; - - this->raw_buffer = kzalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL); - if (!this->raw_buffer) - goto error_alloc; - - /* Slice up the page buffer. */ - this->payload_virt = this->page_buffer_virt; - this->payload_phys = this->page_buffer_phys; - this->auxiliary_virt = this->payload_virt + geo->payload_size; - this->auxiliary_phys = this->payload_phys + geo->payload_size; - return 0; - -error_alloc: - gpmi_free_dma_buffer(this); - return -ENOMEM; -} - -static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct gpmi_nand_data *this = nand_get_controller_data(chip); - int ret; - - /* - * Every operation begins with a command byte and a series of zero or - * more address bytes. These are distinguished by either the Address - * Latch Enable (ALE) or Command Latch Enable (CLE) signals being - * asserted. When MTD is ready to execute the command, it will deassert - * both latch enables. - * - * Rather than run a separate DMA operation for every single byte, we - * queue them up and run a single DMA operation for the entire series - * of command and data bytes. NAND_CMD_NONE means the END of the queue. - */ - if ((ctrl & (NAND_ALE | NAND_CLE))) { - if (data != NAND_CMD_NONE) - this->cmd_buffer[this->command_length++] = data; - return; - } - - if (!this->command_length) - return; - - ret = gpmi_send_command(this); - if (ret) - dev_err(this->dev, "Chip: %u, Error %d\n", - this->current_chip, ret); - - this->command_length = 0; -} - -static int gpmi_dev_ready(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct gpmi_nand_data *this = nand_get_controller_data(chip); - - return gpmi_is_ready(this, this->current_chip); -} - -static void gpmi_select_chip(struct mtd_info *mtd, int chipnr) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct gpmi_nand_data *this = nand_get_controller_data(chip); - - if ((this->current_chip < 0) && (chipnr >= 0)) - gpmi_begin(this); - else if ((this->current_chip >= 0) && (chipnr < 0)) - gpmi_end(this); - - this->current_chip = chipnr; -} - -static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct gpmi_nand_data *this = nand_get_controller_data(chip); - - dev_dbg(this->dev, "len is %d\n", len); - this->upper_buf = buf; - this->upper_len = len; - - gpmi_read_data(this); -} - -static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct gpmi_nand_data *this = nand_get_controller_data(chip); - - dev_dbg(this->dev, "len is %d\n", len); - this->upper_buf = (uint8_t *)buf; - this->upper_len = len; - - gpmi_send_data(this); -} - -static uint8_t gpmi_read_byte(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct gpmi_nand_data *this = nand_get_controller_data(chip); - uint8_t *buf = this->data_buffer_dma; - - gpmi_read_buf(mtd, buf, 1); - return buf[0]; -} - -/* - * Handles block mark swapping. - * It can be called in swapping the block mark, or swapping it back, - * because the the operations are the same. - */ -static void block_mark_swapping(struct gpmi_nand_data *this, - void *payload, void *auxiliary) -{ - struct bch_geometry *nfc_geo = &this->bch_geometry; - unsigned char *p; - unsigned char *a; - unsigned int bit; - unsigned char mask; - unsigned char from_data; - unsigned char from_oob; - - if (!this->swap_block_mark) - return; - - /* - * If control arrives here, we're swapping. Make some convenience - * variables. - */ - bit = nfc_geo->block_mark_bit_offset; - p = payload + nfc_geo->block_mark_byte_offset; - a = auxiliary; - - /* - * Get the byte from the data area that overlays the block mark. Since - * the ECC engine applies its own view to the bits in the page, the - * physical block mark won't (in general) appear on a byte boundary in - * the data. - */ - from_data = (p[0] >> bit) | (p[1] << (8 - bit)); - - /* Get the byte from the OOB. */ - from_oob = a[0]; - - /* Swap them. */ - a[0] = from_data; - - mask = (0x1 << bit) - 1; - p[0] = (p[0] & mask) | (from_oob << bit); - - mask = ~0 << bit; - p[1] = (p[1] & mask) | (from_oob >> (8 - bit)); -} - -static int gpmi_ecc_read_page_data(struct nand_chip *chip, - uint8_t *buf, int oob_required, - int page) -{ - struct gpmi_nand_data *this = nand_get_controller_data(chip); - struct bch_geometry *nfc_geo = &this->bch_geometry; - struct mtd_info *mtd = nand_to_mtd(chip); - void *payload_virt; - dma_addr_t payload_phys; - void *auxiliary_virt; - dma_addr_t auxiliary_phys; - unsigned int i; - unsigned char *status; - unsigned int max_bitflips = 0; - int ret; - - dev_dbg(this->dev, "page number is : %d\n", page); - ret = read_page_prepare(this, buf, nfc_geo->payload_size, - this->payload_virt, this->payload_phys, - nfc_geo->payload_size, - &payload_virt, &payload_phys); - if (ret) { - dev_err(this->dev, "Inadequate DMA buffer\n"); - ret = -ENOMEM; - return ret; - } - auxiliary_virt = this->auxiliary_virt; - auxiliary_phys = this->auxiliary_phys; - - /* go! */ - ret = gpmi_read_page(this, payload_phys, auxiliary_phys); - read_page_end(this, buf, nfc_geo->payload_size, - this->payload_virt, this->payload_phys, - nfc_geo->payload_size, - payload_virt, payload_phys); - if (ret) { - dev_err(this->dev, "Error in ECC-based read: %d\n", ret); - return ret; - } - - /* Loop over status bytes, accumulating ECC status. */ - status = auxiliary_virt + nfc_geo->auxiliary_status_offset; - - read_page_swap_end(this, buf, nfc_geo->payload_size, - this->payload_virt, this->payload_phys, - nfc_geo->payload_size, - payload_virt, payload_phys); - - for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) { - if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED)) - continue; - - if (*status == STATUS_UNCORRECTABLE) { - int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; - u8 *eccbuf = this->raw_buffer; - int offset, bitoffset; - int eccbytes; - int flips; - - /* Read ECC bytes into our internal raw_buffer */ - offset = nfc_geo->metadata_size * 8; - offset += ((8 * nfc_geo->ecc_chunk_size) + eccbits) * (i + 1); - offset -= eccbits; - bitoffset = offset % 8; - eccbytes = DIV_ROUND_UP(offset + eccbits, 8); - offset /= 8; - eccbytes -= offset; - nand_change_read_column_op(chip, offset, eccbuf, - eccbytes, false); - - /* - * ECC data are not byte aligned and we may have - * in-band data in the first and last byte of - * eccbuf. Set non-eccbits to one so that - * nand_check_erased_ecc_chunk() does not count them - * as bitflips. - */ - if (bitoffset) - eccbuf[0] |= GENMASK(bitoffset - 1, 0); - - bitoffset = (bitoffset + eccbits) % 8; - if (bitoffset) - eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset); - - /* - * The ECC hardware has an uncorrectable ECC status - * code in case we have bitflips in an erased page. As - * nothing was written into this subpage the ECC is - * obviously wrong and we can not trust it. We assume - * at this point that we are reading an erased page and - * try to correct the bitflips in buffer up to - * ecc_strength bitflips. If this