diff options
author | Boris Brezillon <boris.brezillon@bootlin.com> | 2018-02-05 23:02:04 +0100 |
---|---|---|
committer | Boris Brezillon <boris.brezillon@bootlin.com> | 2018-02-16 10:09:34 +0100 |
commit | 93db446a424cee9387b532995e6b516667079555 (patch) | |
tree | 39c7900ae38d890fb971ea5fc6f194f7e66fa797 /drivers/mtd/nand/nand_base.c | |
parent | mtd: nand: Add missing copyright information (diff) | |
download | linux-93db446a424cee9387b532995e6b516667079555.tar.xz linux-93db446a424cee9387b532995e6b516667079555.zip |
mtd: nand: move raw NAND related code to the raw/ subdir
As part of the process of sharing more code between different NAND
based devices, we need to move all raw NAND related code to the raw/
subdirectory.
Signed-off-by: Boris Brezillon <boris.brezillon@bootlin.com>
Diffstat (limited to 'drivers/mtd/nand/nand_base.c')
-rw-r--r-- | drivers/mtd/nand/nand_base.c | 6582 |
1 files changed, 0 insertions, 6582 deletions
diff --git a/drivers/mtd/nand/nand_base.c b/drivers/mtd/nand/nand_base.c deleted file mode 100644 index e70ca16a5118..000000000000 --- a/drivers/mtd/nand/nand_base.c +++ /dev/null @@ -1,6582 +0,0 @@ -/* - * Overview: - * This is the generic MTD driver for NAND flash devices. It should be - * capable of working with almost all NAND chips currently available. - * - * Additional technical information is available on - * http://www.linux-mtd.infradead.org/doc/nand.html - * - * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) - * 2002-2006 Thomas Gleixner (tglx@linutronix.de) - * - * Credits: - * David Woodhouse for adding multichip support - * - * Aleph One Ltd. and Toby Churchill Ltd. for supporting the - * rework for 2K page size chips - * - * TODO: - * Enable cached programming for 2k page size chips - * Check, if mtd->ecctype should be set to MTD_ECC_HW - * if we have HW ECC support. - * BBT table is not serialized, has to be fixed - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - */ - -#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt - -#include <linux/module.h> -#include <linux/delay.h> -#include <linux/errno.h> -#include <linux/err.h> -#include <linux/sched.h> -#include <linux/slab.h> -#include <linux/mm.h> -#include <linux/nmi.h> -#include <linux/types.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/rawnand.h> -#include <linux/mtd/nand_ecc.h> -#include <linux/mtd/nand_bch.h> -#include <linux/interrupt.h> -#include <linux/bitops.h> -#include <linux/io.h> -#include <linux/mtd/partitions.h> -#include <linux/of.h> - -static int nand_get_device(struct mtd_info *mtd, int new_state); - -static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, - struct mtd_oob_ops *ops); - -/* Define default oob placement schemes for large and small page devices */ -static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct nand_ecc_ctrl *ecc = &chip->ecc; - - if (section > 1) - return -ERANGE; - - if (!section) { - oobregion->offset = 0; - if (mtd->oobsize == 16) - oobregion->length = 4; - else - oobregion->length = 3; - } else { - if (mtd->oobsize == 8) - return -ERANGE; - - oobregion->offset = 6; - oobregion->length = ecc->total - 4; - } - - return 0; -} - -static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - if (section > 1) - return -ERANGE; - - if (mtd->oobsize == 16) { - if (section) - return -ERANGE; - - oobregion->length = 8; - oobregion->offset = 8; - } else { - oobregion->length = 2; - if (!section) - oobregion->offset = 3; - else - oobregion->offset = 6; - } - - return 0; -} - -const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = { - .ecc = nand_ooblayout_ecc_sp, - .free = nand_ooblayout_free_sp, -}; -EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops); - -static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct nand_ecc_ctrl *ecc = &chip->ecc; - - if (section || !ecc->total) - return -ERANGE; - - oobregion->length = ecc->total; - oobregion->offset = mtd->oobsize - oobregion->length; - - return 0; -} - -static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct nand_ecc_ctrl *ecc = &chip->ecc; - - if (section) - return -ERANGE; - - oobregion->length = mtd->oobsize - ecc->total - 2; - oobregion->offset = 2; - - return 0; -} - -const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = { - .ecc = nand_ooblayout_ecc_lp, - .free = nand_ooblayout_free_lp, -}; -EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops); - -/* - * Support the old "large page" layout used for 1-bit Hamming ECC where ECC - * are placed at a fixed offset. - */ -static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct nand_ecc_ctrl *ecc = &chip->ecc; - - if (section) - return -ERANGE; - - switch (mtd->oobsize) { - case 64: - oobregion->offset = 40; - break; - case 128: - oobregion->offset = 80; - break; - default: - return -EINVAL; - } - - oobregion->length = ecc->total; - if (oobregion->offset + oobregion->length > mtd->oobsize) - return -ERANGE; - - return 0; -} - -static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct nand_ecc_ctrl *ecc = &chip->ecc; - int ecc_offset = 0; - - if (section < 0 || section > 1) - return -ERANGE; - - switch (mtd->oobsize) { - case 64: - ecc_offset = 40; - break; - case 128: - ecc_offset = 80; - break; - default: - return -EINVAL; - } - - if (section == 0) { - oobregion->offset = 2; - oobregion->length = ecc_offset - 2; - } else { - oobregion->offset = ecc_offset + ecc->total; - oobregion->length = mtd->oobsize - oobregion->offset; - } - - return 0; -} - -static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = { - .ecc = nand_ooblayout_ecc_lp_hamming, - .free = nand_ooblayout_free_lp_hamming, -}; - -static int check_offs_len(struct mtd_info *mtd, - loff_t ofs, uint64_t len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - int ret = 0; - - /* Start address must align on block boundary */ - if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) { - pr_debug("%s: unaligned address\n", __func__); - ret = -EINVAL; - } - - /* Length must align on block boundary */ - if (len & ((1ULL << chip->phys_erase_shift) - 1)) { - pr_debug("%s: length not block aligned\n", __func__); - ret = -EINVAL; - } - - return ret; -} - -/** - * nand_release_device - [GENERIC] release chip - * @mtd: MTD device structure - * - * Release chip lock and wake up anyone waiting on the device. - */ -static void nand_release_device(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - /* Release the controller and the chip */ - spin_lock(&chip->controller->lock); - chip->controller->active = NULL; - chip->state = FL_READY; - wake_up(&chip->controller->wq); - spin_unlock(&chip->controller->lock); -} - -/** - * nand_read_byte - [DEFAULT] read one byte from the chip - * @mtd: MTD device structure - * - * Default read function for 8bit buswidth - */ -static uint8_t nand_read_byte(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - return readb(chip->IO_ADDR_R); -} - -/** - * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip - * @mtd: MTD device structure - * - * Default read function for 16bit buswidth with endianness conversion. - * - */ -static uint8_t nand_read_byte16(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R)); -} - -/** - * nand_read_word - [DEFAULT] read one word from the chip - * @mtd: MTD device structure - * - * Default read function for 16bit buswidth without endianness conversion. - */ -static u16 nand_read_word(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - return readw(chip->IO_ADDR_R); -} - -/** - * nand_select_chip - [DEFAULT] control CE line - * @mtd: MTD device structure - * @chipnr: chipnumber to select, -1 for deselect - * - * Default select function for 1 chip devices. - */ -static void nand_select_chip(struct mtd_info *mtd, int chipnr) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - switch (chipnr) { - case -1: - chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); - break; - case 0: - break; - - default: - BUG(); - } -} - -/** - * nand_write_byte - [DEFAULT] write single byte to chip - * @mtd: MTD device structure - * @byte: value to write - * - * Default function to write a byte to I/O[7:0] - */ -static void nand_write_byte(struct mtd_info *mtd, uint8_t byte) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - chip->write_buf(mtd, &byte, 1); -} - -/** - * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16 - * @mtd: MTD device structure - * @byte: value to write - * - * Default function to write a byte to I/O[7:0] on a 16-bit wide chip. - */ -static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - uint16_t word = byte; - - /* - * It's not entirely clear what should happen to I/O[15:8] when writing - * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads: - * - * When the host supports a 16-bit bus width, only data is - * transferred at the 16-bit width. All address and command line - * transfers shall use only the lower 8-bits of the data bus. During - * command transfers, the host may place any value on the upper - * 8-bits of the data bus. During address transfers, the host shall - * set the upper 8-bits of the data bus to 00h. - * - * One user of the write_byte callback is nand_onfi_set_features. The - * four parameters are specified to be written to I/O[7:0], but this is - * neither an address nor a command transfer. Let's assume a 0 on the - * upper I/O lines is OK. - */ - chip->write_buf(mtd, (uint8_t *)&word, 2); -} - -/** - * nand_write_buf - [DEFAULT] write buffer to chip - * @mtd: MTD device structure - * @buf: data buffer - * @len: number of bytes to write - * - * Default write function for 8bit buswidth. - */ -static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - iowrite8_rep(chip->IO_ADDR_W, buf, len); -} - -/** - * nand_read_buf - [DEFAULT] read chip data into buffer - * @mtd: MTD device structure - * @buf: buffer to store date - * @len: number of bytes to read - * - * Default read function for 8bit buswidth. - */ -static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - ioread8_rep(chip->IO_ADDR_R, buf, len); -} - -/** - * nand_write_buf16 - [DEFAULT] write buffer to chip - * @mtd: MTD device structure - * @buf: data buffer - * @len: number of bytes to write - * - * Default write function for 16bit buswidth. - */ -static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - u16 *p = (u16 *) buf; - - iowrite16_rep(chip->IO_ADDR_W, p, len >> 1); -} - -/** - * nand_read_buf16 - [DEFAULT] read chip data into buffer - * @mtd: MTD device structure - * @buf: buffer to store date - * @len: number of bytes to read - * - * Default read function for 16bit buswidth. - */ -static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - u16 *p = (u16 *) buf; - - ioread16_rep(chip->IO_ADDR_R, p, len >> 1); -} - -/** - * nand_block_bad - [DEFAULT] Read bad block marker from the chip - * @mtd: MTD device structure - * @ofs: offset from device start - * - * Check, if the block is bad. - */ -static int nand_block_bad(struct mtd_info *mtd, loff_t ofs) -{ - int page, page_end, res; - struct nand_chip *chip = mtd_to_nand(mtd); - u8 bad; - - if (chip->bbt_options & NAND_BBT_SCANLASTPAGE) - ofs += mtd->erasesize - mtd->writesize; - - page = (int)(ofs >> chip->page_shift) & chip->pagemask; - page_end = page + (chip->bbt_options & NAND_BBT_SCAN2NDPAGE ? 2 : 1); - - for (; page < page_end; page++) { - res = chip->ecc.read_oob(mtd, chip, page); - if (res) - return res; - - bad = chip->oob_poi[chip->badblockpos]; - - if (likely(chip->badblockbits == 8)) - res = bad != 0xFF; - else - res = hweight8(bad) < chip->badblockbits; - if (res) - return res; - } - - return 0; -} - -/** - * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker - * @mtd: MTD device structure - * @ofs: offset from device start - * - * This is the default implementation, which can be overridden by a hardware - * specific driver. It provides the details for writing a bad block marker to a - * block. - */ -static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct mtd_oob_ops ops; - uint8_t buf[2] = { 0, 0 }; - int ret = 0, res, i = 0; - - memset(&ops, 0, sizeof(ops)); - ops.oobbuf = buf; - ops.ooboffs = chip->badblockpos; - if (chip->options & NAND_BUSWIDTH_16) { - ops.ooboffs &= ~0x01; - ops.len = ops.ooblen = 2; - } else { - ops.len = ops.ooblen = 1; - } - ops.mode = MTD_OPS_PLACE_OOB; - - /* Write to first/last page(s) if necessary */ - if (chip->bbt_options & NAND_BBT_SCANLASTPAGE) - ofs += mtd->erasesize - mtd->writesize; - do { - res = nand_do_write_oob(mtd, ofs, &ops); - if (!ret) - ret = res; - - i++; - ofs += mtd->writesize; - } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2); - - return ret; -} - -/** - * nand_block_markbad_lowlevel - mark a block bad - * @mtd: MTD device structure - * @ofs: offset from device start - * - * This function performs the generic NAND bad block marking steps (i.e., bad - * block table(s) and/or marker(s)). We only allow the hardware driver to - * specify how to write bad block markers to OOB (chip->block_markbad). - * - * We try operations in the following order: - * - * (1) erase the affected block, to allow OOB marker to be written cleanly - * (2) write bad block marker to OOB area of affected block (unless flag - * NAND_BBT_NO_OOB_BBM is present) - * (3) update the BBT - * - * Note that we retain the first error encountered in (2) or (3), finish the - * procedures, and dump the error in the end. -*/ -static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - int res, ret = 0; - - if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) { - struct erase_info einfo; - - /* Attempt erase before marking OOB */ - memset(&einfo, 0, sizeof(einfo)); - einfo.mtd = mtd; - einfo.addr = ofs; - einfo.len = 1ULL << chip->phys_erase_shift; - nand_erase_nand(mtd, &einfo, 0); - - /* Write bad block marker to OOB */ - nand_get_device(mtd, FL_WRITING); - ret = chip->block_markbad(mtd, ofs); - nand_release_device(mtd); - } - - /* Mark block bad in BBT */ - if (chip->bbt) { - res = nand_markbad_bbt(mtd, ofs); - if (!ret) - ret = res; - } - - if (!ret) - mtd->ecc_stats.badblocks++; - - return ret; -} - -/** - * nand_check_wp - [GENERIC] check if the chip is write protected - * @mtd: MTD device structure - * - * Check, if the device is write protected. The function expects, that the - * device is already selected. - */ -static int nand_check_wp(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - u8 status; - int ret; - - /* Broken xD cards report WP despite being writable */ - if (chip->options & NAND_BROKEN_XD) - return 0; - - /* Check the WP bit */ - ret = nand_status_op(chip, &status); - if (ret) - return ret; - - return status & NAND_STATUS_WP ? 0 : 1; -} - -/** - * nand_block_isreserved - [GENERIC] Check if a block is marked reserved. - * @mtd: MTD device structure - * @ofs: offset from device start - * - * Check if the block is marked as reserved. - */ -static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - if (!chip->bbt) - return 0; - /* Return info from the table */ - return nand_isreserved_bbt(mtd, ofs); -} - -/** - * nand_block_checkbad - [GENERIC] Check if a block is marked bad - * @mtd: MTD device structure - * @ofs: offset from device start - * @allowbbt: 1, if its allowed to access the bbt area - * - * Check, if the block is bad. Either by reading the bad block table or - * calling of the scan function. - */ -static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - if (!chip->bbt) - return chip->block_bad(mtd, ofs); - - /* Return info from the table */ - return nand_isbad_bbt(mtd, ofs, allowbbt); -} - -/** - * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands. - * @mtd: MTD device structure - * @timeo: Timeout - * - * Helper function for nand_wait_ready used when needing to wait in interrupt - * context. - */ -static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - int i; - - /* Wait for the device to get ready */ - for (i = 0; i < timeo; i++) { - if (chip->dev_ready(mtd)) - break; - touch_softlockup_watchdog(); - mdelay(1); - } -} - -/** - * nand_wait_ready - [GENERIC] Wait for the ready pin after commands. - * @mtd: MTD device structure - * - * Wait for the ready pin after a command, and warn if a timeout occurs. - */ -void nand_wait_ready(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - unsigned long timeo = 400; - - if (in_interrupt() || oops_in_progress) - return panic_nand_wait_ready(mtd, timeo); - - /* Wait until command is processed or timeout occurs */ - timeo = jiffies + msecs_to_jiffies(timeo); - do { - if (chip->dev_ready(mtd)) - return; - cond_resched(); - } while (time_before(jiffies, timeo)); - - if (!chip->dev_ready(mtd)) - pr_warn_ratelimited("timeout while waiting for chip to become ready\n"); -} -EXPORT_SYMBOL_GPL(nand_wait_ready); - -/** - * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands. - * @mtd: MTD device structure - * @timeo: Timeout in ms - * - * Wait for status ready (i.e. command done) or timeout. - */ -static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo) -{ - register struct nand_chip *chip = mtd_to_nand(mtd); - int ret; - - timeo = jiffies + msecs_to_jiffies(timeo); - do { - u8 status; - - ret = nand_read_data_op(chip, &status, sizeof(status), true); - if (ret) - return; - - if (status & NAND_STATUS_READY) - break; - touch_softlockup_watchdog(); - } while (time_before(jiffies, timeo)); -}; - -/** - * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1 - * @chip: NAND chip structure - * @timeout_ms: Timeout in ms - * - * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1. - * If that does not happen whitin the specified timeout, -ETIMEDOUT is - * returned. - * - * This helper is intended to be used when the controller does not have access - * to the NAND R/B pin. - * - * Be aware that calling this helper from an ->exec_op() implementation means - * ->exec_op() must be re-entrant. - * - * Return 0 if the NAND chip is ready, a negative error otherwise. - */ -int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms) -{ - u8 status = 0; - int ret; - - if (!chip->exec_op) - return -ENOTSUPP; - - ret = nand_status_op(chip, NULL); - if (ret) - return ret; - - timeout_ms = jiffies + msecs_to_jiffies(timeout_ms); - do { - ret = nand_read_data_op(chip, &status, sizeof(status), true); - if (ret) - break; - - if (status & NAND_STATUS_READY) - break; - - /* - * Typical lowest execution time for a tR on most NANDs is 10us, - * use this as polling delay before doing something smarter (ie. - * deriving a delay from the timeout value, timeout_ms/ratio). - */ - udelay(10); - } while (time_before(jiffies, timeout_ms)); - - /* - * We have to exit READ_STATUS mode in order to read real data on the - * bus in case the WAITRDY instruction is preceding a DATA_IN - * instruction. - */ - nand_exit_status_op(chip); - - if (ret) - return ret; - - return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT; -}; -EXPORT_SYMBOL_GPL(nand_soft_waitrdy); - -/** - * nand_command - [DEFAULT] Send command to NAND device - * @mtd: MTD device structure - * @command: the command to be sent - * @column: the column address for this command, -1 if none - * @page_addr: the page address for this command, -1 if none - * - * Send command to NAND device. This function is used for small page devices - * (512 Bytes per page). - */ -static void nand_command(struct mtd_info *mtd, unsigned int command, - int column, int page_addr) -{ - register struct nand_chip *chip = mtd_to_nand(mtd); - int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE; - - /* Write out the command to the device */ - if (command == NAND_CMD_SEQIN) { - int readcmd; - - if (column >= mtd->writesize) { - /* OOB area */ - column -= mtd->writesize; - readcmd = NAND_CMD_READOOB; - } else if (column < 256) { - /* First 256 bytes --> READ0 */ - readcmd = NAND_CMD_READ0; - } else { - column -= 256; - readcmd = NAND_CMD_READ1; - } - chip->cmd_ctrl(mtd, readcmd, ctrl); - ctrl &= ~NAND_CTRL_CHANGE; - } - if (command != NAND_CMD_NONE) - chip->cmd_ctrl(mtd, command, ctrl); - - /* Address cycle, when necessary */ - ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE; - /* Serially input address */ - if (column != -1) { - /* Adjust columns for 16 bit buswidth */ - if (chip->options & NAND_BUSWIDTH_16 && - !nand_opcode_8bits(command)) - column >>= 1; - chip->cmd_ctrl(mtd, column, ctrl); - ctrl &= ~NAND_CTRL_CHANGE; - } - if (page_addr != -1) { - chip->cmd_ctrl(mtd, page_addr, ctrl); - ctrl &= ~NAND_CTRL_CHANGE; - chip->cmd_ctrl(mtd, page_addr >> 8, ctrl); - if (chip->options & NAND_ROW_ADDR_3) - chip->cmd_ctrl(mtd, page_addr >> 16, ctrl); - } - chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); - - /* - * Program and erase have their own busy handlers status and sequential - * in needs no delay - */ - switch (command) { - - case NAND_CMD_NONE: - case NAND_CMD_PAGEPROG: - case NAND_CMD_ERASE1: - case NAND_CMD_ERASE2: - case NAND_CMD_SEQIN: - case NAND_CMD_STATUS: - case NAND_CMD_READID: - case NAND_CMD_SET_FEATURES: - return; - - case NAND_CMD_RESET: - if (chip->dev_ready) - break; - udelay(chip->chip_delay); - chip->cmd_ctrl(mtd, NAND_CMD_STATUS, - NAND_CTRL_CLE | NAND_CTRL_CHANGE); - chip->cmd_ctrl(mtd, - NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); - /* EZ-NAND can take upto 250ms as per ONFi v4.0 */ - nand_wait_status_ready(mtd, 250); - return; - - /* This applies to read commands */ - case NAND_CMD_READ0: - /* - * READ0 is sometimes used to exit GET STATUS mode. When this - * is the case no address cycles are requested, and we can use - * this information to detect that we should not wait for the - * device to be ready. - */ - if (column == -1 && page_addr == -1) - return; - - default: - /* - * If we don't have access to the busy pin, we apply the given - * command delay - */ - if (!chip->dev_ready) { - udelay(chip->chip_delay); - return; - } - } - /* - * Apply this short delay always to ensure that we do wait tWB in - * any case on any machine. - */ - ndelay(100); - - nand_wait_ready(mtd); -} - -static void nand_ccs_delay(struct nand_chip *chip) -{ - /* - * The controller already takes care of waiting for tCCS when the RNDIN - * or RNDOUT command is sent, return directly. - */ - if (!