summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/nand/nand_base.c
diff options
context:
space:
mode:
authorBoris Brezillon <boris.brezillon@bootlin.com>2018-02-05 23:02:04 +0100
committerBoris Brezillon <boris.brezillon@bootlin.com>2018-02-16 10:09:34 +0100
commit93db446a424cee9387b532995e6b516667079555 (patch)
tree39c7900ae38d890fb971ea5fc6f194f7e66fa797 /drivers/mtd/nand/nand_base.c
parentmtd: nand: Add missing copyright information (diff)
downloadlinux-93db446a424cee9387b532995e6b516667079555.tar.xz
linux-93db446a424cee9387b532995e6b516667079555.zip
mtd: nand: move raw NAND related code to the raw/ subdir
As part of the process of sharing more code between different NAND based devices, we need to move all raw NAND related code to the raw/ subdirectory. Signed-off-by: Boris Brezillon <boris.brezillon@bootlin.com>
Diffstat (limited to 'drivers/mtd/nand/nand_base.c')
-rw-r--r--drivers/mtd/nand/nand_base.c6582
1 files changed, 0 insertions, 6582 deletions
diff --git a/drivers/mtd/nand/nand_base.c b/drivers/mtd/nand/nand_base.c
deleted file mode 100644
index e70ca16a5118..000000000000
--- a/drivers/mtd/nand/nand_base.c
+++ /dev/null
@@ -1,6582 +0,0 @@
-/*
- * Overview:
- * This is the generic MTD driver for NAND flash devices. It should be
- * capable of working with almost all NAND chips currently available.
- *
- * Additional technical information is available on
- * http://www.linux-mtd.infradead.org/doc/nand.html
- *
- * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
- * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
- *
- * Credits:
- * David Woodhouse for adding multichip support
- *
- * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
- * rework for 2K page size chips
- *
- * TODO:
- * Enable cached programming for 2k page size chips
- * Check, if mtd->ecctype should be set to MTD_ECC_HW
- * if we have HW ECC support.
- * BBT table is not serialized, has to be fixed
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- */
-
-#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
-
-#include <linux/module.h>
-#include <linux/delay.h>
-#include <linux/errno.h>
-#include <linux/err.h>
-#include <linux/sched.h>
-#include <linux/slab.h>
-#include <linux/mm.h>
-#include <linux/nmi.h>
-#include <linux/types.h>
-#include <linux/mtd/mtd.h>
-#include <linux/mtd/rawnand.h>
-#include <linux/mtd/nand_ecc.h>
-#include <linux/mtd/nand_bch.h>
-#include <linux/interrupt.h>
-#include <linux/bitops.h>
-#include <linux/io.h>
-#include <linux/mtd/partitions.h>
-#include <linux/of.h>
-
-static int nand_get_device(struct mtd_info *mtd, int new_state);
-
-static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
- struct mtd_oob_ops *ops);
-
-/* Define default oob placement schemes for large and small page devices */
-static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct nand_ecc_ctrl *ecc = &chip->ecc;
-
- if (section > 1)
- return -ERANGE;
-
- if (!section) {
- oobregion->offset = 0;
- if (mtd->oobsize == 16)
- oobregion->length = 4;
- else
- oobregion->length = 3;
- } else {
- if (mtd->oobsize == 8)
- return -ERANGE;
-
- oobregion->offset = 6;
- oobregion->length = ecc->total - 4;
- }
-
- return 0;
-}
-
-static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
-{
- if (section > 1)
- return -ERANGE;
-
- if (mtd->oobsize == 16) {
- if (section)
- return -ERANGE;
-
- oobregion->length = 8;
- oobregion->offset = 8;
- } else {
- oobregion->length = 2;
- if (!section)
- oobregion->offset = 3;
- else
- oobregion->offset = 6;
- }
-
- return 0;
-}
-
-const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
- .ecc = nand_ooblayout_ecc_sp,
- .free = nand_ooblayout_free_sp,
-};
-EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops);
-
-static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct nand_ecc_ctrl *ecc = &chip->ecc;
-
- if (section || !ecc->total)
- return -ERANGE;
-
- oobregion->length = ecc->total;
- oobregion->offset = mtd->oobsize - oobregion->length;
-
- return 0;
-}
-
-static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct nand_ecc_ctrl *ecc = &chip->ecc;
-
- if (section)
- return -ERANGE;
-
- oobregion->length = mtd->oobsize - ecc->total - 2;
- oobregion->offset = 2;
-
- return 0;
-}
-
-const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
- .ecc = nand_ooblayout_ecc_lp,
- .free = nand_ooblayout_free_lp,
-};
-EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops);
-
-/*
- * Support the old "large page" layout used for 1-bit Hamming ECC where ECC
- * are placed at a fixed offset.
- */
-static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct nand_ecc_ctrl *ecc = &chip->ecc;
-
- if (section)
- return -ERANGE;
-
- switch (mtd->oobsize) {
- case 64:
- oobregion->offset = 40;
- break;
- case 128:
- oobregion->offset = 80;
- break;
- default:
- return -EINVAL;
- }
-
- oobregion->length = ecc->total;
- if (oobregion->offset + oobregion->length > mtd->oobsize)
- return -ERANGE;
-
- return 0;
-}
-
-static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct nand_ecc_ctrl *ecc = &chip->ecc;
- int ecc_offset = 0;
-
- if (section < 0 || section > 1)
- return -ERANGE;
-
- switch (mtd->oobsize) {
- case 64:
- ecc_offset = 40;
- break;
- case 128:
- ecc_offset = 80;
- break;
- default:
- return -EINVAL;
- }
-
- if (section == 0) {
- oobregion->offset = 2;
- oobregion->length = ecc_offset - 2;
- } else {
- oobregion->offset = ecc_offset + ecc->total;
- oobregion->length = mtd->oobsize - oobregion->offset;
- }
-
- return 0;
-}
-
-static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
- .ecc = nand_ooblayout_ecc_lp_hamming,
- .free = nand_ooblayout_free_lp_hamming,
-};
-
-static int check_offs_len(struct mtd_info *mtd,
- loff_t ofs, uint64_t len)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- int ret = 0;
-
- /* Start address must align on block boundary */
- if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
- pr_debug("%s: unaligned address\n", __func__);
- ret = -EINVAL;
- }
-
- /* Length must align on block boundary */
- if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
- pr_debug("%s: length not block aligned\n", __func__);
- ret = -EINVAL;
- }
-
- return ret;
-}
-
-/**
- * nand_release_device - [GENERIC] release chip
- * @mtd: MTD device structure
- *
- * Release chip lock and wake up anyone waiting on the device.
- */
-static void nand_release_device(struct mtd_info *mtd)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
-
- /* Release the controller and the chip */
- spin_lock(&chip->controller->lock);
- chip->controller->active = NULL;
- chip->state = FL_READY;
- wake_up(&chip->controller->wq);
- spin_unlock(&chip->controller->lock);
-}
-
-/**
- * nand_read_byte - [DEFAULT] read one byte from the chip
- * @mtd: MTD device structure
- *
- * Default read function for 8bit buswidth
- */
-static uint8_t nand_read_byte(struct mtd_info *mtd)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- return readb(chip->IO_ADDR_R);
-}
-
-/**
- * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
- * @mtd: MTD device structure
- *
- * Default read function for 16bit buswidth with endianness conversion.
- *
- */
-static uint8_t nand_read_byte16(struct mtd_info *mtd)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
-}
-
-/**
- * nand_read_word - [DEFAULT] read one word from the chip
- * @mtd: MTD device structure
- *
- * Default read function for 16bit buswidth without endianness conversion.
- */
-static u16 nand_read_word(struct mtd_info *mtd)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- return readw(chip->IO_ADDR_R);
-}
-
-/**
- * nand_select_chip - [DEFAULT] control CE line
- * @mtd: MTD device structure
- * @chipnr: chipnumber to select, -1 for deselect
- *
- * Default select function for 1 chip devices.
- */
-static void nand_select_chip(struct mtd_info *mtd, int chipnr)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
-
- switch (chipnr) {
- case -1:
- chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
- break;
- case 0:
- break;
-
- default:
- BUG();
- }
-}
-
-/**
- * nand_write_byte - [DEFAULT] write single byte to chip
- * @mtd: MTD device structure
- * @byte: value to write
- *
- * Default function to write a byte to I/O[7:0]
- */
-static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
-
- chip->write_buf(mtd, &byte, 1);
-}
-
-/**
- * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
- * @mtd: MTD device structure
- * @byte: value to write
- *
- * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
- */
-static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- uint16_t word = byte;
-
- /*
- * It's not entirely clear what should happen to I/O[15:8] when writing
- * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
- *
- * When the host supports a 16-bit bus width, only data is
- * transferred at the 16-bit width. All address and command line
- * transfers shall use only the lower 8-bits of the data bus. During
- * command transfers, the host may place any value on the upper
- * 8-bits of the data bus. During address transfers, the host shall
- * set the upper 8-bits of the data bus to 00h.
- *
- * One user of the write_byte callback is nand_onfi_set_features. The
- * four parameters are specified to be written to I/O[7:0], but this is
- * neither an address nor a command transfer. Let's assume a 0 on the
- * upper I/O lines is OK.
- */
- chip->write_buf(mtd, (uint8_t *)&word, 2);
-}
-
-/**
- * nand_write_buf - [DEFAULT] write buffer to chip
- * @mtd: MTD device structure
- * @buf: data buffer
- * @len: number of bytes to write
- *
- * Default write function for 8bit buswidth.
- */
-static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
-
- iowrite8_rep(chip->IO_ADDR_W, buf, len);
-}
-
-/**
- * nand_read_buf - [DEFAULT] read chip data into buffer
- * @mtd: MTD device structure
- * @buf: buffer to store date
- * @len: number of bytes to read
- *
- * Default read function for 8bit buswidth.
- */
-static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
-
- ioread8_rep(chip->IO_ADDR_R, buf, len);
-}
-
-/**
- * nand_write_buf16 - [DEFAULT] write buffer to chip
- * @mtd: MTD device structure
- * @buf: data buffer
- * @len: number of bytes to write
- *
- * Default write function for 16bit buswidth.
- */
-static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- u16 *p = (u16 *) buf;
-
- iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
-}
-
-/**
- * nand_read_buf16 - [DEFAULT] read chip data into buffer
- * @mtd: MTD device structure
- * @buf: buffer to store date
- * @len: number of bytes to read
- *
- * Default read function for 16bit buswidth.
- */
-static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- u16 *p = (u16 *) buf;
-
- ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
-}
-
-/**
- * nand_block_bad - [DEFAULT] Read bad block marker from the chip
- * @mtd: MTD device structure
- * @ofs: offset from device start
- *
- * Check, if the block is bad.
- */
-static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
-{
- int page, page_end, res;
- struct nand_chip *chip = mtd_to_nand(mtd);
- u8 bad;
-
- if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
- ofs += mtd->erasesize - mtd->writesize;
-
- page = (int)(ofs >> chip->page_shift) & chip->pagemask;
- page_end = page + (chip->bbt_options & NAND_BBT_SCAN2NDPAGE ? 2 : 1);
-
- for (; page < page_end; page++) {
- res = chip->ecc.read_oob(mtd, chip, page);
- if (res)
- return res;
-
- bad = chip->oob_poi[chip->badblockpos];
-
- if (likely(chip->badblockbits == 8))
- res = bad != 0xFF;
- else
- res = hweight8(bad) < chip->badblockbits;
- if (res)
- return res;
- }
-
- return 0;
-}
-
-/**
- * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
- * @mtd: MTD device structure
- * @ofs: offset from device start
- *
- * This is the default implementation, which can be overridden by a hardware
- * specific driver. It provides the details for writing a bad block marker to a
- * block.
- */
-static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct mtd_oob_ops ops;
- uint8_t buf[2] = { 0, 0 };
- int ret = 0, res, i = 0;
-
- memset(&ops, 0, sizeof(ops));
- ops.oobbuf = buf;
- ops.ooboffs = chip->badblockpos;
- if (chip->options & NAND_BUSWIDTH_16) {
- ops.ooboffs &= ~0x01;
- ops.len = ops.ooblen = 2;
- } else {
- ops.len = ops.ooblen = 1;
- }
- ops.mode = MTD_OPS_PLACE_OOB;
-
- /* Write to first/last page(s) if necessary */
- if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
- ofs += mtd->erasesize - mtd->writesize;
- do {
- res = nand_do_write_oob(mtd, ofs, &ops);
- if (!ret)
- ret = res;
-
- i++;
- ofs += mtd->writesize;
- } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
-
- return ret;
-}
-
-/**
- * nand_block_markbad_lowlevel - mark a block bad
- * @mtd: MTD device structure
- * @ofs: offset from device start
- *
- * This function performs the generic NAND bad block marking steps (i.e., bad
- * block table(s) and/or marker(s)). We only allow the hardware driver to
- * specify how to write bad block markers to OOB (chip->block_markbad).
- *
- * We try operations in the following order:
- *
- * (1) erase the affected block, to allow OOB marker to be written cleanly
- * (2) write bad block marker to OOB area of affected block (unless flag
- * NAND_BBT_NO_OOB_BBM is present)
- * (3) update the BBT
- *
- * Note that we retain the first error encountered in (2) or (3), finish the
- * procedures, and dump the error in the end.
-*/
-static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- int res, ret = 0;
-
- if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
- struct erase_info einfo;
-
- /* Attempt erase before marking OOB */
- memset(&einfo, 0, sizeof(einfo));
- einfo.mtd = mtd;
- einfo.addr = ofs;
- einfo.len = 1ULL << chip->phys_erase_shift;
- nand_erase_nand(mtd, &einfo, 0);
-
- /* Write bad block marker to OOB */
- nand_get_device(mtd, FL_WRITING);
- ret = chip->block_markbad(mtd, ofs);
- nand_release_device(mtd);
- }
-
- /* Mark block bad in BBT */
- if (chip->bbt) {
- res = nand_markbad_bbt(mtd, ofs);
- if (!ret)
- ret = res;
- }
-
- if (!ret)
- mtd->ecc_stats.badblocks++;
-
- return ret;
-}
-
-/**
- * nand_check_wp - [GENERIC] check if the chip is write protected
- * @mtd: MTD device structure
- *
- * Check, if the device is write protected. The function expects, that the
- * device is already selected.
- */
-static int nand_check_wp(struct mtd_info *mtd)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- u8 status;
- int ret;
-
- /* Broken xD cards report WP despite being writable */
- if (chip->options & NAND_BROKEN_XD)
- return 0;
-
- /* Check the WP bit */
- ret = nand_status_op(chip, &status);
- if (ret)
- return ret;
-
- return status & NAND_STATUS_WP ? 0 : 1;
-}
-
-/**
- * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
- * @mtd: MTD device structure
- * @ofs: offset from device start
- *
- * Check if the block is marked as reserved.
- */
-static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
-
- if (!chip->bbt)
- return 0;
- /* Return info from the table */
- return nand_isreserved_bbt(mtd, ofs);
-}
-
-/**
- * nand_block_checkbad - [GENERIC] Check if a block is marked bad
- * @mtd: MTD device structure
- * @ofs: offset from device start
- * @allowbbt: 1, if its allowed to access the bbt area
- *
- * Check, if the block is bad. Either by reading the bad block table or
- * calling of the scan function.
- */
-static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
-
- if (!chip->bbt)
- return chip->block_bad(mtd, ofs);
-
- /* Return info from the table */
- return nand_isbad_bbt(mtd, ofs, allowbbt);
-}
-
-/**
- * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
- * @mtd: MTD device structure
- * @timeo: Timeout
- *
- * Helper function for nand_wait_ready used when needing to wait in interrupt
- * context.
- */
-static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- int i;
-
- /* Wait for the device to get ready */
- for (i = 0; i < timeo; i++) {
- if (chip->dev_ready(mtd))
- break;
- touch_softlockup_watchdog();
- mdelay(1);
- }
-}
-
-/**
- * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
- * @mtd: MTD device structure
- *
- * Wait for the ready pin after a command, and warn if a timeout occurs.
- */
-void nand_wait_ready(struct mtd_info *mtd)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- unsigned long timeo = 400;
-
- if (in_interrupt() || oops_in_progress)
- return panic_nand_wait_ready(mtd, timeo);
-
- /* Wait until command is processed or timeout occurs */
- timeo = jiffies + msecs_to_jiffies(timeo);
- do {
- if (chip->dev_ready(mtd))
- return;
- cond_resched();
- } while (time_before(jiffies, timeo));
-
- if (!chip->dev_ready(mtd))
- pr_warn_ratelimited("timeout while waiting for chip to become ready\n");
-}
-EXPORT_SYMBOL_GPL(nand_wait_ready);
-
-/**
- * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
- * @mtd: MTD device structure
- * @timeo: Timeout in ms
- *
- * Wait for status ready (i.e. command done) or timeout.
- */
-static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
-{
- register struct nand_chip *chip = mtd_to_nand(mtd);
- int ret;
-
- timeo = jiffies + msecs_to_jiffies(timeo);
- do {
- u8 status;
-
- ret = nand_read_data_op(chip, &status, sizeof(status), true);
- if (ret)
- return;
-
- if (status & NAND_STATUS_READY)
- break;
- touch_softlockup_watchdog();
- } while (time_before(jiffies, timeo));
-};
-
-/**
- * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
- * @chip: NAND chip structure
- * @timeout_ms: Timeout in ms
- *
- * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
- * If that does not happen whitin the specified timeout, -ETIMEDOUT is
- * returned.
- *
- * This helper is intended to be used when the controller does not have access
- * to the NAND R/B pin.
- *
- * Be aware that calling this helper from an ->exec_op() implementation means
- * ->exec_op() must be re-entrant.
- *
- * Return 0 if the NAND chip is ready, a negative error otherwise.
- */
-int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
-{
- u8 status = 0;
- int ret;
-
- if (!chip->exec_op)
- return -ENOTSUPP;
-
- ret = nand_status_op(chip, NULL);
- if (ret)
- return ret;
-
- timeout_ms = jiffies + msecs_to_jiffies(timeout_ms);
- do {
- ret = nand_read_data_op(chip, &status, sizeof(status), true);
- if (ret)
- break;
-
- if (status & NAND_STATUS_READY)
- break;
-
- /*
- * Typical lowest execution time for a tR on most NANDs is 10us,
- * use this as polling delay before doing something smarter (ie.
- * deriving a delay from the timeout value, timeout_ms/ratio).