is a page with random - * data, we exceed this number of bitflips and have a - * ECC failure. Otherwise we use the corrected buffer. - */ - if (i == 0) { - /* The first block includes metadata */ - flips = nand_check_erased_ecc_chunk( - buf + i * nfc_geo->ecc_chunk_size, - nfc_geo->ecc_chunk_size, - eccbuf, eccbytes, - auxiliary_virt, - nfc_geo->metadata_size, - nfc_geo->ecc_strength); - } else { - flips = nand_check_erased_ecc_chunk( - buf + i * nfc_geo->ecc_chunk_size, - nfc_geo->ecc_chunk_size, - eccbuf, eccbytes, - NULL, 0, - nfc_geo->ecc_strength); - } - - if (flips > 0) { - max_bitflips = max_t(unsigned int, max_bitflips, - flips); - mtd->ecc_stats.corrected += flips; - continue; - } - - mtd->ecc_stats.failed++; - continue; - } - - mtd->ecc_stats.corrected += *status; - max_bitflips = max_t(unsigned int, max_bitflips, *status); - } - - /* handle the block mark swapping */ - block_mark_swapping(this, buf, auxiliary_virt); - - if (oob_required) { - /* - * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob() - * for details about our policy for delivering the OOB. - * - * We fill the caller's buffer with set bits, and then copy the - * block mark to th caller's buffer. Note that, if block mark - * swapping was necessary, it has already been done, so we can - * rely on the first byte of the auxiliary buffer to contain - * the block mark. - */ - memset(chip->oob_poi, ~0, mtd->oobsize); - chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0]; - } - - return max_bitflips; -} - -static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int oob_required, int page) -{ - nand_read_page_op(chip, page, 0, NULL, 0); - - return gpmi_ecc_read_page_data(chip, buf, oob_required, page); -} - -/* Fake a virtual small page for the subpage read */ -static int gpmi_ecc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, - uint32_t offs, uint32_t len, uint8_t *buf, int page) -{ - struct gpmi_nand_data *this = nand_get_controller_data(chip); - void __iomem *bch_regs = this->resources.bch_regs; - struct bch_geometry old_geo = this->bch_geometry; - struct bch_geometry *geo = &this->bch_geometry; - int size = chip->ecc.size; /* ECC chunk size */ - int meta, n, page_size; - u32 r1_old, r2_old, r1_new, r2_new; - unsigned int max_bitflips; - int first, last, marker_pos; - int ecc_parity_size; - int col = 0; - int old_swap_block_mark = this->swap_block_mark; - - /* The size of ECC parity */ - ecc_parity_size = geo->gf_len * geo->ecc_strength / 8; - - /* Align it with the chunk size */ - first = offs / size; - last = (offs + len - 1) / size; - - if (this->swap_block_mark) { - /* - * Find the chunk which contains the Block Marker. - * If this chunk is in the range of [first, last], - * we have to read out the whole page. - * Why? since we had swapped the data at the position of Block - * Marker to the metadata which is bound with the chunk 0. - */ - marker_pos = geo->block_mark_byte_offset / size; - if (last >= marker_pos && first <= marker_pos) { - dev_dbg(this->dev, - "page:%d, first:%d, last:%d, marker at:%d\n", - page, first, last, marker_pos); - return gpmi_ecc_read_page(mtd, chip, buf, 0, page); - } - } - - meta = geo->metadata_size; - if (first) { - col = meta + (size + ecc_parity_size) * first; - meta = 0; - buf = buf + first * size; - } - - nand_read_page_op(chip, page, col, NULL, 0); - - /* Save the old environment */ - r1_old = r1_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT0); - r2_old = r2_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT1); - - /* change the BCH registers and bch_geometry{} */ - n = last - first + 1; - page_size = meta + (size + ecc_parity_size) * n; - - r1_new &= ~(BM_BCH_FLASH0LAYOUT0_NBLOCKS | - BM_BCH_FLASH0LAYOUT0_META_SIZE); - r1_new |= BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1) - | BF_BCH_FLASH0LAYOUT0_META_SIZE(meta); - writel(r1_new, bch_regs + HW_BCH_FLASH0LAYOUT0); - - r2_new &= ~BM_BCH_FLASH0LAYOUT1_PAGE_SIZE; - r2_new |= BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size); - writel(r2_new, bch_regs + HW_BCH_FLASH0LAYOUT1); - - geo->ecc_chunk_count = n; - geo->payload_size = n * size; - geo->page_size = page_size; - geo->auxiliary_status_offset = ALIGN(meta, 4); - - dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n", - page, offs, len, col, first, n, page_size); - - /* Read the subpage now */ - this->swap_block_mark = false; - max_bitflips = gpmi_ecc_read_page_data(chip, buf, 0, page); - - /* Restore */ - writel(r1_old, bch_regs + HW_BCH_FLASH0LAYOUT0); - writel(r2_old, bch_regs + HW_BCH_FLASH0LAYOUT1); - this->bch_geometry = old_geo; - this->swap_block_mark = old_swap_block_mark; - - return max_bitflips; -} - -static int gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf, int oob_required, int page) -{ - struct gpmi_nand_data *this = nand_get_controller_data(chip); - struct bch_geometry *nfc_geo = &this->bch_geometry; - const void *payload_virt; - dma_addr_t payload_phys; - const void *auxiliary_virt; - dma_addr_t auxiliary_phys; - int ret; - - dev_dbg(this->dev, "ecc write page.\n"); - - nand_prog_page_begin_op(chip, page, 0, NULL, 0); - - if (this->swap_block_mark) { - /* - * If control arrives here, we're doing block mark swapping. - * Since we can't modify the caller's buffers, we must copy them - * into our own. - */ - memcpy(this->payload_virt, buf, mtd->writesize); - payload_virt = this->payload_virt; - payload_phys = this->payload_phys; - - memcpy(this->auxiliary_virt, chip->oob_poi, - nfc_geo->auxiliary_size); - auxiliary_virt = this->auxiliary_virt; - auxiliary_phys = this->auxiliary_phys; - - /* Handle block mark swapping. */ - block_mark_swapping(this, - (void *)payload_virt, (void *)auxiliary_virt); - } else { - /* - * If control arrives here, we're not doing block mark swapping, - * so we can to try and use the caller's buffers. - */ - ret = send_page_prepare(this, - buf, mtd->writesize, - this->payload_virt, this->payload_phys, - nfc_geo->payload_size, - &payload_virt, &payload_phys); - if (ret) { - dev_err(this->dev, "Inadequate payload DMA buffer\n"); - return 0; - } - - ret = send_page_prepare(this, - chip->oob_poi, mtd->oobsize, - this->auxiliary_virt, this->auxiliary_phys, - nfc_geo->auxiliary_size, - &auxiliary_virt, &auxiliary_phys); - if (ret) { - dev_err(this->dev, "Inadequate auxiliary DMA buffer\n"); - goto exit_auxiliary; - } - } - - /* Ask the NFC. */ - ret = gpmi_send_page(this, payload_phys, auxiliary_phys); - if (ret) - dev_err(this->dev, "Error in ECC-based write: %d\n", ret); - - if (!this->swap_block_mark) { - send_page_end(this, chip->oob_poi, mtd->oobsize, - this->auxiliary_virt, this->auxiliary_phys, - nfc_geo->auxiliary_size, - auxiliary_virt, auxiliary_phys); -exit_auxiliary: - send_page_end(this, buf, mtd->writesize, - this->payload_virt, this->payload_phys, - nfc_geo->payload_size, - payload_virt, payload_phys); - } - - if (ret) - return ret; - - return nand_prog_page_end_op(chip); -} - -/* - * There are several places in this driver where we have to handle the OOB and - * block marks. This is the function where things are the most complicated, so - * this is where we try to explain it all. All the other places refer back to - * here. - * - * These are the rules, in order of decreasing importance: - * - * 1) Nothing the caller does can be allowed to imperil the block mark. - * - * 2) In read operations, the first byte of the OOB we return must reflect the - * true state of the block mark, no matter where that block mark appears in - * the physical page. - * - * 3) ECC-based read operations return an OOB full of set bits (since we never - * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads - * return). - * - * 4) "Raw" read operations return a direct view of the physical bytes in the - * page, using the conventional definition of which bytes are data and which - * are OOB. This gives the caller a way to see the actual, physical bytes - * in the page, without the distortions applied by our ECC engine. - * - * - * What we do for this specific read operation depends on two questions: - * - * 1) Are we doing a "raw" read, or an ECC-based read? - * - * 2) Are we using block mark swapping or transcription? - * - * There are four cases, illustrated by the following Karnaugh map: - * - * | Raw | ECC-based | - * -------------+-------------------------+-------------------------+ - * | Read the conventional | | - * | OOB at the end of the | | - * Swapping | page and return it. It | | - * | contains exactly what | | - * | we want. | Read the block mark and | - * -------------+-------------------------+ return it in a buffer | - * | Read the conventional | full of set bits. | - * | OOB at the end of the | | - * | page and also the block | | - * Transcribing | mark in the metadata. | | - * | Copy the block mark | | - * | into the first byte of | | - * | the OOB. | | - * -------------+-------------------------+-------------------------+ - * - * Note that we break rule #4 in the Transcribing/Raw case because we're not - * giving an accurate view of the actual, physical bytes in the page (we're - * overwriting the block mark). That's OK because it's more important to follow - * rule #2. - * - * It turns out that knowing whether we want an "ECC-based" or "raw" read is not - * easy. When reading a page, for example, the NAND Flash MTD code calls our - * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an - * ECC-based or raw view of the page is implicit in which function it calls - * (there is a similar pair of ECC-based/raw functions for writing). - */ -static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip, - int page) -{ - struct gpmi_nand_data *this = nand_get_controller_data(chip); - - dev_dbg(this->dev, "page number is %d\n", page); - /* clear the OOB buffer */ - memset(chip->oob_poi, ~0, mtd->oobsize); - - /* Read out the conventional OOB. */ - nand_read_page_op(chip, page, mtd->writesize, NULL, 0); - chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); - - /* - * Now, we want to make sure the block mark is correct. In the - * non-transcribing case (!GPMI_IS_MX23()), we already have it. - * Otherwise, we need to explicitly read it. - */ - if (GPMI_IS_MX23(this)) { - /* Read the block mark into the first byte of the OOB buffer. */ - nand_read_page_op(chip, page, 0, NULL, 0); - chip->oob_poi[0] = chip->read_byte(mtd); - } - - return 0; -} - -static int -gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page) -{ - struct mtd_oob_region of = { }; - - /* Do we have available oob area? */ - mtd_ooblayout_free(mtd, 0, &of); - if (!of.length) - return -EPERM; - - if (!nand_is_slc(chip)) - return -EPERM; - - return nand_prog_page_op(chip, page, mtd->writesize + of.offset, - chip->oob_poi + of.offset, of.length); -} - -/* - * This function reads a NAND page without involving the ECC engine (no HW - * ECC correction). - * The tricky part in the GPMI/BCH controller is that it stores ECC bits - * inline (interleaved with payload DATA), and do not align data chunk on - * byte boundaries. - * We thus need to take care moving the payload data and ECC bits stored in the - * page into the provided buffers, which is why we're using gpmi_copy_bits. - * - * See set_geometry_by_ecc_info inline comments to have a full description - * of the layout used by the GPMI controller. - */ -static int gpmi_ecc_read_page_raw(struct mtd_info *mtd, - struct nand_chip *chip, uint8_t *buf, - int oob_required, int page) -{ - struct gpmi_nand_data *this = nand_get_controller_data(chip); - struct bch_geometry *nfc_geo = &this->bch_geometry; - int eccsize = nfc_geo->ecc_chunk_size; - int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; - u8 *tmp_buf = this->raw_buffer; - size_t src_bit_off; - size_t oob_bit_off; - size_t oob_byte_off; - uint8_t *oob = chip->oob_poi; - int step; - - nand_read_page_op(chip, page, 0, tmp_buf, - mtd->writesize + mtd->oobsize); - - /* - * If required, swap the bad block marker and the data stored in the - * metadata section, so that we don't wrongly consider a block as bad. - * - * See the layout description for a detailed explanation on why this - * is needed. - */ - if (this->swap_block_mark) - swap(tmp_buf[0], tmp_buf[mtd->writesize]); - - /* - * Copy the metadata section into the oob buffer (this section is - * guaranteed to be aligned on a byte boundary). - */ - if (oob_required) - memcpy(oob, tmp_buf, nfc_geo->metadata_size); - - oob_bit_off = nfc_geo->metadata_size * 8; - src_bit_off = oob_bit_off; - - /* Extract interleaved payload data and ECC bits */ - for (step = 0; step < nfc_geo->ecc_chunk_count; step++) { - if (buf) - gpmi_copy_bits(buf, step * eccsize * 8, - tmp_buf, src_bit_off, - eccsize * 8); - src_bit_off += eccsize * 8; - - /* Align last ECC block to align a byte boundary */ - if (step == nfc_geo->ecc_chunk_count - 1 && - (oob_bit_off + eccbits) % 8) - eccbits += 8 - ((oob_bit_off + eccbits) % 8); - - if (oob_required) - gpmi_copy_bits(oob, oob_bit_off, - tmp_buf, src_bit_off, - eccbits); - - src_bit_off += eccbits; - oob_bit_off += eccbits; - } - - if (oob_required) { - oob_byte_off = oob_bit_off / 8; - - if (oob_byte_off < mtd->oobsize) - memcpy(oob + oob_byte_off, - tmp_buf + mtd->writesize + oob_byte_off, - mtd->oobsize - oob_byte_off); - } - - return 0; -} - -/* - * This function writes a NAND page without involving the ECC engine (no HW - * ECC generation). - * The tricky part in the GPMI/BCH controller is that it stores ECC bits - * inline (interleaved with payload DATA), and do not align data chunk on - * byte boundaries. - * We thus need to take care moving the OOB area at the right place in the - * final page, which is why we're using gpmi_copy_bits. - * - * See set_geometry_by_ecc_info inline comments to have a full description - * of