(chip->options & NAND_WAIT_TCCS)) - return; - - /* - * Wait tCCS_min if it is correctly defined, otherwise wait 500ns - * (which should be safe for all NANDs). - */ - if (chip->setup_data_interface) - ndelay(chip->data_interface.timings.sdr.tCCS_min / 1000); - else - ndelay(500); -} - -/** - * nand_command_lp - [DEFAULT] Send command to NAND large page device - * @mtd: MTD device structure - * @command: the command to be sent - * @column: the column address for this command, -1 if none - * @page_addr: the page address for this command, -1 if none - * - * Send command to NAND device. This is the version for the new large page - * devices. We don't have the separate regions as we have in the small page - * devices. We must emulate NAND_CMD_READOOB to keep the code compatible. - */ -static void nand_command_lp(struct mtd_info *mtd, unsigned int command, - int column, int page_addr) -{ - register struct nand_chip *chip = mtd_to_nand(mtd); - - /* Emulate NAND_CMD_READOOB */ - if (command == NAND_CMD_READOOB) { - column += mtd->writesize; - command = NAND_CMD_READ0; - } - - /* Command latch cycle */ - if (command != NAND_CMD_NONE) - chip->cmd_ctrl(mtd, command, - NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); - - if (column != -1 || page_addr != -1) { - int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE; - - /* Serially input address */ - if (column != -1) { - /* Adjust columns for 16 bit buswidth */ - if (chip->options & NAND_BUSWIDTH_16 && - !nand_opcode_8bits(command)) - column >>= 1; - chip->cmd_ctrl(mtd, column, ctrl); - ctrl &= ~NAND_CTRL_CHANGE; - - /* Only output a single addr cycle for 8bits opcodes. */ - if (!nand_opcode_8bits(command)) - chip->cmd_ctrl(mtd, column >> 8, ctrl); - } - if (page_addr != -1) { - chip->cmd_ctrl(mtd, page_addr, ctrl); - chip->cmd_ctrl(mtd, page_addr >> 8, - NAND_NCE | NAND_ALE); - if (chip->options & NAND_ROW_ADDR_3) - chip->cmd_ctrl(mtd, page_addr >> 16, - NAND_NCE | NAND_ALE); - } - } - chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); - - /* - * Program and erase have their own busy handlers status, sequential - * in and status need no delay. - */ - switch (command) { - - case NAND_CMD_NONE: - case NAND_CMD_CACHEDPROG: - case NAND_CMD_PAGEPROG: - case NAND_CMD_ERASE1: - case NAND_CMD_ERASE2: - case NAND_CMD_SEQIN: - case NAND_CMD_STATUS: - case NAND_CMD_READID: - case NAND_CMD_SET_FEATURES: - return; - - case NAND_CMD_RNDIN: - nand_ccs_delay(chip); - return; - - case NAND_CMD_RESET: - if (chip->dev_ready) - break; - udelay(chip->chip_delay); - chip->cmd_ctrl(mtd, NAND_CMD_STATUS, - NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); - chip->cmd_ctrl(mtd, NAND_CMD_NONE, - NAND_NCE | NAND_CTRL_CHANGE); - /* EZ-NAND can take upto 250ms as per ONFi v4.0 */ - nand_wait_status_ready(mtd, 250); - return; - - case NAND_CMD_RNDOUT: - /* No ready / busy check necessary */ - chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART, - NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); - chip->cmd_ctrl(mtd, NAND_CMD_NONE, - NAND_NCE | NAND_CTRL_CHANGE); - - nand_ccs_delay(chip); - return; - - case NAND_CMD_READ0: - /* - * READ0 is sometimes used to exit GET STATUS mode. When this - * is the case no address cycles are requested, and we can use - * this information to detect that READSTART should not be - * issued. - */ - if (column == -1 && page_addr == -1) - return; - - chip->cmd_ctrl(mtd, NAND_CMD_READSTART, - NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); - chip->cmd_ctrl(mtd, NAND_CMD_NONE, - NAND_NCE | NAND_CTRL_CHANGE); - - /* This applies to read commands */ - default: - /* - * If we don't have access to the busy pin, we apply the given - * command delay. - */ - if (!chip->dev_ready) { - udelay(chip->chip_delay); - return; - } - } - - /* - * Apply this short delay always to ensure that we do wait tWB in - * any case on any machine. - */ - ndelay(100); - - nand_wait_ready(mtd); -} - -/** - * panic_nand_get_device - [GENERIC] Get chip for selected access - * @chip: the nand chip descriptor - * @mtd: MTD device structure - * @new_state: the state which is requested - * - * Used when in panic, no locks are taken. - */ -static void panic_nand_get_device(struct nand_chip *chip, - struct mtd_info *mtd, int new_state) -{ - /* Hardware controller shared among independent devices */ - chip->controller->active = chip; - chip->state = new_state; -} - -/** - * nand_get_device - [GENERIC] Get chip for selected access - * @mtd: MTD device structure - * @new_state: the state which is requested - * - * Get the device and lock it for exclusive access - */ -static int -nand_get_device(struct mtd_info *mtd, int new_state) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - spinlock_t *lock = &chip->controller->lock; - wait_queue_head_t *wq = &chip->controller->wq; - DECLARE_WAITQUEUE(wait, current); -retry: - spin_lock(lock); - - /* Hardware controller shared among independent devices */ - if (!chip->controller->active) - chip->controller->active = chip; - - if (chip->controller->active == chip && chip->state == FL_READY) { - chip->state = new_state; - spin_unlock(lock); - return 0; - } - if (new_state == FL_PM_SUSPENDED) { - if (chip->controller->active->state == FL_PM_SUSPENDED) { - chip->state = FL_PM_SUSPENDED; - spin_unlock(lock); - return 0; - } - } - set_current_state(TASK_UNINTERRUPTIBLE); - add_wait_queue(wq, &wait); - spin_unlock(lock); - schedule(); - remove_wait_queue(wq, &wait); - goto retry; -} - -/** - * panic_nand_wait - [GENERIC] wait until the command is done - * @mtd: MTD device structure - * @chip: NAND chip structure - * @timeo: timeout - * - * Wait for command done. This is a helper function for nand_wait used when - * we are in interrupt context. May happen when in panic and trying to write - * an oops through mtdoops. - */ -static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip, - unsigned long timeo) -{ - int i; - for (i = 0; i < timeo; i++) { - if (chip->dev_ready) { - if (chip->dev_ready(mtd)) - break; - } else { - int ret; - u8 status; - - ret = nand_read_data_op(chip, &status, sizeof(status), - true); - if (ret) - return; - - if (status & NAND_STATUS_READY) - break; - } - mdelay(1); - } -} - -/** - * nand_wait - [DEFAULT] wait until the command is done - * @mtd: MTD device structure - * @chip: NAND chip structure - * - * Wait for command done. This applies to erase and program only. - */ -static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip) -{ - - unsigned long timeo = 400; - u8 status; - int ret; - - /* - * Apply this short delay always to ensure that we do wait tWB in any - * case on any machine. - */ - ndelay(100); - - ret = nand_status_op(chip, NULL); - if (ret) - return ret; - - if (in_interrupt() || oops_in_progress) - panic_nand_wait(mtd, chip, timeo); - else { - timeo = jiffies + msecs_to_jiffies(timeo); - do { - if (chip->dev_ready) { - if (chip->dev_ready(mtd)) - break; - } else { - ret = nand_read_data_op(chip, &status, - sizeof(status), true); - if (ret) - return ret; - - if (status & NAND_STATUS_READY) - break; - } - cond_resched(); - } while (time_before(jiffies, timeo)); - } - - ret = nand_read_data_op(chip, &status, sizeof(status), true); - if (ret) - return ret; - - /* This can happen if in case of timeout or buggy dev_ready */ - WARN_ON(!(status & NAND_STATUS_READY)); - return status; -} - -/** - * nand_reset_data_interface - Reset data interface and timings - * @chip: The NAND chip - * @chipnr: Internal die id - * - * Reset the Data interface and timings to ONFI mode 0. - * - * Returns 0 for success or negative error code otherwise. - */ -static int nand_reset_data_interface(struct nand_chip *chip, int chipnr) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - int ret; - - if (!chip->setup_data_interface) - return 0; - - /* - * The ONFI specification says: - * " - * To transition from NV-DDR or NV-DDR2 to the SDR data - * interface, the host shall use the Reset (FFh) command - * using SDR timing mode 0. A device in any timing mode is - * required to recognize Reset (FFh) command issued in SDR - * timing mode 0. - * " - * - * Configure the data interface in SDR mode and set the - * timings to timing mode 0. - */ - - onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0); - ret = chip->setup_data_interface(mtd, chipnr, &chip->data_interface); - if (ret) - pr_err("Failed to configure data interface to SDR timing mode 0\n"); - - return ret; -} - -/** - * nand_setup_data_interface - Setup the best data interface and timings - * @chip: The NAND chip - * @chipnr: Internal die id - * - * Find and configure the best data interface and NAND timings supported by - * the chip and the driver. - * First tries to retrieve supported timing modes from ONFI information, - * and if the NAND chip does not support ONFI, relies on the - * ->onfi_timing_mode_default specified in the nand_ids table. - * - * Returns 0 for success or negative error code otherwise. - */ -static int nand_setup_data_interface(struct nand_chip *chip, int chipnr) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - int ret; - - if (!chip->setup_data_interface) - return 0; - - /* - * Ensure the timing mode has been changed on the chip side - * before changing timings on the controller side. - */ - if (chip->onfi_version && - (le16_to_cpu(chip->onfi_params.opt_cmd) & - ONFI_OPT_CMD_SET_GET_FEATURES)) { - u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { - chip->onfi_timing_mode_default, - }; - - ret = chip->onfi_set_features(mtd, chip, - ONFI_FEATURE_ADDR_TIMING_MODE, - tmode_param); - if (ret) - goto err; - } - - ret = chip->setup_data_interface(mtd, chipnr, &chip->data_interface); -err: - return ret; -} - -/** - * nand_init_data_interface - find the best data interface and timings - * @chip: The NAND chip - * - * Find the best data interface and NAND timings supported by the chip - * and the driver. - * First tries to retrieve supported timing modes from ONFI information, - * and if the NAND chip does not support ONFI, relies on the - * ->onfi_timing_mode_default specified in the nand_ids table. After this - * function nand_chip->data_interface is initialized with the best timing mode - * available. - * - * Returns 0 for success or negative error code otherwise. - */ -static int nand_init_data_interface(struct nand_chip *chip) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - int modes, mode, ret; - - if (!chip->setup_data_interface) - return 0; - - /* - * First try to identify the best timings from ONFI parameters and - * if the NAND does not support ONFI, fallback to the default ONFI - * timing mode. - */ - modes = onfi_get_async_timing_mode(chip); - if (modes == ONFI_TIMING_MODE_UNKNOWN) { - if (!chip->onfi_timing_mode_default) - return 0; - - modes = GENMASK(chip->onfi_timing_mode_default, 0); - } - - - for (mode = fls(modes) - 1; mode >= 0; mode--) { - ret = onfi_fill_data_interface(chip, NAND_SDR_IFACE, mode); - if (ret) - continue; - - /* - * Pass NAND_DATA_IFACE_CHECK_ONLY to only check if the - * controller supports the requested timings. - */ - ret = chip->setup_data_interface(mtd, - NAND_DATA_IFACE_CHECK_ONLY, - &chip->data_interface); - if (!ret) { - chip->onfi_timing_mode_default = mode; - break; - } - } - - return 0; -} - -/** - * nand_fill_column_cycles - fill the column cycles of an address - * @chip: The NAND chip - * @addrs: Array of address cycles to fill - * @offset_in_page: The offset in the page - * - * Fills the first or the first two bytes of the @addrs field depending - * on the NAND bus width and the page size. - * - * Returns the number of cycles needed to encode the column, or a negative - * error code in case one of the arguments is invalid. - */ -static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs, - unsigned int offset_in_page) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - - /* Make sure the offset is less than the actual page size. */ - if (offset_in_page > mtd->writesize + mtd->oobsize) - return -EINVAL; - - /* - * On small page NANDs, there's a dedicated command to access the OOB - * area, and the column address is relative to the start of the OOB - * area, not the start of the page. Asjust the address accordingly. - */ - if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize) - offset_in_page -= mtd->writesize; - - /* - * The offset in page is expressed in bytes, if the NAND bus is 16-bit - * wide, then it must be divided by 2. - */ - if (chip->options & NAND_BUSWIDTH_16) { - if (WARN_ON(offset_in_page % 2)) - return -EINVAL; - - offset_in_page /= 2; - } - - addrs[0] = offset_in_page; - - /* - * Small page NANDs use 1 cycle for the columns, while large page NANDs - * need 2 - */ - if (mtd->writesize <= 512) - return 1; - - addrs[1] = offset_in_page >> 8; - - return 2; -} - -static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page, - unsigned int offset_in_page, void *buf, - unsigned int len) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - const struct nand_sdr_timings *sdr = - nand_get_sdr_timings(&chip->data_interface); - u8 addrs[4]; - struct nand_op_instr instrs[] = { - NAND_OP_CMD(NAND_CMD_READ0, 0), - NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)), - NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), - PSEC_TO_NSEC(sdr->tRR_min)), - NAND_OP_DATA_IN(len, buf, 0), - }; - struct nand_operation op = NAND_OPERATION(instrs); - int ret; - - /* Drop the DATA_IN instruction if len is set to 0. */ - if (!len) - op.ninstrs--; - - if (offset_in_page >= mtd->writesize) - instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; - else if (offset_in_page >= 256 && - !(chip->options & NAND_BUSWIDTH_16)) - instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; - - ret = nand_fill_column_cycles(chip, addrs, offset_in_page); - if (ret < 0) - return ret; - - addrs[1] = page; - addrs[2] = page >> 8; - - if (chip->options & NAND_ROW_ADDR_3) { - addrs[3] = page >> 16; - instrs[1].ctx.addr.naddrs++; - } - - return nand_exec_op(chip, &op); -} - -static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page, - unsigned int offset_in_page, void *buf, - unsigned int len) -{ - const struct nand_sdr_timings *sdr = - nand_get_sdr_timings(&chip->data_interface); - u8 addrs[5]; - struct nand_op_instr instrs[] = { - NAND_OP_CMD(NAND_CMD_READ0, 0), - NAND_OP_ADDR(4, addrs, 0), - NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)), - NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), - PSEC_TO_NSEC(sdr->tRR_min)), - NAND_OP_DATA_IN(len, buf, 0), - }; - struct nand_operation op = NAND_OPERATION(instrs); - int ret; - - /* Drop the DATA_IN instruction if len is set to 0. */ - if (!len) - op.ninstrs--; - - ret = nand_fill_column_cycles(chip, addrs, offset_in_page); - if (ret < 0) - return ret; - - addrs[2] = page; - addrs[3] = page >> 8; - - if (chip->options & NAND_ROW_ADDR_3) { - addrs[4] = page >> 16; - instrs[1].ctx.addr.naddrs++; - } - - return nand_exec_op(chip, &op); -} - -/** - * nand_read_page_op - Do a READ PAGE operation - * @chip: The NAND chip - * @page: page to read - * @offset_in_page: offset within the page - * @buf: buffer used to store the data - * @len: length of the buffer - * - * This function issues a READ PAGE operation. - * This function does not select/unselect the CS line. - * - * Returns 0 on success, a negative error code otherwise. - */ -int nand_read_page_op(struct nand_chip *chip, unsigned int page, - unsigned int offset_in_page, void *buf, unsigned int len) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - - if (len && !buf) - return -EINVAL; - - if (offset_in_page + len > mtd->writesize + mtd->oobsize) - return -EINVAL; - - if (chip->exec_op) { - if (mtd->writesize > 512) - return nand_lp_exec_read_page_op(chip, page, - offset_in_page, buf, - len); - - return nand_sp_exec_read_page_op(chip, page, offset_in_page, - buf, len); - } - - chip->cmdfunc(mtd, NAND_CMD_READ0, offset_in_page, page); - if (len) - chip->read_buf(mtd, buf, len); - - return 0; -} -EXPORT_SYMBOL_GPL(nand_read_page_op); - -/** - * nand_read_param_page_op - Do a READ PARAMETER PAGE operation - * @chip: The NAND chip - * @page: parameter page to read - * @buf: buffer used to store the data - * @len: length of the buffer - * - * This function issues a READ PARAMETER PAGE operation. - * This function does not select/unselect the CS line. - * - * Returns 0 on success, a negative error code otherwise. - */ -static int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf, - unsigned int len) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - unsigned int i; - u8 *p = buf; - - if (len && !buf) - return -EINVAL; - - if (chip->exec_op) { - const struct nand_sdr_timings *sdr = - nand_get_sdr_timings(&chip->data_interface); - struct nand_op_instr instrs[] = { - NAND_OP_CMD(NAND_CMD_PARAM, 0), - NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)), - NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), - PSEC_TO_NSEC(sdr->tRR_min)), - NAND_OP_8BIT_DATA_IN(len, buf, 0), - }; - struct nand_operation op = NAND_OPERATION(instrs); - - /* Drop the DATA_IN instruction if len is set to 0. */ - if (!len) - op.ninstrs--; - - return nand_exec_op(chip, &op); - } - - chip->cmdfunc(mtd, NAND_CMD_PARAM, page, -1); - for (i = 0; i < len; i++) - p[i] = chip->read_byte(mtd); - - return 0; -} - -/** - * nand_change_read_column_op - Do a CHANGE READ COLUMN operation - * @chip: The NAND chip - * @offset_in_page: offset within the page - * @buf: buffer used to store the data - * @len: length of the buffer - * @force_8bit: force 8-bit bus access - * - * This function issues a CHANGE READ COLUMN operation. - * This function does not select/unselect the CS line. - * - * Returns 0 on success, a negative error code otherwise. - */ -int nand_change_read_column_op(struct nand_chip *chip, - unsigned int offset_in_page, void *buf, - unsigned int len, bool force_8bit) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - - if (len && !buf) - return -EINVAL; - - if (offset_in_page + len > mtd->writesize + mtd->oobsize) - return -EINVAL; - - /* Small page NANDs do not support column change. */ - if (mtd->writesize <= 512) - return -ENOTSUPP; - - if (chip->exec_op) { - const struct nand_sdr_timings *sdr = - nand_get_sdr_timings(&chip->data_interface); - u8 addrs[2] = {}; - struct nand_op_instr instrs[] = { - NAND_OP_CMD(NAND_CMD_RNDOUT, 0), - NAND_OP_ADDR(2, addrs, 0), - NAND_OP_CMD(NAND_CMD_RNDOUTSTART, - PSEC_TO_NSEC(sdr->tCCS_min)), - NAND_OP_DATA_IN(len, buf, 0), - }; - struct nand_operation op = NAND_OPERATION(instrs); - int ret; - - ret = nand_fill_column_cycles(chip, addrs, offset_in_page); - if (ret < 0) - return ret; - - /* Drop the DATA_IN instruction if len is set to 0. */ - if (!len) - op.ninstrs--; - - instrs[3].ctx.data.force_8bit = force_8bit; - - return nand_exec_op(chip, &op); - } - - chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset_in_page, -1); - if (len) - chip->read_buf(mtd, buf, len); - - return 0; -} -EXPORT_SYMBOL_GPL(nand_change_read_column_op); - -/** - * nand_read_oob_op - Do a READ OOB operation - * @chip: The NAND chip - * @page: page to read - * @offset_in_oob: offset within the OOB area - * @buf: buffer used to store the data - * @len: length of the buffer - * - * This function issues a READ OOB operation. - * This function does not select/unselect the CS line. - * - * Returns 0 on success, a negative error code otherwise. - */ -int nand_read_oob_op(struct nand_chip *chip, unsigned int page, - unsigned int offset_in_oob, void *buf, unsigned int len) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - - if (len && !buf) - return -EINVAL; - - if (offset_in_oob + len > mtd->oobsize) - return -EINVAL; - - if (chip->exec_op) - return nand_read_page_op(chip, page, - mtd->writesize + offset_in_oob, - buf, len); - - chip->cmdfunc(mtd, NAND_CMD_READOOB, offset_in_oob, page); - if (len) - chip->read_buf(mtd, buf, len); - - return 0; -} -EXPORT_SYMBOL_GPL(nand_read_oob_op); - -static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page, - unsigned int offset_in_page, const void *buf, - unsigned int len, bool prog) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - const struct nand_sdr_timings *sdr = - nand_get_sdr_timings(&chip->data_interface); - u8 addrs[5] = {}; - struct nand_op_instr instrs[] = { - /* - * The first instruction will be dropped if we're dealing - * with a large page NAND and adjusted if we're dealing - * with a small page NAND and the page offset is > 255. - */ - NAND_OP_CMD(NAND_CMD_READ0, 0), - NAND_OP_CMD(NAND_CMD_SEQIN, 0), - NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)), - NAND_OP_DATA_OUT(len, buf, 0), - NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)), - NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0), - }; - struct nand_operation op = NAND_OPERATION(instrs); - int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page); - int ret; - u8 status; - - if (naddrs < 0) - return naddrs; - - addrs[naddrs++] = page; - addrs[naddrs++] = page >> 8; - if (chip->options & NAND_ROW_ADDR_3) - addrs[naddrs++] = page >> 16; - - instrs[2].ctx.addr.naddrs = naddrs; - - /* Drop the last two instructions if we're not programming the page. */ - if (!prog) { - op.ninstrs -= 2; - /* Also drop the DATA_OUT instruction if empty. */ - if (!len) - op.ninstrs--; - } - - if (mtd->writesize <= 512) { - /* - * Small pages need some more tweaking: we have to adjust the - * first instruction depending on the page offset we're trying - * to access. - */ - if (offset_in_page >= mtd->writesize) - instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; - else if (offset_in_page >= 256 && - !