- */
- udelay(10);
- } while (time_before(jiffies, timeout_ms));
-
- /*
- * We have to exit READ_STATUS mode in order to read real data on the
- * bus in case the WAITRDY instruction is preceding a DATA_IN
- * instruction.
- */
- nand_exit_status_op(chip);
-
- if (ret)
- return ret;
-
- return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
-};
-EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
-
-/**
- * nand_command - [DEFAULT] Send command to NAND device
- * @mtd: MTD device structure
- * @command: the command to be sent
- * @column: the column address for this command, -1 if none
- * @page_addr: the page address for this command, -1 if none
- *
- * Send command to NAND device. This function is used for small page devices
- * (512 Bytes per page).
- */
-static void nand_command(struct mtd_info *mtd, unsigned int command,
- int column, int page_addr)
-{
- register struct nand_chip *chip = mtd_to_nand(mtd);
- int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
-
- /* Write out the command to the device */
- if (command == NAND_CMD_SEQIN) {
- int readcmd;
-
- if (column >= mtd->writesize) {
- /* OOB area */
- column -= mtd->writesize;
- readcmd = NAND_CMD_READOOB;
- } else if (column < 256) {
- /* First 256 bytes --> READ0 */
- readcmd = NAND_CMD_READ0;
- } else {
- column -= 256;
- readcmd = NAND_CMD_READ1;
- }
- chip->cmd_ctrl(mtd, readcmd, ctrl);
- ctrl &= ~NAND_CTRL_CHANGE;
- }
- if (command != NAND_CMD_NONE)
- chip->cmd_ctrl(mtd, command, ctrl);
-
- /* Address cycle, when necessary */
- ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
- /* Serially input address */
- if (column != -1) {
- /* Adjust columns for 16 bit buswidth */
- if (chip->options & NAND_BUSWIDTH_16 &&
- !nand_opcode_8bits(command))
- column >>= 1;
- chip->cmd_ctrl(mtd, column, ctrl);
- ctrl &= ~NAND_CTRL_CHANGE;
- }
- if (page_addr != -1) {
- chip->cmd_ctrl(mtd, page_addr, ctrl);
- ctrl &= ~NAND_CTRL_CHANGE;
- chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
- if (chip->options & NAND_ROW_ADDR_3)
- chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
- }
- chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
-
- /*
- * Program and erase have their own busy handlers status and sequential
- * in needs no delay
- */
- switch (command) {
-
- case NAND_CMD_NONE:
- case NAND_CMD_PAGEPROG:
- case NAND_CMD_ERASE1:
- case NAND_CMD_ERASE2:
- case NAND_CMD_SEQIN:
- case NAND_CMD_STATUS:
- case NAND_CMD_READID:
- case NAND_CMD_SET_FEATURES:
- return;
-
- case NAND_CMD_RESET:
- if (chip->dev_ready)
- break;
- udelay(chip->chip_delay);
- chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
- NAND_CTRL_CLE | NAND_CTRL_CHANGE);
- chip->cmd_ctrl(mtd,
- NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
- /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
- nand_wait_status_ready(mtd, 250);
- return;
-
- /* This applies to read commands */
- case NAND_CMD_READ0:
- /*
- * READ0 is sometimes used to exit GET STATUS mode. When this
- * is the case no address cycles are requested, and we can use
- * this information to detect that we should not wait for the
- * device to be ready.
- */
- if (column == -1 && page_addr == -1)
- return;
-
- default:
- /*
- * If we don't have access to the busy pin, we apply the given
- * command delay
- */
- if (!chip->dev_ready) {
- udelay(chip->chip_delay);
- return;
- }
- }
- /*
- * Apply this short delay always to ensure that we do wait tWB in
- * any case on any machine.
- */
- ndelay(100);
-
- nand_wait_ready(mtd);
-}
-
-static void nand_ccs_delay(struct nand_chip *chip)
-{
- /*
- * The controller already takes care of waiting for tCCS when the RNDIN
- * or RNDOUT command is sent, return directly.
- */
- if (!(chip->options & NAND_WAIT_TCCS))
- return;
-
- /*
- * Wait tCCS_min if it is correctly defined, otherwise wait 500ns
- * (which should be safe for all NANDs).
- */
- if (chip->setup_data_interface)
- ndelay(chip->data_interface.timings.sdr.tCCS_min / 1000);
- else
- ndelay(500);
-}
-
-/**
- * nand_command_lp - [DEFAULT] Send command to NAND large page device
- * @mtd: MTD device structure
- * @command: the command to be sent
- * @column: the column address for this command, -1 if none
- * @page_addr: the page address for this command, -1 if none
- *
- * Send command to NAND device. This is the version for the new large page
- * devices. We don't have the separate regions as we have in the small page
- * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
- */
-static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
- int column, int page_addr)
-{
- register struct nand_chip *chip = mtd_to_nand(mtd);
-
- /* Emulate NAND_CMD_READOOB */
- if (command == NAND_CMD_READOOB) {
- column += mtd->writesize;
- command = NAND_CMD_READ0;
- }
-
- /* Command latch cycle */
- if (command != NAND_CMD_NONE)
- chip->cmd_ctrl(mtd, command,
- NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
-
- if (column != -1 || page_addr != -1) {
- int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
-
- /* Serially input address */
- if (column != -1) {
- /* Adjust columns for 16 bit buswidth */
- if (chip->options & NAND_BUSWIDTH_16 &&
- !nand_opcode_8bits(command))
- column >>= 1;
- chip->cmd_ctrl(mtd, column, ctrl);
- ctrl &= ~NAND_CTRL_CHANGE;
-
- /* Only output a single addr cycle for 8bits opcodes. */
- if (!nand_opcode_8bits(command))
- chip->cmd_ctrl(mtd, column >> 8, ctrl);
- }
- if (page_addr != -1) {
- chip->cmd_ctrl(mtd, page_addr, ctrl);
- chip->cmd_ctrl(mtd, page_addr >> 8,
- NAND_NCE | NAND_ALE);
- if (chip->options & NAND_ROW_ADDR_3)
- chip->cmd_ctrl(mtd, page_addr >> 16,
- NAND_NCE | NAND_ALE);
- }
- }
- chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
-
- /*
- * Program and erase have their own busy handlers status, sequential
- * in and status need no delay.
- */
- switch (command) {
-
- case NAND_CMD_NONE:
- case NAND_CMD_CACHEDPROG:
- case NAND_CMD_PAGEPROG:
- case NAND_CMD_ERASE1:
- case NAND_CMD_ERASE2:
- case NAND_CMD_SEQIN:
- case NAND_CMD_STATUS:
- case NAND_CMD_READID:
- case NAND_CMD_SET_FEATURES:
- return;
-
- case NAND_CMD_RNDIN:
- nand_ccs_delay(chip);
- return;
-
- case NAND_CMD_RESET:
- if (chip->dev_ready)
- break;
- udelay(chip->chip_delay);
- chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
- NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
- chip->cmd_ctrl(mtd, NAND_CMD_NONE,
- NAND_NCE | NAND_CTRL_CHANGE);
- /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
- nand_wait_status_ready(mtd, 250);
- return;
-
- case NAND_CMD_RNDOUT:
- /* No ready / busy check necessary */
- chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
- NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
- chip->cmd_ctrl(mtd, NAND_CMD_NONE,
- NAND_NCE | NAND_CTRL_CHANGE);
-
- nand_ccs_delay(chip);
- return;
-
- case NAND_CMD_READ0:
- /*
- * READ0 is sometimes used to exit GET STATUS mode. When this
- * is the case no address cycles are requested, and we can use
- * this information to detect that READSTART should not be
- * issued.
- */
- if (column == -1 && page_addr == -1)
- return;
-
- chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
- NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
- chip->cmd_ctrl(mtd, NAND_CMD_NONE,
- NAND_NCE | NAND_CTRL_CHANGE);
-
- /* This applies to read commands */
- default:
- /*
- * If we don't have access to the busy pin, we apply the given
- * command delay.
- */
- if (!chip->dev_ready) {
- udelay(chip->chip_delay);
- return;
- }
- }
-
- /*
- * Apply this short delay always to ensure that we do wait tWB in
- * any case on any machine.
- */
- ndelay(100);
-
- nand_wait_ready(mtd);
-}
-
-/**
- * panic_nand_get_device - [GENERIC] Get chip for selected access
- * @chip: the nand chip descriptor
- * @mtd: MTD device structure
- * @new_state: the state which is requested
- *
- * Used when in panic, no locks are taken.
- */
-static void panic_nand_get_device(struct nand_chip *chip,
- struct mtd_info *mtd, int new_state)
-{
- /* Hardware controller shared among independent devices */
- chip->controller->active = chip;
- chip->state = new_state;
-}
-
-/**
- * nand_get_device - [GENERIC] Get chip for selected access
- * @mtd: MTD device structure
- * @new_state: the state which is requested
- *
- * Get the device and lock it for exclusive access
- */
-static int
-nand_get_device(struct mtd_info *mtd, int new_state)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- spinlock_t *lock = &chip->controller->lock;
- wait_queue_head_t *wq = &chip->controller->wq;
- DECLARE_WAITQUEUE(wait, current);
-retry:
- spin_lock(lock);
-
- /* Hardware controller shared among independent devices */
- if (!chip->controller->active)
- chip->controller->active = chip;
-
- if (chip->controller->active == chip && chip->state == FL_READY) {
- chip->state = new_state;
- spin_unlock(lock);
- return 0;
- }
- if (new_state == FL_PM_SUSPENDED) {
- if (chip->controller->active->state == FL_PM_SUSPENDED) {
- chip->state = FL_PM_SUSPENDED;
- spin_unlock(lock);
- return 0;
- }
- }
- set_current_state(TASK_UNINTERRUPTIBLE);
- add_wait_queue(wq, &wait);
- spin_unlock(lock);
- schedule();
- remove_wait_queue(wq, &wait);
- goto retry;
-}
-
-/**
- * panic_nand_wait - [GENERIC] wait until the command is done
- * @mtd: MTD device structure
- * @chip: NAND chip structure
- * @timeo: timeout
- *
- * Wait for command done. This is a helper function for nand_wait used when
- * we are in interrupt context. May happen when in panic and trying to write
- * an oops through mtdoops.
- */
-static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
- unsigned long timeo)
-{
- int i;
- for (i = 0; i < timeo; i++) {
- if (chip->dev_ready) {
- if (chip->dev_ready(mtd))
- break;
- } else {
- int ret;
- u8 status;
-
- ret = nand_read_data_op(chip, &status, sizeof(status),
- true);
- if (ret)
- return;
-
- if (status & NAND_STATUS_READY)
- break;
- }
- mdelay(1);
- }
-}
-
-/**
- * nand_wait - [DEFAULT] wait until the command is done
- * @mtd: MTD device structure
- * @chip: NAND chip structure
- *
- * Wait for command done. This applies to erase and program only.
- */
-static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
-{
-
- unsigned long timeo = 400;
- u8 status;
- int ret;
-
- /*
- * Apply this short delay always to ensure that we do wait tWB in any
- * case on any machine.
- */
- ndelay(100);
-
- ret = nand_status_op(chip, NULL);
- if (ret)
- return ret;
-
- if (in_interrupt() || oops_in_progress)
- panic_nand_wait(mtd, chip, timeo);
- else {
- timeo = jiffies + msecs_to_jiffies(timeo);
- do {
- if (chip->dev_ready) {
- if (chip->dev_ready(mtd))
- break;
- } else {
- ret = nand_read_data_op(chip, &status,
- sizeof(status), true);
- if (ret)
- return ret;
-
- if (status & NAND_STATUS_READY)
- break;
- }
- cond_resched();
- } while (time_before(jiffies, timeo));
- }
-
- ret = nand_read_data_op(chip, &status, sizeof(status), true);
- if (ret)
- return ret;
-
- /* This can happen if in case of timeout or buggy dev_ready */
- WARN_ON(!(status & NAND_STATUS_READY));
- return status;
-}
-
-/**
- * nand_reset_data_interface - Reset data interface and timings
- * @chip: The NAND chip
- * @chipnr: Internal die id
- *
- * Reset the Data interface and timings to ONFI mode 0.
- *
- * Returns 0 for success or negative error code otherwise.
- */
-static int nand_reset_data_interface(struct nand_chip *chip, int chipnr)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- int ret;
-
- if (!chip->setup_data_interface)
- return 0;
-
- /*
- * The ONFI specification says:
- * "
- * To transition from NV-DDR or NV-DDR2 to the SDR data
- * interface, the host shall use the Reset (FFh) command
- * using SDR timing mode 0. A device in any timing mode is
- * required to recognize Reset (FFh) command issued in SDR
- * timing mode 0.
- * "
- *
- * Configure the data interface in SDR mode and set the
- * timings to timing mode 0.
- */
-
- onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
- ret = chip->setup_data_interface(mtd, chipnr, &chip->data_interface);
- if (ret)
- pr_err("Failed to configure data interface to SDR timing mode 0\n");
-
- return ret;
-}
-
-/**
- * nand_setup_data_interface - Setup the best data interface and timings
- * @chip: The NAND chip
- * @chipnr: Internal die id
- *
- * Find and configure the best data interface and NAND timings supported by
- * the chip and the driver.
- * First tries to retrieve supported timing modes from ONFI information,
- * and if the NAND chip does not support ONFI, relies on the
- * ->onfi_timing_mode_default specified in the nand_ids table.
- *
- * Returns 0 for success or negative error code otherwise.
- */
-static int nand_setup_data_interface(struct nand_chip *chip, int chipnr)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- int ret;
-
- if (!chip->setup_data_interface)
- return 0;
-
- /*
- * Ensure the timing mode has been changed on the chip side
- * before changing timings on the controller side.
- */
- if (chip->onfi_version &&
- (le16_to_cpu(chip->onfi_params.opt_cmd) &
- ONFI_OPT_CMD_SET_GET_FEATURES)) {
- u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
- chip->onfi_timing_mode_default,
- };
-
- ret = chip->onfi_set_features(mtd, chip,
- ONFI_FEATURE_ADDR_TIMING_MODE,
- tmode_param);
- if (ret)
- goto err;
- }
-
- ret = chip->setup_data_interface(mtd, chipnr, &chip->data_interface);
-err:
- return ret;
-}
-
-/**
- * nand_init_data_interface - find the best data interface and timings
- * @chip: The NAND chip
- *
- * Find the best data interface and NAND timings supported by the chip
- * and the driver.
- * First tries to retrieve supported timing modes from ONFI information,
- * and if the NAND chip does not support ONFI, relies on the
- * ->onfi_timing_mode_default specified in the nand_ids table. After this
- * function nand_chip->data_interface is initialized with the best timing mode
- * available.
- *
- * Returns 0 for success or negative error code otherwise.
- */
-static int nand_init_data_interface(struct nand_chip *chip)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- int modes, mode, ret;
-
- if (!chip->setup_data_interface)
- return 0;
-
- /*
- * First try to identify the best timings from ONFI parameters and
- * if the NAND does not support ONFI, fallback to the default ONFI
- * timing mode.
- */
- modes = onfi_get_async_timing_mode(chip);
- if (modes == ONFI_TIMING_MODE_UNKNOWN) {
- if (!chip->onfi_timing_mode_default)
- return 0;
-
- modes = GENMASK(chip->onfi_timing_mode_default, 0);
- }
-
-
- for (mode = fls(modes) - 1; mode >= 0; mode--) {
- ret = onfi_fill_data_interface(chip, NAND_SDR_IFACE, mode);
- if (ret)
- continue;
-
- /*
- * Pass NAND_DATA_IFACE_CHECK_ONLY to only check if the
- * controller supports the requested timings.
- */
- ret = chip->setup_data_interface(mtd,
- NAND_DATA_IFACE_CHECK_ONLY,
- &chip->data_interface);
- if (!ret) {
- chip->onfi_timing_mode_default = mode;
- break;
- }
- }
-
- return 0;
-}
-
-/**
- * nand_fill_column_cycles - fill the column cycles of an address
- * @chip: The NAND chip
- * @addrs: Array of address cycles to fill
- * @offset_in_page: The offset in the page
- *
- * Fills the first or the first two bytes of the @addrs field depending
- * on the NAND bus width and the page size.
- *
- * Returns the number of cycles needed to encode the column, or a negative
- * error code in case one of the arguments is invalid.
- */
-static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
- unsigned int offset_in_page)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
-
- /* Make sure the offset is less than the actual page size. */
- if (offset_in_page > mtd->writesize + mtd->oobsize)
- return -EINVAL;
-
- /*
- * On small page NANDs, there's a dedicated command to access the OOB
- * area, and the column address is relative to the start of the OOB
- * area, not the start of the page. Asjust the address accordingly.
- */
- if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
- offset_in_page -= mtd->writesize;
-
- /*
- * The offset in page is expressed in bytes, if the NAND bus is 16-bit
- * wide, then it must be divided by 2.
- */
- if (chip->options & NAND_BUSWIDTH_16) {
- if (WARN_ON(offset_in_page % 2))
- return -EINVAL;
-
- offset_in_page /= 2;
- }
-
- addrs[0] = offset_in_page;
-
- /*
- * Small page NANDs use 1 cycle for the columns, while large page NANDs
- * need 2
- */
- if (mtd->writesize <= 512)
- return 1;
-
- addrs[1] = offset_in_page >> 8;
-
- return 2;
-}
-
-static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
- unsigned int offset_in_page, void *buf,
- unsigned int len)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- const struct nand_sdr_timings *sdr =
- nand_get_sdr_timings(&chip->data_interface);
- u8 addrs[4];
- struct nand_op_instr instrs[] = {
- NAND_OP_CMD(NAND_CMD_READ0, 0),
- NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)),
- NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
- PSEC_TO_NSEC(sdr->tRR_min)),
- NAND_OP_DATA_IN(len, buf, 0),
- };
- struct nand_operation op = NAND_OPERATION(instrs);
- int ret;
-
- /* Drop the DATA_IN instruction if len is set to 0. */
- if (!len)
- op.ninstrs--;
-
- if (offset_in_page >= mtd->writesize)
- instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
- else if (offset_in_page >= 256 &&
- !(chip->options & NAND_BUSWIDTH_16))
- instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
-
- ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
- if (ret < 0)
- return ret;
-
- addrs[1] = page;
- addrs[2] = page >> 8;
-
- if (chip->options & NAND_ROW_ADDR_3) {
- addrs[3] = page >> 16;
- instrs[1].ctx.addr.naddrs++;
- }
-
- return nand_exec_op(chip, &op);
-}
-
-static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
- unsigned int offset_in_page, void *buf,
- unsigned int len)
-{
- const struct nand_sdr_timings *sdr =
- nand_get_sdr_timings(&chip->data_interface);
- u8 addrs[5];
- struct nand_op_instr instrs[] = {
- NAND_OP_CMD(NAND_CMD_READ0, 0),
- NAND_OP_ADDR(4, addrs, 0),
- NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)),
- NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
- PSEC_TO_NSEC(sdr->tRR_min)),
- NAND_OP_DATA_IN(len, buf, 0),
- };
- struct nand_operation op = NAND_OPERATION(instrs);
- int ret;
-
- /* Drop the DATA_IN instruction if len is set to 0. */
- if (!len)
- op.ninstrs--;
-
- ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
- if (ret < 0)
- return ret;
-
- addrs[2] = page;
- addrs[3] = page >> 8;
-
- if (chip->options & NAND_ROW_ADDR_3) {
- addrs[4] = page >> 16;
- instrs[1].ctx.addr.naddrs++;
- }
-
- return nand_exec_op(chip, &op);
-}
-
-/**
- * nand_read_page_op - Do a READ PAGE operation
- * @chip: The NAND chip
- * @page: page to read
- * @offset_in_page: offset within the page
- * @buf: buffer used to store the data
- * @len: length of the buffer
- *
- * This function issues a READ PAGE operation.