the layout used by the GPMI controller. - */ -static int gpmi_ecc_write_page_raw(struct mtd_info *mtd, - struct nand_chip *chip, - const uint8_t *buf, - int oob_required, int page) -{ - struct gpmi_nand_data *this = nand_get_controller_data(chip); - struct bch_geometry *nfc_geo = &this->bch_geometry; - int eccsize = nfc_geo->ecc_chunk_size; - int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; - u8 *tmp_buf = this->raw_buffer; - uint8_t *oob = chip->oob_poi; - size_t dst_bit_off; - size_t oob_bit_off; - size_t oob_byte_off; - int step; - - /* - * Initialize all bits to 1 in case we don't have a buffer for the - * payload or oob data in order to leave unspecified bits of data - * to their initial state. - */ - if (!buf || !oob_required) - memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize); - - /* - * First copy the metadata section (stored in oob buffer) at the - * beginning of the page, as imposed by the GPMI layout. - */ - memcpy(tmp_buf, oob, nfc_geo->metadata_size); - oob_bit_off = nfc_geo->metadata_size * 8; - dst_bit_off = oob_bit_off; - - /* Interleave payload data and ECC bits */ - for (step = 0; step < nfc_geo->ecc_chunk_count; step++) { - if (buf) - gpmi_copy_bits(tmp_buf, dst_bit_off, - buf, step * eccsize * 8, eccsize * 8); - dst_bit_off += eccsize * 8; - - /* Align last ECC block to align a byte boundary */ - if (step == nfc_geo->ecc_chunk_count - 1 && - (oob_bit_off + eccbits) % 8) - eccbits += 8 - ((oob_bit_off + eccbits) % 8); - - if (oob_required) - gpmi_copy_bits(tmp_buf, dst_bit_off, - oob, oob_bit_off, eccbits); - - dst_bit_off += eccbits; - oob_bit_off += eccbits; - } - - oob_byte_off = oob_bit_off / 8; - - if (oob_required && oob_byte_off < mtd->oobsize) - memcpy(tmp_buf + mtd->writesize + oob_byte_off, - oob + oob_byte_off, mtd->oobsize - oob_byte_off); - - /* - * If required, swap the bad block marker and the first byte of the - * metadata section, so that we don't modify the bad block marker. - * - * See the layout description for a detailed explanation on why this - * is needed. - */ - if (this->swap_block_mark) - swap(tmp_buf[0], tmp_buf[mtd->writesize]); - - return nand_prog_page_op(chip, page, 0, tmp_buf, - mtd->writesize + mtd->oobsize); -} - -static int gpmi_ecc_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip, - int page) -{ - return gpmi_ecc_read_page_raw(mtd, chip, NULL, 1, page); -} - -static int gpmi_ecc_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip, - int page) -{ - return gpmi_ecc_write_page_raw(mtd, chip, NULL, 1, page); -} - -static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct gpmi_nand_data *this = nand_get_controller_data(chip); - int ret = 0; - uint8_t *block_mark; - int column, page, chipnr; - - chipnr = (int)(ofs >> chip->chip_shift); - chip->select_chip(mtd, chipnr); - - column = !GPMI_IS_MX23(this) ? mtd->writesize : 0; - - /* Write the block mark. */ - block_mark = this->data_buffer_dma; - block_mark[0] = 0; /* bad block marker */ - - /* Shift to get page */ - page = (int)(ofs >> chip->page_shift); - - ret = nand_prog_page_op(chip, page, column, block_mark, 1); - - chip->select_chip(mtd, -1); - - return ret; -} - -static int nand_boot_set_geometry(struct gpmi_nand_data *this) -{ - struct boot_rom_geometry *geometry = &this->rom_geometry; - - /* - * Set the boot block stride size. - * - * In principle, we should be reading this from the OTP bits, since - * that's where the ROM is going to get it. In fact, we don't have any - * way to read the OTP bits, so we go with the default and hope for the - * best. - */ - geometry->stride_size_in_pages = 64; - - /* - * Set the search area stride exponent. - * - * In principle, we should be reading this from the OTP bits, since - * that's where the ROM is going to get it. In fact, we don't have any - * way to read the OTP bits, so we go with the default and hope for the - * best. - */ - geometry->search_area_stride_exponent = 2; - return 0; -} - -static const char *fingerprint = "STMP"; -static int mx23_check_transcription_stamp(struct gpmi_nand_data *this) -{ - struct boot_rom_geometry *rom_geo = &this->rom_geometry; - struct device *dev = this->dev; - struct nand_chip *chip = &this->nand; - struct mtd_info *mtd = nand_to_mtd(chip); - unsigned int search_area_size_in_strides; - unsigned int stride; - unsigned int page; - uint8_t *buffer = chip->data_buf; - int saved_chip_number; - int found_an_ncb_fingerprint = false; - - /* Compute the number of strides in a search area. */ - search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; - - saved_chip_number = this->current_chip; - chip->select_chip(mtd, 0); - - /* - * Loop through the first search area, looking for the NCB fingerprint. - */ - dev_dbg(dev, "Scanning for an NCB fingerprint...\n"); - - for (stride = 0; stride < search_area_size_in_strides; stride++) { - /* Compute the page addresses. */ - page = stride * rom_geo->stride_size_in_pages; - - dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page); - - /* - * Read the NCB fingerprint. The fingerprint is four bytes long - * and starts in the 12th byte of the page. - */ - nand_read_page_op(chip, page, 12, NULL, 0); - chip->read_buf(mtd, buffer, strlen(fingerprint)); - - /* Look for the fingerprint. */ - if (!memcmp(buffer, fingerprint, strlen(fingerprint))) { - found_an_ncb_fingerprint = true; - break; - } - - } - - chip->select_chip(mtd, saved_chip_number); - - if (found_an_ncb_fingerprint) - dev_dbg(dev, "\tFound a fingerprint\n"); - else - dev_dbg(dev, "\tNo fingerprint found\n"); - return found_an_ncb_fingerprint; -} - -/* Writes a transcription stamp. */ -static int mx23_write_transcription_stamp(struct gpmi_nand_data *this) -{ - struct device *dev = this->dev; - struct boot_rom_geometry *rom_geo = &this->rom_geometry; - struct nand_chip *chip = &this->nand; - struct mtd_info *mtd = nand_to_mtd(chip); - unsigned int block_size_in_pages; - unsigned int search_area_size_in_strides; - unsigned int search_area_size_in_pages; - unsigned int search_area_size_in_blocks; - unsigned int block; - unsigned int stride; - unsigned int page; - uint8_t *buffer = chip->data_buf; - int saved_chip_number; - int status; - - /* Compute the search area geometry. */ - block_size_in_pages = mtd->erasesize / mtd->writesize; - search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; - search_area_size_in_pages = search_area_size_in_strides * - rom_geo->stride_size_in_pages; - search_area_size_in_blocks = - (search_area_size_in_pages + (block_size_in_pages - 1)) / - block_size_in_pages; - - dev_dbg(dev, "Search Area Geometry :\n"); - dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks); - dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides); - dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages); - - /* Select chip 0. */ - saved_chip_number = this->current_chip; - chip->select_chip(mtd, 0); - - /* Loop over blocks in the first search area, erasing them. */ - dev_dbg(dev, "Erasing the search area...