(chip->options & NAND_BUSWIDTH_16)) - instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; - } else { - /* - * Drop the first command if we're dealing with a large page - * NAND. - */ - op.instrs++; - op.ninstrs--; - } - - ret = nand_exec_op(chip, &op); - if (!prog || ret) - return ret; - - ret = nand_status_op(chip, &status); - if (ret) - return ret; - - return status; -} - -/** - * nand_prog_page_begin_op - starts a PROG PAGE operation - * @chip: The NAND chip - * @page: page to write - * @offset_in_page: offset within the page - * @buf: buffer containing the data to write to the page - * @len: length of the buffer - * - * This function issues the first half of a PROG PAGE operation. - * This function does not select/unselect the CS line. - * - * Returns 0 on success, a negative error code otherwise. - */ -int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page, - unsigned int offset_in_page, const void *buf, - unsigned int len) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - - if (len && !buf) - return -EINVAL; - - if (offset_in_page + len > mtd->writesize + mtd->oobsize) - return -EINVAL; - - if (chip->exec_op) - return nand_exec_prog_page_op(chip, page, offset_in_page, buf, - len, false); - - chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page); - - if (buf) - chip->write_buf(mtd, buf, len); - - return 0; -} -EXPORT_SYMBOL_GPL(nand_prog_page_begin_op); - -/** - * nand_prog_page_end_op - ends a PROG PAGE operation - * @chip: The NAND chip - * - * This function issues the second half of a PROG PAGE operation. - * This function does not select/unselect the CS line. - * - * Returns 0 on success, a negative error code otherwise. - */ -int nand_prog_page_end_op(struct nand_chip *chip) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - int ret; - u8 status; - - if (chip->exec_op) { - const struct nand_sdr_timings *sdr = - nand_get_sdr_timings(&chip->data_interface); - struct nand_op_instr instrs[] = { - NAND_OP_CMD(NAND_CMD_PAGEPROG, - PSEC_TO_NSEC(sdr->tWB_max)), - NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0), - }; - struct nand_operation op = NAND_OPERATION(instrs); - - ret = nand_exec_op(chip, &op); - if (ret) - return ret; - - ret = nand_status_op(chip, &status); - if (ret) - return ret; - } else { - chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); - ret = chip->waitfunc(mtd, chip); - if (ret < 0) - return ret; - - status = ret; - } - - if (status & NAND_STATUS_FAIL) - return -EIO; - - return 0; -} -EXPORT_SYMBOL_GPL(nand_prog_page_end_op); - -/** - * nand_prog_page_op - Do a full PROG PAGE operation - * @chip: The NAND chip - * @page: page to write - * @offset_in_page: offset within the page - * @buf: buffer containing the data to write to the page - * @len: length of the buffer - * - * This function issues a full PROG PAGE operation. - * This function does not select/unselect the CS line. - * - * Returns 0 on success, a negative error code otherwise. - */ -int nand_prog_page_op(struct nand_chip *chip, unsigned int page, - unsigned int offset_in_page, const void *buf, - unsigned int len) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - int status; - - if (!len || !buf) - return -EINVAL; - - if (offset_in_page + len > mtd->writesize + mtd->oobsize) - return -EINVAL; - - if (chip->exec_op) { - status = nand_exec_prog_page_op(chip, page, offset_in_page, buf, - len, true); - } else { - chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page); - chip->write_buf(mtd, buf, len); - chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); - status = chip->waitfunc(mtd, chip); - } - - if (status & NAND_STATUS_FAIL) - return -EIO; - - return 0; -} -EXPORT_SYMBOL_GPL(nand_prog_page_op); - -/** - * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation - * @chip: The NAND chip - * @offset_in_page: offset within the page - * @buf: buffer containing the data to send to the NAND - * @len: length of the buffer - * @force_8bit: force 8-bit bus access - * - * This function issues a CHANGE WRITE COLUMN operation. - * This function does not select/unselect the CS line. - * - * Returns 0 on success, a negative error code otherwise. - */ -int nand_change_write_column_op(struct nand_chip *chip, - unsigned int offset_in_page, - const void *buf, unsigned int len, - bool force_8bit) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - - if (len && !buf) - return -EINVAL; - - if (offset_in_page + len > mtd->writesize + mtd->oobsize) - return -EINVAL; - - /* Small page NANDs do not support column change. */ - if (mtd->writesize <= 512) - return -ENOTSUPP; - - if (chip->exec_op) { - const struct nand_sdr_timings *sdr = - nand_get_sdr_timings(&chip->data_interface); - u8 addrs[2]; - struct nand_op_instr instrs[] = { - NAND_OP_CMD(NAND_CMD_RNDIN, 0), - NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)), - NAND_OP_DATA_OUT(len, buf, 0), - }; - struct nand_operation op = NAND_OPERATION(instrs); - int ret; - - ret = nand_fill_column_cycles(chip, addrs, offset_in_page); - if (ret < 0) - return ret; - - instrs[2].ctx.data.force_8bit = force_8bit; - - /* Drop the DATA_OUT instruction if len is set to 0. */ - if (!len) - op.ninstrs--; - - return nand_exec_op(chip, &op); - } - - chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset_in_page, -1); - if (len) - chip->write_buf(mtd, buf, len); - - return 0; -} -EXPORT_SYMBOL_GPL(nand_change_write_column_op); - -/** - * nand_readid_op - Do a READID operation - * @chip: The NAND chip - * @addr: address cycle to pass after the READID command - * @buf: buffer used to store the ID - * @len: length of the buffer - * - * This function sends a READID command and reads back the ID returned by the - * NAND. - * This function does not select/unselect the CS line. - * - * Returns 0 on success, a negative error code otherwise. - */ -int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf, - unsigned int len) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - unsigned int i; - u8 *id = buf; - - if (len && !buf) - return -EINVAL; - - if (chip->exec_op) { - const struct nand_sdr_timings *sdr = - nand_get_sdr_timings(&chip->data_interface); - struct nand_op_instr instrs[] = { - NAND_OP_CMD(NAND_CMD_READID, 0), - NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)), - NAND_OP_8BIT_DATA_IN(len, buf, 0), - }; - struct nand_operation op = NAND_OPERATION(instrs); - - /* Drop the DATA_IN instruction if len is set to 0. */ - if (!len) - op.ninstrs--; - - return nand_exec_op(chip, &op); - } - - chip->cmdfunc(mtd, NAND_CMD_READID, addr, -1); - - for (i = 0; i < len; i++) - id[i] = chip->read_byte(mtd); - - return 0; -} -EXPORT_SYMBOL_GPL(nand_readid_op); - -/** - * nand_status_op - Do a STATUS operation - * @chip: The NAND chip - * @status: out variable to store the NAND status - * - * This function sends a STATUS command and reads back the status returned by - * the NAND. - * This function does not select/unselect the CS line. - * - * Returns 0 on success, a negative error code otherwise. - */ -int nand_status_op(struct nand_chip *chip, u8 *status) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - - if (chip->exec_op) { - const struct nand_sdr_timings *sdr = - nand_get_sdr_timings(&chip->data_interface); - struct nand_op_instr instrs[] = { - NAND_OP_CMD(NAND_CMD_STATUS, - PSEC_TO_NSEC(sdr->tADL_min)), - NAND_OP_8BIT_DATA_IN(1, status, 0), - }; - struct nand_operation op = NAND_OPERATION(instrs); - - if (!status) - op.ninstrs--; - - return nand_exec_op(chip, &op); - } - - chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); - if (status) - *status = chip->read_byte(mtd); - - return 0; -} -EXPORT_SYMBOL_GPL(nand_status_op); - -/** - * nand_exit_status_op - Exit a STATUS operation - * @chip: The NAND chip - * - * This function sends a READ0 command to cancel the effect of the STATUS - * command to avoid reading only the status until a new read command is sent. - * - * This function does not select/unselect the CS line. - * - * Returns 0 on success, a negative error code otherwise. - */ -int nand_exit_status_op(struct nand_chip *chip) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - - if (chip->exec_op) { - struct nand_op_instr instrs[] = { - NAND_OP_CMD(NAND_CMD_READ0, 0), - }; - struct nand_operation op = NAND_OPERATION(instrs); - - return nand_exec_op(chip, &op); - } - - chip->cmdfunc(mtd, NAND_CMD_READ0, -1, -1); - - return 0; -} -EXPORT_SYMBOL_GPL(nand_exit_status_op); - -/** - * nand_erase_op - Do an erase operation - * @chip: The NAND chip - * @eraseblock: block to erase - * - * This function sends an ERASE command and waits for the NAND to be ready - * before returning. - * This function does not select/unselect the CS line. - * - * Returns 0 on success, a negative error code otherwise. - */ -int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - unsigned int page = eraseblock << - (chip->phys_erase_shift - chip->page_shift); - int ret; - u8 status; - - if (chip->exec_op) { - const struct nand_sdr_timings *sdr = - nand_get_sdr_timings(&chip->data_interface); - u8 addrs[3] = { page, page >> 8, page >> 16 }; - struct nand_op_instr instrs[] = { - NAND_OP_CMD(NAND_CMD_ERASE1, 0), - NAND_OP_ADDR(2, addrs, 0), - NAND_OP_CMD(NAND_CMD_ERASE2, - PSEC_TO_MSEC(sdr->tWB_max)), - NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0), - }; - struct nand_operation op = NAND_OPERATION(instrs); - - if (chip->options & NAND_ROW_ADDR_3) - instrs[1].ctx.addr.naddrs++; - - ret = nand_exec_op(chip, &op); - if (ret) - return ret; - - ret = nand_status_op(chip, &status); - if (ret) - return ret; - } else { - chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); - chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); - - ret = chip->waitfunc(mtd, chip); - if (ret < 0) - return ret; - - status = ret; - } - - if (status & NAND_STATUS_FAIL) - return -EIO; - - return 0; -} -EXPORT_SYMBOL_GPL(nand_erase_op); - -/** - * nand_set_features_op - Do a SET FEATURES operation - * @chip: The NAND chip - * @feature: feature id - * @data: 4 bytes of data - * - * This function sends a SET FEATURES command and waits for the NAND to be - * ready before returning. - * This function does not select/unselect the CS line. - * - * Returns 0 on success, a negative error code otherwise. - */ -static int nand_set_features_op(struct nand_chip *chip, u8 feature, - const void *data) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - const u8 *params = data; - int i, ret; - u8 status; - - if (chip->exec_op) { - const struct nand_sdr_timings *sdr = - nand_get_sdr_timings(&chip->data_interface); - struct nand_op_instr instrs[] = { - NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0), - NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)), - NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data, - PSEC_TO_NSEC(sdr->tWB_max)), - NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0), - }; - struct nand_operation op = NAND_OPERATION(instrs); - - ret = nand_exec_op(chip, &op); - if (ret) - return ret; - - ret = nand_status_op(chip, &status); - if (ret) - return ret; - } else { - chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, feature, -1); - for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) - chip->write_byte(mtd, params[i]); - - ret = chip->waitfunc(mtd, chip); - if (ret < 0) - return ret; - - status = ret; - } - - if (status & NAND_STATUS_FAIL) - return -EIO; - - return 0; -} - -/** - * nand_get_features_op - Do a GET FEATURES operation - * @chip: The NAND chip - * @feature: feature id - * @data: 4 bytes of data - * - * This function sends a GET FEATURES command and waits for the NAND to be - * ready before returning. - * This function does not select/unselect the CS line. - * - * Returns 0 on success, a negative error code otherwise. - */ -static int nand_get_features_op(struct nand_chip *chip, u8 feature, - void *data) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - u8 *params = data; - int i; - - if (chip->exec_op) { - const struct nand_sdr_timings *sdr = - nand_get_sdr_timings(&chip->data_interface); - struct nand_op_instr instrs[] = { - NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0), - NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)), - NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), - PSEC_TO_NSEC(sdr->tRR_min)), - NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN, - data, 0), - }; - struct nand_operation op = NAND_OPERATION(instrs); - - return nand_exec_op(chip, &op); - } - - chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, feature, -1); - for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) - params[i] = chip->read_byte(mtd); - - return 0; -} - -/** - * nand_reset_op - Do a reset operation - * @chip: The NAND chip - * - * This function sends a RESET command and waits for the NAND to be ready - * before returning. - * This function does not select/unselect the CS line. - * - * Returns 0 on success, a negative error code otherwise. - */ -int nand_reset_op(struct nand_chip *chip) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - - if (chip->exec_op) { - const struct nand_sdr_timings *sdr = - nand_get_sdr_timings(&chip->data_interface); - struct nand_op_instr instrs[] = { - NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)), - NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0), - }; - struct nand_operation op = NAND_OPERATION(instrs); - - return nand_exec_op(chip, &op); - } - - chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); - - return 0; -} -EXPORT_SYMBOL_GPL(nand_reset_op); - -/** - * nand_read_data_op - Read data from the NAND - * @chip: The NAND chip - * @buf: buffer used to store the data - * @len: length of the buffer - * @force_8bit: force 8-bit bus access - * - * This function does a raw data read on the bus. Usually used after launching - * another NAND operation like nand_read_page_op(). - * This function does not select/unselect the CS line. - * - * Returns 0 on success, a negative error code otherwise. - */ -int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len, - bool force_8bit) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - - if (!len || !buf) - return -EINVAL; - - if (chip->exec_op) { - struct nand_op_instr instrs[] = { - NAND_OP_DATA_IN(len, buf, 0), - }; - struct nand_operation op = NAND_OPERATION(instrs); - - instrs[0].ctx.data.force_8bit = force_8bit; - - return nand_exec_op(chip, &op); - } - - if (force_8bit) { - u8 *p = buf; - unsigned int i; - - for (i = 0; i < len; i++) - p[i] = chip->read_byte(mtd); - } else { - chip->read_buf(mtd, buf, len); - } - - return 0; -} -EXPORT_SYMBOL_GPL(nand_read_data_op); - -/** - * nand_write_data_op - Write data from the NAND - * @chip: The NAND chip - * @buf: buffer containing the data to send on the bus - * @len: length of the buffer - * @force_8bit: force 8-bit bus access - * - * This function does a raw data write on the bus. Usually used after launching - * another NAND operation like nand_write_page_begin_op(). - * This function does not select/unselect the CS line. - * - * Returns 0 on success, a negative error code otherwise. - */ -int nand_write_data_op(struct nand_chip *chip, const void *buf, - unsigned int len, bool force_8bit) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - - if (!len || !buf) - return -EINVAL; - - if (chip->exec_op) { - struct nand_op_instr instrs[] = { - NAND_OP_DATA_OUT(len, buf, 0), - }; - struct nand_operation op = NAND_OPERATION(instrs); - - instrs[0].ctx.data.force_8bit = force_8bit; - - return nand_exec_op(chip, &op); - } - - if (force_8bit) { - const u8 *p = buf; - unsigned int i; - - for (i = 0; i < len; i++) - chip->write_byte(mtd, p[i]); - } else { - chip->write_buf(mtd, buf, len); - } - - return 0; -} -EXPORT_SYMBOL_GPL(nand_write_data_op); - -/** - * struct nand_op_parser_ctx - Context used by the parser - * @instrs: array of all the instructions that must be addressed - * @ninstrs: length of the @instrs array - * @subop: Sub-operation to be passed to the NAND controller - * - * This structure is used by the core to split NAND operations into - * sub-operations that can be handled by the NAND controller. - */ -struct nand_op_parser_ctx { - const struct nand_op_instr *instrs; - unsigned int ninstrs; - struct nand_subop subop; -}; - -/** - * nand_op_parser_must_split_instr - Checks if an instruction must be split - * @pat: the parser pattern element that matches @instr - * @instr: pointer to the instruction to check - * @start_offset: this is an in/out parameter. If @instr has already been - * split, then @start_offset is the offset from which to start - * (either an address cycle or an offset in the data buffer). - * Conversely, if the function returns true (ie. instr must be - * split), this parameter is updated to point to the first - * data/address cycle that has not been taken care of. - * - * Some NAND controllers are limited and cannot send X address cycles with a - * unique operation, or cannot read/write more than Y bytes at the same time. - * In this case, split the instruction that does not fit in a single - * controller-operation into two or more chunks. - * - * Returns true if the instruction must be split, false otherwise. - * The @start_offset parameter is also updated to the offset at which the next - * bundle of instruction must start (if an address or a data instruction). - */ -static bool -nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat, - const struct nand_op_instr *instr, - unsigned int *start_offset) -{ - switch (pat->type) { - case NAND_OP_ADDR_INSTR: - if (!pat->ctx.addr.maxcycles) - break; - - if (instr->ctx.addr.naddrs - *start_offset > - pat->ctx.addr.maxcycles) { - *start_offset += pat->ctx.addr.maxcycles; - return true; - } - break; - - case NAND_OP_DATA_IN_INSTR: - case NAND_OP_DATA_OUT_INSTR: - if (!pat->ctx.data.maxlen) - break; - - if (instr->ctx.data.len - *start_offset > - pat->ctx.data.maxlen) { - *start_offset += pat->ctx.data.maxlen; - return true; - } - break; - - default: - break; - } - - return false; -} - -/** - * nand_op_parser_match_pat - Checks if a pattern matches the instructions - * remaining in the parser context - * @pat: the pattern to test - * @ctx: the parser context structure to match with the pattern @pat - * - * Check if @pat matches the set or a sub-set of instructions remaining in @ctx. - * Returns true if this is the case, false ortherwise. When true is returned, - * @ctx->subop is updated with the set of instructions to be passed to the - * controller driver. - */ -static bool -nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat, - struct nand_op_parser_ctx *ctx) -{ - unsigned int instr_offset = ctx->subop.first_instr_start_off; - const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs; - const struct nand_op_instr *instr = ctx->subop.instrs; - unsigned int i, ninstrs; - - for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) { - /* - * The pattern instruction does not match the operation - * instruction. If the instruction is marked optional in the - * pattern definition, we skip the pattern element and continue - * to the next one. If the element is mandatory, there's no - * match and we can return false directly. - */ - if (instr->type != pat->elems[i].type) { - if (!pat->elems[i].optional) - return false; - - continue; - } - - /* - * Now check the pattern element constraints. If the pattern is - * not able to handle the whole instruction in a single step, - * we have to split it. - * The last_instr_end_off value comes back updated to point to - * the position where we have to split the instruction (the - * start of the next subop chunk). - */ - if (nand_op_parser_must_split_instr(&pat->elems[i], instr, - &instr_offset)) { - ninstrs++; - i++; - break; - } - - instr++; - ninstrs++; - instr_offset = 0; - } - - /* - * This can happen if all instructions of a pattern are optional. - * Still, if there's not at least one instruction handled by this - * pattern, this is not a match, and we should try the next one (if - * any). - */ - if (!ninstrs) - return false; - - /* - * We had a match on the pattern head, but the pattern may be longer - * than the instructions we're asked to execute. We need to make sure - * there's no mandatory elements in the pattern tail. - */ - for (; i < pat->nelems; i++) { - if (!pat->elems[i].optional) - return false; - } - - /* - * We have a match: update the subop structure accordingly and return - * true. - */ - ctx->subop.ninstrs = ninstrs; - ctx->subop.last_instr_end_off = instr_offset; - - return true; -} - -#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG) -static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) -{ - const struct nand_op_instr *instr; - char *prefix = " "; - unsigned int i; - - pr_debug("executing subop:\n"); - - for (i = 0; i < ctx->ninstrs; i++) { - instr = &ctx->instrs[i]; - - if (instr == &ctx->subop.instrs[0]) - prefix = " ->"; - - switch (instr->type) { - case NAND_OP_CMD_INSTR: - pr_debug("%sCMD [0x%02x]\n", prefix, - instr->ctx.cmd.opcode); - break; - case NAND_OP_ADDR_INSTR: - pr_debug("%sADDR [%d cyc: %*ph]\n", prefix, - instr->ctx.addr.naddrs, - instr->ctx.addr.naddrs < 64 ? - instr->ctx.addr.naddrs : 64, - instr->ctx.addr.addrs); - break; - case NAND_OP_DATA_IN_INSTR: - pr_debug("%sDATA_IN [%d B%s]\n", prefix, - instr->ctx.data.len, - instr->ctx.data.force_8bit ? - ", force 8-bit" : ""); - break; - case NAND_OP_DATA_OUT_INSTR: - pr_debug("%sDATA_OUT [%d B%s]\n", prefix, - instr->ctx.data.len, - instr->ctx.data.force_8bit ? - ", force 8-bit" : ""); - break; - case NAND_OP_WAITRDY_INSTR: - pr_debug("%sWAITRDY [max %d ms]\n", prefix, - instr->ctx.waitrdy.timeout_ms); - break; - } - - if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1]) - prefix = " "; - } -} -#else -static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) -{ - /* NOP */ -} -#endif - -/** - * nand_op_parser_exec_op - exec_op parser - * @chip: the NAND chip - * @parser: patterns description provided by the controller driver - * @op: the NAND operation to address - * @check_only: when true, the function only checks if @op can be handled but - * does not execute the operation - * - * Helper function designed to ease integration of NAND controller drivers that - * only support a limited set of instruction sequences. The supported sequences - * are described in @parser, and the framework takes care of splitting @op into - * multiple sub-operations (if required) and pass them back to the ->exec() - * callback of the matching pattern if @check_only is set to false. - * - * NAND controller drivers should call this function from their own ->exec_op() - * implementation. - * - * Returns 0 on success, a negative error code otherwise. A failure can be - * caused by an unsupported operation (none of the supported patterns is able - * to handle the requested operation), or an error returned by one of the - * matching pattern->exec() hook. - */ -int nand_op_parser_exec_op(struct nand_chip *chip, - const struct nand_op_parser *parser, - const struct nand_operation *op, bool check_only) -{ - struct nand_op_parser_ctx ctx = { - .subop.instrs = op->instrs, - .instrs = op->instrs, - .ninstrs = op->ninstrs, - }; - unsigned int i; - - while (ctx.subop.instrs < op->instrs + op->ninstrs) { - int ret; - - for (i = 0; i < parser->npatterns; i++) { - const struct nand_op_parser_pattern *pattern; - - pattern = &parser->patterns[i]; - if (!nand_op_parser_match_pat(pattern, &ctx)) - continue; - - nand_op_parser_trace(&ctx); - - if (check_only) - break; - - ret = pattern->exec(chip, &ctx.subop); - if (ret) - return ret; - - break; - } - - if (i == parser->npatterns) { - pr_debug("->exec_op() parser: pattern not found!