- * This function does not select/unselect the CS line.
- *
- * Returns 0 on success, a negative error code otherwise.
- */
-int nand_read_page_op(struct nand_chip *chip, unsigned int page,
- unsigned int offset_in_page, void *buf, unsigned int len)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
-
- if (len && !buf)
- return -EINVAL;
-
- if (offset_in_page + len > mtd->writesize + mtd->oobsize)
- return -EINVAL;
-
- if (chip->exec_op) {
- if (mtd->writesize > 512)
- return nand_lp_exec_read_page_op(chip, page,
- offset_in_page, buf,
- len);
-
- return nand_sp_exec_read_page_op(chip, page, offset_in_page,
- buf, len);
- }
-
- chip->cmdfunc(mtd, NAND_CMD_READ0, offset_in_page, page);
- if (len)
- chip->read_buf(mtd, buf, len);
-
- return 0;
-}
-EXPORT_SYMBOL_GPL(nand_read_page_op);
-
-/**
- * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
- * @chip: The NAND chip
- * @page: parameter page to read
- * @buf: buffer used to store the data
- * @len: length of the buffer
- *
- * This function issues a READ PARAMETER PAGE operation.
- * This function does not select/unselect the CS line.
- *
- * Returns 0 on success, a negative error code otherwise.
- */
-static int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
- unsigned int len)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- unsigned int i;
- u8 *p = buf;
-
- if (len && !buf)
- return -EINVAL;
-
- if (chip->exec_op) {
- const struct nand_sdr_timings *sdr =
- nand_get_sdr_timings(&chip->data_interface);
- struct nand_op_instr instrs[] = {
- NAND_OP_CMD(NAND_CMD_PARAM, 0),
- NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)),
- NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
- PSEC_TO_NSEC(sdr->tRR_min)),
- NAND_OP_8BIT_DATA_IN(len, buf, 0),
- };
- struct nand_operation op = NAND_OPERATION(instrs);
-
- /* Drop the DATA_IN instruction if len is set to 0. */
- if (!len)
- op.ninstrs--;
-
- return nand_exec_op(chip, &op);
- }
-
- chip->cmdfunc(mtd, NAND_CMD_PARAM, page, -1);
- for (i = 0; i < len; i++)
- p[i] = chip->read_byte(mtd);
-
- return 0;
-}
-
-/**
- * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
- * @chip: The NAND chip
- * @offset_in_page: offset within the page
- * @buf: buffer used to store the data
- * @len: length of the buffer
- * @force_8bit: force 8-bit bus access
- *
- * This function issues a CHANGE READ COLUMN operation.
- * This function does not select/unselect the CS line.
- *
- * Returns 0 on success, a negative error code otherwise.
- */
-int nand_change_read_column_op(struct nand_chip *chip,
- unsigned int offset_in_page, void *buf,
- unsigned int len, bool force_8bit)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
-
- if (len && !buf)
- return -EINVAL;
-
- if (offset_in_page + len > mtd->writesize + mtd->oobsize)
- return -EINVAL;
-
- /* Small page NANDs do not support column change. */
- if (mtd->writesize <= 512)
- return -ENOTSUPP;
-
- if (chip->exec_op) {
- const struct nand_sdr_timings *sdr =
- nand_get_sdr_timings(&chip->data_interface);
- u8 addrs[2] = {};
- struct nand_op_instr instrs[] = {
- NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
- NAND_OP_ADDR(2, addrs, 0),
- NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
- PSEC_TO_NSEC(sdr->tCCS_min)),
- NAND_OP_DATA_IN(len, buf, 0),
- };
- struct nand_operation op = NAND_OPERATION(instrs);
- int ret;
-
- ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
- if (ret < 0)
- return ret;
-
- /* Drop the DATA_IN instruction if len is set to 0. */
- if (!len)
- op.ninstrs--;
-
- instrs[3].ctx.data.force_8bit = force_8bit;
-
- return nand_exec_op(chip, &op);
- }
-
- chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset_in_page, -1);
- if (len)
- chip->read_buf(mtd, buf, len);
-
- return 0;
-}
-EXPORT_SYMBOL_GPL(nand_change_read_column_op);
-
-/**
- * nand_read_oob_op - Do a READ OOB operation
- * @chip: The NAND chip
- * @page: page to read
- * @offset_in_oob: offset within the OOB area
- * @buf: buffer used to store the data
- * @len: length of the buffer
- *
- * This function issues a READ OOB operation.
- * This function does not select/unselect the CS line.
- *
- * Returns 0 on success, a negative error code otherwise.
- */
-int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
- unsigned int offset_in_oob, void *buf, unsigned int len)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
-
- if (len && !buf)
- return -EINVAL;
-
- if (offset_in_oob + len > mtd->oobsize)
- return -EINVAL;
-
- if (chip->exec_op)
- return nand_read_page_op(chip, page,
- mtd->writesize + offset_in_oob,
- buf, len);
-
- chip->cmdfunc(mtd, NAND_CMD_READOOB, offset_in_oob, page);
- if (len)
- chip->read_buf(mtd, buf, len);
-
- return 0;
-}
-EXPORT_SYMBOL_GPL(nand_read_oob_op);
-
-static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
- unsigned int offset_in_page, const void *buf,
- unsigned int len, bool prog)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- const struct nand_sdr_timings *sdr =
- nand_get_sdr_timings(&chip->data_interface);
- u8 addrs[5] = {};
- struct nand_op_instr instrs[] = {
- /*
- * The first instruction will be dropped if we're dealing
- * with a large page NAND and adjusted if we're dealing
- * with a small page NAND and the page offset is > 255.
- */
- NAND_OP_CMD(NAND_CMD_READ0, 0),
- NAND_OP_CMD(NAND_CMD_SEQIN, 0),
- NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)),
- NAND_OP_DATA_OUT(len, buf, 0),
- NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)),
- NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
- };
- struct nand_operation op = NAND_OPERATION(instrs);
- int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
- int ret;
- u8 status;
-
- if (naddrs < 0)
- return naddrs;
-
- addrs[naddrs++] = page;
- addrs[naddrs++] = page >> 8;
- if (chip->options & NAND_ROW_ADDR_3)
- addrs[naddrs++] = page >> 16;
-
- instrs[2].ctx.addr.naddrs = naddrs;
-
- /* Drop the last two instructions if we're not programming the page. */
- if (!prog) {
- op.ninstrs -= 2;
- /* Also drop the DATA_OUT instruction if empty. */
- if (!len)
- op.ninstrs--;
- }
-
- if (mtd->writesize <= 512) {
- /*
- * Small pages need some more tweaking: we have to adjust the
- * first instruction depending on the page offset we're trying
- * to access.
- */
- if (offset_in_page >= mtd->writesize)
- instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
- else if (offset_in_page >= 256 &&
- !(chip->options & NAND_BUSWIDTH_16))
- instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
- } else {
- /*
- * Drop the first command if we're dealing with a large page
- * NAND.
- */
- op.instrs++;
- op.ninstrs--;
- }
-
- ret = nand_exec_op(chip, &op);
- if (!prog || ret)
- return ret;
-
- ret = nand_status_op(chip, &status);
- if (ret)
- return ret;
-
- return status;
-}
-
-/**
- * nand_prog_page_begin_op - starts a PROG PAGE operation
- * @chip: The NAND chip
- * @page: page to write
- * @offset_in_page: offset within the page
- * @buf: buffer containing the data to write to the page
- * @len: length of the buffer
- *
- * This function issues the first half of a PROG PAGE operation.
- * This function does not select/unselect the CS line.
- *
- * Returns 0 on success, a negative error code otherwise.
- */
-int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
- unsigned int offset_in_page, const void *buf,
- unsigned int len)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
-
- if (len && !buf)
- return -EINVAL;
-
- if (offset_in_page + len > mtd->writesize + mtd->oobsize)
- return -EINVAL;
-
- if (chip->exec_op)
- return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
- len, false);
-
- chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page);
-
- if (buf)
- chip->write_buf(mtd, buf, len);
-
- return 0;
-}
-EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
-
-/**
- * nand_prog_page_end_op - ends a PROG PAGE operation
- * @chip: The NAND chip
- *
- * This function issues the second half of a PROG PAGE operation.
- * This function does not select/unselect the CS line.
- *
- * Returns 0 on success, a negative error code otherwise.
- */
-int nand_prog_page_end_op(struct nand_chip *chip)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- int ret;
- u8 status;
-
- if (chip->exec_op) {
- const struct nand_sdr_timings *sdr =
- nand_get_sdr_timings(&chip->data_interface);
- struct nand_op_instr instrs[] = {
- NAND_OP_CMD(NAND_CMD_PAGEPROG,
- PSEC_TO_NSEC(sdr->tWB_max)),
- NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
- };
- struct nand_operation op = NAND_OPERATION(instrs);
-
- ret = nand_exec_op(chip, &op);
- if (ret)
- return ret;
-
- ret = nand_status_op(chip, &status);
- if (ret)
- return ret;
- } else {
- chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
- ret = chip->waitfunc(mtd, chip);
- if (ret < 0)
- return ret;
-
- status = ret;
- }
-
- if (status & NAND_STATUS_FAIL)
- return -EIO;
-
- return 0;
-}
-EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
-
-/**
- * nand_prog_page_op - Do a full PROG PAGE operation
- * @chip: The NAND chip
- * @page: page to write
- * @offset_in_page: offset within the page
- * @buf: buffer containing the data to write to the page
- * @len: length of the buffer
- *
- * This function issues a full PROG PAGE operation.
- * This function does not select/unselect the CS line.
- *
- * Returns 0 on success, a negative error code otherwise.
- */
-int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
- unsigned int offset_in_page, const void *buf,
- unsigned int len)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- int status;
-
- if (!len || !buf)
- return -EINVAL;
-
- if (offset_in_page + len > mtd->writesize + mtd->oobsize)
- return -EINVAL;
-
- if (chip->exec_op) {
- status = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
- len, true);
- } else {
- chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page);
- chip->write_buf(mtd, buf, len);
- chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
- status = chip->waitfunc(mtd, chip);
- }
-
- if (status & NAND_STATUS_FAIL)
- return -EIO;
-
- return 0;
-}
-EXPORT_SYMBOL_GPL(nand_prog_page_op);
-
-/**
- * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
- * @chip: The NAND chip
- * @offset_in_page: offset within the page
- * @buf: buffer containing the data to send to the NAND
- * @len: length of the buffer
- * @force_8bit: force 8-bit bus access
- *
- * This function issues a CHANGE WRITE COLUMN operation.
- * This function does not select/unselect the CS line.
- *
- * Returns 0 on success, a negative error code otherwise.
- */
-int nand_change_write_column_op(struct nand_chip *chip,
- unsigned int offset_in_page,
- const void *buf, unsigned int len,
- bool force_8bit)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
-
- if (len && !buf)
- return -EINVAL;
-
- if (offset_in_page + len > mtd->writesize + mtd->oobsize)
- return -EINVAL;
-
- /* Small page NANDs do not support column change. */
- if (mtd->writesize <= 512)
- return -ENOTSUPP;
-
- if (chip->exec_op) {
- const struct nand_sdr_timings *sdr =
- nand_get_sdr_timings(&chip->data_interface);
- u8 addrs[2];
- struct nand_op_instr instrs[] = {
- NAND_OP_CMD(NAND_CMD_RNDIN, 0),
- NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)),
- NAND_OP_DATA_OUT(len, buf, 0),
- };
- struct nand_operation op = NAND_OPERATION(instrs);
- int ret;
-
- ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
- if (ret < 0)
- return ret;
-
- instrs[2].ctx.data.force_8bit = force_8bit;
-
- /* Drop the DATA_OUT instruction if len is set to 0. */
- if (!len)
- op.ninstrs--;
-
- return nand_exec_op(chip, &op);
- }
-
- chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset_in_page, -1);
- if (len)
- chip->write_buf(mtd, buf, len);
-
- return 0;
-}
-EXPORT_SYMBOL_GPL(nand_change_write_column_op);
-
-/**
- * nand_readid_op - Do a READID operation
- * @chip: The NAND chip
- * @addr: address cycle to pass after the READID command
- * @buf: buffer used to store the ID
- * @len: length of the buffer
- *
- * This function sends a READID command and reads back the ID returned by the
- * NAND.
- * This function does not select/unselect the CS line.
- *
- * Returns 0 on success, a negative error code otherwise.
- */
-int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
- unsigned int len)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- unsigned int i;
- u8 *id = buf;
-
- if (len && !buf)
- return -EINVAL;
-
- if (chip->exec_op) {
- const struct nand_sdr_timings *sdr =
- nand_get_sdr_timings(&chip->data_interface);
- struct nand_op_instr instrs[] = {
- NAND_OP_CMD(NAND_CMD_READID, 0),
- NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)),
- NAND_OP_8BIT_DATA_IN(len, buf, 0),
- };
- struct nand_operation op = NAND_OPERATION(instrs);
-
- /* Drop the DATA_IN instruction if len is set to 0. */
- if (!len)
- op.ninstrs--;
-
- return nand_exec_op(chip, &op);
- }
-
- chip->cmdfunc(mtd, NAND_CMD_READID, addr, -1);
-
- for (i = 0; i < len; i++)
- id[i] = chip->read_byte(mtd);
-
- return 0;
-}
-EXPORT_SYMBOL_GPL(nand_readid_op);
-
-/**
- * nand_status_op - Do a STATUS operation
- * @chip: The NAND chip
- * @status: out variable to store the NAND status
- *
- * This function sends a STATUS command and reads back the status returned by
- * the NAND.
- * This function does not select/unselect the CS line.
- *
- * Returns 0 on success, a negative error code otherwise.
- */
-int nand_status_op(struct nand_chip *chip, u8 *status)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
-
- if (chip->exec_op) {
- const struct nand_sdr_timings *sdr =
- nand_get_sdr_timings(&chip->data_interface);
- struct nand_op_instr instrs[] = {
- NAND_OP_CMD(NAND_CMD_STATUS,
- PSEC_TO_NSEC(sdr->tADL_min)),
- NAND_OP_8BIT_DATA_IN(1, status, 0),
- };
- struct nand_operation op = NAND_OPERATION(instrs);
-
- if (!status)
- op.ninstrs--;
-
- return nand_exec_op(chip, &op);
- }
-
- chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
- if (status)
- *status = chip->read_byte(mtd);
-
- return 0;
-}
-EXPORT_SYMBOL_GPL(nand_status_op);
-
-/**
- * nand_exit_status_op - Exit a STATUS operation
- * @chip: The NAND chip
- *
- * This function sends a READ0 command to cancel the effect of the STATUS
- * command to avoid reading only the status until a new read command is sent.
- *
- * This function does not select/unselect the CS line.
- *
- * Returns 0 on success, a negative error code otherwise.
- */
-int nand_exit_status_op(struct nand_chip *chip)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
-
- if (chip->exec_op) {
- struct nand_op_instr instrs[] = {
- NAND_OP_CMD(NAND_CMD_READ0, 0),
- };
- struct nand_operation op = NAND_OPERATION(instrs);
-
- return nand_exec_op(chip, &op);
- }
-
- chip->cmdfunc(mtd, NAND_CMD_READ0, -1, -1);
-
- return 0;
-}
-EXPORT_SYMBOL_GPL(nand_exit_status_op);
-
-/**
- * nand_erase_op - Do an erase operation
- * @chip: The NAND chip
- * @eraseblock: block to erase
- *
- * This function sends an ERASE command and waits for the NAND to be ready
- * before returning.
- * This function does not select/unselect the CS line.
- *
- * Returns 0 on success, a negative error code otherwise.
- */
-int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- unsigned int page = eraseblock <<
- (chip->phys_erase_shift - chip->page_shift);
- int ret;
- u8 status;
-
- if (chip->exec_op) {
- const struct nand_sdr_timings *sdr =
- nand_get_sdr_timings(&chip->data_interface);
- u8 addrs[3] = { page, page >> 8, page >> 16 };
- struct nand_op_instr instrs[] = {
- NAND_OP_CMD(NAND_CMD_ERASE1, 0),
- NAND_OP_ADDR(2, addrs, 0),
- NAND_OP_CMD(NAND_CMD_ERASE2,
- PSEC_TO_MSEC(sdr->tWB_max)),
- NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0),
- };
- struct nand_operation op = NAND_OPERATION(instrs);
-
- if (chip->options & NAND_ROW_ADDR_3)
- instrs[1].ctx.addr.naddrs++;
-
- ret = nand_exec_op(chip, &op);
- if (ret)
- return ret;
-
- ret = nand_status_op(chip, &status);
- if (ret)
- return ret;
- } else {
- chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
- chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
-
- ret = chip->waitfunc(mtd, chip);
- if (ret < 0)
- return ret;
-
- status = ret;
- }
-
- if (status & NAND_STATUS_FAIL)
- return -EIO;
-
- return 0;
-}
-EXPORT_SYMBOL_GPL(nand_erase_op);
-
-/**
- * nand_set_features_op - Do a SET FEATURES operation
- * @chip: The NAND chip
- * @feature: feature id
- * @data: 4 bytes of data
- *
- * This function sends a SET FEATURES command and waits for the NAND to be
- * ready before returning.