\n"); - - for (block = 0; block < search_area_size_in_blocks; block++) { - /* Erase this block. */ - dev_dbg(dev, "\tErasing block 0x%x\n", block); - status = nand_erase_op(chip, block); - if (status) - dev_err(dev, "[%s] Erase failed.\n", __func__); - } - - /* Write the NCB fingerprint into the page buffer. */ - memset(buffer, ~0, mtd->writesize); - memcpy(buffer + 12, fingerprint, strlen(fingerprint)); - - /* Loop through the first search area, writing NCB fingerprints. */ - dev_dbg(dev, "Writing NCB fingerprints...\n"); - for (stride = 0; stride < search_area_size_in_strides; stride++) { - /* Compute the page addresses. */ - page = stride * rom_geo->stride_size_in_pages; - - /* Write the first page of the current stride. */ - dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page); - - status = chip->ecc.write_page_raw(mtd, chip, buffer, 0, page); - if (status) - dev_err(dev, "[%s] Write failed.\n", __func__); - } - - /* Deselect chip 0. */ - chip->select_chip(mtd, saved_chip_number); - return 0; -} - -static int mx23_boot_init(struct gpmi_nand_data *this) -{ - struct device *dev = this->dev; - struct nand_chip *chip = &this->nand; - struct mtd_info *mtd = nand_to_mtd(chip); - unsigned int block_count; - unsigned int block; - int chipnr; - int page; - loff_t byte; - uint8_t block_mark; - int ret = 0; - - /* - * If control arrives here, we can't use block mark swapping, which - * means we're forced to use transcription. First, scan for the - * transcription stamp. If we find it, then we don't have to do - * anything -- the block marks are already transcribed. - */ - if (mx23_check_transcription_stamp(this)) - return 0; - - /* - * If control arrives here, we couldn't find a transcription stamp, so - * so we presume the block marks are in the conventional location. - */ - dev_dbg(dev, "Transcribing bad block marks...\n"); - - /* Compute the number of blocks in the entire medium. */ - block_count = chip->chipsize >> chip->phys_erase_shift; - - /* - * Loop over all the blocks in the medium, transcribing block marks as - * we go. - */ - for (block = 0; block < block_count; block++) { - /* - * Compute the chip, page and byte addresses for this block's - * conventional mark. - */ - chipnr = block >> (chip->chip_shift - chip->phys_erase_shift); - page = block << (chip->phys_erase_shift - chip->page_shift); - byte = block << chip->phys_erase_shift; - - /* Send the command to read the conventional block mark. */ - chip->select_chip(mtd, chipnr); - nand_read_page_op(chip, page, mtd->writesize, NULL, 0); - block_mark = chip->read_byte(mtd); - chip->select_chip(mtd, -1); - - /* - * Check if the block is marked bad. If so, we need to mark it - * again, but this time the result will be a mark in the - * location where we transcribe block marks. - */ - if (block_mark != 0xff) { - dev_dbg(dev, "Transcribing mark in block %u\n", block); - ret = chip->block_markbad(mtd, byte); - if (ret) - dev_err(dev, - "Failed to mark block bad with ret %d\n", - ret); - } - } - - /* Write the stamp that indicates we've transcribed the block marks. */ - mx23_write_transcription_stamp(this); - return 0; -} - -static int nand_boot_init(struct gpmi_nand_data *this) -{ - nand_boot_set_geometry(this); - - /* This is ROM arch-specific initilization before the BBT scanning. */ - if (GPMI_IS_MX23(this)) - return mx23_boot_init(this); - return 0; -} - -static int gpmi_set_geometry(struct gpmi_nand_data *this) -{ - int ret; - - /* Free the temporary DMA memory for reading ID. */ - gpmi_free_dma_buffer(this); - - /* Set up the NFC geometry which is used by BCH. */ - ret = bch_set_geometry(this); - if (ret) { - dev_err(this->dev, "Error setting BCH geometry : %d\n", ret); - return ret; - } - - /* Alloc the new DMA buffers according to the pagesize and oobsize */ - return gpmi_alloc_dma_buffer(this); -} - -static int gpmi_init_last(struct gpmi_nand_data *this) -{ - struct nand_chip *chip = &this->nand; - struct mtd_info *mtd = nand_to_mtd(chip); - struct nand_ecc_ctrl *ecc = &chip->ecc; - struct bch_geometry *bch_geo = &this->bch_geometry; - int ret; - - /* Set up the medium geometry */ - ret = gpmi_set_geometry(this); - if (ret) - return ret; - - /* Init the nand_ecc_ctrl{} */ - ecc->read_page = gpmi_ecc_read_page; - ecc->write_page = gpmi_ecc_write_page; - ecc->read_oob = gpmi_ecc_read_oob; - ecc->write_oob = gpmi_ecc_write_oob; - ecc->read_page_raw = gpmi_ecc_read_page_raw; - ecc->write_page_raw = gpmi_ecc_write_page_raw; - ecc->read_oob_raw = gpmi_ecc_read_oob_raw; - ecc->write_oob_raw = gpmi_ecc_write_oob_raw; - ecc->mode = NAND_ECC_HW; - ecc->size = bch_geo->ecc_chunk_size; - ecc->strength = bch_geo->ecc_strength; - mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops); - - /* - * We only enable the subpage read when: - * (1) the chip is imx6, and - * (2) the size of the ECC parity is byte aligned. - */ - if (GPMI_IS_MX6(this) && - ((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) { - ecc->read_subpage = gpmi_ecc_read_subpage; - chip->options |= NAND_SUBPAGE_READ; - } - - /* - * Can we enable the extra features? such as EDO or Sync mode. - * - * We do not check the return value now. That's means if we fail in - * enable the extra features, we still can run in the normal way. - */ - gpmi_extra_init(this); - - return 0; -} - -static int gpmi_nand_init(struct gpmi_nand_data *this) -{ - struct nand_chip *chip = &this->nand; - struct mtd_info *mtd = nand_to_mtd(chip); - int ret; - - /* init current chip */ - this->current_chip = -1; - - /* init the MTD data structures */ - mtd->name = "gpmi-nand"; - mtd->dev.parent = this->dev; - - /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */ - nand_set_controller_data(chip, this); - nand_set_flash_node(chip, this->pdev->dev.of_node); - chip->select_chip = gpmi_select_chip; - chip->cmd_ctrl = gpmi_cmd_ctrl; - chip->dev_ready = gpmi_dev_ready; - chip->read_byte = gpmi_read_byte; - chip->read_buf = gpmi_read_buf; - chip->write_buf = gpmi_write_buf; - chip->badblock_pattern = &gpmi_bbt_descr; - chip->block_markbad = gpmi_block_markbad; - chip->options |= NAND_NO_SUBPAGE_WRITE; - - /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */ - this->swap_block_mark = !GPMI_IS_MX23(this); - - /* - * Allocate a temporary DMA buffer for reading ID in the - * nand_scan_ident(). - */ - this->bch_geometry.payload_size = 1024; - this->bch_geometry.auxiliary_size = 128; - ret = gpmi_alloc_dma_buffer(this); - if (ret) - goto err_out; - - ret = nand_scan_ident(mtd, GPMI_IS_MX6(this) ? 