\n"); - return -ENOTSUPP; - } - - /* - * Update the context structure by pointing to the start of the - * next subop. - */ - ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs; - if (ctx.subop.last_instr_end_off) - ctx.subop.instrs -= 1; - - ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off; - } - - return 0; -} -EXPORT_SYMBOL_GPL(nand_op_parser_exec_op); - -static bool nand_instr_is_data(const struct nand_op_instr *instr) -{ - return instr && (instr->type == NAND_OP_DATA_IN_INSTR || - instr->type == NAND_OP_DATA_OUT_INSTR); -} - -static bool nand_subop_instr_is_valid(const struct nand_subop *subop, - unsigned int instr_idx) -{ - return subop && instr_idx < subop->ninstrs; -} - -static int nand_subop_get_start_off(const struct nand_subop *subop, - unsigned int instr_idx) -{ - if (instr_idx) - return 0; - - return subop->first_instr_start_off; -} - -/** - * nand_subop_get_addr_start_off - Get the start offset in an address array - * @subop: The entire sub-operation - * @instr_idx: Index of the instruction inside the sub-operation - * - * During driver development, one could be tempted to directly use the - * ->addr.addrs field of address instructions. This is wrong as address - * instructions might be split. - * - * Given an address instruction, returns the offset of the first cycle to issue. - */ -int nand_subop_get_addr_start_off(const struct nand_subop *subop, - unsigned int instr_idx) -{ - if (!nand_subop_instr_is_valid(subop, instr_idx) || - subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR) - return -EINVAL; - - return nand_subop_get_start_off(subop, instr_idx); -} -EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off); - -/** - * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert - * @subop: The entire sub-operation - * @instr_idx: Index of the instruction inside the sub-operation - * - * During driver development, one could be tempted to directly use the - * ->addr->naddrs field of a data instruction. This is wrong as instructions - * might be split. - * - * Given an address instruction, returns the number of address cycle to issue. - */ -int nand_subop_get_num_addr_cyc(const struct nand_subop *subop, - unsigned int instr_idx) -{ - int start_off, end_off; - - if (!nand_subop_instr_is_valid(subop, instr_idx) || - subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR) - return -EINVAL; - - start_off = nand_subop_get_addr_start_off(subop, instr_idx); - - if (instr_idx == subop->ninstrs - 1 && - subop->last_instr_end_off) - end_off = subop->last_instr_end_off; - else - end_off = subop->instrs[instr_idx].ctx.addr.naddrs; - - return end_off - start_off; -} -EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc); - -/** - * nand_subop_get_data_start_off - Get the start offset in a data array - * @subop: The entire sub-operation - * @instr_idx: Index of the instruction inside the sub-operation - * - * During driver development, one could be tempted to directly use the - * ->data->buf.{in,out} field of data instructions. This is wrong as data - * instructions might be split. - * - * Given a data instruction, returns the offset to start from. - */ -int nand_subop_get_data_start_off(const struct nand_subop *subop, - unsigned int instr_idx) -{ - if (!nand_subop_instr_is_valid(subop, instr_idx) || - !nand_instr_is_data(&subop->instrs[instr_idx])) - return -EINVAL; - - return nand_subop_get_start_off(subop, instr_idx); -} -EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off); - -/** - * nand_subop_get_data_len - Get the number of bytes to retrieve - * @subop: The entire sub-operation - * @instr_idx: Index of the instruction inside the sub-operation - * - * During driver development, one could be tempted to directly use the - * ->data->len field of a data instruction. This is wrong as data instructions - * might be split. - * - * Returns the length of the chunk of data to send/receive. - */ -int nand_subop_get_data_len(const struct nand_subop *subop, - unsigned int instr_idx) -{ - int start_off = 0, end_off; - - if (!nand_subop_instr_is_valid(subop, instr_idx) || - !nand_instr_is_data(&subop->instrs[instr_idx])) - return -EINVAL; - - start_off = nand_subop_get_data_start_off(subop, instr_idx); - - if (instr_idx == subop->ninstrs - 1 && - subop->last_instr_end_off) - end_off = subop->last_instr_end_off; - else - end_off = subop->instrs[instr_idx].ctx.data.len; - - return end_off - start_off; -} -EXPORT_SYMBOL_GPL(nand_subop_get_data_len); - -/** - * nand_reset - Reset and initialize a NAND device - * @chip: The NAND chip - * @chipnr: Internal die id - * - * Save the timings data structure, then apply SDR timings mode 0 (see - * nand_reset_data_interface for details), do the reset operation, and - * apply back the previous timings. - * - * Returns 0 on success, a negative error code otherwise. - */ -int nand_reset(struct nand_chip *chip, int chipnr) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - struct nand_data_interface saved_data_intf = chip->data_interface; - int ret; - - ret = nand_reset_data_interface(chip, chipnr); - if (ret) - return ret; - - /* - * The CS line has to be released before we can apply the new NAND - * interface settings, hence this weird ->select_chip() dance. - */ - chip->select_chip(mtd, chipnr); - ret = nand_reset_op(chip); - chip->select_chip(mtd, -1); - if (ret) - return ret; - - chip->select_chip(mtd, chipnr); - chip->data_interface = saved_data_intf; - ret = nand_setup_data_interface(chip, chipnr); - chip->select_chip(mtd, -1); - if (ret) - return ret; - - return 0; -} -EXPORT_SYMBOL_GPL(nand_reset); - -/** - * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data - * @buf: buffer to test - * @len: buffer length - * @bitflips_threshold: maximum number of bitflips - * - * Check if a buffer contains only 0xff, which means the underlying region - * has been erased and is ready to be programmed. - * The bitflips_threshold specify the maximum number of bitflips before - * considering the region is not erased. - * Note: The logic of this function has been extracted from the memweight - * implementation, except that nand_check_erased_buf function exit before - * testing the whole buffer if the number of bitflips exceed the - * bitflips_threshold value. - * - * Returns a positive number of bitflips less than or equal to - * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the - * threshold. - */ -static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold) -{ - const unsigned char *bitmap = buf; - int bitflips = 0; - int weight; - - for (; len && ((uintptr_t)bitmap) % sizeof(long); - len--, bitmap++) { - weight = hweight8(*bitmap); - bitflips += BITS_PER_BYTE - weight; - if (unlikely(bitflips > bitflips_threshold)) - return -EBADMSG; - } - - for (; len >= sizeof(long); - len -= sizeof(long), bitmap += sizeof(long)) { - unsigned long d = *((unsigned long *)bitmap); - if (d == ~0UL) - continue; - weight = hweight_long(d); - bitflips += BITS_PER_LONG - weight; - if (unlikely(bitflips > bitflips_threshold)) - return -EBADMSG; - } - - for (; len > 0; len--, bitmap++) { - weight = hweight8(*bitmap); - bitflips += BITS_PER_BYTE - weight; - if (unlikely(bitflips > bitflips_threshold)) - return -EBADMSG; - } - - return bitflips; -} - -/** - * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only - * 0xff data - * @data: data buffer to test - * @datalen: data length - * @ecc: ECC buffer - * @ecclen: ECC length - * @extraoob: extra OOB buffer - * @extraooblen: extra OOB length - * @bitflips_threshold: maximum number of bitflips - * - * Check if a data buffer and its associated ECC and OOB data contains only - * 0xff pattern, which means the underlying region has been erased and is - * ready to be programmed. - * The bitflips_threshold specify the maximum number of bitflips before - * considering the region as not erased. - * - * Note: - * 1/ ECC algorithms are working on pre-defined block sizes which are usually - * different from the NAND page size. When fixing bitflips, ECC engines will - * report the number of errors per chunk, and the NAND core infrastructure - * expect you to return the maximum number of bitflips for the whole page. - * This is why you should always use this function on a single chunk and - * not on the whole page. After checking each chunk you should update your - * max_bitflips value accordingly. - * 2/ When checking for bitflips in erased pages you should not only check - * the payload data but also their associated ECC data, because a user might - * have programmed almost all bits to 1 but a few. In this case, we - * shouldn't consider the chunk as erased, and checking ECC bytes prevent - * this case. - * 3/ The extraoob argument is optional, and should be used if some of your OOB - * data are protected by the ECC engine. - * It could also be used if you support subpages and want to attach some - * extra OOB data to an ECC chunk. - * - * Returns a positive number of bitflips less than or equal to - * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the - * threshold. In case of success, the passed buffers are filled with 0xff. - */ -int nand_check_erased_ecc_chunk(void *data, int datalen, - void *ecc, int ecclen, - void *extraoob, int extraooblen, - int bitflips_threshold) -{ - int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0; - - data_bitflips = nand_check_erased_buf(data, datalen, - bitflips_threshold); - if (data_bitflips < 0) - return data_bitflips; - - bitflips_threshold -= data_bitflips; - - ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold); - if (ecc_bitflips < 0) - return ecc_bitflips; - - bitflips_threshold -= ecc_bitflips; - - extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen, - bitflips_threshold); - if (extraoob_bitflips < 0) - return extraoob_bitflips; - - if (data_bitflips) - memset(data, 0xff, datalen); - - if (ecc_bitflips) - memset(ecc, 0xff, ecclen); - - if (extraoob_bitflips) - memset(extraoob, 0xff, extraooblen); - - return data_bitflips + ecc_bitflips + extraoob_bitflips; -} -EXPORT_SYMBOL(nand_check_erased_ecc_chunk); - -/** - * nand_read_page_raw - [INTERN] read raw page data without ecc - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: buffer to store read data - * @oob_required: caller requires OOB data read to chip->oob_poi - * @page: page number to read - * - * Not for syndrome calculating ECC controllers, which use a special oob layout. - */ -int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int oob_required, int page) -{ - int ret; - - ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize); - if (ret) - return ret; - - if (oob_required) { - ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, - false); - if (ret) - return ret; - } - - return 0; -} -EXPORT_SYMBOL(nand_read_page_raw); - -/** - * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: buffer to store read data - * @oob_required: caller requires OOB data read to chip->oob_poi - * @page: page number to read - * - * We need a special oob layout and handling even when OOB isn't used. - */ -static int nand_read_page_raw_syndrome(struct mtd_info *mtd, - struct nand_chip *chip, uint8_t *buf, - int oob_required, int page) -{ - int eccsize = chip->ecc.size; - int eccbytes = chip->ecc.bytes; - uint8_t *oob = chip->oob_poi; - int steps, size, ret; - - ret = nand_read_page_op(chip, page, 0, NULL, 0); - if (ret) - return ret; - - for (steps = chip->ecc.steps; steps > 0; steps--) { - ret = nand_read_data_op(chip, buf, eccsize, false); - if (ret) - return ret; - - buf += eccsize; - - if (chip->ecc.prepad) { - ret = nand_read_data_op(chip, oob, chip->ecc.prepad, - false); - if (ret) - return ret; - - oob += chip->ecc.prepad; - } - - ret = nand_read_data_op(chip, oob, eccbytes, false); - if (ret) - return ret; - - oob += eccbytes; - - if (chip->ecc.postpad) { - ret = nand_read_data_op(chip, oob, chip->ecc.postpad, - false); - if (ret) - return ret; - - oob += chip->ecc.postpad; - } - } - - size = mtd->oobsize - (oob - chip->oob_poi); - if (size) { - ret = nand_read_data_op(chip, oob, size, false); - if (ret) - return ret; - } - - return 0; -} - -/** - * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: buffer to store read data - * @oob_required: caller requires OOB data read to chip->oob_poi - * @page: page number to read - */ -static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int oob_required, int page) -{ - int i, eccsize = chip->ecc.size, ret; - int eccbytes = chip->ecc.bytes; - int eccsteps = chip->ecc.steps; - uint8_t *p = buf; - uint8_t *ecc_calc = chip->ecc.calc_buf; - uint8_t *ecc_code = chip->ecc.code_buf; - unsigned int max_bitflips = 0; - - chip->ecc.read_page_raw(mtd, chip, buf, 1, page); - - for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) - chip->ecc.calculate(mtd, p, &ecc_calc[i]); - - ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, - chip->ecc.total); - if (ret) - return ret; - - eccsteps = chip->ecc.steps; - p = buf; - - for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { - int stat; - - stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); - if (stat < 0) { - mtd->ecc_stats.failed++; - } else { - mtd->ecc_stats.corrected += stat; - max_bitflips = max_t(unsigned int, max_bitflips, stat); - } - } - return max_bitflips; -} - -/** - * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @data_offs: offset of requested data within the page - * @readlen: data length - * @bufpoi: buffer to store read data - * @page: page number to read - */ -static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, - uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi, - int page) -{ - int start_step, end_step, num_steps, ret; - uint8_t *p; - int data_col_addr, i, gaps = 0; - int datafrag_len, eccfrag_len, aligned_len, aligned_pos; - int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1; - int index, section = 0; - unsigned int max_bitflips = 0; - struct mtd_oob_region oobregion = { }; - - /* Column address within the page aligned to ECC size (256bytes) */ - start_step = data_offs / chip->ecc.size; - end_step = (data_offs + readlen - 1) / chip->ecc.size; - num_steps = end_step - start_step + 1; - index = start_step * chip->ecc.bytes; - - /* Data size aligned to ECC ecc.size */ - datafrag_len = num_steps * chip->ecc.size; - eccfrag_len = num_steps * chip->ecc.bytes; - - data_col_addr = start_step * chip->ecc.size; - /* If we read not a page aligned data */ - p = bufpoi + data_col_addr; - ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len); - if (ret) - return ret; - - /* Calculate ECC */ - for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) - chip->ecc.calculate(mtd, p, &chip->ecc.calc_buf[i]); - - /* - * The performance is faster if we position offsets according to - * ecc.pos. Let's make sure that there are no gaps in ECC positions. - */ - ret = mtd_ooblayout_find_eccregion(mtd, index, §ion, &oobregion); - if (ret) - return ret; - - if (oobregion.length < eccfrag_len) - gaps = 1; - - if (gaps) { - ret = nand_change_read_column_op(chip, mtd->writesize, - chip->oob_poi, mtd->oobsize, - false); - if (ret) - return ret; - } else { - /* - * Send the command to read the particular ECC bytes take care - * about buswidth alignment in read_buf. - */ - aligned_pos = oobregion.offset & ~(busw - 1); - aligned_len = eccfrag_len; - if (oobregion.offset & (busw - 1)) - aligned_len++; - if ((oobregion.offset + (num_steps * chip->ecc.bytes)) & - (busw - 1)) - aligned_len++; - - ret = nand_change_read_column_op(chip, - mtd->writesize + aligned_pos, - &chip->oob_poi[aligned_pos], - aligned_len, false); - if (ret) - return ret; - } - - ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf, - chip->oob_poi, index, eccfrag_len); - if (ret) - return ret; - - p = bufpoi + data_col_addr; - for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) { - int stat; - - stat = chip->ecc.correct(mtd, p, &chip->ecc.code_buf[i], - &chip->ecc.calc_buf[i]); - if (stat == -EBADMSG && - (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { - /* check for empty pages with bitflips */ - stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, - &chip->ecc.code_buf[i], - chip->ecc.bytes, - NULL, 0, - chip->ecc.strength); - } - - if (stat < 0) { - mtd->ecc_stats.failed++; - } else { - mtd->ecc_stats.corrected += stat; - max_bitflips = max_t(unsigned int, max_bitflips, stat); - } - } - return max_bitflips; -} - -/** - * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: buffer to store read data - * @oob_required: caller requires OOB data read to chip->oob_poi - * @page: page number to read - * - * Not for syndrome calculating ECC controllers which need a special oob layout. - */ -static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int oob_required, int page) -{ - int i, eccsize = chip->ecc.size, ret; - int eccbytes = chip->ecc.bytes; - int eccsteps = chip->ecc.steps; - uint8_t *p = buf; - uint8_t *ecc_calc = chip->ecc.calc_buf; - uint8_t *ecc_code = chip->ecc.code_buf; - unsigned int max_bitflips = 0; - - ret = nand_read_page_op(chip, page, 0, NULL, 0); - if (ret) - return ret; - - for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { - chip->ecc.hwctl(mtd, NAND_ECC_READ); - - ret = nand_read_data_op(chip, p, eccsize, false); - if (ret) - return ret; - - chip->ecc.calculate(mtd, p, &ecc_calc[i]); - } - - ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false); - if (ret) - return ret; - - ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, - chip->ecc.total); - if (ret) - return ret; - - eccsteps = chip->ecc.steps; - p = buf; - - for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { - int stat; - - stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); - if (stat == -EBADMSG && - (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { - /* check for empty pages with bitflips */ - stat = nand_check_erased_ecc_chunk(p, eccsize, - &ecc_code[i], eccbytes, - NULL, 0, - chip->ecc.strength); - } - - if (stat < 0) { - mtd->ecc_stats.failed++; - } else { - mtd->ecc_stats.corrected += stat; - max_bitflips = max_t(unsigned int, max_bitflips, stat); - } - } - return max_bitflips; -} - -/** - * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: buffer to store read data - * @oob_required: caller requires OOB data read to chip->oob_poi - * @page: page number to read - * - * Hardware ECC for large page chips, require OOB to be read first. For this - * ECC mode, the write_page method is