- * This function does not select/unselect the CS line.
- *
- * Returns 0 on success, a negative error code otherwise.
- */
-static int nand_set_features_op(struct nand_chip *chip, u8 feature,
- const void *data)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- const u8 *params = data;
- int i, ret;
- u8 status;
-
- if (chip->exec_op) {
- const struct nand_sdr_timings *sdr =
- nand_get_sdr_timings(&chip->data_interface);
- struct nand_op_instr instrs[] = {
- NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
- NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)),
- NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
- PSEC_TO_NSEC(sdr->tWB_max)),
- NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0),
- };
- struct nand_operation op = NAND_OPERATION(instrs);
-
- ret = nand_exec_op(chip, &op);
- if (ret)
- return ret;
-
- ret = nand_status_op(chip, &status);
- if (ret)
- return ret;
- } else {
- chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, feature, -1);
- for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
- chip->write_byte(mtd, params[i]);
-
- ret = chip->waitfunc(mtd, chip);
- if (ret < 0)
- return ret;
-
- status = ret;
- }
-
- if (status & NAND_STATUS_FAIL)
- return -EIO;
-
- return 0;
-}
-
-/**
- * nand_get_features_op - Do a GET FEATURES operation
- * @chip: The NAND chip
- * @feature: feature id
- * @data: 4 bytes of data
- *
- * This function sends a GET FEATURES command and waits for the NAND to be
- * ready before returning.
- * This function does not select/unselect the CS line.
- *
- * Returns 0 on success, a negative error code otherwise.
- */
-static int nand_get_features_op(struct nand_chip *chip, u8 feature,
- void *data)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- u8 *params = data;
- int i;
-
- if (chip->exec_op) {
- const struct nand_sdr_timings *sdr =
- nand_get_sdr_timings(&chip->data_interface);
- struct nand_op_instr instrs[] = {
- NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
- NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)),
- NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max),
- PSEC_TO_NSEC(sdr->tRR_min)),
- NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
- data, 0),
- };
- struct nand_operation op = NAND_OPERATION(instrs);
-
- return nand_exec_op(chip, &op);
- }
-
- chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, feature, -1);
- for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
- params[i] = chip->read_byte(mtd);
-
- return 0;
-}
-
-/**
- * nand_reset_op - Do a reset operation
- * @chip: The NAND chip
- *
- * This function sends a RESET command and waits for the NAND to be ready
- * before returning.
- * This function does not select/unselect the CS line.
- *
- * Returns 0 on success, a negative error code otherwise.
- */
-int nand_reset_op(struct nand_chip *chip)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
-
- if (chip->exec_op) {
- const struct nand_sdr_timings *sdr =
- nand_get_sdr_timings(&chip->data_interface);
- struct nand_op_instr instrs[] = {
- NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)),
- NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0),
- };
- struct nand_operation op = NAND_OPERATION(instrs);
-
- return nand_exec_op(chip, &op);
- }
-
- chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
-
- return 0;
-}
-EXPORT_SYMBOL_GPL(nand_reset_op);
-
-/**
- * nand_read_data_op - Read data from the NAND
- * @chip: The NAND chip
- * @buf: buffer used to store the data
- * @len: length of the buffer
- * @force_8bit: force 8-bit bus access
- *
- * This function does a raw data read on the bus. Usually used after launching
- * another NAND operation like nand_read_page_op().
- * This function does not select/unselect the CS line.
- *
- * Returns 0 on success, a negative error code otherwise.
- */
-int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
- bool force_8bit)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
-
- if (!len || !buf)
- return -EINVAL;
-
- if (chip->exec_op) {
- struct nand_op_instr instrs[] = {
- NAND_OP_DATA_IN(len, buf, 0),
- };
- struct nand_operation op = NAND_OPERATION(instrs);
-
- instrs[0].ctx.data.force_8bit = force_8bit;
-
- return nand_exec_op(chip, &op);
- }
-
- if (force_8bit) {
- u8 *p = buf;
- unsigned int i;
-
- for (i = 0; i < len; i++)
- p[i] = chip->read_byte(mtd);
- } else {
- chip->read_buf(mtd, buf, len);
- }
-
- return 0;
-}
-EXPORT_SYMBOL_GPL(nand_read_data_op);
-
-/**
- * nand_write_data_op - Write data from the NAND
- * @chip: The NAND chip
- * @buf: buffer containing the data to send on the bus
- * @len: length of the buffer
- * @force_8bit: force 8-bit bus access
- *
- * This function does a raw data write on the bus. Usually used after launching
- * another NAND operation like nand_write_page_begin_op().
- * This function does not select/unselect the CS line.
- *
- * Returns 0 on success, a negative error code otherwise.
- */
-int nand_write_data_op(struct nand_chip *chip, const void *buf,
- unsigned int len, bool force_8bit)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
-
- if (!len || !buf)
- return -EINVAL;
-
- if (chip->exec_op) {
- struct nand_op_instr instrs[] = {
- NAND_OP_DATA_OUT(len, buf, 0),
- };
- struct nand_operation op = NAND_OPERATION(instrs);
-
- instrs[0].ctx.data.force_8bit = force_8bit;
-
- return nand_exec_op(chip, &op);
- }
-
- if (force_8bit) {
- const u8 *p = buf;
- unsigned int i;
-
- for (i = 0; i < len; i++)
- chip->write_byte(mtd, p[i]);
- } else {
- chip->write_buf(mtd, buf, len);
- }
-
- return 0;
-}
-EXPORT_SYMBOL_GPL(nand_write_data_op);
-
-/**
- * struct nand_op_parser_ctx - Context used by the parser
- * @instrs: array of all the instructions that must be addressed
- * @ninstrs: length of the @instrs array
- * @subop: Sub-operation to be passed to the NAND controller
- *
- * This structure is used by the core to split NAND operations into
- * sub-operations that can be handled by the NAND controller.
- */
-struct nand_op_parser_ctx {
- const struct nand_op_instr *instrs;
- unsigned int ninstrs;
- struct nand_subop subop;
-};
-
-/**
- * nand_op_parser_must_split_instr - Checks if an instruction must be split
- * @pat: the parser pattern element that matches @instr
- * @instr: pointer to the instruction to check
- * @start_offset: this is an in/out parameter. If @instr has already been
- * split, then @start_offset is the offset from which to start
- * (either an address cycle or an offset in the data buffer).
- * Conversely, if the function returns true (ie. instr must be
- * split), this parameter is updated to point to the first
- * data/address cycle that has not been taken care of.
- *
- * Some NAND controllers are limited and cannot send X address cycles with a
- * unique operation, or cannot read/write more than Y bytes at the same time.
- * In this case, split the instruction that does not fit in a single
- * controller-operation into two or more chunks.
- *
- * Returns true if the instruction must be split, false otherwise.
- * The @start_offset parameter is also updated to the offset at which the next
- * bundle of instruction must start (if an address or a data instruction).
- */
-static bool
-nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
- const struct nand_op_instr *instr,
- unsigned int *start_offset)
-{
- switch (pat->type) {
- case NAND_OP_ADDR_INSTR:
- if (!pat->ctx.addr.maxcycles)
- break;
-
- if (instr->ctx.addr.naddrs - *start_offset >
- pat->ctx.addr.maxcycles) {
- *start_offset += pat->ctx.addr.maxcycles;
- return true;
- }
- break;
-
- case NAND_OP_DATA_IN_INSTR:
- case NAND_OP_DATA_OUT_INSTR:
- if (!pat->ctx.data.maxlen)
- break;
-
- if (instr->ctx.data.len - *start_offset >
- pat->ctx.data.maxlen) {
- *start_offset += pat->ctx.data.maxlen;
- return true;
- }
- break;
-
- default:
- break;
- }
-
- return false;
-}
-
-/**
- * nand_op_parser_match_pat - Checks if a pattern matches the instructions
- * remaining in the parser context
- * @pat: the pattern to test
- * @ctx: the parser context structure to match with the pattern @pat
- *
- * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
- * Returns true if this is the case, false ortherwise. When true is returned,
- * @ctx->subop is updated with the set of instructions to be passed to the
- * controller driver.
- */
-static bool
-nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
- struct nand_op_parser_ctx *ctx)
-{
- unsigned int instr_offset = ctx->subop.first_instr_start_off;
- const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
- const struct nand_op_instr *instr = ctx->subop.instrs;
- unsigned int i, ninstrs;
-
- for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
- /*
- * The pattern instruction does not match the operation
- * instruction. If the instruction is marked optional in the
- * pattern definition, we skip the pattern element and continue
- * to the next one. If the element is mandatory, there's no
- * match and we can return false directly.
- */
- if (instr->type != pat->elems[i].type) {
- if (!pat->elems[i].optional)
- return false;
-
- continue;
- }
-
- /*
- * Now check the pattern element constraints. If the pattern is
- * not able to handle the whole instruction in a single step,
- * we have to split it.
- * The last_instr_end_off value comes back updated to point to
- * the position where we have to split the instruction (the
- * start of the next subop chunk).
- */
- if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
- &instr_offset)) {
- ninstrs++;
- i++;
- break;
- }
-
- instr++;
- ninstrs++;
- instr_offset = 0;
- }
-
- /*
- * This can happen if all instructions of a pattern are optional.
- * Still, if there's not at least one instruction handled by this
- * pattern, this is not a match, and we should try the next one (if
- * any).
- */
- if (!ninstrs)
- return false;
-
- /*
- * We had a match on the pattern head, but the pattern may be longer
- * than the instructions we're asked to execute. We need to make sure
- * there's no mandatory elements in the pattern tail.
- */
- for (; i < pat->nelems; i++) {
- if (!pat->elems[i].optional)
- return false;
- }
-
- /*
- * We have a match: update the subop structure accordingly and return
- * true.
- */
- ctx->subop.ninstrs = ninstrs;
- ctx->subop.last_instr_end_off = instr_offset;
-
- return true;
-}
-
-#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
-static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
-{
- const struct nand_op_instr *instr;
- char *prefix = " ";
- unsigned int i;
-
- pr_debug("executing subop:\n");
-
- for (i = 0; i < ctx->ninstrs; i++) {
- instr = &ctx->instrs[i];
-
- if (instr == &ctx->subop.instrs[0])
- prefix = " ->";
-
- switch (instr->type) {
- case NAND_OP_CMD_INSTR:
- pr_debug("%sCMD [0x%02x]\n", prefix,
- instr->ctx.cmd.opcode);
- break;
- case NAND_OP_ADDR_INSTR:
- pr_debug("%sADDR [%d cyc: %*ph]\n", prefix,
- instr->ctx.addr.naddrs,
- instr->ctx.addr.naddrs < 64 ?
- instr->ctx.addr.naddrs : 64,
- instr->ctx.addr.addrs);
- break;
- case NAND_OP_DATA_IN_INSTR:
- pr_debug("%sDATA_IN [%d B%s]\n", prefix,
- instr->ctx.data.len,
- instr->ctx.data.force_8bit ?
- ", force 8-bit" : "");
- break;
- case NAND_OP_DATA_OUT_INSTR:
- pr_debug("%sDATA_OUT [%d B%s]\n", prefix,
- instr->ctx.data.len,
- instr->ctx.data.force_8bit ?
- ", force 8-bit" : "");
- break;
- case NAND_OP_WAITRDY_INSTR:
- pr_debug("%sWAITRDY [max %d ms]\n", prefix,
- instr->ctx.waitrdy.timeout_ms);
- break;
- }
-
- if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
- prefix = " ";
- }
-}
-#else
-static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
-{
- /* NOP */
-}
-#endif
-
-/**
- * nand_op_parser_exec_op - exec_op parser
- * @chip: the NAND chip
- * @parser: patterns description provided by the controller driver
- * @op: the NAND operation to address
- * @check_only: when true, the function only checks if @op can be handled but
- * does not execute the operation
- *
- * Helper function designed to ease integration of NAND controller drivers that
- * only support a limited set of instruction sequences. The supported sequences
- * are described in @parser, and the framework takes care of splitting @op into
- * multiple sub-operations (if required) and pass them back to the ->exec()
- * callback of the matching pattern if @check_only is set to false.
- *
- * NAND controller drivers should call this function from their own ->exec_op()
- * implementation.
- *
- * Returns 0 on success, a negative error code otherwise. A failure can be
- * caused by an unsupported operation (none of the supported patterns is able
- * to handle the requested operation), or an error returned by one of the
- * matching pattern->exec() hook.
- */
-int nand_op_parser_exec_op(struct nand_chip *chip,
- const struct nand_op_parser *parser,
- const struct nand_operation *op, bool check_only)
-{
- struct nand_op_parser_ctx ctx = {
- .subop.instrs = op->instrs,
- .instrs = op->instrs,
- .ninstrs = op->ninstrs,
- };
- unsigned int i;
-
- while (ctx.subop.instrs < op->instrs + op->ninstrs) {
- int ret;
-
- for (i = 0; i < parser->npatterns; i++) {
- const struct nand_op_parser_pattern *pattern;
-
- pattern = &parser->patterns[i];
- if (!nand_op_parser_match_pat(pattern, &ctx))
- continue;
-
- nand_op_parser_trace(&ctx);
-
- if (check_only)
- break;
-
- ret = pattern->exec(chip, &ctx.subop);
- if (ret)
- return ret;
-
- break;
- }
-
- if (i == parser->npatterns) {
- pr_debug("->exec_op() parser: pattern not found!\n");
- return -ENOTSUPP;
- }
-
- /*
- * Update the context structure by pointing to the start of the
- * next subop.
- */
- ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
- if (ctx.subop.last_instr_end_off)
- ctx.subop.instrs -= 1;
-
- ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
- }
-
- return 0;
-}
-EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
-
-static bool nand_instr_is_data(const struct nand_op_instr *instr)
-{
- return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
- instr->type == NAND_OP_DATA_OUT_INSTR);
-}
-
-static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
- unsigned int instr_idx)
-{
- return subop && instr_idx < subop->ninstrs;
-}
-
-static int nand_subop_get_start_off(const struct nand_subop *subop,
- unsigned int instr_idx)
-{
- if (instr_idx)
- return 0;
-
- return subop->first_instr_start_off;
-}
-
-/**
- * nand_subop_get_addr_start_off - Get the start offset in an address array
- * @subop: The entire sub-operation
- * @instr_idx: Index of the instruction inside the sub-operation
- *
- * During driver development, one could be tempted to directly use the
- * ->addr.addrs field of address instructions. This is wrong as address
- * instructions might be split.
- *
- * Given an address instruction, returns the offset of the first cycle to issue.
- */
-int nand_subop_get_addr_start_off(const struct nand_subop *subop,
- unsigned int instr_idx)
-{
- if (!nand_subop_instr_is_valid(subop, instr_idx) ||
- subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)
- return -EINVAL;
-
- return nand_subop_get_start_off(subop, instr_idx);
-}
-EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
-
-/**
- * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
- * @subop: The entire sub-operation
- * @instr_idx: Index of the instruction inside the sub-operation
- *
- * During driver development, one could be tempted to directly use the
- * ->addr->naddrs field of a data instruction. This is wrong as instructions
- * might be split.
- *
- * Given an address instruction, returns the number of address cycle to issue.
- */
-int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
- unsigned int instr_idx)
-{
- int start_off, end_off;
-
- if (!nand_subop_instr_is_valid(subop, instr_idx) ||
- subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)
- return -EINVAL;
-
- start_off = nand_subop_get_addr_start_off(subop, instr_idx);
-
- if (instr_idx == subop->ninstrs - 1 &&
- subop->last_instr_end_off)
- end_off = subop->last_instr_end_off;
- else
- end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
-
- return end_off - start_off;
-}
-EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
-
-/**
- * nand_subop_get_data_start_off - Get the start offset in a data array
- * @subop: The entire sub-operation
- * @instr_idx: Index of the instruction inside the sub-operation
- *
- * During driver development, one could be tempted to directly use the
- * ->data->buf.{in,out} field of data instructions. This is wrong as data
- * instructions might be split.
- *
- * Given a data instruction, returns the offset to start from.
- */
-int nand_subop_get_data_start_off(const struct nand_subop *subop,
- unsigned int instr_idx)
-{
- if (!nand_subop_instr_is_valid(subop, instr_idx) ||
- !nand_instr_is_data(&subop->instrs[instr_idx]))
- return -EINVAL;
-
- return nand_subop_get_start_off(subop, instr_idx);
-}
-EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
-
-/**
- * nand_subop_get_data_len - Get the number of bytes to retrieve
- * @subop: The entire sub-operation
- * @instr_idx: Index of the instruction inside the sub-operation
- *
- * During driver development, one could be tempted to directly use the
- * ->data->len field of a data instruction. This is wrong as data instructions
- * might be split.
- *
- * Returns the length of the chunk of data to send/receive.
- */
-int nand_subop_get_data_len(const struct nand_subop *subop,
- unsigned int instr_idx)
-{
- int start_off = 0, end_off;
-
- if (!nand_subop_instr_is_valid(subop, instr_idx) ||
- !nand_instr_is_data(&subop->instrs[instr_idx]))
- return -EINVAL;
-
- start_off = nand_subop_get_data_start_off(subop, instr_idx);
-
- if (instr_idx == subop->ninstrs - 1 &&
- subop->last_instr_end_off)
- end_off = subop->last_instr_end_off;
- else
- end_off = subop->instrs[instr_idx].ctx.data.len;
-
- return end_off - start_off;
-}
-EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
-
-/**
- * nand_reset - Reset and initialize a NAND device
- * @chip: The NAND chip
- * @chipnr: Internal die id
- *
- * Save the timings data structure, then apply SDR timings mode 0 (see
- * nand_reset_data_interface for details), do the reset operation, and
- * apply back the previous timings.
- *
- * Returns 0 on success, a negative error code otherwise.
- */
-int nand_reset(struct nand_chip *chip, int chipnr)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- struct nand_data_interface saved_data_intf = chip->data_interface;
- int ret;
-
- ret = nand_reset_data_interface(chip, chipnr);
- if (ret)
- return ret;
-
- /*
- * The CS line has to be released before we can apply the new NAND
- * interface settings, hence this weird ->select_chip() dance.