2 : 1, NULL); - if (ret) - goto err_out; - - if (chip->bbt_options & NAND_BBT_USE_FLASH) { - chip->bbt_options |= NAND_BBT_NO_OOB; - - if (of_property_read_bool(this->dev->of_node, - "fsl,no-blockmark-swap")) - this->swap_block_mark = false; - } - dev_dbg(this->dev, "Blockmark swapping %sabled\n", - this->swap_block_mark ? "en" : "dis"); - - ret = gpmi_init_last(this); - if (ret) - goto err_out; - - chip->options |= NAND_SKIP_BBTSCAN; - ret = nand_scan_tail(mtd); - if (ret) - goto err_out; - - ret = nand_boot_init(this); - if (ret) - goto err_nand_cleanup; - ret = chip->scan_bbt(mtd); - if (ret) - goto err_nand_cleanup; - - ret = mtd_device_register(mtd, NULL, 0); - if (ret) - goto err_nand_cleanup; - return 0; - -err_nand_cleanup: - nand_cleanup(chip); -err_out: - gpmi_free_dma_buffer(this); - return ret; -} - -static const struct of_device_id gpmi_nand_id_table[] = { - { - .compatible = "fsl,imx23-gpmi-nand", - .data = &gpmi_devdata_imx23, - }, { - .compatible = "fsl,imx28-gpmi-nand", - .data = &gpmi_devdata_imx28, - }, { - .compatible = "fsl,imx6q-gpmi-nand", - .data = &gpmi_devdata_imx6q, - }, { - .compatible = "fsl,imx6sx-gpmi-nand", - .data = &gpmi_devdata_imx6sx, - }, { - .compatible = "fsl,imx7d-gpmi-nand", - .data = &gpmi_devdata_imx7d, - }, {} -}; -MODULE_DEVICE_TABLE(of, gpmi_nand_id_table); - -static int gpmi_nand_probe(struct platform_device *pdev) -{ - struct gpmi_nand_data *this; - const struct of_device_id *of_id; - int ret; - - this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL); - if (!this) - return -ENOMEM; - - of_id = of_match_device(gpmi_nand_id_table, &pdev->dev); - if (of_id) { - this->devdata = of_id->data; - } else { - dev_err(&pdev->dev, "Failed to find the right device id.\n"); - return -ENODEV; - } - - platform_set_drvdata(pdev, this); - this->pdev = pdev; - this->dev = &pdev->dev; - - ret = acquire_resources(this); - if (ret) - goto exit_acquire_resources; - - ret = init_hardware(this); - if (ret) - goto exit_nfc_init; - - ret = gpmi_nand_init(this); - if (ret) - goto exit_nfc_init; - - dev_info(this->dev, "driver registered.\n"); - - return 0; - -exit_nfc_init: - release_resources(this); -exit_acquire_resources: - - return ret; -} - -static int gpmi_nand_remove(struct platform_device *pdev) -{ - struct gpmi_nand_data *this = platform_get_drvdata(pdev); - - nand_release(nand_to_mtd(&this->nand)); - gpmi_free_dma_buffer(this); - release_resources(this); - return 0; -} - -#ifdef CONFIG_PM_SLEEP -static int gpmi_pm_suspend(struct device *dev) -{ - struct gpmi_nand_data *this = dev_get_drvdata(dev); - - release_dma_channels(this); - return 0; -} - -static int gpmi_pm_resume(struct device *dev) -{ - struct gpmi_nand_data *this = dev_get_drvdata(dev); - int ret; - - ret = acquire_dma_channels(this); - if (ret < 0) - return ret; - - /* re-init the GPMI registers */ - this->flags &= ~GPMI_TIMING_INIT_OK; - ret = gpmi_init(this); - if (ret) { - dev_err(this->dev, "Error setting GPMI : %d\n", ret); - return ret; - } - - /* re-init the BCH registers */ - ret = bch_set_geometry(this); - if (ret) { - dev_err(this->dev, "Error setting BCH : %d\n", ret); - return ret; - } - - /* re-init others */ - gpmi_extra_init(this); - - return 0; -} -#endif /* CONFIG_PM_SLEEP */ - -static const struct dev_pm_ops gpmi_pm_ops = { - SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume) -}; - -static struct platform_driver gpmi_nand_driver = { - .driver = { - .name = "gpmi-nand", - .pm = &gpmi_pm_ops, - .of_match_table = gpmi_nand_id_table, - }, - .probe = gpmi_nand_probe, - .remove = gpmi_nand_remove, -}; -module_platform_driver(gpmi_nand_driver); - -MODULE_AUTHOR("Freescale Semiconductor, Inc."); -MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver"); -MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-nand.h b/drivers/mtd/nand/gpmi-nand/gpmi-nand.h deleted file mode 100644 index 06c1f993912c..000000000000 --- a/drivers/mtd/nand/gpmi-nand/gpmi-nand.h +++ /dev/null @@ -1,315 +0,0 @@ -/* - * Freescale GPMI NAND Flash Driver - * - * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. - * Copyright (C) 2008 Embedded Alley Solutions, Inc. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - */ -#ifndef __DRIVERS_MTD_NAND_GPMI_NAND_H -#define __DRIVERS_MTD_NAND_GPMI_NAND_H - -#include <linux/mtd/rawnand.h> -#include <linux/platform_device.h> -#include <linux/dma-mapping.h> -#include <linux/dmaengine.h> - -#define GPMI_CLK_MAX 5 /* MX6Q needs five clocks */ -struct resources { - void __iomem *gpmi_regs; - void __iomem *bch_regs; - unsigned int dma_low_channel; - unsigned int dma_high_channel; - struct clk *clock[GPMI_CLK_MAX]; -}; - -/** - * struct bch_geometry - BCH geometry description. - * @gf_len: The length of Galois Field. (e.g., 13 or 14) - * @ecc_strength: A number that describes the strength of the ECC - * algorithm. - * @page_size: The size, in bytes, of a physical page, including - * both data and OOB. - * @metadata_size: The size, in bytes, of the metadata. - * @ecc_chunk_size: The size, in bytes, of a single ECC chunk. Note - * the first chunk in the page includes both data and - * metadata, so it's a bit larger than this value. - * @ecc_chunk_count: The number of ECC chunks in the page, - * @payload_size: The size, in bytes, of the payload buffer. - * @auxiliary_size: The size, in bytes, of the auxiliary buffer. - * @auxiliary_status_offset: The offset into the auxiliary buffer at which - * the ECC status appears. - * @block_mark_byte_offset: The byte offset in the ECC-based page view at - * which the underlying physical block mark appears. - * @block_mark_bit_offset: The bit offset into the ECC-based page view at - * which the underlying physical block mark appears. - */ -struct bch_geometry { - unsigned int gf_len; - unsigned int ecc_strength; - unsigned int page_size; - unsigned int metadata_size; - unsigned int ecc_chunk_size; - unsigned int ecc_chunk_count; - unsigned int payload_size; - unsigned int auxiliary_size; - unsigned int auxiliary_status_offset; - unsigned int block_mark_byte_offset; - unsigned int block_mark_bit_offset; -}; - -/** - * struct boot_rom_geometry - Boot ROM geometry description. - * @stride_size_in_pages: The size of a boot block stride, in pages. - * @search_area_stride_exponent: The logarithm to base 2 of the size of a - * search area in boot block strides. - */ -struct boot_rom_geometry { - unsigned int stride_size_in_pages; - unsigned int search_area_stride_exponent; -}; - -/* DMA operations types */ -enum dma_ops_type { - DMA_FOR_COMMAND = 1, - DMA_FOR_READ_DATA, - DMA_FOR_WRITE_DATA, - DMA_FOR_READ_ECC_PAGE, - DMA_FOR_WRITE_ECC_PAGE -}; - -/** - * struct nand_timing - Fundamental timing attributes for NAND. - * @data_setup_in_ns: The data setup time, in nanoseconds. Usually the - * maximum of tDS and tWP. A negative value - * indicates this characteristic isn't known. - * @data_hold_in_ns: The data hold time, in nanoseconds. Usually the - * maximum of tDH, tWH and tREH. A negative value - * indicates this characteristic isn't known. - * @address_setup_in_ns: The address setup time, in nanoseconds. Usually - * the maximum of tCLS, tCS and