re-used from ECC_HW. These methods - * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with - * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from - * the data area, by overwriting the NAND manufacturer bad block markings. - */ -static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd, - struct nand_chip *chip, uint8_t *buf, int oob_required, int page) -{ - int i, eccsize = chip->ecc.size, ret; - int eccbytes = chip->ecc.bytes; - int eccsteps = chip->ecc.steps; - uint8_t *p = buf; - uint8_t *ecc_code = chip->ecc.code_buf; - uint8_t *ecc_calc = chip->ecc.calc_buf; - unsigned int max_bitflips = 0; - - /* Read the OOB area first */ - ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); - if (ret) - return ret; - - ret = nand_read_page_op(chip, page, 0, NULL, 0); - if (ret) - return ret; - - ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, - chip->ecc.total); - if (ret) - return ret; - - for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { - int stat; - - chip->ecc.hwctl(mtd, NAND_ECC_READ); - - ret = nand_read_data_op(chip, p, eccsize, false); - if (ret) - return ret; - - chip->ecc.calculate(mtd, p, &ecc_calc[i]); - - stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL); - if (stat == -EBADMSG && - (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { - /* check for empty pages with bitflips */ - stat = nand_check_erased_ecc_chunk(p, eccsize, - &ecc_code[i], eccbytes, - NULL, 0, - chip->ecc.strength); - } - - if (stat < 0) { - mtd->ecc_stats.failed++; - } else { - mtd->ecc_stats.corrected += stat; - max_bitflips = max_t(unsigned int, max_bitflips, stat); - } - } - return max_bitflips; -} - -/** - * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: buffer to store read data - * @oob_required: caller requires OOB data read to chip->oob_poi - * @page: page number to read - * - * The hw generator calculates the error syndrome automatically. Therefore we - * need a special oob layout and handling. - */ -static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int oob_required, int page) -{ - int ret, i, eccsize = chip->ecc.size; - int eccbytes = chip->ecc.bytes; - int eccsteps = chip->ecc.steps; - int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad; - uint8_t *p = buf; - uint8_t *oob = chip->oob_poi; - unsigned int max_bitflips = 0; - - ret = nand_read_page_op(chip, page, 0, NULL, 0); - if (ret) - return ret; - - for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { - int stat; - - chip->ecc.hwctl(mtd, NAND_ECC_READ); - - ret = nand_read_data_op(chip, p, eccsize, false); - if (ret) - return ret; - - if (chip->ecc.prepad) { - ret = nand_read_data_op(chip, oob, chip->ecc.prepad, - false); - if (ret) - return ret; - - oob += chip->ecc.prepad; - } - - chip->ecc.hwctl(mtd, NAND_ECC_READSYN); - - ret = nand_read_data_op(chip, oob, eccbytes, false); - if (ret) - return ret; - - stat = chip->ecc.correct(mtd, p, oob, NULL); - - oob += eccbytes; - - if (chip->ecc.postpad) { - ret = nand_read_data_op(chip, oob, chip->ecc.postpad, - false); - if (ret) - return ret; - - oob += chip->ecc.postpad; - } - - if (stat == -EBADMSG && - (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { - /* check for empty pages with bitflips */ - stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, - oob - eccpadbytes, - eccpadbytes, - NULL, 0, - chip->ecc.strength); - } - - if (stat < 0) { - mtd->ecc_stats.failed++; - } else { - mtd->ecc_stats.corrected += stat; - max_bitflips = max_t(unsigned int, max_bitflips, stat); - } - } - - /* Calculate remaining oob bytes */ - i = mtd->oobsize - (oob - chip->oob_poi); - if (i) { - ret = nand_read_data_op(chip, oob, i, false); - if (ret) - return ret; - } - - return max_bitflips; -} - -/** - * nand_transfer_oob - [INTERN] Transfer oob to client buffer - * @mtd: mtd info structure - * @oob: oob destination address - * @ops: oob ops structure - * @len: size of oob to transfer - */ -static uint8_t *nand_transfer_oob(struct mtd_info *mtd, uint8_t *oob, - struct mtd_oob_ops *ops, size_t len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - int ret; - - switch (ops->mode) { - - case MTD_OPS_PLACE_OOB: - case MTD_OPS_RAW: - memcpy(oob, chip->oob_poi + ops->ooboffs, len); - return oob + len; - - case MTD_OPS_AUTO_OOB: - ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi, - ops->ooboffs, len); - BUG_ON(ret); - return oob + len; - - default: - BUG(); - } - return NULL; -} - -/** - * nand_setup_read_retry - [INTERN] Set the READ RETRY mode - * @mtd: MTD device structure - * @retry_mode: the retry mode to use - * - * Some vendors supply a special command to shift the Vt threshold, to be used - * when there are too many bitflips in a page (i.e., ECC error). After setting - * a new threshold, the host should retry reading the page. - */ -static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - pr_debug("setting READ RETRY mode %d\n", retry_mode); - - if (retry_mode >= chip->read_retries) - return -EINVAL; - - if (!chip->setup_read_retry) - return -EOPNOTSUPP; - - return chip->setup_read_retry(mtd, retry_mode); -} - -/** - * nand_do_read_ops - [INTERN] Read data with ECC - * @mtd: MTD device structure - * @from: offset to read from - * @ops: oob ops structure - * - * Internal function. Called with chip held. - */ -static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, - struct mtd_oob_ops *ops) -{ - int chipnr, page, realpage, col, bytes, aligned, oob_required; - struct nand_chip *chip = mtd_to_nand(mtd); - int ret = 0; - uint32_t readlen = ops->len; - uint32_t oobreadlen = ops->ooblen; - uint32_t max_oobsize = mtd_oobavail(mtd, ops); - - uint8_t *bufpoi, *oob, *buf; - int use_bufpoi; - unsigned int max_bitflips = 0; - int retry_mode = 0; - bool ecc_fail = false; - - chipnr = (int)(from >> chip->chip_shift); - chip->select_chip(mtd, chipnr); - - realpage = (int)(from >> chip->page_shift); - page = realpage & chip->pagemask; - - col = (int)(from & (mtd->writesize - 1)); - - buf = ops->datbuf; - oob = ops->oobbuf; - oob_required = oob ? 1 : 0; - - while (1) { - unsigned int ecc_failures = mtd->ecc_stats.failed; - - bytes = min(mtd->writesize - col, readlen); - aligned = (bytes == mtd->writesize); - - if (!aligned) - use_bufpoi = 1; - else if (chip->options & NAND_USE_BOUNCE_BUFFER) - use_bufpoi = !virt_addr_valid(buf) || - !IS_ALIGNED((unsigned long)buf, - chip->buf_align); - else - use_bufpoi = 0; - - /* Is the current page in the buffer? */ - if (realpage != chip->pagebuf || oob) { - bufpoi = use_bufpoi ? chip->data_buf : buf; - - if (use_bufpoi && aligned) - pr_debug("%s: using read bounce buffer for buf@%p\n", - __func__, buf); - -read_retry: - /* - * Now read the page into the buffer. Absent an error, - * the read methods return max bitflips per ecc step. - */ - if (unlikely(ops->mode == MTD_OPS_RAW)) - ret = chip->ecc.read_page_raw(mtd, chip, bufpoi, - oob_required, - page); - else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) && - !oob) - ret = chip->ecc.read_subpage(mtd, chip, - col, bytes, bufpoi, - page); - else - ret = chip->ecc.read_page(mtd, chip, bufpoi, - oob_required, page); - if (ret < 0) { - if (use_bufpoi) - /* Invalidate page cache */ - chip->pagebuf = -1; - break; - } - - /* Transfer not aligned data */ - if (use_bufpoi) { - if (!NAND_HAS_SUBPAGE_READ(chip) && !oob && - !(mtd->ecc_stats.failed - ecc_failures) && - (ops->mode != MTD_OPS_RAW)) { - chip->pagebuf = realpage; - chip->pagebuf_bitflips = ret; - } else { - /* Invalidate page cache */ - chip->pagebuf = -1; - } - memcpy(buf, chip->data_buf + col, bytes); - } - - if (unlikely(oob)) { - int toread = min(oobreadlen, max_oobsize); - - if (toread) { - oob = nand_transfer_oob(mtd, - oob, ops, toread); - oobreadlen -= toread; - } - } - - if (chip->options & NAND_NEED_READRDY) { - /* Apply delay or wait for ready/busy pin */ - if (!chip->dev_ready) - udelay(chip->chip_delay); - else - nand_wait_ready(mtd); - } - - if (mtd->ecc_stats.failed - ecc_failures) { - if (retry_mode + 1 < chip->read_retries) { - retry_mode++; - ret = nand_setup_read_retry(mtd, - retry_mode); - if (ret < 0) - break; - - /* Reset failures; retry */ - mtd->ecc_stats.failed = ecc_failures; - goto read_retry; - } else { - /* No more retry modes; real failure */ - ecc_fail = true; - } - } - - buf += bytes; - max_bitflips = max_t(unsigned int, max_bitflips, ret); - } else { - memcpy(buf, chip->data_buf + col, bytes); - buf += bytes; - max_bitflips = max_t(unsigned int, max_bitflips, - chip->pagebuf_bitflips); - } - - readlen -= bytes; - - /* Reset to retry mode 0 */ - if (retry_mode) { - ret = nand_setup_read_retry(mtd, 0); - if (ret < 0) - break; - retry_mode = 0; - } - - if (!readlen) - break; - - /* For subsequent reads align to page boundary */ - col = 0; - /* Increment page address */ - realpage++; - - page = realpage & chip->pagemask; - /* Check, if we cross a chip boundary */ - if (!page) { - chipnr++; - chip->select_chip(mtd, -1); - chip->select_chip(mtd, chipnr); - } - } - chip->select_chip(mtd, -1); - - ops->retlen = ops->len - (size_t) readlen; - if (oob) - ops->oobretlen = ops->ooblen - oobreadlen; - - if (ret < 0) - return ret; - - if (ecc_fail) - return -EBADMSG; - - return max_bitflips; -} - -/** - * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @page: page number to read - */ -int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page) -{ - return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); -} -EXPORT_SYMBOL(nand_read_oob_std); - -/** - * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC - * with syndromes - * @mtd: mtd info structure - * @chip: nand chip info structure - * @page: page number to read - */ -int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, - int page) -{ - int length = mtd->oobsize; - int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; - int eccsize = chip->ecc.size; - uint8_t *bufpoi = chip->oob_poi; - int i, toread, sndrnd = 0, pos, ret; - - ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0); - if (ret) - return ret; - - for (i = 0; i < chip->ecc.steps; i++) { - if (sndrnd) { - int ret; - - pos = eccsize + i * (eccsize + chunk); - if (mtd->writesize > 512) - ret = nand_change_read_column_op(chip, pos, - NULL, 0, - false); - else - ret = nand_read_page_op(chip, page, pos, NULL, - 0); - - if (ret) - return ret; - } else - sndrnd = 1; - toread = min_t(int, length, chunk); - - ret = nand_read_data_op(chip, bufpoi, toread, false); - if (ret) - return ret; - - bufpoi += toread; - length -= toread; - } - if (length > 0) { - ret = nand_read_data_op(chip, bufpoi, length, false); - if (ret) - return ret; - } - - return 0; -} -EXPORT_SYMBOL(nand_read_oob_syndrome); - -/** - * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @page: page number to write - */ -int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page) -{ - return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi, - mtd->oobsize); -} -EXPORT_SYMBOL(nand_write_oob_std); - -/** - * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC - * with syndrome - only for large page flash - * @mtd: mtd info structure - * @chip: nand chip info structure - * @page: page number to write - */ -int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, - int page) -{ - int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; - int eccsize = chip->ecc.size, length = mtd->oobsize; - int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps; - const uint8_t *bufpoi = chip->oob_poi; - - /* - * data-ecc-data-ecc ... ecc-oob - * or - * data-pad-ecc-pad-data-pad .... ecc-pad-oob - */ - if (!chip->ecc.prepad && !chip->ecc.postpad) { - pos = steps * (eccsize + chunk); - steps = 0; - } else - pos = eccsize; - - ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0); - if (ret) - return ret; - - for (i = 0; i < steps; i++) { - if (sndcmd) { - if (mtd->writesize <= 512) { - uint32_t fill = 0xFFFFFFFF; - - len = eccsize; - while (len > 0) { - int num = min_t(int, len, 4); - - ret = nand_write_data_op(chip, &fill, - num, false); - if (ret) - return ret; - - len -= num; - } - } else { - pos = eccsize + i * (eccsize + chunk); - ret = nand_change_write_column_op(chip, pos, - NULL, 0, - false); - if (ret) - return ret; - } - } else - sndcmd = 1; - len = min_t(int, length, chunk); - - ret = nand_write_data_op(chip, bufpoi, len, false); - if (ret) - return ret; - - bufpoi += len; - length -= len; - } - if (length > 0) { - ret = nand_write_data_op(chip, bufpoi, length, false); - if (ret) - return ret; - } - - return nand_prog_page_end_op(chip); -} -EXPORT_SYMBOL(nand_write_oob_syndrome); - -/** - * nand_do_read_oob - [INTERN] NAND read out-of-band - * @mtd: MTD device structure - * @from: offset to read from - * @ops: oob operations description structure - * - * NAND read out-of-band data from the spare area. - */ -static int nand_do_read_oob(struct mtd_info *mtd, loff_t from, - struct mtd_oob_ops *ops) -{ - unsigned int max_bitflips = 0; - int page, realpage, chipnr; - struct nand_chip *chip = mtd_to_nand(mtd); - struct mtd_ecc_stats stats; - int readlen = ops->ooblen; - int len; - uint8_t *buf = ops->oobbuf; - int ret = 0; - - pr_debug("%s: from = 0x%08Lx, len = %i\n", - __func__, (unsigned long long)from, readlen); - - stats = mtd->ecc_stats; - - len = mtd_oobavail(mtd, ops); - - chipnr = (int)(from >> chip->chip_shift); - chip->select_chip(mtd, chipnr); - - /* Shift to get page */ - realpage = (int)(from >> chip->page_shift); - page = realpage & chip->pagemask; - - while (1) { - if (ops->mode == MTD_OPS_RAW) - ret = chip->ecc.read_oob_raw(mtd, chip, page); - else - ret = chip->ecc.read_oob(mtd, chip, page); - - if (ret < 0) - break; - - len = min(len, readlen); - buf = nand_transfer_oob(mtd, buf, ops, len); - - if (chip->options & NAND_NEED_READRDY) { - /* Apply delay or wait for ready/busy pin */ - if (!chip->dev_ready) - udelay(chip->chip_delay); - else - nand_wait_ready(mtd); - } - - max_bitflips = max_t(unsigned int, max_bitflips, ret); - - readlen -= len; - if (!readlen) - break; - - /* Increment page address */ - realpage++; - - page = realpage & chip->pagemask; - /* Check, if we cross a chip boundary */ - if (!page) { - chipnr++; - chip->select_chip(mtd, -1); - chip->select_chip(mtd, chipnr); - } - } - chip->select_chip(mtd, -1); - - ops->oobretlen = ops->ooblen - readlen; - - if (ret < 0) - return ret; - - if (mtd->ecc_stats.failed - stats.failed) - return -EBADMSG; - - return max_bitflips; -} - -/** - * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band - * @mtd: MTD device structure - * @from: offset to read from - * @ops: oob operation description structure - * - * NAND read data and/or out-of-band data. - */ -static int nand_read_oob(struct mtd_info *mtd, loff_t from, - struct mtd_oob_ops *ops) -{ - int ret; - - ops->retlen = 0; - - if (ops->mode != MTD_OPS_PLACE_OOB && - ops->mode != MTD_OPS_AUTO_OOB && - ops->mode != MTD_OPS_RAW) - return -ENOTSUPP; - - nand_get_device(mtd, FL_READING); - - if (!ops->datbuf) - ret = nand_do_read_oob(mtd, from, ops); - else - ret = nand_do_read_ops(mtd, from, ops); - - nand_release_device(mtd); - return ret; -} - - -/** - * nand_write_page_raw - [INTERN] raw page write function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: data buffer - * @oob_required: must write chip->oob_poi to OOB - * @page: page number to write - * - * Not for syndrome calculating ECC controllers, which use a special oob layout. - */ -int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf, int oob_required, int page) -{ - int ret; - - ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); - if (ret) - return ret; - - if (oob_required) { - ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, - false); - if (ret) - return ret; - } - - return nand_prog_page_end_op(chip); -} -EXPORT_SYMBOL(nand_write_page_raw); - -/** - * nand_write_page_raw_syndrome - [INTERN] raw page write function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: data buffer - * @oob_required: must write chip->oob_poi to OOB - * @page: page number to write - * - * We need a special oob layout and handling even when ECC isn't checked. - */ -static int nand_write_page_raw_syndrome(struct mtd_info *mtd, - struct nand_chip *chip, - const uint8_t *buf, int oob_required, - int page) -{ - int eccsize = chip->ecc.size; - int eccbytes = chip->ecc.bytes; - uint8_t *oob = chip->oob_poi; - int steps, size, ret; - - ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); - if (ret) - return ret; - - for (steps = chip->ecc.steps; steps > 0; steps--) { - ret = nand_write_data_op(chip, buf, eccsize, false); - if (ret) - return ret; - - buf += eccsize; - - if (chip->ecc.prepad) { - ret = nand_write_data_op(chip, oob, chip->ecc.prepad, - false); - if (ret) - return ret; - - oob += chip->ecc.prepad; - } - - ret = nand_write_data_op(chip, oob, eccbytes, false); - if (ret) - return ret; - - oob += eccbytes; - - if (chip->ecc.postpad) { - ret = nand_write_data_op(chip, oob, chip->ecc.postpad, - false); - if (ret) - return ret; - - oob += chip->ecc.postpad; - } - } - - size = mtd->oobsize - (oob - chip->oob_poi); - if (size) { - ret = nand_write_data_op(chip, oob, size, false); - if (ret) - return ret; - } - - return nand_prog_page_end_op(chip); -} -/** - * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: data buffer - * @oob_required: must write chip->oob_poi to OOB - * @page: page number to write - */ -static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf, int oob_required, - int page) -{ - int i, eccsize = chip->ecc.size, ret; - int eccbytes = chip->ecc.bytes; - int eccsteps = chip->ecc.steps; - uint8_t *ecc_calc = chip->ecc.calc_buf; - const uint8_t *p = buf; - - /* Software ECC calculation */ - for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) - chip->ecc.calculate(mtd, p, &ecc_calc[i]); - - ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, - chip->ecc.total); - if (ret) - return ret; - - return chip->ecc.write_page_raw(mtd, chip, buf, 1, page); -} - -/** - * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: data buffer - * @oob_required: must write chip->oob_poi to OOB - * @page: page number to write - */ -static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf, int oob_required, - int page) -{ - int i, eccsize = chip->ecc.size, ret; - int eccbytes = chip->ecc.bytes; - int eccsteps = chip->ecc.steps; - uint8_t *ecc_calc = chip->ecc.calc_buf; - const uint8_t *p = buf; - - ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); - if (ret) - return ret; - - for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { - chip->ecc.hwctl(mtd, NAND_ECC_WRITE); - - ret = nand_write_data_op(chip, p, eccsize, false); - if (ret) - return ret; - - chip->ecc.calculate(mtd, p, &ecc_calc[i]); - } - - ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, - chip->ecc.total); - if (ret) - return ret; - - ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); - if (ret) - return ret; - - return nand_prog_page_end_op(chip); -} - - -/** - * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write - * @mtd: mtd info structure - * @chip: nand chip info structure - * @offset: column address of subpage within the page - * @data_len: data length - * @buf: data buffer - * @oob_required: must write chip->oob_poi to OOB - * @page: page number to write - */ -static int nand_write_subpage_hwecc(struct mtd_info *mtd, - struct nand_chip *chip, uint32_t offset, - uint32_t data_len, const uint8_t *buf, - int oob_required, int page) -{ - uint8_t *oob_buf = chip->oob_poi; - uint8_t *ecc_calc = chip->ecc.calc_buf; - int ecc_size = chip->ecc.size; - int ecc_bytes = chip->ecc.bytes; - int ecc_steps = chip->ecc.steps; - uint32_t start_step = offset / ecc_size; - uint32_t end_step = (offset + data_len - 1) / ecc_size; - int oob_bytes = mtd->oobsize / ecc_steps; - int step, ret; - - ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); - if (ret) - return ret; - - for (step = 0; step < ecc_steps; step++) { - /* configure controller for WRITE access */ - chip->ecc.hwctl(mtd, NAND_ECC_WRITE); - - /* write data (untouched subpages already masked by 0xFF) */ - ret = nand_write_data_op(chip, buf, ecc_size, false); - if (ret) - return ret; - - /* mask ECC of un-touched subpages by padding 0xFF */ - if ((step < start_step) || (step > end_step)) - memset(ecc_calc, 0xff, ecc_bytes); - else - chip->ecc.calculate(mtd, buf, ecc_calc); - - /* mask OOB of un-touched subpages by padding 0xFF */ - /* if oob_required, preserve OOB metadata of written subpage */ - if (!oob_required || (step < start_step) || (step > end_step)) - memset(oob_buf, 0xff, oob_bytes); - - buf += ecc_size; - ecc_calc += ecc_bytes; - oob_buf += oob_bytes; - } - - /* copy calculated ECC for whole page to chip->buffer->oob */ - /* this include masked-value(0xFF) for unwritten subpages */ - ecc_calc = chip->ecc.calc_buf; - ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, - chip->ecc.total); - if (ret) - return ret; - - /* write OOB buffer to NAND device */ - ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); - if (ret) - return ret; - - return nand_prog_page_end_op(chip); -} - - -/** - * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: data buffer - * @oob_required: must write chip->oob_poi to OOB - * @page: page number to write - * - * The hw generator calculates the error syndrome automatically. Therefore we - * need a special oob layout and handling. - */ -static int nand_write_page_syndrome(struct mtd_info *mtd, - struct nand_chip *chip, - const