- */
- chip->select_chip(mtd, chipnr);
- ret = nand_reset_op(chip);
- chip->select_chip(mtd, -1);
- if (ret)
- return ret;
-
- chip->select_chip(mtd, chipnr);
- chip->data_interface = saved_data_intf;
- ret = nand_setup_data_interface(chip, chipnr);
- chip->select_chip(mtd, -1);
- if (ret)
- return ret;
-
- return 0;
-}
-EXPORT_SYMBOL_GPL(nand_reset);
-
-/**
- * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
- * @buf: buffer to test
- * @len: buffer length
- * @bitflips_threshold: maximum number of bitflips
- *
- * Check if a buffer contains only 0xff, which means the underlying region
- * has been erased and is ready to be programmed.
- * The bitflips_threshold specify the maximum number of bitflips before
- * considering the region is not erased.
- * Note: The logic of this function has been extracted from the memweight
- * implementation, except that nand_check_erased_buf function exit before
- * testing the whole buffer if the number of bitflips exceed the
- * bitflips_threshold value.
- *
- * Returns a positive number of bitflips less than or equal to
- * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
- * threshold.
- */
-static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
-{
- const unsigned char *bitmap = buf;
- int bitflips = 0;
- int weight;
-
- for (; len && ((uintptr_t)bitmap) % sizeof(long);
- len--, bitmap++) {
- weight = hweight8(*bitmap);
- bitflips += BITS_PER_BYTE - weight;
- if (unlikely(bitflips > bitflips_threshold))
- return -EBADMSG;
- }
-
- for (; len >= sizeof(long);
- len -= sizeof(long), bitmap += sizeof(long)) {
- unsigned long d = *((unsigned long *)bitmap);
- if (d == ~0UL)
- continue;
- weight = hweight_long(d);
- bitflips += BITS_PER_LONG - weight;
- if (unlikely(bitflips > bitflips_threshold))
- return -EBADMSG;
- }
-
- for (; len > 0; len--, bitmap++) {
- weight = hweight8(*bitmap);
- bitflips += BITS_PER_BYTE - weight;
- if (unlikely(bitflips > bitflips_threshold))
- return -EBADMSG;
- }
-
- return bitflips;
-}
-
-/**
- * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
- * 0xff data
- * @data: data buffer to test
- * @datalen: data length
- * @ecc: ECC buffer
- * @ecclen: ECC length
- * @extraoob: extra OOB buffer
- * @extraooblen: extra OOB length
- * @bitflips_threshold: maximum number of bitflips
- *
- * Check if a data buffer and its associated ECC and OOB data contains only
- * 0xff pattern, which means the underlying region has been erased and is
- * ready to be programmed.
- * The bitflips_threshold specify the maximum number of bitflips before
- * considering the region as not erased.
- *
- * Note:
- * 1/ ECC algorithms are working on pre-defined block sizes which are usually
- * different from the NAND page size. When fixing bitflips, ECC engines will
- * report the number of errors per chunk, and the NAND core infrastructure
- * expect you to return the maximum number of bitflips for the whole page.
- * This is why you should always use this function on a single chunk and
- * not on the whole page. After checking each chunk you should update your
- * max_bitflips value accordingly.
- * 2/ When checking for bitflips in erased pages you should not only check
- * the payload data but also their associated ECC data, because a user might
- * have programmed almost all bits to 1 but a few. In this case, we
- * shouldn't consider the chunk as erased, and checking ECC bytes prevent
- * this case.
- * 3/ The extraoob argument is optional, and should be used if some of your OOB
- * data are protected by the ECC engine.
- * It could also be used if you support subpages and want to attach some
- * extra OOB data to an ECC chunk.
- *
- * Returns a positive number of bitflips less than or equal to
- * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
- * threshold. In case of success, the passed buffers are filled with 0xff.
- */
-int nand_check_erased_ecc_chunk(void *data, int datalen,
- void *ecc, int ecclen,
- void *extraoob, int extraooblen,
- int bitflips_threshold)
-{
- int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
-
- data_bitflips = nand_check_erased_buf(data, datalen,
- bitflips_threshold);
- if (data_bitflips < 0)
- return data_bitflips;
-
- bitflips_threshold -= data_bitflips;
-
- ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
- if (ecc_bitflips < 0)
- return ecc_bitflips;
-
- bitflips_threshold -= ecc_bitflips;
-
- extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
- bitflips_threshold);
- if (extraoob_bitflips < 0)
- return extraoob_bitflips;
-
- if (data_bitflips)
- memset(data, 0xff, datalen);
-
- if (ecc_bitflips)
- memset(ecc, 0xff, ecclen);
-
- if (extraoob_bitflips)
- memset(extraoob, 0xff, extraooblen);
-
- return data_bitflips + ecc_bitflips + extraoob_bitflips;
-}
-EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
-
-/**
- * nand_read_page_raw - [INTERN] read raw page data without ecc
- * @mtd: mtd info structure
- * @chip: nand chip info structure
- * @buf: buffer to store read data
- * @oob_required: caller requires OOB data read to chip->oob_poi
- * @page: page number to read
- *
- * Not for syndrome calculating ECC controllers, which use a special oob layout.
- */
-int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
- uint8_t *buf, int oob_required, int page)
-{
- int ret;
-
- ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
- if (ret)
- return ret;
-
- if (oob_required) {
- ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
- false);
- if (ret)
- return ret;
- }
-
- return 0;
-}
-EXPORT_SYMBOL(nand_read_page_raw);
-
-/**
- * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
- * @mtd: mtd info structure
- * @chip: nand chip info structure
- * @buf: buffer to store read data
- * @oob_required: caller requires OOB data read to chip->oob_poi
- * @page: page number to read
- *
- * We need a special oob layout and handling even when OOB isn't used.
- */
-static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
- struct nand_chip *chip, uint8_t *buf,
- int oob_required, int page)
-{
- int eccsize = chip->ecc.size;
- int eccbytes = chip->ecc.bytes;
- uint8_t *oob = chip->oob_poi;
- int steps, size, ret;
-
- ret = nand_read_page_op(chip, page, 0, NULL, 0);
- if (ret)
- return ret;
-
- for (steps = chip->ecc.steps; steps > 0; steps--) {
- ret = nand_read_data_op(chip, buf, eccsize, false);
- if (ret)
- return ret;
-
- buf += eccsize;
-
- if (chip->ecc.prepad) {
- ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
- false);
- if (ret)
- return ret;
-
- oob += chip->ecc.prepad;
- }
-
- ret = nand_read_data_op(chip, oob, eccbytes, false);
- if (ret)
- return ret;
-
- oob += eccbytes;
-
- if (chip->ecc.postpad) {
- ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
- false);
- if (ret)
- return ret;
-
- oob += chip->ecc.postpad;
- }
- }
-
- size = mtd->oobsize - (oob - chip->oob_poi);
- if (size) {
- ret = nand_read_data_op(chip, oob, size, false);
- if (ret)
- return ret;
- }
-
- return 0;
-}
-
-/**
- * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
- * @mtd: mtd info structure
- * @chip: nand chip info structure
- * @buf: buffer to store read data
- * @oob_required: caller requires OOB data read to chip->oob_poi
- * @page: page number to read
- */
-static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
- uint8_t *buf, int oob_required, int page)
-{
- int i, eccsize = chip->ecc.size, ret;
- int eccbytes = chip->ecc.bytes;
- int eccsteps = chip->ecc.steps;
- uint8_t *p = buf;
- uint8_t *ecc_calc = chip->ecc.calc_buf;
- uint8_t *ecc_code = chip->ecc.code_buf;
- unsigned int max_bitflips = 0;
-
- chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
-
- for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
- chip->ecc.calculate(mtd, p, &ecc_calc[i]);
-
- ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
- chip->ecc.total);
- if (ret)
- return ret;
-
- eccsteps = chip->ecc.steps;
- p = buf;
-
- for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
- int stat;
-
- stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
- if (stat < 0) {
- mtd->ecc_stats.failed++;
- } else {
- mtd->ecc_stats.corrected += stat;
- max_bitflips = max_t(unsigned int, max_bitflips, stat);
- }
- }
- return max_bitflips;
-}
-
-/**
- * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
- * @mtd: mtd info structure
- * @chip: nand chip info structure
- * @data_offs: offset of requested data within the page
- * @readlen: data length
- * @bufpoi: buffer to store read data
- * @page: page number to read
- */
-static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
- uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
- int page)
-{
- int start_step, end_step, num_steps, ret;
- uint8_t *p;
- int data_col_addr, i, gaps = 0;
- int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
- int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
- int index, section = 0;
- unsigned int max_bitflips = 0;
- struct mtd_oob_region oobregion = { };
-
- /* Column address within the page aligned to ECC size (256bytes) */
- start_step = data_offs / chip->ecc.size;
- end_step = (data_offs + readlen - 1) / chip->ecc.size;
- num_steps = end_step - start_step + 1;
- index = start_step * chip->ecc.bytes;
-
- /* Data size aligned to ECC ecc.size */
- datafrag_len = num_steps * chip->ecc.size;
- eccfrag_len = num_steps * chip->ecc.bytes;
-
- data_col_addr = start_step * chip->ecc.size;
- /* If we read not a page aligned data */
- p = bufpoi + data_col_addr;
- ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
- if (ret)
- return ret;
-
- /* Calculate ECC */
- for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
- chip->ecc.calculate(mtd, p, &chip->ecc.calc_buf[i]);
-
- /*
- * The performance is faster if we position offsets according to
- * ecc.pos. Let's make sure that there are no gaps in ECC positions.
- */
- ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
- if (ret)
- return ret;
-
- if (oobregion.length < eccfrag_len)
- gaps = 1;
-
- if (gaps) {
- ret = nand_change_read_column_op(chip, mtd->writesize,
- chip->oob_poi, mtd->oobsize,
- false);
- if (ret)
- return ret;
- } else {
- /*
- * Send the command to read the particular ECC bytes take care
- * about buswidth alignment in read_buf.
- */
- aligned_pos = oobregion.offset & ~(busw - 1);
- aligned_len = eccfrag_len;
- if (oobregion.offset & (busw - 1))
- aligned_len++;
- if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
- (busw - 1))
- aligned_len++;
-
- ret = nand_change_read_column_op(chip,
- mtd->writesize + aligned_pos,
- &chip->oob_poi[aligned_pos],
- aligned_len, false);
- if (ret)
- return ret;
- }
-
- ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
- chip->oob_poi, index, eccfrag_len);
- if (ret)
- return ret;
-
- p = bufpoi + data_col_addr;
- for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
- int stat;
-
- stat = chip->ecc.correct(mtd, p, &chip->ecc.code_buf[i],
- &chip->ecc.calc_buf[i]);
- if (stat == -EBADMSG &&
- (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
- /* check for empty pages with bitflips */
- stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
- &chip->ecc.code_buf[i],
- chip->ecc.bytes,
- NULL, 0,
- chip->ecc.strength);
- }
-
- if (stat < 0) {
- mtd->ecc_stats.failed++;
- } else {
- mtd->ecc_stats.corrected += stat;
- max_bitflips = max_t(unsigned int, max_bitflips, stat);
- }
- }
- return max_bitflips;
-}
-
-/**
- * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
- * @mtd: mtd info structure
- * @chip: nand chip info structure
- * @buf: buffer to store read data
- * @oob_required: caller requires OOB data read to chip->oob_poi
- * @page: page number to read
- *
- * Not for syndrome calculating ECC controllers which need a special oob layout.
- */
-static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
- uint8_t *buf, int oob_required, int page)
-{
- int i, eccsize = chip->ecc.size, ret;
- int eccbytes = chip->ecc.bytes;
- int eccsteps = chip->ecc.steps;
- uint8_t *p = buf;
- uint8_t *ecc_calc = chip->ecc.calc_buf;
- uint8_t *ecc_code = chip->ecc.code_buf;
- unsigned int max_bitflips = 0;
-
- ret = nand_read_page_op(chip, page, 0, NULL, 0);
- if (ret)
- return ret;
-
- for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
- chip->ecc.hwctl(mtd, NAND_ECC_READ);
-
- ret = nand_read_data_op(chip, p, eccsize, false);
- if (ret)
- return ret;
-
- chip->ecc.calculate(mtd, p, &ecc_calc[i]);
- }
-
- ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false);
- if (ret)
- return ret;
-
- ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
- chip->ecc.total);
- if (ret)
- return ret;
-
- eccsteps = chip->ecc.steps;
- p = buf;
-
- for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
- int stat;
-
- stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
- if (stat == -EBADMSG &&
- (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
- /* check for empty pages with bitflips */
- stat = nand_check_erased_ecc_chunk(p, eccsize,
- &ecc_code[i], eccbytes,
- NULL, 0,
- chip->ecc.strength);
- }
-
- if (stat < 0) {
- mtd->ecc_stats.failed++;
- } else {
- mtd->ecc_stats.corrected += stat;
- max_bitflips = max_t(unsigned int, max_bitflips, stat);
- }
- }
- return max_bitflips;
-}
-
-/**
- * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
- * @mtd: mtd info structure
- * @chip: nand chip info structure
- * @buf: buffer to store read data
- * @oob_required: caller requires OOB data read to chip->oob_poi
- * @page: page number to read
- *
- * Hardware ECC for large page chips, require OOB to be read first. For this
- * ECC mode, the write_page method is re-used from ECC_HW. These methods
- * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
- * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
- * the data area, by overwriting the NAND manufacturer bad block markings.
- */
-static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
- struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
-{
- int i, eccsize = chip->ecc.size, ret;
- int eccbytes = chip->ecc.bytes;
- int eccsteps = chip->ecc.steps;
- uint8_t *p = buf;
- uint8_t *ecc_code = chip->ecc.code_buf;
- uint8_t *ecc_calc = chip->ecc.calc_buf;
- unsigned int max_bitflips = 0;
-
- /* Read the OOB area first */
- ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
- if (ret)
- return ret;
-
- ret = nand_read_page_op(chip, page, 0, NULL, 0);
- if (ret)
- return ret;
-
- ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
- chip->ecc.total);
- if (ret)
- return ret;
-
- for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
- int stat;
-
- chip->ecc.hwctl(mtd, NAND_ECC_READ);
-
- ret = nand_read_data_op(chip, p, eccsize, false);
- if (ret)
- return ret;
-
- chip->ecc.calculate(mtd, p, &ecc_calc[i]);
-
- stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
- if (stat == -EBADMSG &&
- (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
- /* check for empty pages with bitflips */
- stat = nand_check_erased_ecc_chunk(p, eccsize,
- &ecc_code[i], eccbytes,
- NULL, 0,
- chip->ecc.strength);
- }
-
- if (stat < 0) {
- mtd->ecc_stats.failed++;
- } else {
- mtd->ecc_stats.corrected += stat;
- max_bitflips = max_t(unsigned int, max_bitflips, stat);
- }
- }
- return max_bitflips;
-}
-
-/**
- * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
- * @mtd: mtd info structure
- * @chip: nand chip info structure
- * @buf: buffer to store read data
- * @oob_required: caller requires OOB data read to chip->oob_poi
- * @page: page number to read
- *
- * The hw generator calculates the error syndrome automatically. Therefore we
- * need a special oob layout and handling.
- */
-static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
- uint8_t *buf, int oob_required, int page)
-{
- int ret, i, eccsize = chip->ecc.size;
- int eccbytes = chip->ecc.bytes;
- int eccsteps = chip->ecc.steps;
- int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
- uint8_t *p = buf;
- uint8_t *oob = chip->oob_poi;
- unsigned int max_bitflips = 0;
-
- ret = nand_read_page_op(chip, page, 0, NULL, 0);
- if (ret)
- return ret;
-
- for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
- int stat;
-
- chip->ecc.hwctl(mtd, NAND_ECC_READ);
-
- ret = nand_read_data_op(chip, p, eccsize, false);
- if (ret)
- return ret;
-
- if (chip->ecc.prepad) {
- ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
- false);
- if (ret)
- return ret;
-
- oob += chip->ecc.prepad;
- }
-
- chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
-
- ret = nand_read_data_op(chip, oob, eccbytes, false);
- if (ret)
- return ret;
-
- stat = chip->ecc.correct(mtd, p, oob, NULL);
-
- oob += eccbytes;
-
- if (chip->ecc.postpad) {
- ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
- false);
- if (ret)
- return ret;
-
- oob += chip->ecc.postpad;
- }
-
- if (stat == -EBADMSG &&
- (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
- /* check for empty pages with bitflips */
- stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
- oob - eccpadbytes,
- eccpadbytes,
- NULL, 0,
- chip->ecc.strength);
- }
-
- if (stat < 0) {
- mtd->ecc_stats.failed++;
- } else {
- mtd->ecc_stats.corrected += stat;
- max_bitflips = max_t(unsigned int, max_bitflips, stat);
- }
- }
-
- /* Calculate remaining oob bytes */
- i = mtd->oobsize - (oob - chip->oob_poi);
- if (i) {
- ret = nand_read_data_op(chip, oob, i, false);
- if (ret)
- return ret;
- }
-
- return max_bitflips;
-}
-
-/**
- * nand_transfer_oob - [INTERN] Transfer oob to client buffer
- * @mtd: mtd info structure
- * @oob: oob destination address
- * @ops: oob ops structure
- * @len: size of oob to transfer
- */
-static uint8_t *nand_transfer_oob(struct mtd_info *mtd, uint8_t *oob,
- struct mtd_oob_ops *ops, size_t len)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- int ret;
-
- switch (ops->mode) {
-
- case MTD_OPS_PLACE_OOB:
- case MTD_OPS_RAW:
- memcpy(oob, chip->oob_poi + ops->ooboffs, len);
- return oob + len;
-
- case MTD_OPS_AUTO_OOB:
- ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
- ops->ooboffs, len);
- BUG_ON(ret);
- return oob + len;
-
- default:
- BUG();
- }
- return NULL;
-}
-
-/**
- * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
- * @mtd: MTD device structure
- * @retry_mode: the retry mode to use
- *
- * Some vendors supply a special command to shift the Vt threshold, to be used
- * when there are too many bitflips in a page (i.e., ECC error). After setting
- * a new threshold, the host should retry reading the page.
- */
-static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
-
- pr_debug("setting READ RETRY mode %d\n", retry_mode);
-
- if (retry_mode >= chip->read_retries)
- return -EINVAL;
-
- if (!chip->setup_read_retry)
- return -EOPNOTSUPP;
-
- return chip->setup_read_retry(mtd, retry_mode);
-}
-
-/**
- * nand_do_read_ops - [INTERN] Read data with ECC
- * @mtd: MTD device structure
- * @from: offset to read from
- * @ops: oob ops structure
- *
- * Internal function. Called with chip held.