tALS. A negative - * value indicates this characteristic isn't known. - * @gpmi_sample_delay_in_ns: A GPMI-specific timing parameter. A negative value - * indicates this characteristic isn't known. - * @tREA_in_ns: tREA, in nanoseconds, from the data sheet. A - * negative value indicates this characteristic isn't - * known. - * @tRLOH_in_ns: tRLOH, in nanoseconds, from the data sheet. A - * negative value indicates this characteristic isn't - * known. - * @tRHOH_in_ns: tRHOH, in nanoseconds, from the data sheet. A - * negative value indicates this characteristic isn't - * known. - */ -struct nand_timing { - int8_t data_setup_in_ns; - int8_t data_hold_in_ns; - int8_t address_setup_in_ns; - int8_t gpmi_sample_delay_in_ns; - int8_t tREA_in_ns; - int8_t tRLOH_in_ns; - int8_t tRHOH_in_ns; -}; - -enum gpmi_type { - IS_MX23, - IS_MX28, - IS_MX6Q, - IS_MX6SX, - IS_MX7D, -}; - -struct gpmi_devdata { - enum gpmi_type type; - int bch_max_ecc_strength; - int max_chain_delay; /* See the async EDO mode */ - const char * const *clks; - const int clks_count; -}; - -struct gpmi_nand_data { - /* flags */ -#define GPMI_ASYNC_EDO_ENABLED (1 << 0) -#define GPMI_TIMING_INIT_OK (1 << 1) - int flags; - const struct gpmi_devdata *devdata; - - /* System Interface */ - struct device *dev; - struct platform_device *pdev; - - /* Resources */ - struct resources resources; - - /* Flash Hardware */ - struct nand_timing timing; - int timing_mode; - - /* BCH */ - struct bch_geometry bch_geometry; - struct completion bch_done; - - /* NAND Boot issue */ - bool swap_block_mark; - struct boot_rom_geometry rom_geometry; - - /* MTD / NAND */ - struct nand_chip nand; - - /* General-use Variables */ - int current_chip; - unsigned int command_length; - - /* passed from upper layer */ - uint8_t *upper_buf; - int upper_len; - - /* for DMA operations */ - bool direct_dma_map_ok; - - struct scatterlist cmd_sgl; - char *cmd_buffer; - - struct scatterlist data_sgl; - char *data_buffer_dma; - - void *page_buffer_virt; - dma_addr_t page_buffer_phys; - unsigned int page_buffer_size; - - void *payload_virt; - dma_addr_t payload_phys; - - void *auxiliary_virt; - dma_addr_t auxiliary_phys; - - void *raw_buffer; - - /* DMA channels */ -#define DMA_CHANS 8 - struct dma_chan *dma_chans[DMA_CHANS]; - enum dma_ops_type last_dma_type; - enum dma_ops_type dma_type; - struct completion dma_done; - - /* private */ - void *private; -}; - -/** - * struct gpmi_nfc_hardware_timing - GPMI hardware timing parameters. - * @data_setup_in_cycles: The data setup time, in cycles. - * @data_hold_in_cycles: The data hold time, in cycles. - * @address_setup_in_cycles: The address setup time, in cycles. - * @device_busy_timeout: The timeout waiting for NAND Ready/Busy, - * this value is the number of cycles multiplied - * by 4096. - * @use_half_periods: Indicates the clock is running slowly, so the - * NFC DLL should use half-periods. - * @sample_delay_factor: The sample delay factor. - * @wrn_dly_sel: The delay on the GPMI write strobe. - */ -struct gpmi_nfc_hardware_timing { - /* for HW_GPMI_TIMING0 */ - uint8_t data_setup_in_cycles; - uint8_t data_hold_in_cycles; - uint8_t address_setup_in_cycles; - - /* for HW_GPMI_TIMING1 */ - uint16_t device_busy_timeout; -#define GPMI_DEFAULT_BUSY_TIMEOUT 0x500 /* default busy timeout value.*/ - - /* for HW_GPMI_CTRL1 */ - bool use_half_periods; - uint8_t sample_delay_factor; - uint8_t wrn_dly_sel; -}; - -/** - * struct timing_threshold - Timing threshold - * @max_data_setup_cycles: The maximum number of data setup cycles that - * can be expressed in the hardware. - * @internal_data_setup_in_ns: The time, in ns, that the NFC hardware requires - * for data read internal setup. In the Reference - * Manual, see the chapter "High-Speed NAND - * Timing" for more details. - * @max_sample_delay_factor: The maximum sample delay factor that can be - * expressed in the hardware. - * @max_dll_clock_period_in_ns: The maximum period of the GPMI clock that the - * sample delay DLL hardware can possibly work - * with (the DLL is unusable with longer periods). - * If the full-cycle period is greater than HALF - * this value, the DLL must be configured to use - * half-periods. - * @max_dll_delay_in_ns: The maximum amount of delay, in ns, that the - * DLL can implement. - * @clock_frequency_in_hz: The clock frequency, in Hz, during the current - * I/O transaction. If no I/O transaction is in - * progress, this is the clock frequency during - * the most recent I/O transaction. - */ -struct timing_threshold { - const unsigned int max_chip_count; - const unsigned int max_data_setup_cycles; - const unsigned int internal_data_setup_in_ns; - const unsigned int max_sample_delay_factor; - const unsigned int max_dll_clock_period_in_ns; - const unsigned int max_dll_delay_in_ns; - unsigned long clock_frequency_in_hz; - -}; - -/* Common Services */ -int common_nfc_set_geometry(struct gpmi_nand_data *); -struct dma_chan *get_dma_chan(struct gpmi_nand_data *); -void prepare_data_dma(struct gpmi_nand_data *, - enum dma_data_direction dr); -int start_dma_without_bch_irq(struct gpmi_nand_data *, - struct dma_async_tx_descriptor *); -int start_dma_with_bch_irq(struct gpmi_nand_data *, - struct dma_async_tx_descriptor *); - -/* GPMI-NAND helper function library */ -int gpmi_init(struct gpmi_nand_data *); -int gpmi_extra_init(struct gpmi_nand_data *); -void gpmi_clear_bch(struct gpmi_nand_data *); -void gpmi_dump_info(struct gpmi_nand_data *); -int bch_set_geometry(struct gpmi_nand_data *); -int gpmi_is_ready(struct gpmi_nand_data *, unsigned chip); -int gpmi_send_command(struct gpmi_nand_data *); -void gpmi_begin(struct gpmi_nand_data *); -void gpmi_end(struct gpmi_nand_data *); -int gpmi_read_data(struct gpmi_nand_data *); -int gpmi_send_data(struct gpmi_nand_data *); -int gpmi_send_page(struct gpmi_nand_data *, - dma_addr_t payload, dma_addr_t auxiliary); -int gpmi_read_page(struct gpmi_nand_data *, - dma_addr_t payload, dma_addr_t auxiliary); - -void gpmi_copy_bits(u8 *dst, size_t dst_bit_off, - const u8 *src, size_t src_bit_off, - size_t nbits); - -/* BCH : Status Block Completion Codes */ -#define STATUS_GOOD 0x00 -#define STATUS_ERASED 0xff -#define STATUS_UNCORRECTABLE 0xfe - -/* Use the devdata to distinguish different Archs. */ -#define GPMI_IS_MX23(x) ((x)->devdata->type == IS_MX23) -#define GPMI_IS_MX28(x) ((x)->devdata->type == IS_MX28) -#define GPMI_IS_MX6Q(x) ((x)->devdata->type == IS_MX6Q) -#define GPMI_IS_MX6SX(x) ((x)->devdata->type == IS_MX6SX) -#define GPMI_IS_MX7D(x) ((x)->devdata->type == IS_MX7D) - -#define GPMI_IS_MX6(x) (GPMI_IS_MX6Q(x) || GPMI_IS_MX6SX(x) || \ - GPMI_IS_MX7D(x)) -#endif diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-regs.h b/drivers/mtd/nand/gpmi-nand/gpmi-regs.h deleted file mode 100644 index 82114cdc8330..000000000000 --- a/drivers/mtd/nand/gpmi-nand/gpmi-regs.h +++ /dev/null @@ -1,187 +0,0 @@ -/* - * Freescale GPMI NAND Flash Driver - * - * Copyright 2008-2011 Freescale Semiconductor, Inc. - * Copyright 2008 Embedded Alley Solutions, Inc. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License along - * with this program; if not, write to the Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - */ -#ifndef __GPMI_NAND_GPMI_REGS_H -#define __GPMI_NAND_GPMI_REGS_H - -#define HW_GPMI_CTRL0 0x00000000 -#define HW_GPMI_CTRL0_SET 0x00000004 -#define HW_GPMI_CTRL0_CLR 0x00000008 -#define HW_GPMI_CTRL0_TOG 0x0000000c - -#define BP_GPMI_CTRL0_COMMAND_MODE 24 -#define BM_GPMI_CTRL0_COMMAND_MODE (3 << BP_GPMI_CTRL0_COMMAND_MODE) -#define BF_GPMI_CTRL0_COMMAND_MODE(v) \ - (((v) << BP_GPMI_CTRL0_COMMAND_MODE) & BM_GPMI_CTRL0_COMMAND_MODE) -#define BV_GPMI_CTRL0_COMMAND_MODE__WRITE 0x0 -#define BV_GPMI_CTRL0_COMMAND_MODE__READ 0x1 -#define BV_GPMI_CTRL0_COMMAND_MODE__READ_AND_COMPARE 0x2 -#define BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY 0x3 - -#define BM_GPMI_CTRL0_WORD_LENGTH (1 << 23) -#define BV_GPMI_CTRL0_WORD_LENGTH__16_BIT 0x0 -#define BV_GPMI_CTRL0_WORD_LENGTH__8_BIT 0x1 - -/* - * Difference in LOCK_CS between imx23 and imx28 : - * This bit may impact the _POWER_ consumption. So some chips - * do not set it. - */ -#define MX23_BP_GPMI_CTRL0_LOCK_CS 22 -#define MX28_BP_GPMI_CTRL0_LOCK_CS 27 -#define LOCK_CS_ENABLE 0x1 -#define BF_GPMI_CTRL0_LOCK_CS(v, x) 0x0 - -/* Difference in CS between imx23 and imx28 */ -#define BP_GPMI_CTRL0_CS 20 -#define MX23_BM_GPMI_CTRL0_CS (3 << BP_GPMI_CTRL0_CS) -#define MX28_BM_GPMI_CTRL0_CS (7 << BP_GPMI_CTRL0_CS) -#define BF_GPMI_CTRL0_CS(v, x) (((v) << BP_GPMI_CTRL0_CS) & \ - (GPMI_IS_MX23((x)) \ - ? MX23_BM_GPMI_CTRL0_CS \ - : MX28_BM_GPMI_CTRL0_CS)) - -#define BP_GPMI_CTRL0_ADDRESS 17 -#define BM_GPMI_CTRL0_ADDRESS (3 << BP_GPMI_CTRL0_ADDRESS) -#define BF_GPMI_CTRL0_ADDRESS(v) \ - (((v) << BP_GPMI_CTRL0_ADDRESS) & BM_GPMI_CTRL0_ADDRESS) -#define BV_GPMI_CTRL0_ADDRESS__NAND_DATA 0x0 -#define BV_GPMI_CTRL0_ADDRESS__NAND_CLE 0x1 -#define BV_GPMI_CTRL0_ADDRESS__NAND_ALE 0x2 - -#define BM_GPMI_CTRL0_ADDRESS_INCREMENT (1 << 16) -#define BV_GPMI_CTRL0_ADDRESS_INCREMENT__DISABLED 0x0 -#define BV_GPMI_CTRL0_ADDRESS_INCREMENT__ENABLED 0x1 - -#define BP_GPMI_CTRL0_XFER_COUNT 0 -#define BM_GPMI_CTRL0_XFER_COUNT (0xffff << BP_GPMI_CTRL0_XFER_COUNT) -#define BF_GPMI_CTRL0_XFER_COUNT(v) \ - (((v) << BP_GPMI_CTRL0_XFER_COUNT) & BM_GPMI_CTRL0_XFER_COUNT) - -#define HW_GPMI_COMPARE 0x00000010 - -#define HW_GPMI_ECCCTRL 0x00000020 -#define HW_GPMI_ECCCTRL_SET 0x00000024 -#define HW_GPMI_ECCCTRL_CLR 0x00000028 -#define HW_GPMI_ECCCTRL_TOG 0x0000002c - -#define BP_GPMI_ECCCTRL_ECC_CMD 13 -#define BM_GPMI_ECCCTRL_ECC_CMD (3 << BP_GPMI_ECCCTRL_ECC_CMD) -#define BF_GPMI_ECCCTRL_ECC_CMD(v) \ - (((v) << BP_GPMI_ECCCTRL_ECC_CMD) & BM_GPMI_ECCCTRL_ECC_CMD) -#define BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE 0x0 -#define BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE 0x1 - -#define BM_GPMI_ECCCTRL_ENABLE_ECC (1 << 12) -#define BV_GPMI_ECCCTRL_ENABLE_ECC__ENABLE 0x1 -#define BV_GPMI_ECCCTRL_ENABLE_ECC__DISABLE 0x0 - -#define BP_GPMI_ECCCTRL_BUFFER_MASK 0 -#define BM_GPMI_ECCCTRL_BUFFER_MASK (0x1ff << BP_GPMI_ECCCTRL_BUFFER_MASK) -#define BF_GPMI_ECCCTRL_BUFFER_MASK(v) \ - (((v) << BP_GPMI_ECCCTRL_BUFFER_MASK) & BM_GPMI_ECCCTRL_BUFFER_MASK) -#define BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY 0x100 -#define BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE 0x1FF - -#define HW_GPMI_ECCCOUNT 0x00000030 -#define HW_GPMI_PAYLOAD 0x00000040 -#define HW_GPMI_AUXILIARY 0x00000050 -#define HW_GPMI_CTRL1 0x00000060 -#define HW_GPMI_CTRL1_SET 0x00000064 -#define HW_GPMI_CTRL1_CLR 0x00000068 -#define HW_GPMI_CTRL1_TOG 0x0000006c - -#define BP_GPMI_CTRL1_DECOUPLE_CS 24 -#define BM_GPMI_CTRL1_DECOUPLE_CS (1 << BP_GPMI_CTRL1_DECOUPLE_CS) - -#define BP_GPMI_CTRL1_WRN_DLY_SEL 22 -#define BM_GPMI_CTRL1_WRN_DLY_SEL (0x3 << BP_GPMI_CTRL1_WRN_DLY_SEL) -#define BF_GPMI_CTRL1_WRN_DLY_SEL(v) \ - (((v) << BP_GPMI_CTRL1_WRN_DLY_SEL) & BM_GPMI_CTRL1_WRN_DLY_SEL) -#define BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS 0x0 -#define BV_GPMI_CTRL1_WRN_DLY_SEL_6_TO_10NS 0x1 -#define BV_GPMI_CTRL1_WRN_DLY_SEL_7_TO_12NS 0x2 -#define BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY 0x3 - -#define BM_GPMI_CTRL1_BCH_MODE (1 << 18) - -#define BP_GPMI_CTRL1_DLL_ENABLE 17 -#define BM_GPMI_CTRL1_DLL_ENABLE (1 << BP_GPMI_CTRL1_DLL_ENABLE) - -#define BP_GPMI_CTRL1_HALF_PERIOD 16 -#define BM_GPMI_CTRL1_HALF_PERIOD (1 << BP_GPMI_CTRL1_HALF_PERIOD) - -#define BP_GPMI_CTRL1_RDN_DELAY 12 -#define BM_GPMI_CTRL1_RDN_DELAY (0xf << BP_GPMI_CTRL1_RDN_DELAY) -#define BF_GPMI_CTRL1_RDN_DELAY(v) \ - (((v) << BP_GPMI_CTRL1_RDN_DELAY) & BM_GPMI_CTRL1_RDN_DELAY) - -#define BM_GPMI_CTRL1_DEV_RESET (1 << 3) -#define BV_GPMI_CTRL1_DEV_RESET__ENABLED 0x0 -#define BV_GPMI_CTRL1_DEV_RESET__DISABLED 0x1 - -#define BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY (1 << 2) -#define BV_GPMI_CTRL1_ATA_IRQRDY_POLARITY__ACTIVELOW 0x0 -#define BV_GPMI_CTRL1_ATA_IRQRDY_POLARITY__ACTIVEHIGH 0x1 - -#define BM_GPMI_CTRL1_CAMERA_MODE (1 << 1) -#define BV_GPMI_CTRL1_GPMI_MODE__NAND 0x0 -#define BV_GPMI_CTRL1_GPMI_MODE__ATA 0x1 - -#define BM_GPMI_CTRL1_GPMI_MODE (1 << 0) - -#define HW_GPMI_TIMING0 0x00000070 - -#define BP_GPMI_TIMING0_ADDRESS_SETUP 16 -#define BM_GPMI_TIMING0_ADDRESS_SETUP (0xff << BP_GPMI_TIMING0_ADDRESS_SETUP) -#define BF_GPMI_TIMING0_ADDRESS_SETUP(v) \ - (((v) << BP_GPMI_TIMING0_ADDRESS_SETUP) & BM_GPMI_TIMING0_ADDRESS_SETUP) - -#define BP_GPMI_TIMING0_DATA_HOLD 8 -#define BM_GPMI_TIMING0_DATA_HOLD (0xff << BP_GPMI_TIMING0_DATA_HOLD) -#define BF_GPMI_TIMING0_DATA_HOLD(v) \ - (((v) << BP_GPMI_TIMING0_DATA_HOLD) & BM_GPMI_TIMING0_DATA_HOLD) - -#define BP_GPMI_TIMING0_DATA_SETUP 0 -#define BM_GPMI_TIMING0_DATA_SETUP (0xff << BP_GPMI_TIMING0_DATA_SETUP) -#define BF_GPMI_TIMING0_DATA_SETUP(v) \ - (((v) << BP_GPMI_TIMING0_DATA_SETUP) & BM_GPMI_TIMING0_DATA_SETUP) - -#define HW_GPMI_TIMING1 0x00000080 -#define BP_GPMI_TIMING1_BUSY_TIMEOUT 16 -#define BM_GPMI_TIMING1_BUSY_TIMEOUT (0xffff << BP_GPMI_TIMING1_BUSY_TIMEOUT) -#define BF_GPMI_TIMING1_BUSY_TIMEOUT(v) \ - (((v) << BP_GPMI_TIMING1_BUSY_TIMEOUT) & BM_GPMI_TIMING1_BUSY_TIMEOUT) - -#define HW_GPMI_TIMING2 0x00000090 -#define HW_GPMI_DATA 0x000000a0 - -/* MX28 uses this to detect READY. */ -#define HW_GPMI_STAT 0x000000b0 -#define MX28_BP_GPMI_STAT_READY_BUSY 24 -#define MX28_BM_GPMI_STAT_READY_BUSY (0xff << MX28_BP_GPMI_STAT_READY_BUSY) -#define MX28_BF_GPMI_STAT_READY_BUSY(v) \ - (((v) << MX28_BP_GPMI_STAT_READY_BUSY) & MX28_BM_GPMI_STAT_READY_BUSY) - -/* MX23 uses this to detect READY. */ -#define HW_GPMI_DEBUG 0x000000c0 -#define MX23_BP_GPMI_DEBUG_READY0 28 -#define MX23_BM_GPMI_DEBUG_READY0 (1 << MX23_BP_GPMI_DEBUG_READY0) -#endif |