uint8_t *buf, int oob_required, - int page) -{ - int i, eccsize = chip->ecc.size; - int eccbytes = chip->ecc.bytes; - int eccsteps = chip->ecc.steps; - const uint8_t *p = buf; - uint8_t *oob = chip->oob_poi; - int ret; - - ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); - if (ret) - return ret; - - for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { - chip->ecc.hwctl(mtd, NAND_ECC_WRITE); - - ret = nand_write_data_op(chip, p, eccsize, false); - if (ret) - return ret; - - if (chip->ecc.prepad) { - ret = nand_write_data_op(chip, oob, chip->ecc.prepad, - false); - if (ret) - return ret; - - oob += chip->ecc.prepad; - } - - chip->ecc.calculate(mtd, p, oob); - - ret = nand_write_data_op(chip, oob, eccbytes, false); - if (ret) - return ret; - - oob += eccbytes; - - if (chip->ecc.postpad) { - ret = nand_write_data_op(chip, oob, chip->ecc.postpad, - false); - if (ret) - return ret; - - oob += chip->ecc.postpad; - } - } - - /* Calculate remaining oob bytes */ - i = mtd->oobsize - (oob - chip->oob_poi); - if (i) { - ret = nand_write_data_op(chip, oob, i, false); - if (ret) - return ret; - } - - return nand_prog_page_end_op(chip); -} - -/** - * nand_write_page - write one page - * @mtd: MTD device structure - * @chip: NAND chip descriptor - * @offset: address offset within the page - * @data_len: length of actual data to be written - * @buf: the data to write - * @oob_required: must write chip->oob_poi to OOB - * @page: page number to write - * @raw: use _raw version of write_page - */ -static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, - uint32_t offset, int data_len, const uint8_t *buf, - int oob_required, int page, int raw) -{ - int status, subpage; - - if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && - chip->ecc.write_subpage) - subpage = offset || (data_len < mtd->writesize); - else - subpage = 0; - - if (unlikely(raw)) - status = chip->ecc.write_page_raw(mtd, chip, buf, - oob_required, page); - else if (subpage) - status = chip->ecc.write_subpage(mtd, chip, offset, data_len, - buf, oob_required, page); - else - status = chip->ecc.write_page(mtd, chip, buf, oob_required, - page); - - if (status < 0) - return status; - - return 0; -} - -/** - * nand_fill_oob - [INTERN] Transfer client buffer to oob - * @mtd: MTD device structure - * @oob: oob data buffer - * @len: oob data write length - * @ops: oob ops structure - */ -static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len, - struct mtd_oob_ops *ops) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - int ret; - - /* - * Initialise to all 0xFF, to avoid the possibility of left over OOB - * data from a previous OOB read. - */ - memset(chip->oob_poi, 0xff, mtd->oobsize); - - switch (ops->mode) { - - case MTD_OPS_PLACE_OOB: - case MTD_OPS_RAW: - memcpy(chip->oob_poi + ops->ooboffs, oob, len); - return oob + len; - - case MTD_OPS_AUTO_OOB: - ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi, - ops->ooboffs, len); - BUG_ON(ret); - return oob + len; - - default: - BUG(); - } - return NULL; -} - -#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0) - -/** - * nand_do_write_ops - [INTERN] NAND write with ECC - * @mtd: MTD device structure - * @to: offset to write to - * @ops: oob operations description structure - * - * NAND write with ECC. - */ -static int nand_do_write_ops(struct mtd_info *mtd, loff_t to, - struct mtd_oob_ops *ops) -{ - int chipnr, realpage, page, column; - struct nand_chip *chip = mtd_to_nand(mtd); - uint32_t writelen = ops->len; - - uint32_t oobwritelen = ops->ooblen; - uint32_t oobmaxlen = mtd_oobavail(mtd, ops); - - uint8_t *oob = ops->oobbuf; - uint8_t *buf = ops->datbuf; - int ret; - int oob_required = oob ? 1 : 0; - - ops->retlen = 0; - if (!writelen) - return 0; - - /* Reject writes, which are not page aligned */ - if (NOTALIGNED(to) || NOTALIGNED(ops->len)) { - pr_notice("%s: attempt to write non page aligned data\n", - __func__); - return -EINVAL; - } - - column = to & (mtd->writesize - 1); - - chipnr = (int)(to >> chip->chip_shift); - chip->select_chip(mtd, chipnr); - - /* Check, if it is write protected */ - if (nand_check_wp(mtd)) { - ret = -EIO; - goto err_out; - } - - realpage = (int)(to >> chip->page_shift); - page = realpage & chip->pagemask; - - /* Invalidate the page cache, when we write to the cached page */ - if (to <= ((loff_t)chip->pagebuf << chip->page_shift) && - ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len)) - chip->pagebuf = -1; - - /* Don't allow multipage oob writes with offset */ - if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) { - ret = -EINVAL; - goto err_out; - } - - while (1) { - int bytes = mtd->writesize; - uint8_t *wbuf = buf; - int use_bufpoi; - int part_pagewr = (column || writelen < mtd->writesize); - - if (part_pagewr) - use_bufpoi = 1; - else if (chip->options & NAND_USE_BOUNCE_BUFFER) - use_bufpoi = !virt_addr_valid(buf) || - !IS_ALIGNED((unsigned long)buf, - chip->buf_align); - else - use_bufpoi = 0; - - /* Partial page write?, or need to use bounce buffer */ - if (use_bufpoi) { - pr_debug("%s: using write bounce buffer for buf@%p\n", - __func__, buf); - if (part_pagewr) - bytes = min_t(int, bytes - column, writelen); - chip->pagebuf = -1; - memset(chip->data_buf, 0xff, mtd->writesize); - memcpy(&chip->data_buf[column], buf, bytes); - wbuf = chip->data_buf; - } - - if (unlikely(oob)) { - size_t len = min(oobwritelen, oobmaxlen); - oob = nand_fill_oob(mtd, oob, len, ops); - oobwritelen -= len; - } else { - /* We still need to erase leftover OOB data */ - memset(chip->oob_poi, 0xff, mtd->oobsize); - } - - ret = nand_write_page(mtd, chip, column, bytes, wbuf, - oob_required, page, - (ops->mode == MTD_OPS_RAW)); - if (ret) - break; - - writelen -= bytes; - if (!writelen) - break; - - column = 0; - buf += bytes; - realpage++; - - page = realpage & chip->pagemask; - /* Check, if we cross a chip boundary */ - if (!page) { - chipnr++; - chip->select_chip(mtd, -1); - chip->select_chip(mtd, chipnr); - } - } - - ops->retlen = ops->len - writelen; - if (unlikely(oob)) - ops->oobretlen = ops->ooblen; - -err_out: - chip->select_chip(mtd, -1); - return ret; -} - -/** - * panic_nand_write - [MTD Interface] NAND write with ECC - * @mtd: MTD device structure - * @to: offset to write to - * @len: number of bytes to write - * @retlen: pointer to variable to store the number of written bytes - * @buf: the data to write - * - * NAND write with ECC. Used when performing writes in interrupt context, this - * may for example be called by mtdoops when writing an oops while in panic. - */ -static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len, - size_t *retlen, const uint8_t *buf) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - int chipnr = (int)(to >> chip->chip_shift); - struct mtd_oob_ops ops; - int ret; - - /* Grab the device */ - panic_nand_get_device(chip, mtd, FL_WRITING); - - chip->select_chip(mtd, chipnr); - - /* Wait for the device to get ready */ - panic_nand_wait(mtd, chip, 400); - - memset(&ops, 0, sizeof(ops)); - ops.len = len; - ops.datbuf = (uint8_t *)buf; - ops.mode = MTD_OPS_PLACE_OOB; - - ret = nand_do_write_ops(mtd, to, &ops); - - *retlen = ops.retlen; - return ret; -} - -/** - * nand_do_write_oob - [MTD Interface] NAND write out-of-band - * @mtd: MTD device structure - * @to: offset to write to - * @ops: oob operation description structure - * - * NAND write out-of-band. - */ -static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, - struct mtd_oob_ops *ops) -{ - int chipnr, page, status, len; - struct nand_chip *chip = mtd_to_nand(mtd); - - pr_debug("%s: to = 0x%08x, len = %i\n", - __func__, (unsigned int)to, (int)ops->ooblen); - - len = mtd_oobavail(mtd, ops); - - /* Do not allow write past end of page */ - if ((ops->ooboffs + ops->ooblen) > len) { - pr_debug("%s: attempt to write past end of page\n", - __func__); - return -EINVAL; - } - - chipnr = (int)(to >> chip->chip_shift); - - /* - * Reset the chip. Some chips (like the Toshiba TC5832DC found in one - * of my DiskOnChip 2000 test units) will clear the whole data page too - * if we don't do this. I have no clue why, but I seem to have 'fixed' - * it in the doc2000 driver in August 1999. dwmw2. - */ - nand_reset(chip, chipnr); - - chip->select_chip(mtd, chipnr); - - /* Shift to get page */ - page = (int)(to >> chip->page_shift); - - /* Check, if it is write protected */ - if (nand_check_wp(mtd)) { - chip->select_chip(mtd, -1); - return -EROFS; - } - - /* Invalidate the page cache, if we write to the cached page */ - if (page == chip->pagebuf) - chip->pagebuf = -1; - - nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops); - - if (ops->mode == MTD_OPS_RAW) - status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask); - else - status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask); - - chip->select_chip(mtd, -1); - - if (status) - return status; - - ops->oobretlen = ops->ooblen; - - return 0; -} - -/** - * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band - * @mtd: MTD device structure - * @to: offset to write to - * @ops: oob operation description structure - */ -static int nand_write_oob(struct mtd_info *mtd, loff_t to, - struct mtd_oob_ops *ops) -{ - int ret = -ENOTSUPP; - - ops->retlen = 0; - - nand_get_device(mtd, FL_WRITING); - - switch (ops->mode) { - case MTD_OPS_PLACE_OOB: - case MTD_OPS_AUTO_OOB: - case MTD_OPS_RAW: - break; - - default: - goto out; - } - - if (!ops->datbuf) - ret = nand_do_write_oob(mtd, to, ops); - else - ret = nand_do_write_ops(mtd, to, ops); - -out: - nand_release_device(mtd); - return ret; -} - -/** - * single_erase - [GENERIC] NAND standard block erase command function - * @mtd: MTD device structure - * @page: the page address of the block which will be erased - * - * Standard erase command for NAND chips. Returns NAND status. - */ -static int single_erase(struct mtd_info *mtd, int page) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - unsigned int eraseblock; - - /* Send commands to erase a block */ - eraseblock = page >> (chip->phys_erase_shift - chip->page_shift); - - return nand_erase_op(chip, eraseblock); -} - -/** - * nand_erase - [MTD Interface] erase block(s) - * @mtd: MTD device structure - * @instr: erase instruction - * - * Erase one ore more blocks. - */ -static int nand_erase(struct mtd_info *mtd, struct erase_info *instr) -{ - return nand_erase_nand(mtd, instr, 0); -} - -/** - * nand_erase_nand - [INTERN] erase block(s) - * @mtd: MTD device structure - * @instr: erase instruction - * @allowbbt: allow erasing the bbt area - * - * Erase one ore more blocks. - */ -int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, - int allowbbt) -{ - int page, status, pages_per_block, ret, chipnr; - struct nand_chip *chip = mtd_to_nand(mtd); - loff_t len; - - pr_debug("%s: start = 0x%012llx, len = %llu\n", - __func__, (unsigned long long)instr->addr, - (unsigned long long)instr->len); - - if (check_offs_len(mtd, instr->addr, instr->len)) - return -EINVAL; - - /* Grab the lock and see if the device is available */ - nand_get_device(mtd, FL_ERASING); - - /* Shift to get first page */ - page = (int)(instr->addr >> chip->page_shift); - chipnr = (int)(instr->addr >> chip->chip_shift); - - /* Calculate pages in each block */ - pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift); - - /* Select the NAND device */ - chip->select_chip(mtd, chipnr); - - /* Check, if it is write protected */ - if (nand_check_wp(mtd)) { - pr_debug("%s: device is write protected!\n", - __func__); - instr->state = MTD_ERASE_FAILED; - goto erase_exit; - } - - /* Loop through the pages */ - len = instr->len; - - instr->state = MTD_ERASING; - - while (len) { - /* Check if we have a bad block, we do not erase bad blocks! */ - if (nand_block_checkbad(mtd, ((loff_t) page) << - chip->page_shift, allowbbt)) { - pr_warn("%s: attempt to erase a bad block at page 0x%08x\n", - __func__, page); - instr->state = MTD_ERASE_FAILED; - goto erase_exit; - } - - /* - * Invalidate the page cache, if we erase the block which - * contains the current cached page. - */ - if (page <= chip->pagebuf && chip->pagebuf < - (page + pages_per_block)) - chip->pagebuf = -1; - - status = chip->erase(mtd, page & chip->pagemask); - - /* See if block erase succeeded */ - if (status) { - pr_debug("%s: failed erase, page 0x%08x\n", - __func__, page); - instr->state = MTD_ERASE_FAILED; - instr->fail_addr = - ((loff_t)page << chip->page_shift); - goto erase_exit; - } - - /* Increment page address and decrement length */ - len -= (1ULL << chip->phys_erase_shift); - page += pages_per_block; - - /* Check, if we cross a chip boundary */ - if (len && !(page & chip->pagemask)) { - chipnr++; - chip->select_chip(mtd, -1); - chip->select_chip(mtd, chipnr); - } - } - instr->state = MTD_ERASE_DONE; - -erase_exit: - - ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO; - - /* Deselect and wake up anyone waiting on the device */ - chip->select_chip(mtd, -1); - nand_release_device(mtd); - - /* Do call back function */ - if (!ret) - mtd_erase_callback(instr); - - /* Return more or less happy */ - return ret; -} - -/** - * nand_sync - [MTD Interface] sync - * @mtd: MTD device structure - * - * Sync is actually a wait for chip ready function. - */ -static void nand_sync(struct mtd_info *mtd) -{ - pr_debug("%s: called\n", __func__); - - /* Grab the lock and see if the device is available */ - nand_get_device(mtd, FL_SYNCING); - /* Release it and go back */ - nand_release_device(mtd); -} - -/** - * nand_block_isbad - [MTD Interface] Check if block at offset is bad - * @mtd: MTD device structure - * @offs: offset relative to mtd start - */ -static int nand_block_isbad(struct mtd_info *mtd, loff_t offs) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - int chipnr = (int)(offs >> chip->chip_shift); - int ret; - - /* Select the NAND device */ - nand_get_device(mtd, FL_READING); - chip->select_chip(mtd, chipnr); - - ret = nand_block_checkbad(mtd, offs, 0); - - chip->select_chip(mtd, -1); - nand_release_device(mtd); - - return ret; -} - -/** - * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad - * @mtd: MTD device structure - * @ofs: offset relative to mtd start - */ -static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs) -{ - int ret; - - ret = nand_block_isbad(mtd, ofs); - if (ret) { - /* If it was bad already, return success and do nothing */ - if (ret > 0) - return 0; - return ret; - } - - return nand_block_markbad_lowlevel(mtd, ofs); -} - -/** - * nand_max_bad_blocks - [MTD Interface] Max number of bad blocks for an mtd - * @mtd: MTD device structure - * @ofs: offset relative to mtd start - * @len: length of mtd - */ -static int nand_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - u32 part_start_block; - u32 part_end_block; - u32 part_start_die; - u32 part_end_die; - - /* - * max_bb_per_die and blocks_per_die used to determine - * the maximum bad block count. - */ - if (!chip->max_bb_per_die || !chip->blocks_per_die) - return -ENOTSUPP; - - /* Get the start and end of the partition in erase blocks. */ - part_start_block = mtd_div_by_eb(ofs, mtd); - part_end_block = mtd_div_by_eb(len, mtd) + part_start_block - 1; - - /* Get the start and end LUNs of the partition. */ - part_start_die = part_start_block / chip->blocks_per_die; - part_end_die = part_end_block / chip->blocks_per_die; - - /* - * Look up the bad blocks per unit and multiply by the number of units - * that the partition spans. - */ - return chip->max_bb_per_die * (part_end_die - part_start_die + 1); -} - -/** - * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand - * @mtd: MTD device structure - * @chip: nand chip info structure - * @addr: feature address. - * @subfeature_param: the subfeature parameters, a four bytes array. - */ -static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip, - int addr, uint8_t *subfeature_param) -{ - if (!chip->onfi_version || - !(le16_to_cpu(chip->onfi_params.opt_cmd) - & ONFI_OPT_CMD_SET_GET_FEATURES)) - return -EINVAL; - - return nand_set_features_op(chip, addr, subfeature_param); -} - -/** - * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand - * @mtd: MTD device structure - * @chip: nand chip info structure - * @addr: feature address. - * @subfeature_param: the subfeature parameters, a four bytes array. - */ -static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip, - int addr, uint8_t *subfeature_param) -{ - if (!chip->onfi_version || - !(le16_to_cpu(chip->onfi_params.opt_cmd) - & ONFI_OPT_CMD_SET_GET_FEATURES)) - return -EINVAL; - - return nand_get_features_op(chip, addr, subfeature_param); -} - -/** - * nand_onfi_get_set_features_notsupp - set/get features stub returning - * -ENOTSUPP - * @mtd: MTD device structure - * @chip: nand chip info structure - * @addr: feature address. - * @subfeature_param: the subfeature parameters, a four bytes array. - * - * Should be used by NAND controller drivers that do not support the SET/GET - * FEATURES operations. - */ -int nand_onfi_get_set_features_notsupp(struct mtd_info *mtd, - struct nand_chip *chip, int addr, - u8 *subfeature_param) -{ - return -ENOTSUPP; -} -EXPORT_SYMBOL(nand_onfi_get_set_features_notsupp); - -/** - * nand_suspend - [MTD Interface] Suspend the NAND flash - * @mtd: MTD device structure - */ -static int nand_suspend(struct mtd_info *mtd) -{ - return nand_get_device(mtd, FL_PM_SUSPENDED); -} - -/** - * nand_resume - [MTD Interface] Resume the NAND flash - * @mtd: MTD device structure - */ -static void nand_resume(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - if (chip->state == FL_PM_SUSPENDED) - nand_release_device(mtd); - else - pr_err("%s called for a chip which is not in suspended state\n", - __func__); -} - -/** - * nand_shutdown - [MTD Interface] Finish the current NAND operation and - * prevent further operations - * @mtd: MTD device structure - */ -static void nand_shutdown(struct mtd_info *mtd) -{ - nand_get_device(mtd, FL_PM_SUSPENDED); -} - -/* Set default functions */ -static void nand_set_defaults(struct nand_chip *chip) -{ - unsigned int busw = chip->options & NAND_BUSWIDTH_16; - - /* check for proper chip_delay setup, set 20us if not */ - if (!chip->chip_delay) - chip->chip_delay = 20; - - /* check, if a user supplied command function given */ - if (!chip->cmdfunc && !chip->exec_op) - chip->cmdfunc = nand_command; - - /* check, if a user supplied wait function given */ - if (chip->waitfunc == NULL) - chip->waitfunc = nand_wait; - - if (!chip->select_chip) - chip->select_chip = nand_select_chip; - - /* set for ONFI nand */ - if (!chip->onfi_set_features) - chip->onfi_set_features = nand_onfi_set_features; - if (!chip->onfi_get_features) - chip->onfi_get_features = nand_onfi_get_features; - - /* If called twice, pointers that depend on busw may need to be reset */ - if (!chip->read_byte || chip->read_byte == nand_read_byte) - chip->read_byte = busw ? nand_read_byte16 : nand_read_byte; - if (!chip->read_word) - chip->read_word = nand_read_word; - if (!chip->block_bad) - chip->block_bad = nand_block_bad; - if (!chip->block_markbad) - chip->block_markbad = nand_default_block_markbad; - if (!chip->write_buf || chip->write_buf == nand_write_buf) - chip->write_buf = busw ? nand_write_buf16 : nand_write_buf; - if (!chip->write_byte || chip->write_byte == nand_write_byte) - chip->write_byte = busw ? nand_write_byte16 : nand_write_byte; - if (!chip->read_buf || chip->read_buf == nand_read_buf) - chip->read_buf = busw ? nand_read_buf16 : nand_read_buf; - if (!chip->scan_bbt) - chip->scan_bbt = nand_default_bbt; - - if (!chip->controller) { - chip->controller = &chip->hwcontrol; - nand_hw_control_init(chip->controller); - } - - if (!chip->buf_align) - chip->buf_align = 1; -} - -/* Sanitize ONFI strings so we can safely print them */ -static void sanitize_string(uint8_t *s, size_t len) -{ - ssize_t i; - - /* Null terminate */ - s[len - 1] = 0; - - /* Remove non printable chars */ - for (i = 0; i < len - 1; i++) { - if (s[i] < ' ' || s[i] > 127) - s[i] = '?'; - } - - /* Remove trailing spaces */ - strim(s); -} - -static u16 onfi_crc16(u16 crc, u8 const *p, size_t len) -{ - int i; - while (len--) { - crc ^= *p++ << 8; - for (i = 0; i < 8; i++) - crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0); - } - - return crc; -} - -/* Parse the Extended Parameter Page. */ -static int nand_flash_detect_ext_param_page(struct nand_chip *chip, - struct nand_onfi_params *p) -{ - struct onfi_ext_param_page *ep; - struct onfi_ext_section *s; - struct onfi_ext_ecc_info *ecc; - uint8_t *cursor; - int ret; - int len; - int i; - - len = le16_to_cpu(p->ext_param_page_length) * 16; - ep = kmalloc(len, GFP_KERNEL); - if (!ep) - return -ENOMEM; - - /* Send our own NAND_CMD_PARAM. */ - ret = nand_read_param_page_op(chip, 0, NULL, 0); - if (ret) - goto ext_out; - - /* Use the Change Read Column command to skip the ONFI param pages. */ - ret = nand_change_read_column_op(chip, - sizeof(*p) * p->num_of_param_pages, - ep, len, true); - if (ret) - goto ext_out; - - ret = -EINVAL; - if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2) - != le16_to_cpu(ep->crc))) { - pr_debug("fail in the CRC.\n"); - goto ext_out; - } - - /* - * Check the signature. - * Do not strictly follow the ONFI spec, maybe changed in future. - */ - if (strncmp(ep->sig, "EPPS", 4)) { - pr_debug("The signature is invalid.