- */
-static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
- struct mtd_oob_ops *ops)
-{
- int chipnr, page, realpage, col, bytes, aligned, oob_required;
- struct nand_chip *chip = mtd_to_nand(mtd);
- int ret = 0;
- uint32_t readlen = ops->len;
- uint32_t oobreadlen = ops->ooblen;
- uint32_t max_oobsize = mtd_oobavail(mtd, ops);
-
- uint8_t *bufpoi, *oob, *buf;
- int use_bufpoi;
- unsigned int max_bitflips = 0;
- int retry_mode = 0;
- bool ecc_fail = false;
-
- chipnr = (int)(from >> chip->chip_shift);
- chip->select_chip(mtd, chipnr);
-
- realpage = (int)(from >> chip->page_shift);
- page = realpage & chip->pagemask;
-
- col = (int)(from & (mtd->writesize - 1));
-
- buf = ops->datbuf;
- oob = ops->oobbuf;
- oob_required = oob ? 1 : 0;
-
- while (1) {
- unsigned int ecc_failures = mtd->ecc_stats.failed;
-
- bytes = min(mtd->writesize - col, readlen);
- aligned = (bytes == mtd->writesize);
-
- if (!aligned)
- use_bufpoi = 1;
- else if (chip->options & NAND_USE_BOUNCE_BUFFER)
- use_bufpoi = !virt_addr_valid(buf) ||
- !IS_ALIGNED((unsigned long)buf,
- chip->buf_align);
- else
- use_bufpoi = 0;
-
- /* Is the current page in the buffer? */
- if (realpage != chip->pagebuf || oob) {
- bufpoi = use_bufpoi ? chip->data_buf : buf;
-
- if (use_bufpoi && aligned)
- pr_debug("%s: using read bounce buffer for buf@%p\n",
- __func__, buf);
-
-read_retry:
- /*
- * Now read the page into the buffer. Absent an error,
- * the read methods return max bitflips per ecc step.
- */
- if (unlikely(ops->mode == MTD_OPS_RAW))
- ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
- oob_required,
- page);
- else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
- !oob)
- ret = chip->ecc.read_subpage(mtd, chip,
- col, bytes, bufpoi,
- page);
- else
- ret = chip->ecc.read_page(mtd, chip, bufpoi,
- oob_required, page);
- if (ret < 0) {
- if (use_bufpoi)
- /* Invalidate page cache */
- chip->pagebuf = -1;
- break;
- }
-
- /* Transfer not aligned data */
- if (use_bufpoi) {
- if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
- !(mtd->ecc_stats.failed - ecc_failures) &&
- (ops->mode != MTD_OPS_RAW)) {
- chip->pagebuf = realpage;
- chip->pagebuf_bitflips = ret;
- } else {
- /* Invalidate page cache */
- chip->pagebuf = -1;
- }
- memcpy(buf, chip->data_buf + col, bytes);
- }
-
- if (unlikely(oob)) {
- int toread = min(oobreadlen, max_oobsize);
-
- if (toread) {
- oob = nand_transfer_oob(mtd,
- oob, ops, toread);
- oobreadlen -= toread;
- }
- }
-
- if (chip->options & NAND_NEED_READRDY) {
- /* Apply delay or wait for ready/busy pin */
- if (!chip->dev_ready)
- udelay(chip->chip_delay);
- else
- nand_wait_ready(mtd);
- }
-
- if (mtd->ecc_stats.failed - ecc_failures) {
- if (retry_mode + 1 < chip->read_retries) {
- retry_mode++;
- ret = nand_setup_read_retry(mtd,
- retry_mode);
- if (ret < 0)
- break;
-
- /* Reset failures; retry */
- mtd->ecc_stats.failed = ecc_failures;
- goto read_retry;
- } else {
- /* No more retry modes; real failure */
- ecc_fail = true;
- }
- }
-
- buf += bytes;
- max_bitflips = max_t(unsigned int, max_bitflips, ret);
- } else {
- memcpy(buf, chip->data_buf + col, bytes);
- buf += bytes;
- max_bitflips = max_t(unsigned int, max_bitflips,
- chip->pagebuf_bitflips);
- }
-
- readlen -= bytes;
-
- /* Reset to retry mode 0 */
- if (retry_mode) {
- ret = nand_setup_read_retry(mtd, 0);
- if (ret < 0)
- break;
- retry_mode = 0;
- }
-
- if (!readlen)
- break;
-
- /* For subsequent reads align to page boundary */
- col = 0;
- /* Increment page address */
- realpage++;
-
- page = realpage & chip->pagemask;
- /* Check, if we cross a chip boundary */
- if (!page) {
- chipnr++;
- chip->select_chip(mtd, -1);
- chip->select_chip(mtd, chipnr);
- }
- }
- chip->select_chip(mtd, -1);
-
- ops->retlen = ops->len - (size_t) readlen;
- if (oob)
- ops->oobretlen = ops->ooblen - oobreadlen;
-
- if (ret < 0)
- return ret;
-
- if (ecc_fail)
- return -EBADMSG;
-
- return max_bitflips;
-}
-
-/**
- * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
- * @mtd: mtd info structure
- * @chip: nand chip info structure
- * @page: page number to read
- */
-int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
-{
- return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
-}
-EXPORT_SYMBOL(nand_read_oob_std);
-
-/**
- * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
- * with syndromes
- * @mtd: mtd info structure
- * @chip: nand chip info structure
- * @page: page number to read
- */
-int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
- int page)
-{
- int length = mtd->oobsize;
- int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
- int eccsize = chip->ecc.size;
- uint8_t *bufpoi = chip->oob_poi;
- int i, toread, sndrnd = 0, pos, ret;
-
- ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
- if (ret)
- return ret;
-
- for (i = 0; i < chip->ecc.steps; i++) {
- if (sndrnd) {
- int ret;
-
- pos = eccsize + i * (eccsize + chunk);
- if (mtd->writesize > 512)
- ret = nand_change_read_column_op(chip, pos,
- NULL, 0,
- false);
- else
- ret = nand_read_page_op(chip, page, pos, NULL,
- 0);
-
- if (ret)
- return ret;
- } else
- sndrnd = 1;
- toread = min_t(int, length, chunk);
-
- ret = nand_read_data_op(chip, bufpoi, toread, false);
- if (ret)
- return ret;
-
- bufpoi += toread;
- length -= toread;
- }
- if (length > 0) {
- ret = nand_read_data_op(chip, bufpoi, length, false);
- if (ret)
- return ret;
- }
-
- return 0;
-}
-EXPORT_SYMBOL(nand_read_oob_syndrome);
-
-/**
- * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
- * @mtd: mtd info structure
- * @chip: nand chip info structure
- * @page: page number to write
- */
-int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
-{
- return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
- mtd->oobsize);
-}
-EXPORT_SYMBOL(nand_write_oob_std);
-
-/**
- * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
- * with syndrome - only for large page flash
- * @mtd: mtd info structure
- * @chip: nand chip info structure
- * @page: page number to write
- */
-int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
- int page)
-{
- int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
- int eccsize = chip->ecc.size, length = mtd->oobsize;
- int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
- const uint8_t *bufpoi = chip->oob_poi;
-
- /*
- * data-ecc-data-ecc ... ecc-oob
- * or
- * data-pad-ecc-pad-data-pad .... ecc-pad-oob
- */
- if (!chip->ecc.prepad && !chip->ecc.postpad) {
- pos = steps * (eccsize + chunk);
- steps = 0;
- } else
- pos = eccsize;
-
- ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
- if (ret)
- return ret;
-
- for (i = 0; i < steps; i++) {
- if (sndcmd) {
- if (mtd->writesize <= 512) {
- uint32_t fill = 0xFFFFFFFF;
-
- len = eccsize;
- while (len > 0) {
- int num = min_t(int, len, 4);
-
- ret = nand_write_data_op(chip, &fill,
- num, false);
- if (ret)
- return ret;
-
- len -= num;
- }
- } else {
- pos = eccsize + i * (eccsize + chunk);
- ret = nand_change_write_column_op(chip, pos,
- NULL, 0,
- false);
- if (ret)
- return ret;
- }
- } else
- sndcmd = 1;
- len = min_t(int, length, chunk);
-
- ret = nand_write_data_op(chip, bufpoi, len, false);
- if (ret)
- return ret;
-
- bufpoi += len;
- length -= len;
- }
- if (length > 0) {
- ret = nand_write_data_op(chip, bufpoi, length, false);
- if (ret)
- return ret;
- }
-
- return nand_prog_page_end_op(chip);
-}
-EXPORT_SYMBOL(nand_write_oob_syndrome);
-
-/**
- * nand_do_read_oob - [INTERN] NAND read out-of-band
- * @mtd: MTD device structure
- * @from: offset to read from
- * @ops: oob operations description structure
- *
- * NAND read out-of-band data from the spare area.
- */
-static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
- struct mtd_oob_ops *ops)
-{
- unsigned int max_bitflips = 0;
- int page, realpage, chipnr;
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct mtd_ecc_stats stats;
- int readlen = ops->ooblen;
- int len;
- uint8_t *buf = ops->oobbuf;
- int ret = 0;
-
- pr_debug("%s: from = 0x%08Lx, len = %i\n",
- __func__, (unsigned long long)from, readlen);
-
- stats = mtd->ecc_stats;
-
- len = mtd_oobavail(mtd, ops);
-
- chipnr = (int)(from >> chip->chip_shift);
- chip->select_chip(mtd, chipnr);
-
- /* Shift to get page */
- realpage = (int)(from >> chip->page_shift);
- page = realpage & chip->pagemask;
-
- while (1) {
- if (ops->mode == MTD_OPS_RAW)
- ret = chip->ecc.read_oob_raw(mtd, chip, page);
- else
- ret = chip->ecc.read_oob(mtd, chip, page);
-
- if (ret < 0)
- break;
-
- len = min(len, readlen);
- buf = nand_transfer_oob(mtd, buf, ops, len);
-
- if (chip->options & NAND_NEED_READRDY) {
- /* Apply delay or wait for ready/busy pin */
- if (!chip->dev_ready)
- udelay(chip->chip_delay);
- else
- nand_wait_ready(mtd);
- }
-
- max_bitflips = max_t(unsigned int, max_bitflips, ret);
-
- readlen -= len;
- if (!readlen)
- break;
-
- /* Increment page address */
- realpage++;
-
- page = realpage & chip->pagemask;
- /* Check, if we cross a chip boundary */
- if (!page) {
- chipnr++;
- chip->select_chip(mtd, -1);
- chip->select_chip(mtd, chipnr);
- }
- }
- chip->select_chip(mtd, -1);
-
- ops->oobretlen = ops->ooblen - readlen;
-
- if (ret < 0)
- return ret;
-
- if (mtd->ecc_stats.failed - stats.failed)
- return -EBADMSG;
-
- return max_bitflips;
-}
-
-/**
- * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
- * @mtd: MTD device structure
- * @from: offset to read from
- * @ops: oob operation description structure
- *
- * NAND read data and/or out-of-band data.
- */
-static int nand_read_oob(struct mtd_info *mtd, loff_t from,
- struct mtd_oob_ops *ops)
-{
- int ret;
-
- ops->retlen = 0;
-
- if (ops->mode != MTD_OPS_PLACE_OOB &&
- ops->mode != MTD_OPS_AUTO_OOB &&
- ops->mode != MTD_OPS_RAW)
- return -ENOTSUPP;
-
- nand_get_device(mtd, FL_READING);
-
- if (!ops->datbuf)
- ret = nand_do_read_oob(mtd, from, ops);
- else
- ret = nand_do_read_ops(mtd, from, ops);
-
- nand_release_device(mtd);
- return ret;
-}
-
-
-/**
- * nand_write_page_raw - [INTERN] raw page write function
- * @mtd: mtd info structure
- * @chip: nand chip info structure
- * @buf: data buffer
- * @oob_required: must write chip->oob_poi to OOB
- * @page: page number to write
- *
- * Not for syndrome calculating ECC controllers, which use a special oob layout.
- */
-int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
- const uint8_t *buf, int oob_required, int page)
-{
- int ret;
-
- ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
- if (ret)
- return ret;
-
- if (oob_required) {
- ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
- false);
- if (ret)
- return ret;
- }
-
- return nand_prog_page_end_op(chip);
-}
-EXPORT_SYMBOL(nand_write_page_raw);
-
-/**
- * nand_write_page_raw_syndrome - [INTERN] raw page write function
- * @mtd: mtd info structure
- * @chip: nand chip info structure
- * @buf: data buffer
- * @oob_required: must write chip->oob_poi to OOB
- * @page: page number to write
- *
- * We need a special oob layout and handling even when ECC isn't checked.
- */
-static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
- struct nand_chip *chip,
- const uint8_t *buf, int oob_required,
- int page)
-{
- int eccsize = chip->ecc.size;
- int eccbytes = chip->ecc.bytes;
- uint8_t *oob = chip->oob_poi;
- int steps, size, ret;
-
- ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
- if (ret)
- return ret;
-
- for (steps = chip->ecc.steps; steps > 0; steps--) {
- ret = nand_write_data_op(chip, buf, eccsize, false);
- if (ret)
- return ret;
-
- buf += eccsize;
-
- if (chip->ecc.prepad) {
- ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
- false);
- if (ret)
- return ret;
-
- oob += chip->ecc.prepad;
- }
-
- ret = nand_write_data_op(chip, oob, eccbytes, false);
- if (ret)
- return ret;
-
- oob += eccbytes;
-
- if (chip->ecc.postpad) {
- ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
- false);
- if (ret)
- return ret;
-
- oob += chip->ecc.postpad;
- }
- }
-
- size = mtd->oobsize - (oob - chip->oob_poi);
- if (size) {
- ret = nand_write_data_op(chip, oob, size, false);
- if (ret)
- return ret;
- }
-
- return nand_prog_page_end_op(chip);
-}
-/**
- * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
- * @mtd: mtd info structure
- * @chip: nand chip info structure
- * @buf: data buffer
- * @oob_required: must write chip->oob_poi to OOB
- * @page: page number to write
- */
-static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
- const uint8_t *buf, int oob_required,
- int page)
-{
- int i, eccsize = chip->ecc.size, ret;
- int eccbytes = chip->ecc.bytes;
- int eccsteps = chip->ecc.steps;
- uint8_t *ecc_calc = chip->ecc.calc_buf;
- const uint8_t *p = buf;
-
- /* Software ECC calculation */
- for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
- chip->ecc.calculate(mtd, p, &ecc_calc[i]);
-
- ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
- chip->ecc.total);
- if (ret)
- return ret;
-
- return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
-}
-
-/**
- * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
- * @mtd: mtd info structure
- * @chip: nand chip info structure
- * @buf: data buffer
- * @oob_required: must write chip->oob_poi to OOB
- * @page: page number to write
- */
-static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
- const uint8_t *buf, int oob_required,
- int page)
-{
- int i, eccsize = chip->ecc.size, ret;
- int eccbytes = chip->ecc.bytes;
- int eccsteps = chip->ecc.steps;
- uint8_t *ecc_calc = chip->ecc.calc_buf;
- const uint8_t *p = buf;
-
- ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
- if (ret)
- return ret;
-
- for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
- chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
-
- ret = nand_write_data_op(chip, p, eccsize, false);
- if (ret)
- return ret;
-
- chip->ecc.calculate(mtd, p, &ecc_calc[i]);
- }
-
- ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
- chip->ecc.total);
- if (ret)
- return ret;
-
- ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
- if (ret)
- return ret;
-
- return nand_prog_page_end_op(chip);
-}
-
-
-/**
- * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
- * @mtd: mtd info structure
- * @chip: nand chip info structure
- * @offset: column address of subpage within the page
- * @data_len: data length
- * @buf: data buffer
- * @oob_required: must write chip->oob_poi to OOB
- * @page: page number to write
- */
-static int nand_write_subpage_hwecc(struct mtd_info *mtd,
- struct nand_chip *chip, uint32_t offset,
- uint32_t data_len, const uint8_t *buf,
- int oob_required, int page)
-{
- uint8_t *oob_buf = chip->oob_poi;
- uint8_t *ecc_calc = chip->ecc.calc_buf;
- int ecc_size = chip->ecc.size;
- int ecc_bytes = chip->ecc.bytes;
- int ecc_steps = chip->ecc.steps;
- uint32_t start_step = offset / ecc_size;
- uint32_t end_step = (offset + data_len - 1) / ecc_size;
- int oob_bytes = mtd->oobsize / ecc_steps;
- int step, ret;
-
- ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
- if (ret)
- return ret;
-
- for (step = 0; step < ecc_steps; step++) {
- /* configure controller for WRITE access */
- chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
-
- /* write data (untouched subpages already masked by 0xFF) */
- ret = nand_write_data_op(chip, buf, ecc_size, false);
- if (ret)
- return ret;
-
- /* mask ECC of un-touched subpages by padding 0xFF */
- if ((step < start_step) || (step > end_step))
- memset(ecc_calc, 0xff, ecc_bytes);
- else
- chip->ecc.calculate(mtd, buf, ecc_calc);
-
- /* mask OOB of un-touched subpages by padding 0xFF */
- /* if oob_required, preserve OOB metadata of written subpage */
- if (!oob_required || (step < start_step) || (step > end_step))
- memset(oob_buf, 0xff, oob_bytes);
-
- buf += ecc_size;
- ecc_calc += ecc_bytes;
- oob_buf += oob_bytes;
- }
-
- /* copy calculated ECC for whole page to chip->buffer->oob */
- /* this include masked-value(0xFF) for unwritten subpages */
- ecc_calc = chip->ecc.calc_buf;
- ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
- chip->ecc.total);
- if (ret)
- return ret;
-
- /* write OOB buffer to NAND device */
- ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
- if (ret)
- return ret;
-
- return nand_prog_page_end_op(chip);
-}
-
-
-/**
- * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
- * @mtd: mtd info structure
- * @chip: nand chip info structure
- * @buf: data buffer
- * @oob_required: must write chip->oob_poi to OOB
- * @page: page number to write
- *
- * The hw generator calculates the error syndrome automatically. Therefore we
- * need a special oob layout and handling.
- */
-static int nand_write_page_syndrome(struct mtd_info *mtd,
- struct nand_chip *chip,
- const uint8_t *buf, int oob_required,
- int page)
-{
- int i, eccsize = chip->ecc.size;
- int eccbytes = chip->ecc.bytes;
- int eccsteps = chip->ecc.steps;
- const uint8_t *p = buf;
- uint8_t *oob = chip->oob_poi;
- int ret;
-
- ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
- if (ret)
- return ret;
-
- for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
- chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
-
- ret = nand_write_data_op(chip, p, eccsize, false);
- if (ret)
- return ret;
-
- if (chip->ecc.prepad) {
- ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
- false);
- if (ret)
- return ret;
-
- oob += chip->ecc.prepad;
- }
-
- chip->ecc.calculate(mtd, p, oob);
-
- ret = nand_write_data_op(chip, oob, eccbytes, false);
- if (ret)
- return ret;
-
- oob += eccbytes;
-
- if (chip->ecc.postpad) {
- ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
- false);
- if (ret)
- return ret;
-
- oob += chip->ecc.postpad;
- }
- }
-
- /* Calculate remaining oob bytes */
- i = mtd->oobsize - (oob - chip->oob_poi);
- if (i) {
- ret = nand_write_data_op(chip, oob, i, false);
- if (ret)
- return ret;
- }
-
- return nand_prog_page_end_op(chip);
-}
-
-/**
- * nand_write_page - write one page
- * @mtd: MTD device structure
- * @chip: NAND chip descriptor
- * @offset: address offset within the page
- * @data_len: length of actual data to be written
- * @buf: the data to write
- * @oob_required: must write chip->oob_poi to OOB
- * @page: page number to write
- * @raw: use _raw version of write_page
- */
-static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
- uint32_t offset, int data_len, const uint8_t *buf,
- int oob_required, int page, int raw)
-{
- int status, subpage;
-
- if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
- chip->ecc.write_subpage)
- subpage = offset || (data_len < mtd->writesize);
- else
- subpage = 0;
-
- if (unlikely(raw))
- status = chip->ecc.write_page_raw(mtd, chip, buf,
- oob_required, page);
- else if (subpage)
- status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
- buf, oob_required, page);
- else
- status = chip->ecc.write_page(mtd, chip, buf, oob_required,
- page);
-
- if (status < 0)
- return status;
-
- return 0;
-}
-
-/**
- * nand_fill_oob - [INTERN] Transfer client buffer to oob
- * @mtd: MTD device structure
- * @oob: oob data buffer
- * @len: oob data write length
- * @ops: oob ops structure
- */
-static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
- struct mtd_oob_ops *ops)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- int ret;
-
- /*
- * Initialise to all 0xFF, to avoid the possibility of left over OOB
- * data from a previous OOB read.
- */
- memset(chip->oob_poi, 0xff, mtd->oobsize);
-
- switch (ops->mode) {
-
- case MTD_OPS_PLACE_OOB:
- case MTD_OPS_RAW:
- memcpy(chip->oob_poi + ops->ooboffs, oob, len);
- return oob + len;
-
- case MTD_OPS_AUTO_OOB:
- ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
- ops->ooboffs, len);
- BUG_ON(ret);
- return oob + len;
-
- default:
- BUG();
- }
- return NULL;
-}
-
-#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
-
-/**
- * nand_do_write_ops - [INTERN] NAND write with ECC
- * @mtd: MTD device structure
- * @to: offset to write to
- * @ops: oob operations description structure
- *
- * NAND write with ECC.
- */
-static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
- struct mtd_oob_ops *ops)
-{
- int chipnr, realpage, page, column;
- struct nand_chip *chip = mtd_to_nand(mtd);
- uint32_t writelen = ops->len;
-
- uint32_t oobwritelen = ops->ooblen;
- uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
-
- uint8_t *oob = ops->oobbuf;
- uint8_t *buf = ops->datbuf;
- int ret;
- int oob_required = oob ? 1 : 0;
-
- ops->retlen = 0;
- if (!writelen)
- return 0;
-
- /* Reject writes, which are not page aligned */
- if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
- pr_notice("%s: attempt to write non page aligned data\n",
- __func__);
- return -EINVAL;
- }
-
- column = to & (mtd->writesize - 1);
-
- chipnr = (int)(to >> chip->chip_shift);
- chip->select_chip(mtd, chipnr);
-
- /* Check, if it is write protected */
- if (nand_check_wp(mtd)) {
- ret = -EIO;
- goto err_out;
- }
-
- realpage = (int)(to >> chip->page_shift);
- page = realpage & chip->pagemask;
-
- /* Invalidate the page cache, when we write to the cached page */
- if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
- ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
- chip->pagebuf = -1;
-
- /* Don't allow multipage oob writes with offset */
- if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
- ret = -EINVAL;
- goto err_out;
- }
-
- while (1) {
- int bytes = mtd->writesize;
- uint8_t *wbuf = buf;
- int use_bufpoi;
- int part_pagewr = (column || writelen < mtd->writesize);
-
- if (part_pagewr)
- use_bufpoi = 1;
- else if (chip->options & NAND_USE_BOUNCE_BUFFER)
- use_bufpoi = !virt_addr_valid(buf) ||
- !IS_ALIGNED((unsigned long)buf,
- chip->buf_align);
- else
- use_bufpoi = 0;
-
- /* Partial page write?, or need to use bounce buffer */
- if (use_bufpoi) {
- pr_debug("%s: using write bounce buffer for buf@%p\n",
- __func__, buf);
- if (part_pagewr)
- bytes = min_t(int, bytes - column, writelen);
- chip->pagebuf = -1;
- memset(chip->data_buf, 0xff, mtd->writesize);
- memcpy(&chip->data_buf[column], buf, bytes);
- wbuf = chip->data_buf;
- }
-
- if (unlikely(oob)) {
- size_t len = min(oobwritelen, oobmaxlen);
- oob = nand_fill_oob(mtd, oob, len, ops);
- oobwritelen -= len;
- } else {
- /* We still need to erase leftover OOB data */
- memset(chip->oob_poi, 0xff, mtd->oobsize);
- }
-
- ret = nand_write_page(mtd, chip, column, bytes, wbuf,
- oob_required, page,
- (ops->mode == MTD_OPS_RAW));
- if (ret)
- break;
-
- writelen -= bytes;
- if (!writelen)
- break;
-
- column = 0;
- buf += bytes;
- realpage++;
-
- page = realpage & chip->pagemask;
- /* Check, if we cross a chip boundary */
- if (!page) {
- chipnr++;
- chip->select_chip(mtd, -1);
- chip->select_chip(mtd, chipnr);
- }
- }
-
- ops->retlen = ops->len - writelen;
- if (unlikely(oob))
- ops->oobretlen = ops->ooblen;
-
-err_out:
- chip->select_chip(mtd, -1);
- return ret;
-}
-
-/**
- * panic_nand_write - [MTD Interface] NAND write with ECC
- * @mtd: MTD device structure
- * @to: offset to write to
- * @len: number of bytes to write
- * @retlen: pointer to variable to store the number of written bytes
- * @buf: the data to write
- *
- * NAND write with ECC. Used when performing writes in interrupt context, this
- * may for example be called by mtdoops when writing an oops while in panic.
- */
-static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
- size_t *retlen, const uint8_t *buf)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- int chipnr = (int)(to >> chip->chip_shift);
- struct mtd_oob_ops ops;
- int ret;
-
- /* Grab the device */
- panic_nand_get_device(chip, mtd, FL_WRITING);
-
- chip->select_chip(mtd, chipnr);
-
- /* Wait for the device to get ready */
- panic_nand_wait(mtd, chip, 400);
-
- memset(&ops, 0, sizeof(ops));
- ops.len = len;
- ops.datbuf = (uint8_t *)buf;
- ops.mode = MTD_OPS_PLACE_OOB;
-
- ret = nand_do_write_ops(mtd, to, &ops);
-
- *retlen = ops.retlen;
- return ret;
-}
-
-/**
- * nand_do_write_oob - [MTD Interface] NAND write out-of-band
- * @mtd: MTD device structure
- * @to: offset to write to
- * @ops: oob operation description structure
- *
- * NAND write out-of-band.
- */
-static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
- struct mtd_oob_ops *ops)
-{
- int chipnr, page, status, len;
- struct nand_chip *chip = mtd_to_nand(mtd);
-
- pr_debug("%s: to = 0x%08x, len = %i\n",
- __func__, (unsigned int)to, (int)ops->ooblen);
-
- len = mtd_oobavail(mtd, ops);
-
- /* Do not allow write past end of page */
- if ((ops->ooboffs + ops->ooblen) > len) {
- pr_debug("%s: attempt to write past end of page\n",
- __func__);
- return -EINVAL;
- }
-
- chipnr = (int)(to >> chip->chip_shift);
-
- /*
- * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
- * of my DiskOnChip 2000 test units) will clear the whole data page too
- * if we don't do this. I have no clue why, but I seem to have 'fixed'
- * it in the doc2000 driver in August 1999. dwmw2.
- */
- nand_reset(chip, chipnr);
-
- chip->select_chip(mtd, chipnr);
-
- /* Shift to get page */
- page = (int)(to >> chip->page_shift);
-
- /* Check, if it is write protected */
- if (nand_check_wp(mtd)) {
- chip->select_chip(mtd, -1);
- return -EROFS;
- }
-
- /* Invalidate the page cache, if we write to the cached page */
- if (page == chip->pagebuf)
- chip->pagebuf = -1;
-
- nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
-
- if (ops->mode == MTD_OPS_RAW)
- status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
- else
- status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
-
- chip->select_chip(mtd, -1);
-
- if (status)
- return status;
-
- ops->oobretlen = ops->ooblen;
-
- return 0;
-}
-
-/**
- * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
- * @mtd: MTD device structure
- * @to: offset to write to
- * @ops: oob operation description structure
- */
-static int nand_write_oob(struct mtd_info *mtd, loff_t to,
- struct mtd_oob_ops *ops)
-{
- int ret = -ENOTSUPP;
-
- ops->retlen = 0;
-
- nand_get_device(mtd, FL_WRITING);
-
- switch (ops->mode) {
- case MTD_OPS_PLACE_OOB:
- case MTD_OPS_AUTO_OOB:
- case MTD_OPS_RAW:
- break;
-
- default:
- goto out;
- }
-
- if (!ops->datbuf)
- ret = nand_do_write_oob(mtd, to, ops);
- else
- ret = nand_do_write_ops(mtd, to, ops);
-
-out:
- nand_release_device(mtd);
- return ret;
-}
-
-/**
- * single_erase - [GENERIC] NAND standard block erase command function
- * @mtd: MTD device structure
- * @page: the page address of the block which will be erased
- *
- * Standard erase command for NAND chips. Returns NAND status.
- */
-static int single_erase(struct mtd_info *mtd, int page)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- unsigned int eraseblock;
-
- /* Send commands to erase a block */
- eraseblock = page >> (chip->phys_erase_shift - chip->page_shift);
-
- return nand_erase_op(chip, eraseblock);
-}
-
-/**
- * nand_erase - [MTD Interface] erase block(s)
- * @mtd: MTD device structure
- * @instr: erase instruction
- *
- * Erase one ore more blocks.
- */
-static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
-{
- return nand_erase_nand(mtd, instr, 0);
-}
-
-/**
- * nand_erase_nand - [INTERN] erase block(s)
- * @mtd: MTD device structure
- * @instr: erase instruction
- * @allowbbt: allow erasing the bbt area
- *
- * Erase one ore more blocks.
- */
-int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
- int allowbbt)
-{
- int page, status, pages_per_block, ret, chipnr;
- struct nand_chip *chip = mtd_to_nand(mtd);
- loff_t len;
-
- pr_debug("%s: start = 0x%012llx, len = %llu\n",
- __func__, (unsigned long long)instr->addr,
- (unsigned long long)instr->len);
-
- if (check_offs_len(mtd, instr->addr, instr->len))
- return -EINVAL;
-
- /* Grab the lock and see if the device is available */
- nand_get_device(mtd, FL_ERASING);
-
- /* Shift to get first page */
- page = (int)(instr->addr >> chip->page_shift);
- chipnr = (int)(instr->addr >> chip->chip_shift);
-
- /* Calculate pages in each block */
- pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
-
- /* Select the NAND device */
- chip->select_chip(mtd, chipnr);
-
- /* Check, if it is write protected */
- if (nand_check_wp(mtd)) {
- pr_debug("%s: device is write protected!\n",
- __func__);
- instr->state = MTD_ERASE_FAILED;
- goto erase_exit;
- }
-
- /* Loop through the pages */
- len = instr->len;
-
- instr->state = MTD_ERASING;
-
- while (len) {
- /* Check if we have a bad block, we do not erase bad blocks! */
- if (nand_block_checkbad(mtd, ((loff_t) page) <<
- chip->page_shift, allowbbt)) {
- pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
- __func__, page);
- instr->state = MTD_ERASE_FAILED;
- goto erase_exit;
- }
-
- /*
- * Invalidate the page cache, if we erase the block which
- * contains the current cached page.
- */
- if (page <= chip->pagebuf && chip->pagebuf <
- (page + pages_per_block))
- chip->pagebuf = -1;
-
- status = chip->erase(mtd, page & chip->pagemask);
-
- /* See if block erase succeeded */
- if (status) {
- pr_debug("%s: failed erase, page 0x%08x\n",
- __func__, page);
- instr->state = MTD_ERASE_FAILED;
- instr->fail_addr =
- ((loff_t)page << chip->page_shift);
- goto erase_exit;
- }
-
- /* Increment page address and decrement length */
- len -= (1ULL << chip->phys_erase_shift);
- page += pages_per_block;
-
- /* Check, if we cross a chip boundary */
- if (len && !(page & chip->pagemask)) {
- chipnr++;
- chip->select_chip(mtd, -1);
- chip->select_chip(mtd, chipnr);
- }
- }
- instr->state = MTD_ERASE_DONE;
-
-erase_exit:
-
- ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
-
- /* Deselect and wake up anyone waiting on the device */
- chip->select_chip(mtd, -1);
- nand_release_device(mtd);
-
- /* Do call back function */
- if (!ret)
- mtd_erase_callback(instr);
-
- /* Return more or less happy */
- return ret;
-}
-
-/**
- * nand_sync - [MTD Interface] sync
- * @mtd: MTD device structure
- *
- * Sync is actually a wait for chip ready function.
- */
-static void nand_sync(struct mtd_info *mtd)
-{
- pr_debug("%s: called\n", __func__);
-
- /* Grab the lock and see if the device is available */
- nand_get_device(mtd, FL_SYNCING);
- /* Release it and go back */
- nand_release_device(mtd);
-}
-
-/**
- * nand_block_isbad - [MTD Interface] Check if block at offset is bad
- * @mtd: MTD device structure
- * @offs: offset relative to mtd start
- */
-static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- int chipnr = (int)(offs >> chip->chip_shift);
- int ret;
-
- /* Select the NAND device */
- nand_get_device(mtd, FL_READING);
- chip->select_chip(mtd, chipnr);
-
- ret = nand_block_checkbad(mtd, offs, 0);
-
- chip->select_chip(mtd, -1);
- nand_release_device(mtd);
-
- return ret;
-}
-
-/**
- * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
- * @mtd: MTD device structure
- * @ofs: offset relative to mtd start
- */
-static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
-{
- int ret;
-
- ret = nand_block_isbad(mtd, ofs);
- if (ret) {
- /* If it was bad already, return success and do nothing */
- if (ret > 0)
- return 0;
- return ret;
- }
-
- return nand_block_markbad_lowlevel(mtd, ofs);
-}
-
-/**
- * nand_max_bad_blocks - [MTD Interface] Max number of bad blocks for an mtd
- * @mtd: MTD device structure
- * @ofs: offset relative to mtd start
- * @len: length of mtd
- */
-static int nand_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- u32 part_start_block;
- u32 part_end_block;
- u32 part_start_die;
- u32 part_end_die;
-
- /*
- * max_bb_per_die and blocks_per_die used to determine
- * the maximum bad block count.
- */
- if (!chip->max_bb_per_die || !chip->blocks_per_die)
- return -ENOTSUPP;
-
- /* Get the start and end of the partition in erase blocks. */
- part_start_block = mtd_div_by_eb(ofs, mtd);
- part_end_block = mtd_div_by_eb(len, mtd) + part_start_block - 1;
-
- /* Get the start and end LUNs of the partition. */
- part_start_die = part_start_block / chip->blocks_per_die;
- part_end_die = part_end_block / chip->blocks_per_die;
-
- /*
- * Look up the bad blocks per unit and multiply by the number of units
- * that the partition spans.
- */
- return chip->max_bb_per_die * (part_end_die - part_start_die + 1);
-}
-
-/**
- * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
- * @mtd: MTD device structure
- * @chip: nand chip info structure
- * @addr: feature address.
- * @subfeature_param: the subfeature parameters, a four bytes array.
- */
-static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
- int addr, uint8_t *subfeature_param)
-{
- if (!chip->onfi_version ||
- !(le16_to_cpu(chip->onfi_params.opt_cmd)
- & ONFI_OPT_CMD_SET_GET_FEATURES))
- return -EINVAL;
-
- return nand_set_features_op(chip, addr, subfeature_param);
-}
-
-/**
- * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
- * @mtd: MTD device structure
- * @chip: nand chip info structure
- * @addr: feature address.
- * @subfeature_param: the subfeature parameters, a four bytes array.
- */
-static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
- int addr, uint8_t *subfeature_param)
-{
- if (!chip->onfi_version ||
- !(le16_to_cpu(chip->onfi_params.opt_cmd)
- & ONFI_OPT_CMD_SET_GET_FEATURES))
- return -EINVAL;
-
- return nand_get_features_op(chip, addr, subfeature_param);
-}
-
-/**
- * nand_onfi_get_set_features_notsupp - set/get features stub returning
- * -ENOTSUPP
- * @mtd: MTD device structure
- * @chip: nand chip info structure
- * @addr: feature address.
- * @subfeature_param: the subfeature parameters, a four bytes array.
- *
- * Should be used by NAND controller drivers that do not support the SET/GET
- * FEATURES operations.