\n"); - goto ext_out; - } - - /* find the ECC section. */ - cursor = (uint8_t *)(ep + 1); - for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) { - s = ep->sections + i; - if (s->type == ONFI_SECTION_TYPE_2) - break; - cursor += s->length * 16; - } - if (i == ONFI_EXT_SECTION_MAX) { - pr_debug("We can not find the ECC section.\n"); - goto ext_out; - } - - /* get the info we want. */ - ecc = (struct onfi_ext_ecc_info *)cursor; - - if (!ecc->codeword_size) { - pr_debug("Invalid codeword size\n"); - goto ext_out; - } - - chip->ecc_strength_ds = ecc->ecc_bits; - chip->ecc_step_ds = 1 << ecc->codeword_size; - ret = 0; - -ext_out: - kfree(ep); - return ret; -} - -/* - * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise. - */ -static int nand_flash_detect_onfi(struct nand_chip *chip) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - struct nand_onfi_params *p = &chip->onfi_params; - char id[4]; - int i, ret, val; - - /* Try ONFI for unknown chip or LP */ - ret = nand_readid_op(chip, 0x20, id, sizeof(id)); - if (ret || strncmp(id, "ONFI", 4)) - return 0; - - ret = nand_read_param_page_op(chip, 0, NULL, 0); - if (ret) - return 0; - - for (i = 0; i < 3; i++) { - ret = nand_read_data_op(chip, p, sizeof(*p), true); - if (ret) - return 0; - - if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) == - le16_to_cpu(p->crc)) { - break; - } - } - - if (i == 3) { - pr_err("Could not find valid ONFI parameter page; aborting\n"); - return 0; - } - - /* Check version */ - val = le16_to_cpu(p->revision); - if (val & (1 << 5)) - chip->onfi_version = 23; - else if (val & (1 << 4)) - chip->onfi_version = 22; - else if (val & (1 << 3)) - chip->onfi_version = 21; - else if (val & (1 << 2)) - chip->onfi_version = 20; - else if (val & (1 << 1)) - chip->onfi_version = 10; - - if (!chip->onfi_version) { - pr_info("unsupported ONFI version: %d\n", val); - return 0; - } - - sanitize_string(p->manufacturer, sizeof(p->manufacturer)); - sanitize_string(p->model, sizeof(p->model)); - if (!mtd->name) - mtd->name = p->model; - - mtd->writesize = le32_to_cpu(p->byte_per_page); - - /* - * pages_per_block and blocks_per_lun may not be a power-of-2 size - * (don't ask me who thought of this...). MTD assumes that these - * dimensions will be power-of-2, so just truncate the remaining area. - */ - mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1); - mtd->erasesize *= mtd->writesize; - - mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page); - - /* See erasesize comment */ - chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1); - chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count; - chip->bits_per_cell = p->bits_per_cell; - - chip->max_bb_per_die = le16_to_cpu(p->bb_per_lun); - chip->blocks_per_die = le32_to_cpu(p->blocks_per_lun); - - if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS) - chip->options |= NAND_BUSWIDTH_16; - - if (p->ecc_bits != 0xff) { - chip->ecc_strength_ds = p->ecc_bits; - chip->ecc_step_ds = 512; - } else if (chip->onfi_version >= 21 && - (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) { - - /* - * The nand_flash_detect_ext_param_page() uses the - * Change Read Column command which maybe not supported - * by the chip->cmdfunc. So try to update the chip->cmdfunc - * now. We do not replace user supplied command function. - */ - if (mtd->writesize > 512 && chip->cmdfunc == nand_command) - chip->cmdfunc = nand_command_lp; - - /* The Extended Parameter Page is supported since ONFI 2.1. */ - if (nand_flash_detect_ext_param_page(chip, p)) - pr_warn("Failed to detect ONFI extended param page\n"); - } else { - pr_warn("Could not retrieve ONFI ECC requirements\n"); - } - - return 1; -} - -/* - * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise. - */ -static int nand_flash_detect_jedec(struct nand_chip *chip) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - struct nand_jedec_params *p = &chip->jedec_params; - struct jedec_ecc_info *ecc; - char id[5]; - int i, val, ret; - - /* Try JEDEC for unknown chip or LP */ - ret = nand_readid_op(chip, 0x40, id, sizeof(id)); - if (ret || strncmp(id, "JEDEC", sizeof(id))) - return 0; - - ret = nand_read_param_page_op(chip, 0x40, NULL, 0); - if (ret) - return 0; - - for (i = 0; i < 3; i++) { - ret = nand_read_data_op(chip, p, sizeof(*p), true); - if (ret) - return 0; - - if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) == - le16_to_cpu(p->crc)) - break; - } - - if (i == 3) { - pr_err("Could not find valid JEDEC parameter page; aborting\n"); - return 0; - } - - /* Check version */ - val = le16_to_cpu(p->revision); - if (val & (1 << 2)) - chip->jedec_version = 10; - else if (val & (1 << 1)) - chip->jedec_version = 1; /* vendor specific version */ - - if (!chip->jedec_version) { - pr_info("unsupported JEDEC version: %d\n", val); - return 0; - } - - sanitize_string(p->manufacturer, sizeof(p->manufacturer)); - sanitize_string(p->model, sizeof(p->model)); - if (!mtd->name) - mtd->name = p->model; - - mtd->writesize = le32_to_cpu(p->byte_per_page); - - /* Please reference to the comment for nand_flash_detect_onfi. */ - mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1); - mtd->erasesize *= mtd->writesize; - - mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page); - - /* Please reference to the comment for nand_flash_detect_onfi. */ - chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1); - chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count; - chip->bits_per_cell = p->bits_per_cell; - - if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS) - chip->options |= NAND_BUSWIDTH_16; - - /* ECC info */ - ecc = &p->ecc_info[0]; - - if (ecc->codeword_size >= 9) { - chip->ecc_strength_ds = ecc->ecc_bits; - chip->ecc_step_ds = 1 << ecc->codeword_size; - } else { - pr_warn("Invalid codeword size\n"); - } - - return 1; -} - -/* - * nand_id_has_period - Check if an ID string has a given wraparound period - * @id_data: the ID string - * @arrlen: the length of the @id_data array - * @period: the period of repitition - * - * Check if an ID string is repeated within a given sequence of bytes at - * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a - * period of 3). This is a helper function for nand_id_len(). Returns non-zero - * if the repetition has a period of @period; otherwise, returns zero. - */ -static int nand_id_has_period(u8 *id_data, int arrlen, int period) -{ - int i, j; - for (i = 0; i < period; i++) - for (j = i + period; j < arrlen; j += period) - if (id_data[i] != id_data[j]) - return 0; - return 1; -} - -/* - * nand_id_len - Get the length of an ID string returned by CMD_READID - * @id_data: the ID string - * @arrlen: the length of the @id_data array - - * Returns the length of the ID string, according to known wraparound/trailing - * zero patterns. If no pattern exists, returns the length of the array. - */ -static int nand_id_len(u8 *id_data, int arrlen) -{ - int last_nonzero, period; - - /* Find last non-zero byte */ - for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--) - if (id_data[last_nonzero]) - break; - - /* All zeros */ - if (last_nonzero < 0) - return 0; - - /* Calculate wraparound period */ - for (period = 1; period < arrlen; period++) - if (nand_id_has_period(id_data, arrlen, period)) - break; - - /* There's a repeated pattern */ - if (period < arrlen) - return period; - - /* There are trailing zeros */ - if (last_nonzero < arrlen - 1) - return last_nonzero + 1; - - /* No pattern detected */ - return arrlen; -} - -/* Extract the bits of per cell from the 3rd byte of the extended ID */ -static int nand_get_bits_per_cell(u8 cellinfo) -{ - int bits; - - bits = cellinfo & NAND_CI_CELLTYPE_MSK; - bits >>= NAND_CI_CELLTYPE_SHIFT; - return bits + 1; -} - -/* - * Many new NAND share similar device ID codes, which represent the size of the - * chip. The rest of the parameters must be decoded according to generic or - * manufacturer-specific "extended ID" decoding patterns. - */ -void nand_decode_ext_id(struct nand_chip *chip) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - int extid; - u8 *id_data = chip->id.data; - /* The 3rd id byte holds MLC / multichip data */ - chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]); - /* The 4th id byte is the important one */ - extid = id_data[3]; - - /* Calc pagesize */ - mtd->writesize = 1024 << (extid & 0x03); - extid >>= 2; - /* Calc oobsize */ - mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9); - extid >>= 2; - /* Calc blocksize. Blocksize is multiples of 64KiB */ - mtd->erasesize = (64 * 1024) << (extid & 0x03); - extid >>= 2; - /* Get buswidth information */ - if (extid & 0x1) - chip->options |= NAND_BUSWIDTH_16; -} -EXPORT_SYMBOL_GPL(nand_decode_ext_id); - -/* - * Old devices have chip data hardcoded in the device ID table. nand_decode_id - * decodes a matching ID table entry and assigns the MTD size parameters for - * the chip. - */ -static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - - mtd->erasesize = type->erasesize; - mtd->writesize = type->pagesize; - mtd->oobsize = mtd->writesize / 32; - - /* All legacy ID NAND are small-page, SLC */ - chip->bits_per_cell = 1; -} - -/* - * Set the bad block marker/indicator (BBM/BBI) patterns according to some - * heuristic patterns using various detected parameters (e.g., manufacturer, - * page size, cell-type information). - */ -static void nand_decode_bbm_options(struct nand_chip *chip) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - - /* Set the bad block position */ - if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16)) - chip->badblockpos = NAND_LARGE_BADBLOCK_POS; - else - chip->badblockpos = NAND_SMALL_BADBLOCK_POS; -} - -static inline bool is_full_id_nand(struct nand_flash_dev *type) -{ - return type->id_len; -} - -static bool find_full_id_nand(struct nand_chip *chip, - struct nand_flash_dev *type) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - u8 *id_data = chip->id.data; - - if (!strncmp(type->id, id_data, type->id_len)) { - mtd->writesize = type->pagesize; - mtd->erasesize = type->erasesize; - mtd->oobsize = type->oobsize; - - chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]); - chip->chipsize = (uint64_t)type->chipsize << 20; - chip->options |= type->options; - chip->ecc_strength_ds = NAND_ECC_STRENGTH(type); - chip->ecc_step_ds = NAND_ECC_STEP(type); - chip->onfi_timing_mode_default = - type->onfi_timing_mode_default; - - if (!mtd->name) - mtd->name = type->name; - - return true; - } - return false; -} - -/* - * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC - * compliant and does not have a full-id or legacy-id entry in the nand_ids - * table. - */ -static void nand_manufacturer_detect(struct nand_chip *chip) -{ - /* - * Try manufacturer detection if available and use - * nand_decode_ext_id() otherwise. - */ - if (chip->manufacturer.desc && chip->manufacturer.desc->ops && - chip->manufacturer.desc->ops->detect) { - /* The 3rd id byte holds MLC / multichip data */ - chip->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]); - chip->manufacturer.desc->ops->detect(chip); - } else { - nand_decode_ext_id(chip); - } -} - -/* - * Manufacturer initialization. This function is called for all NANDs including - * ONFI and JEDEC compliant ones. - * Manufacturer drivers should put all their specific initialization code in - * their ->init() hook. - */ -static int nand_manufacturer_init(struct nand_chip *chip) -{ - if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops || - !chip->manufacturer.desc->ops->init) - return 0; - - return chip->manufacturer.desc->ops->init(chip); -} - -/* - * Manufacturer cleanup. This function is called for all NANDs including - * ONFI and JEDEC compliant ones. - * Manufacturer drivers should put all their specific cleanup code in their - * ->cleanup() hook. - */ -static void nand_manufacturer_cleanup(struct nand_chip *chip) -{ - /* Release manufacturer private data */ - if (chip->manufacturer.desc && chip->manufacturer.desc->ops && - chip->manufacturer.desc->ops->cleanup) - chip->manufacturer.desc->ops->cleanup(chip); -} - -/* - * Get the flash and manufacturer id and lookup if the type is supported. - */ -static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type) -{ - const struct nand_manufacturer *manufacturer; - struct mtd_info *mtd = nand_to_mtd(chip); - int busw, ret; - u8 *id_data = chip->id.data; - u8 maf_id, dev_id; - - /* - * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx) - * after power-up. - */ - ret = nand_reset(chip, 0); - if (ret) - return ret; - - /* Select the device */ - chip->select_chip(mtd, 0); - - /* Send the command for reading device ID */ - ret = nand_readid_op(chip, 0, id_data, 2); - if (ret) - return ret; - - /* Read manufacturer and device IDs */ - maf_id = id_data[0]; - dev_id = id_data[1]; - - /* - * Try again to make sure, as some systems the bus-hold or other - * interface concerns can cause random data which looks like a - * possibly credible NAND flash to appear. If the two results do - * not match, ignore the device completely. - */ - - /* Read entire ID string */ - ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data)); - if (ret) - return ret; - - if (id_data[0] != maf_id || id_data[1] != dev_id) { - pr_info("second ID read did not match %02x,%02x against %02x,%02x\n", - maf_id, dev_id, id_data[0], id_data[1]); - return -ENODEV; - } - - chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data)); - - /* Try to identify manufacturer */ - manufacturer = nand_get_manufacturer(maf_id); - chip->manufacturer.desc = manufacturer; - - if (!type) - type = nand_flash_ids; - - /* - * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic - * override it. - * This is required to make sure initial NAND bus width set by the - * NAND controller driver is coherent with the real NAND bus width - * (extracted by auto-detection code). - */ - busw = chip->options & NAND_BUSWIDTH_16; - - /* - * The flag is only set (never cleared), reset it to its default value - * before starting auto-detection. - */ - chip->options &= ~NAND_BUSWIDTH_16; - - for (; type->name != NULL; type++) { - if (is_full_id_nand(type)) { - if (find_full_id_nand(chip, type)) - goto ident_done; - } else if (dev_id == type->dev_id) { - break; - } - } - - chip->onfi_version = 0; - if (!type->name || !type->pagesize) { - /* Check if the chip is ONFI compliant */ - if (nand_flash_detect_onfi(chip)) - goto ident_done; - - /* Check if the chip is JEDEC compliant */ - if (nand_flash_detect_jedec(chip)) - goto ident_done; - } - - if (!type->name) - return -ENODEV; - - if (!mtd->name) - mtd->name = type->name; - - chip->chipsize = (uint64_t)type->chipsize << 20; - - if (!type->pagesize) - nand_manufacturer_detect(chip); - else - nand_decode_id(chip, type); - - /* Get chip options */ - chip->options |= type->options; - -ident_done: - - if (chip->options & NAND_BUSWIDTH_AUTO) { - WARN_ON(busw & NAND_BUSWIDTH_16); - nand_set_defaults(chip); - } else if (busw != (chip->options & NAND_BUSWIDTH_16)) { - /* - * Check, if buswidth is correct. Hardware drivers should set - * chip correct! - */ - pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", - maf_id, dev_id); - pr_info("%s %s\n", nand_manufacturer_name(manufacturer), - mtd->name); - pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8, - (chip->options & NAND_BUSWIDTH_16) ? 16 : 8); - return -EINVAL; - } - - nand_decode_bbm_options(chip); - - /* Calculate the address shift from the page size */ - chip->page_shift = ffs(mtd->writesize) - 1; - /* Convert chipsize to number of pages per chip -1 */ - chip->pagemask = (chip->chipsize >> chip->page_shift) - 1; - - chip->bbt_erase_shift = chip->phys_erase_shift = - ffs(mtd->erasesize) - 1; - if (chip->chipsize & 0xffffffff) - chip->chip_shift = ffs((unsigned)chip->chipsize) - 1; - else { - chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32)); - chip->chip_shift += 32 - 1; - } - - if (chip->chip_shift - chip->page_shift > 16) - chip->options |= NAND_ROW_ADDR_3; - - chip->badblockbits = 8; - chip->erase = single_erase; - - /* Do not replace user supplied command function! */ - if (mtd->writesize > 512 && chip->cmdfunc == nand_command) - chip->cmdfunc = nand_command_lp; - - pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", - maf_id, dev_id); - - if (chip->onfi_version) - pr_info("%s %s\n", nand_manufacturer_name(manufacturer), - chip->onfi_params.model); - else if (chip->jedec_version) - pr_info("%s %s\n", nand_manufacturer_name(manufacturer), - chip->jedec_params.model); - else - pr_info("%s %s\n", nand_manufacturer_name(manufacturer), - type->name); - - pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n", - (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC", - mtd->erasesize >> 10, mtd->writesize, mtd->oobsize); - return 0; -} - -static const char * const nand_ecc_modes[] = { - [NAND_ECC_NONE] = "none", - [NAND_ECC_SOFT] = "soft", - [NAND_ECC_HW] = "hw", - [NAND_ECC_HW_SYNDROME] = "hw_syndrome", - [NAND_ECC_HW_OOB_FIRST] = "hw_oob_first", - [NAND_ECC_ON_DIE] = "on-die", -}; - -static int of_get_nand_ecc_mode(struct device_node *np) -{ - const char *pm; - int err, i; - - err = of_property_read_string(np, "nand-ecc-mode", &pm); - if (err < 0) - return err; - - for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++) - if (!strcasecmp(pm, nand_ecc_modes[i])) - return i; - - /* - * For backward compatibility we support few obsoleted values that don't - * have their mappings into nand_ecc_modes_t anymore (they were merged - * with other enums). - */ - if (!strcasecmp(pm, "soft_bch")) - return NAND_ECC_SOFT; - - return -ENODEV; -} - -static const char * const nand_ecc_algos[] = { - [NAND_ECC_HAMMING] = "hamming", - [NAND_ECC_BCH] = "bch", -}; - -static int of_get_nand_ecc_algo(struct device_node *np) -{ - const char *pm; - int err, i; - - err = of_property_read_string(np, "nand-ecc-algo", &pm); - if (!err) { - for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++) - if (!strcasecmp(pm, nand_ecc_algos[i])) - return i; - return -ENODEV; - } - - /* - * For backward compatibility we also read "nand-ecc-mode" checking - * for some obsoleted values that were specifying ECC algorithm. - */ - err = of_property_read_string(np, "nand-ecc-mode", &pm); - if (err < 0) - return err; - - if (!strcasecmp(pm, "soft")) - return NAND_ECC_HAMMING; - else if (!strcasecmp(pm, "soft_bch")) - return NAND_ECC_BCH; - - return -ENODEV; -} - -static int of_get_nand_ecc_step_size(struct device_node *np) -{ - int ret; - u32 val; - - ret = of_property_read_u32(np, "nand-ecc-step-size", &val); - return ret ? ret : val; -} - -static int of_get_nand_ecc_strength(struct device_node *np) -{ - int ret; - u32 val; - - ret = of_property_read_u32(np, "nand-ecc-strength", &val); - return ret ? ret : val; -} - -static int of_get_nand_bus_width(struct device_node *np) -{ - u32 val; - - if (of_property_read_u32(np, "nand-bus-width", &val)) - return 8; - - switch (val) { - case 8: - case 16: - return val; - default: - return -EIO; - } -} - -static bool of_get_nand_on_flash_bbt(struct device_node *np) -{ - return of_property_read_bool(np, "nand-on-flash-bbt"); -} - -static int nand_dt_init(struct nand_chip *chip) -{ - struct device_node *dn = nand_get_flash_node(chip); - int ecc_mode, ecc_algo, ecc_strength, ecc_step; - - if (!dn) - return 0; - - if (of_get_nand_bus_width(dn) == 16) - chip->options |= NAND_BUSWIDTH_16; - - if (of_get_nand_on_flash_bbt(dn)) - chip->bbt_options |= NAND_BBT_USE_FLASH; - - ecc_mode = of_get_nand_ecc_mode(dn); - ecc_algo = of_get_nand_ecc_algo(dn); - ecc_strength = of_get_nand_ecc_strength(dn); - ecc_step = of_get_nand_ecc_step_size(dn); - - if (ecc_mode >= 0) - chip->ecc.mode = ecc_mode; - - if (ecc_algo >= 0) - chip->ecc.algo = ecc_algo; - - if (ecc_strength >= 0) - chip->ecc.strength = ecc_strength; - - if (ecc_step > 0) - chip->ecc.size = ecc_step; - - if (of_property_read_bool(dn, "nand-ecc-maximize")) - chip->ecc.options |= NAND_ECC_MAXIMIZE; - - return 0; -} - -/** - * nand_scan_ident - [NAND Interface] Scan for the NAND device - * @mtd: MTD device structure - * @maxchips: number of chips to scan for - * @table: alternative NAND ID table - * - * This is the first phase of the normal nand_scan() function. It reads the - * flash ID and sets up MTD fields accordingly. - * - */ -int nand_scan_ident(struct mtd_info *mtd, int maxchips, - struct nand_flash_dev *table) -{ - int i, nand_maf_id, nand_dev_id; - struct nand_chip *chip = mtd_to_nand(mtd); - int ret; - - /* Enforce the right timings for reset/detection */ - onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0); - - ret = nand_dt_init(chip); - if (ret) - return ret; - - if (!mtd->name && mtd->dev.parent) - mtd->name = dev_name(mtd->dev.parent); - - /* - * ->cmdfunc() is legacy and will only be used if ->exec_op() is not - * populated. - */ - if (!chip->exec_op) { - /* - * Default functions assigned for ->cmdfunc() and - * ->select_chip() both expect ->cmd_ctrl() to be populated. - */ - if ((!chip->cmdfunc || !chip->select_chip) && !chip->cmd_ctrl) { - pr_err("->cmd_ctrl() should be provided\n"); - return -EINVAL; - } - } - - /* Set the default functions */ - nand_set_defaults(chip); - - /* Read the flash type */ - ret = nand_detect(chip, table); - if (ret) { - if (!(chip->options & NAND_SCAN_SILENT_NODEV)) - pr_warn("No NAND device found\n"); - chip->select_chip(mtd, -1); - return ret; - } - - nand_maf_id = chip->id.data[0]; - nand_dev_id = chip->id.data[1]; - - chip->select_chip(mtd, -1); - - /* Check for a chip array */ - for (i = 1; i < maxchips; i++) { - u8 id[2]; - - /* See comment in nand_get_flash_type for reset */ - nand_reset(chip, i); - - chip->select_chip(mtd, i); - /* Send the command for reading device ID */ - nand_readid_op(chip, 0, id, sizeof(id)); - /* Read manufacturer and device IDs */ - if (nand_maf_id != id[0] || nand_dev_id != id[1]) { - chip->select_chip(mtd, -1); - break; - } - chip->select_chip(mtd, -1); - } - if (i > 1) - pr_info("%d chips detected\n", i); - - /* Store the number of chips and calc total size for mtd */ - chip->numchips = i; - mtd->size = i * chip->chipsize; - - return 0; -} -EXPORT_SYMBOL(nand_scan_ident); - -static int nand_set_ecc_soft_ops(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct nand_ecc_ctrl *ecc = &chip->ecc; - - if (WARN_ON(ecc->mode != NAND_ECC_SOFT)) - return -EINVAL; - - switch (ecc->algo) { - case NAND_ECC_HAMMING: - ecc->calculate = nand_calculate_ecc; - ecc->correct = nand_correct_data; - ecc->read_page = nand_read_page_swecc; - ecc->read_subpage = nand_read_subpage; - ecc->write_page = nand_write_page_swecc; - ecc->read_page_raw = nand_read_page_raw; - ecc->write_page_raw = nand_write_page_raw; - ecc->read_oob = nand_read_oob_std; - ecc->write_oob = nand_write_oob_std; - if (!ecc->size) - ecc->size = 256; - ecc->bytes = 3; - ecc->strength = 1; - return 0; - case NAND_ECC_BCH: - if (!mtd_nand_has_bch()) { - WARN(1, "CONFIG_MTD_NAND_ECC_BCH not enabled\n"); - return -EINVAL; - } - ecc->calculate = nand_bch_calculate_ecc; - ecc->correct = nand_bch_correct_data; - ecc->read_page = nand_read_page_swecc; - ecc->read_subpage = nand_read_subpage; - ecc->write_page = nand_write_page_swecc; - ecc->read_page_raw = nand_read_page_raw; - ecc->write_page_raw = nand_write_page_raw; - ecc->read_oob = nand_read_oob_std; - ecc->write_oob = nand_write_oob_std; - - /* - * Board driver should supply ecc.size and ecc.strength - * values to select how many bits are correctable. - * Otherwise, default to 4 bits for large page devices. - */ - if (!ecc->size && (mtd->oobsize >= 64)) { - ecc->size = 512; - ecc->strength = 4; - } - - /* - * if no ecc placement scheme was provided pickup the default - * large page one. - */ - if (!mtd->ooblayout) { - /* handle large page devices only */ - if (mtd->oobsize < 64) { - WARN(1, "OOB layout is required when using software BCH on small pages\n"); - return -EINVAL; - } - - mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops); - - } - - /* - * We can only maximize ECC config when the default layout is - * used, otherwise we don't know how many bytes can really be - * used. - */ - if (mtd->ooblayout == &nand_ooblayout_lp_ops && - ecc->options & NAND_ECC_MAXIMIZE) { - int steps, bytes; - - /* Always prefer 1k blocks over 512bytes ones */ - ecc->size = 1024; - steps = mtd->writesize / ecc->size; - - /* Reserve 2 bytes for the BBM */ - bytes = (mtd->oobsize - 2) / steps; - ecc->strength = bytes * 8 / fls(8 * ecc->size); - } - - /* See nand_bch_init() for details. */ - ecc->bytes = 0; - ecc->priv = nand_bch_init(mtd); - if (!ecc->priv) { - WARN(1, "BCH ECC initialization failed!\n"); - return -EINVAL; - } - return 0; - default: - WARN(1, "Unsupported ECC algorithm!\n"); - return -EINVAL; - } -} - -/** - * nand_check_ecc_caps - check the sanity of preset ECC settings - * @chip: nand chip info structure - * @caps: ECC caps info structure - * @oobavail: OOB size that the ECC engine can use - * - * When ECC step size and strength are already set, check if they are supported - * by the controller and the calculated ECC bytes fit within the chip's OOB. - * On success, the calculated ECC bytes is set. - */ -int nand_check_ecc_caps(struct nand_chip *chip, - const struct nand_ecc_caps *caps, int oobavail) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - const struct nand_ecc_step_info *stepinfo; - int preset_step = chip->ecc.size; - int preset_strength = chip->ecc.strength; - int nsteps, ecc_bytes; - int i, j; - - if (WARN_ON(oobavail < 0)) - return -EINVAL; - - if (!preset_step || !preset_strength) - return -ENODATA; - - nsteps = mtd->writesize / preset_step; - - for (i = 0; i < caps->nstepinfos; i++) { - stepinfo = &caps->stepinfos[i]; - - if (stepinfo->stepsize != preset_step) - continue; - - for (j = 0; j < stepinfo->nstrengths; j++) { - if (stepinfo->strengths[j] != preset_strength) - continue; - - ecc_bytes = caps->calc_ecc_bytes(preset_step, - preset_strength); - if (WARN_ON_ONCE(ecc_bytes < 0)) - return ecc_bytes; - - if (ecc_bytes * nsteps > oobavail) { - pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB", - preset_step, preset_strength); - return -ENOSPC; - } - - chip->ecc.bytes = ecc_bytes; - - return 0; - } - } - - pr_err("ECC (step, strength) = (%d, %d) not supported on this controller", - preset_step, preset_strength); - - return -ENOTSUPP; -} -EXPORT_SYMBOL_GPL(nand_check_ecc_caps); - -/** - * nand_match_ecc_req - meet the chip's requirement with least ECC bytes - * @chip: nand chip info structure - * @caps: ECC engine caps info structure - * @oobavail: OOB size that the ECC engine can use - * - * If a chip's ECC requirement is provided, try to meet it with the least - * number of ECC bytes (i.e. with the largest number of OOB-free bytes). - * On success, the chosen ECC settings are set. - */ -int nand_match_ecc_req(struct nand_chip *chip, - const struct nand_ecc_caps *caps, int oobavail) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - const struct nand_ecc_step_info *stepinfo; - int req_step = chip->ecc_step_ds; - int req_strength = chip->ecc_strength_ds; - int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total; - int best_step, best_strength, best_ecc_bytes; - int best_ecc_bytes_total = INT_MAX; - int i, j; - - if (WARN_ON(oobavail < 0)) - return -EINVAL; - - /* No information provided by the NAND chip */ - if (!req_step || !req_strength) - return -ENOTSUPP; - - /* number of correctable bits the chip requires in a page */ - req_corr = mtd->writesize / req_step * req_strength; - - for (i = 0; i < caps->nstepinfos; i++) { - stepinfo = &caps->stepinfos[i]; - step_size = stepinfo->stepsize; - - for (j = 0; j < stepinfo->nstrengths; j++) { - strength = stepinfo->strengths[j]; - - /* - * If both step size and strength are smaller than the - * chip's requirement, it is not easy to compare the - * resulted reliability. - */ - if (step_size < req_step && strength < req_strength) - continue; - - if (mtd->writesize % step_size) - continue; - - nsteps = mtd->writesize / step_size; - - ecc_bytes = caps->calc_ecc_bytes(step_size, strength); - if (WARN_ON_ONCE(ecc_bytes < 0)) - continue; - ecc_bytes_total = ecc_bytes * nsteps; - - if (ecc_bytes_total > oobavail || - strength * nsteps < req_corr) - continue; - - /* - * We assume the best is to meet the chip's requrement - * with the least number of ECC bytes. - */ - if (ecc_bytes_total < best_ecc_bytes_total) { - best_ecc_bytes_total = ecc_bytes_total; - best_step = step_size; - best_strength = strength; - best_ecc_bytes = ecc_bytes; - } - } - } - - if (best_ecc_bytes_total == INT_MAX) - return -ENOTSUPP; - - chip->ecc.size = best_step; - chip->ecc.strength = best_strength; - chip->ecc.bytes = best_ecc_bytes; - - return 0; -} -EXPORT_SYMBOL_GPL(nand_match_ecc_req); - -/** - * nand_maximize_ecc - choose the max ECC strength available - * @chip: nand chip info structure - * @caps: ECC engine caps info structure - * @oobavail: OOB size that the ECC engine can use - * - * Choose the max ECC strength that is supported on the controller, and can fit - * within the chip's OOB. On success, the chosen ECC settings are set. - */ -int nand_maximize_ecc(struct nand_chip *chip, - const struct nand_ecc_caps *caps, int oobavail) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - const struct nand_ecc_step_info *stepinfo; - int step_size, strength, nsteps, ecc_bytes, corr; - int best_corr = 0; - int best_step = 0; - int best_strength, best_ecc_bytes; - int i, j; - - if (WARN_ON(oobavail < 0)) - return -EINVAL; - - for (i = 0; i < caps->nstepinfos; i++) { - stepinfo = &caps->stepinfos[i]; - step_size = stepinfo->stepsize; - - /* If chip->ecc.size is already set, respect it */ - if (chip->ecc.size && step_size != chip->ecc.size) - continue; - - for (j = 0; j < stepinfo->nstrengths; j++) { - strength = stepinfo->strengths[j]; - - if (mtd->writesize % step_size) - continue; - - nsteps = mtd->writesize / step_size; - - ecc_bytes = caps->calc_ecc_bytes(step_size, strength); - if (WARN_ON_ONCE(ecc_bytes < 0)) - continue; - - if (ecc_bytes * nsteps > oobavail) - continue; - - corr = strength * nsteps; - - /* - * If the number of correctable bits is the same, - * bigger step_size has more reliability. - */ - if (corr > best_corr || - (corr == best_corr && step_size > best_step)) { - best_corr = corr; - best_step = step_size; - best_strength = strength; - best_ecc_bytes = ecc_bytes; - } - } - } - - if (!best_corr) - return -ENOTSUPP; - - chip->ecc.size = best_step; - chip->ecc.strength = best_strength; - chip->ecc.bytes = best_ecc_bytes; - - return 0; -} -EXPORT_SYMBOL_GPL(nand_maximize_ecc); - -/* - * Check if the chip configuration meet the datasheet requirements. - - * If our configuration corrects A bits per B bytes and the minimum - * required correction level is X bits per Y bytes, then we must ensure - * both of the following are true: - * - * (1) A / B >= X / Y - * (2) A >= X - * - * Requirement (1) ensures we can correct for the required bitflip density. - * Requirement (2) ensures we can correct even when all bitflips are clumped - * in the same sector. - */ -static bool nand_ecc_strength_good(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct nand_ecc_ctrl *ecc = &chip->ecc; - int corr, ds_corr; - - if (ecc->size == 0 || chip->ecc_step_ds == 0) - /* Not enough information */ - return true; - - /* - * We get the number of corrected bits per page to compare - * the correction density. - */ - corr = (mtd->writesize * ecc->strength) / ecc->size; - ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds; - - return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds; -} - -/** - * nand_scan_tail - [NAND Interface] Scan for the NAND device - * @mtd: MTD device structure - * - * This is the second phase of the normal nand_scan() function. It fills out - * all the uninitialized function pointers with the defaults and scans for a - * bad block table if appropriate. - */ -int nand_scan_tail(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct nand_ecc_ctrl *ecc = &chip->ecc; - int ret, i; - - /* New bad blocks should be marked in OOB, flash-based BBT, or both */ - if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) && - !(chip->bbt_options & NAND_BBT_USE_FLASH))) { - return -EINVAL; - } - - chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL); - if (!chip->data_buf) - return -ENOMEM; - - /* - * FIXME: some NAND manufacturer drivers expect the first die to be - * selected when manufacturer->init() is called. They should be fixed - * to explictly select the relevant die when interacting with the NAND - * chip. - */ - chip->select_chip(mtd, 0); - ret = nand_manufacturer_init(chip); - chip->select_chip(mtd, -1); - if (ret) - goto err_free_buf; - - /* Set the internal oob buffer location, just after the page data */ - chip->oob_poi = chip->data_buf + mtd->writesize; - - /* - * If no default placement scheme is given, select an appropriate one. - */ - if (!mtd->ooblayout && - !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) { - switch (mtd->oobsize) { - case 8: - case 16: - mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops); - break; - case 64: - case 128: - mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops); - break; - default: - /* - * Expose the whole OOB area to users if ECC_NONE - * is passed. We could do that for all kind of - * ->oobsize, but we must keep the old large/small - * page with ECC layout when ->oobsize <= 128 for - * compatibility reasons. - */ - if (ecc->mode == NAND_ECC_NONE) { - mtd_set_ooblayout(mtd, - &nand_ooblayout_lp_ops); - break; - } - - WARN(1, "No oob scheme defined for oobsize %d\n", - mtd->oobsize); - ret = -EINVAL; - goto err_nand_manuf_cleanup; - } - } - - /* - * Check ECC mode, default to software if 3byte/512byte hardware ECC is - * selected and we have 256 byte pagesize fallback to software ECC - */ - - switch (ecc->mode) { - case NAND_ECC_HW_OOB_FIRST: - /* Similar to NAND_ECC_HW, but a separate read_page handle */ - if (!ecc->calculate || !ecc->correct || !ecc->hwctl) { - WARN(1, "No ECC functions supplied; hardware ECC not possible\n"); - ret = -EINVAL; - goto err_nand_manuf_cleanup; - } - if (!ecc->read_page) - ecc->read_page = nand_read_page_hwecc_oob_first; - - case NAND_ECC_HW: - /* Use standard hwecc read page function? */ - if (!ecc->read_page) - ecc->read_page = nand_read_page_hwecc; - if (!ecc->write_page) - ecc->write_page = nand_write_page_hwecc; - if (!ecc->read_page_raw) - ecc->read_page_raw = nand_read_page_raw; - if (!ecc->write_page_raw) - ecc->write_page_raw = nand_write_page_raw; - if (!ecc->read_oob) - ecc->read_oob = nand_read_oob_std; - if (!ecc->write_oob) - ecc->write_oob = nand_write_oob_std; - if (!ecc->read_subpage) - ecc->read_subpage = nand_read_subpage; - if (!ecc->write_subpage && ecc->hwctl && ecc->calculate) - ecc->write_subpage = nand_write_subpage_hwecc; - - case NAND_ECC_HW_SYNDROME: - if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) && - (!ecc->read_page || - ecc->read_page == nand_read_page_hwecc || - !ecc->write_page || - ecc->write_page == nand_write_page_hwecc)) { - WARN(1, "No ECC functions supplied; hardware ECC not possible\n"); - ret = -EINVAL; - goto err_nand_manuf_cleanup; - } - /* Use standard syndrome read/write page function? */ - if (!ecc->read_page) - ecc->read_page = nand_read_page_syndrome; - if (!ecc->write_page) - ecc->write_page = nand_write_page_syndrome; - if (!ecc->read_page_raw) - ecc->read_page_raw = nand_read_page_raw_syndrome; - if (!ecc->write_page_raw) - ecc->write_page_raw = nand_write_page_raw_syndrome; - if (!ecc->read_oob) - ecc->read_oob = nand_read_oob_syndrome; - if (!ecc->write_oob) - ecc->write_oob = nand_write_oob_syndrome; - - if (mtd->writesize >= ecc->size) { - if (!ecc->strength) { - WARN(1, "Driver must set ecc.strength when using hardware ECC\n"); - ret = -EINVAL; - goto err_nand_manuf_cleanup; - } - break; - } - pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n", - ecc->size, mtd->writesize); - ecc->mode = NAND_ECC_SOFT; - ecc->algo = NAND_ECC_HAMMING; - - case NAND_ECC_SOFT: - ret = nand_set_ecc_soft_ops(mtd); - if (ret) { - ret = -EINVAL; - goto err_nand_manuf_cleanup; - } - break; - - case NAND_ECC_ON_DIE: - if (!ecc->read_page || !ecc->write_page) { - WARN(1, "No ECC functions supplied; on-die ECC not possible\n"); - ret = -EINVAL; - goto err_nand_manuf_cleanup; - } - if (!ecc->read_oob) - ecc->read_oob = nand_read_oob_std; - if (!ecc->write_oob) - ecc->write_oob = nand_write_oob_std; - break; - - case NAND_ECC_NONE: - pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n"); - ecc->read_page = nand_read_page_raw; - ecc->write_page = nand_write_page_raw; - ecc->read_oob = nand_read_oob_std; - ecc->read_page_raw = nand_read_page_raw; - ecc->write_page_raw = nand_write_page_raw; - ecc->write_oob = nand_write_oob_std; - ecc->size = mtd->writesize; - ecc->bytes = 0; - ecc->strength = 0; - break; - - default: - WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode); - ret = -EINVAL; - goto err_nand_manuf_cleanup; - } - - if (ecc->correct || ecc->calculate) { - ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL); - ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL); - if (!ecc->calc_buf || !ecc->code_buf) { - ret = -ENOMEM; - goto err_nand_manuf_cleanup; - } - } - - /* For many systems, the standard OOB write also works for raw */ - if (!ecc->read_oob_raw) - ecc->read_oob_raw = ecc->read_oob; - if (!ecc->write_oob_raw) - ecc->write_oob_raw = ecc->write_oob; - - /* propagate ecc info to mtd_info */ - mtd->ecc_strength = ecc->strength; - mtd->ecc_step_size = ecc->size; - - /* - * Set the number of read / write steps for one page depending on ECC - * mode. - */ - ecc->steps = mtd->writesize / ecc->size; - if (ecc->steps * ecc->size != mtd->writesize) { - WARN(1, "Invalid ECC parameters\n"); - ret = -EINVAL; - goto err_nand_manuf_cleanup; - } - ecc->total = ecc->steps * ecc->bytes; - if (ecc->total > mtd->oobsize) { - WARN(1, "Total number of ECC bytes exceeded oobsize\n"); - ret = -EINVAL; - goto err_nand_manuf_cleanup; - } - - /* - * The number of bytes available for a client to place data into - * the out of band area. - */ - ret = mtd_ooblayout_count_freebytes(mtd); - if (ret < 0) - ret = 0; - - mtd->oobavail = ret; - - /* ECC sanity check: warn if it's too weak */ - if (!nand_ecc_strength_good(mtd)) - pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n", - mtd->name); - - /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */ - if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) { - switch (ecc->steps) { - case 2: - mtd->subpage_sft = 1; - break; - case 4: - case 8: - case 16: - mtd->subpage_sft = 2; - break; - } - } - chip->subpagesize = mtd->writesize >> mtd->subpage_sft; - - /* Initialize state */ - chip->state = FL_READY; - - /* Invalidate the pagebuffer reference */ - chip->pagebuf = -1; - - /* Large page NAND with SOFT_ECC should support subpage reads */ - switch (ecc->mode) { - case NAND_ECC_SOFT: - if (chip->page_shift > 9) - chip->options |= NAND_SUBPAGE_READ; - break; - - default: - break; - } - - /* Fill in remaining MTD driver data */ - mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH; - mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM : - MTD_CAP_NANDFLASH; - mtd->_erase = nand_erase; - mtd->_point = NULL; - mtd->_unpoint = NULL; - mtd->_panic_write = panic_nand_write; - mtd->_read_oob = nand_read_oob; - mtd->_write_oob = nand_write_oob; - mtd->_sync = nand_sync; - mtd->_lock = NULL; - mtd->_unlock = NULL; - mtd->_suspend = nand_suspend; - mtd->_resume = nand_resume; - mtd->_reboot = nand_shutdown; - mtd->_block_isreserved = nand_block_isreserved; - mtd->_block_isbad = nand_block_isbad; - mtd->_block_markbad = nand_block_markbad; - mtd->_max_bad_blocks = nand_max_bad_blocks; - mtd->writebufsize = mtd->writesize; - - /* - * Initialize bitflip_threshold to its default prior scan_bbt() call. - * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be - * properly set. - */ - if (!mtd->bitflip_threshold) - mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4); - - /* Initialize the ->data_interface field. */ - ret = nand_init_data_interface(chip); - if (ret) - goto err_nand_manuf_cleanup; - - /* Enter fastest possible mode on all dies. */ - for (i = 0; i < chip->numchips; i++) { - chip->select_chip(mtd, i); - ret = nand_setup_data_interface(chip, i); - chip->select_chip(mtd, -1); - - if (ret) - goto err_nand_manuf_cleanup; - } - - /* Check, if we should skip the bad block table scan */ - if (chip->options & NAND_SKIP_BBTSCAN) - return 0; - - /* Build bad block table */ - ret = chip->scan_bbt(mtd); - if (ret) - goto err_nand_manuf_cleanup; - - return 0; - - -err_nand_manuf_cleanup: - nand_manufacturer_cleanup(chip); - -err_free_buf: - kfree(chip->data_buf); - kfree(ecc->code_buf); - kfree(ecc->calc_buf); - - return ret; -} -EXPORT_SYMBOL(nand_scan_tail); - -/* - * is_module_text_address() isn't exported, and it's mostly a pointless - * test if this is a module _anyway_ -- they'd have to try _really_ hard - * to call us from in-kernel code if the core NAND support is modular. - */ -#ifdef MODULE -#define caller_is_module() (1) -#else -#define caller_is_module() \ - is_module_text_address((unsigned long)__builtin_return_address(0)) -#endif - -/** - * nand_scan - [NAND Interface] Scan for the NAND device - * @mtd: MTD device structure - * @maxchips: number of chips to scan for - * - * This fills out all the uninitialized function pointers with the defaults. - * The flash ID is read and the mtd/chip structures are filled with the - * appropriate values. - */ -int nand_scan(struct mtd_info *mtd, int maxchips) -{ - int ret; - - ret = nand_scan_ident(mtd, maxchips, NULL); - if (!ret) - ret = nand_scan_tail(mtd); - return ret; -} -EXPORT_SYMBOL(nand_scan); - -/** - * nand_cleanup - [NAND Interface] Free resources held by the NAND device - * @chip: NAND chip object - */ -void nand_cleanup(struct nand_chip *chip) -{ - if (chip->ecc.mode == NAND_ECC_SOFT && - chip->ecc.algo == NAND_ECC_BCH) - nand_bch_free((struct nand_bch_control *)chip->ecc.priv); - - /* Free bad block table memory */ - kfree(chip->bbt); - kfree(chip->data_buf); - kfree(chip->ecc.code_buf); - kfree(chip->ecc.calc_buf); - - /* Free bad block descriptor memory */ - if (chip->badblock_pattern && chip->badblock_pattern->options - & NAND_BBT_DYNAMICSTRUCT) - kfree(chip->badblock_pattern); - - /* Free manufacturer priv data. */ - nand_manufacturer_cleanup(chip); -} -EXPORT_SYMBOL_GPL(nand_cleanup); - -/** - * nand_release - [NAND Interface] Unregister the MTD device and free resources - * held by the NAND device - * @mtd: MTD device structure - */ -void nand_release(struct mtd_info *mtd) -{ - mtd_device_unregister(mtd); - nand_cleanup(mtd_to_nand(mtd)); -} -EXPORT_SYMBOL_GPL(nand_release); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>"); -MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>"); -MODULE_DESCRIPTION("Generic NAND flash driver code"); |