- */
-int nand_onfi_get_set_features_notsupp(struct mtd_info *mtd,
- struct nand_chip *chip, int addr,
- u8 *subfeature_param)
-{
- return -ENOTSUPP;
-}
-EXPORT_SYMBOL(nand_onfi_get_set_features_notsupp);
-
-/**
- * nand_suspend - [MTD Interface] Suspend the NAND flash
- * @mtd: MTD device structure
- */
-static int nand_suspend(struct mtd_info *mtd)
-{
- return nand_get_device(mtd, FL_PM_SUSPENDED);
-}
-
-/**
- * nand_resume - [MTD Interface] Resume the NAND flash
- * @mtd: MTD device structure
- */
-static void nand_resume(struct mtd_info *mtd)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
-
- if (chip->state == FL_PM_SUSPENDED)
- nand_release_device(mtd);
- else
- pr_err("%s called for a chip which is not in suspended state\n",
- __func__);
-}
-
-/**
- * nand_shutdown - [MTD Interface] Finish the current NAND operation and
- * prevent further operations
- * @mtd: MTD device structure
- */
-static void nand_shutdown(struct mtd_info *mtd)
-{
- nand_get_device(mtd, FL_PM_SUSPENDED);
-}
-
-/* Set default functions */
-static void nand_set_defaults(struct nand_chip *chip)
-{
- unsigned int busw = chip->options & NAND_BUSWIDTH_16;
-
- /* check for proper chip_delay setup, set 20us if not */
- if (!chip->chip_delay)
- chip->chip_delay = 20;
-
- /* check, if a user supplied command function given */
- if (!chip->cmdfunc && !chip->exec_op)
- chip->cmdfunc = nand_command;
-
- /* check, if a user supplied wait function given */
- if (chip->waitfunc == NULL)
- chip->waitfunc = nand_wait;
-
- if (!chip->select_chip)
- chip->select_chip = nand_select_chip;
-
- /* set for ONFI nand */
- if (!chip->onfi_set_features)
- chip->onfi_set_features = nand_onfi_set_features;
- if (!chip->onfi_get_features)
- chip->onfi_get_features = nand_onfi_get_features;
-
- /* If called twice, pointers that depend on busw may need to be reset */
- if (!chip->read_byte || chip->read_byte == nand_read_byte)
- chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
- if (!chip->read_word)
- chip->read_word = nand_read_word;
- if (!chip->block_bad)
- chip->block_bad = nand_block_bad;
- if (!chip->block_markbad)
- chip->block_markbad = nand_default_block_markbad;
- if (!chip->write_buf || chip->write_buf == nand_write_buf)
- chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
- if (!chip->write_byte || chip->write_byte == nand_write_byte)
- chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
- if (!chip->read_buf || chip->read_buf == nand_read_buf)
- chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
- if (!chip->scan_bbt)
- chip->scan_bbt = nand_default_bbt;
-
- if (!chip->controller) {
- chip->controller = &chip->hwcontrol;
- nand_hw_control_init(chip->controller);
- }
-
- if (!chip->buf_align)
- chip->buf_align = 1;
-}
-
-/* Sanitize ONFI strings so we can safely print them */
-static void sanitize_string(uint8_t *s, size_t len)
-{
- ssize_t i;
-
- /* Null terminate */
- s[len - 1] = 0;
-
- /* Remove non printable chars */
- for (i = 0; i < len - 1; i++) {
- if (s[i] < ' ' || s[i] > 127)
- s[i] = '?';
- }
-
- /* Remove trailing spaces */
- strim(s);
-}
-
-static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
-{
- int i;
- while (len--) {
- crc ^= *p++ << 8;
- for (i = 0; i < 8; i++)
- crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
- }
-
- return crc;
-}
-
-/* Parse the Extended Parameter Page. */
-static int nand_flash_detect_ext_param_page(struct nand_chip *chip,
- struct nand_onfi_params *p)
-{
- struct onfi_ext_param_page *ep;
- struct onfi_ext_section *s;
- struct onfi_ext_ecc_info *ecc;
- uint8_t *cursor;
- int ret;
- int len;
- int i;
-
- len = le16_to_cpu(p->ext_param_page_length) * 16;
- ep = kmalloc(len, GFP_KERNEL);
- if (!ep)
- return -ENOMEM;
-
- /* Send our own NAND_CMD_PARAM. */
- ret = nand_read_param_page_op(chip, 0, NULL, 0);
- if (ret)
- goto ext_out;
-
- /* Use the Change Read Column command to skip the ONFI param pages. */
- ret = nand_change_read_column_op(chip,
- sizeof(*p) * p->num_of_param_pages,
- ep, len, true);
- if (ret)
- goto ext_out;
-
- ret = -EINVAL;
- if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
- != le16_to_cpu(ep->crc))) {
- pr_debug("fail in the CRC.\n");
- goto ext_out;
- }
-
- /*
- * Check the signature.
- * Do not strictly follow the ONFI spec, maybe changed in future.
- */
- if (strncmp(ep->sig, "EPPS", 4)) {
- pr_debug("The signature is invalid.\n");
- goto ext_out;
- }
-
- /* find the ECC section. */
- cursor = (uint8_t *)(ep + 1);
- for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
- s = ep->sections + i;
- if (s->type == ONFI_SECTION_TYPE_2)
- break;
- cursor += s->length * 16;
- }
- if (i == ONFI_EXT_SECTION_MAX) {
- pr_debug("We can not find the ECC section.\n");
- goto ext_out;
- }
-
- /* get the info we want. */
- ecc = (struct onfi_ext_ecc_info *)cursor;
-
- if (!ecc->codeword_size) {
- pr_debug("Invalid codeword size\n");
- goto ext_out;
- }
-
- chip->ecc_strength_ds = ecc->ecc_bits;
- chip->ecc_step_ds = 1 << ecc->codeword_size;
- ret = 0;
-
-ext_out:
- kfree(ep);
- return ret;
-}
-
-/*
- * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
- */
-static int nand_flash_detect_onfi(struct nand_chip *chip)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- struct nand_onfi_params *p = &chip->onfi_params;
- char id[4];
- int i, ret, val;
-
- /* Try ONFI for unknown chip or LP */
- ret = nand_readid_op(chip, 0x20, id, sizeof(id));
- if (ret || strncmp(id, "ONFI", 4))
- return 0;
-
- ret = nand_read_param_page_op(chip, 0, NULL, 0);
- if (ret)
- return 0;
-
- for (i = 0; i < 3; i++) {
- ret = nand_read_data_op(chip, p, sizeof(*p), true);
- if (ret)
- return 0;
-
- if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
- le16_to_cpu(p->crc)) {
- break;
- }
- }
-
- if (i == 3) {
- pr_err("Could not find valid ONFI parameter page; aborting\n");
- return 0;
- }
-
- /* Check version */
- val = le16_to_cpu(p->revision);
- if (val & (1 << 5))
- chip->onfi_version = 23;
- else if (val & (1 << 4))
- chip->onfi_version = 22;
- else if (val & (1 << 3))
- chip->onfi_version = 21;
- else if (val & (1 << 2))
- chip->onfi_version = 20;
- else if (val & (1 << 1))
- chip->onfi_version = 10;
-
- if (!chip->onfi_version) {
- pr_info("unsupported ONFI version: %d\n", val);
- return 0;
- }
-
- sanitize_string(p->manufacturer, sizeof(p->manufacturer));
- sanitize_string(p->model, sizeof(p->model));
- if (!mtd->name)
- mtd->name = p->model;
-
- mtd->writesize = le32_to_cpu(p->byte_per_page);
-
- /*
- * pages_per_block and blocks_per_lun may not be a power-of-2 size
- * (don't ask me who thought of this...). MTD assumes that these
- * dimensions will be power-of-2, so just truncate the remaining area.
- */
- mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
- mtd->erasesize *= mtd->writesize;
-
- mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
-
- /* See erasesize comment */
- chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
- chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
- chip->bits_per_cell = p->bits_per_cell;
-
- chip->max_bb_per_die = le16_to_cpu(p->bb_per_lun);
- chip->blocks_per_die = le32_to_cpu(p->blocks_per_lun);
-
- if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
- chip->options |= NAND_BUSWIDTH_16;
-
- if (p->ecc_bits != 0xff) {
- chip->ecc_strength_ds = p->ecc_bits;
- chip->ecc_step_ds = 512;
- } else if (chip->onfi_version >= 21 &&
- (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
-
- /*
- * The nand_flash_detect_ext_param_page() uses the
- * Change Read Column command which maybe not supported
- * by the chip->cmdfunc. So try to update the chip->cmdfunc
- * now. We do not replace user supplied command function.
- */
- if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
- chip->cmdfunc = nand_command_lp;
-
- /* The Extended Parameter Page is supported since ONFI 2.1. */
- if (nand_flash_detect_ext_param_page(chip, p))
- pr_warn("Failed to detect ONFI extended param page\n");
- } else {
- pr_warn("Could not retrieve ONFI ECC requirements\n");
- }
-
- return 1;
-}
-
-/*
- * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
- */
-static int nand_flash_detect_jedec(struct nand_chip *chip)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- struct nand_jedec_params *p = &chip->jedec_params;
- struct jedec_ecc_info *ecc;
- char id[5];
- int i, val, ret;
-
- /* Try JEDEC for unknown chip or LP */
- ret = nand_readid_op(chip, 0x40, id, sizeof(id));
- if (ret || strncmp(id, "JEDEC", sizeof(id)))
- return 0;
-
- ret = nand_read_param_page_op(chip, 0x40, NULL, 0);
- if (ret)
- return 0;
-
- for (i = 0; i < 3; i++) {
- ret = nand_read_data_op(chip, p, sizeof(*p), true);
- if (ret)
- return 0;
-
- if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
- le16_to_cpu(p->crc))
- break;
- }
-
- if (i == 3) {
- pr_err("Could not find valid JEDEC parameter page; aborting\n");
- return 0;
- }
-
- /* Check version */
- val = le16_to_cpu(p->revision);
- if (val & (1 << 2))
- chip->jedec_version = 10;
- else if (val & (1 << 1))
- chip->jedec_version = 1; /* vendor specific version */
-
- if (!chip->jedec_version) {
- pr_info("unsupported JEDEC version: %d\n", val);
- return 0;
- }
-
- sanitize_string(p->manufacturer, sizeof(p->manufacturer));
- sanitize_string(p->model, sizeof(p->model));
- if (!mtd->name)
- mtd->name = p->model;
-
- mtd->writesize = le32_to_cpu(p->byte_per_page);
-
- /* Please reference to the comment for nand_flash_detect_onfi. */
- mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
- mtd->erasesize *= mtd->writesize;
-
- mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
-
- /* Please reference to the comment for nand_flash_detect_onfi. */
- chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
- chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
- chip->bits_per_cell = p->bits_per_cell;
-
- if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
- chip->options |= NAND_BUSWIDTH_16;
-
- /* ECC info */
- ecc = &p->ecc_info[0];
-
- if (ecc->codeword_size >= 9) {
- chip->ecc_strength_ds = ecc->ecc_bits;
- chip->ecc_step_ds = 1 << ecc->codeword_size;
- } else {
- pr_warn("Invalid codeword size\n");
- }
-
- return 1;
-}
-
-/*
- * nand_id_has_period - Check if an ID string has a given wraparound period
- * @id_data: the ID string
- * @arrlen: the length of the @id_data array
- * @period: the period of repitition
- *
- * Check if an ID string is repeated within a given sequence of bytes at
- * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
- * period of 3). This is a helper function for nand_id_len(). Returns non-zero
- * if the repetition has a period of @period; otherwise, returns zero.
- */
-static int nand_id_has_period(u8 *id_data, int arrlen, int period)
-{
- int i, j;
- for (i = 0; i < period; i++)
- for (j = i + period; j < arrlen; j += period)
- if (id_data[i] != id_data[j])
- return 0;
- return 1;
-}
-
-/*
- * nand_id_len - Get the length of an ID string returned by CMD_READID
- * @id_data: the ID string
- * @arrlen: the length of the @id_data array
-
- * Returns the length of the ID string, according to known wraparound/trailing
- * zero patterns. If no pattern exists, returns the length of the array.
- */
-static int nand_id_len(u8 *id_data, int arrlen)
-{
- int last_nonzero, period;
-
- /* Find last non-zero byte */
- for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
- if (id_data[last_nonzero])
- break;
-
- /* All zeros */
- if (last_nonzero < 0)
- return 0;
-
- /* Calculate wraparound period */
- for (period = 1; period < arrlen; period++)
- if (nand_id_has_period(id_data, arrlen, period))
- break;
-
- /* There's a repeated pattern */
- if (period < arrlen)
- return period;
-
- /* There are trailing zeros */
- if (last_nonzero < arrlen - 1)
- return last_nonzero + 1;
-
- /* No pattern detected */
- return arrlen;
-}
-
-/* Extract the bits of per cell from the 3rd byte of the extended ID */
-static int nand_get_bits_per_cell(u8 cellinfo)
-{
- int bits;
-
- bits = cellinfo & NAND_CI_CELLTYPE_MSK;
- bits >>= NAND_CI_CELLTYPE_SHIFT;
- return bits + 1;
-}
-
-/*
- * Many new NAND share similar device ID codes, which represent the size of the
- * chip. The rest of the parameters must be decoded according to generic or
- * manufacturer-specific "extended ID" decoding patterns.
- */
-void nand_decode_ext_id(struct nand_chip *chip)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- int extid;
- u8 *id_data = chip->id.data;
- /* The 3rd id byte holds MLC / multichip data */
- chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
- /* The 4th id byte is the important one */
- extid = id_data[3];
-
- /* Calc pagesize */
- mtd->writesize = 1024 << (extid & 0x03);
- extid >>= 2;
- /* Calc oobsize */
- mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
- extid >>= 2;
- /* Calc blocksize. Blocksize is multiples of 64KiB */
- mtd->erasesize = (64 * 1024) << (extid & 0x03);
- extid >>= 2;
- /* Get buswidth information */
- if (extid & 0x1)
- chip->options |= NAND_BUSWIDTH_16;
-}
-EXPORT_SYMBOL_GPL(nand_decode_ext_id);
-
-/*
- * Old devices have chip data hardcoded in the device ID table. nand_decode_id
- * decodes a matching ID table entry and assigns the MTD size parameters for
- * the chip.
- */
-static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
-
- mtd->erasesize = type->erasesize;
- mtd->writesize = type->pagesize;
- mtd->oobsize = mtd->writesize / 32;
-
- /* All legacy ID NAND are small-page, SLC */
- chip->bits_per_cell = 1;
-}
-
-/*
- * Set the bad block marker/indicator (BBM/BBI) patterns according to some
- * heuristic patterns using various detected parameters (e.g., manufacturer,
- * page size, cell-type information).
- */
-static void nand_decode_bbm_options(struct nand_chip *chip)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
-
- /* Set the bad block position */
- if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
- chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
- else
- chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
-}
-
-static inline bool is_full_id_nand(struct nand_flash_dev *type)
-{
- return type->id_len;
-}
-
-static bool find_full_id_nand(struct nand_chip *chip,
- struct nand_flash_dev *type)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- u8 *id_data = chip->id.data;
-
- if (!strncmp(type->id, id_data, type->id_len)) {
- mtd->writesize = type->pagesize;
- mtd->erasesize = type->erasesize;
- mtd->oobsize = type->oobsize;
-
- chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
- chip->chipsize = (uint64_t)type->chipsize << 20;
- chip->options |= type->options;
- chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
- chip->ecc_step_ds = NAND_ECC_STEP(type);
- chip->onfi_timing_mode_default =
- type->onfi_timing_mode_default;
-
- if (!mtd->name)
- mtd->name = type->name;
-
- return true;
- }
- return false;
-}
-
-/*
- * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
- * compliant and does not have a full-id or legacy-id entry in the nand_ids
- * table.
- */
-static void nand_manufacturer_detect(struct nand_chip *chip)
-{
- /*
- * Try manufacturer detection if available and use
- * nand_decode_ext_id() otherwise.
- */
- if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
- chip->manufacturer.desc->ops->detect) {
- /* The 3rd id byte holds MLC / multichip data */
- chip->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
- chip->manufacturer.desc->ops->detect(chip);
- } else {
- nand_decode_ext_id(chip);
- }
-}
-
-/*
- * Manufacturer initialization. This function is called for all NANDs including
- * ONFI and JEDEC compliant ones.
- * Manufacturer drivers should put all their specific initialization code in
- * their ->init() hook.
- */
-static int nand_manufacturer_init(struct nand_chip *chip)
-{
- if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
- !chip->manufacturer.desc->ops->init)
- return 0;
-
- return chip->manufacturer.desc->ops->init(chip);
-}
-
-/*
- * Manufacturer cleanup. This function is called for all NANDs including
- * ONFI and JEDEC compliant ones.
- * Manufacturer drivers should put all their specific cleanup code in their
- * ->cleanup() hook.
- */
-static void nand_manufacturer_cleanup(struct nand_chip *chip)
-{
- /* Release manufacturer private data */
- if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
- chip->manufacturer.desc->ops->cleanup)
- chip->manufacturer.desc->ops->cleanup(chip);
-}
-
-/*
- * Get the flash and manufacturer id and lookup if the type is supported.
- */
-static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
-{
- const struct nand_manufacturer *manufacturer;
- struct mtd_info *mtd = nand_to_mtd(chip);
- int busw, ret;
- u8 *id_data = chip->id.data;
- u8 maf_id, dev_id;
-
- /*
- * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
- * after power-up.
- */
- ret = nand_reset(chip, 0);
- if (ret)
- return ret;
-
- /* Select the device */
- chip->select_chip(mtd, 0);
-
- /* Send the command for reading device ID */
- ret = nand_readid_op(chip, 0, id_data, 2);
- if (ret)
- return ret;
-
- /* Read manufacturer and device IDs */
- maf_id = id_data[0];
- dev_id = id_data[1];
-
- /*
- * Try again to make sure, as some systems the bus-hold or other
- * interface concerns can cause random data which looks like a
- * possibly credible NAND flash to appear. If the two results do
- * not match, ignore the device completely.
- */
-
- /* Read entire ID string */
- ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
- if (ret)
- return ret;
-
- if (id_data[0] != maf_id || id_data[1] != dev_id) {
- pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
- maf_id, dev_id, id_data[0], id_data[1]);
- return -ENODEV;
- }
-
- chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
-
- /* Try to identify manufacturer */
- manufacturer = nand_get_manufacturer(maf_id);
- chip->manufacturer.desc = manufacturer;
-
- if (!type)
- type = nand_flash_ids;
-
- /*
- * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
- * override it.
- * This is required to make sure initial NAND bus width set by the
- * NAND controller driver is coherent with the real NAND bus width
- * (extracted by auto-detection code).
- */
- busw = chip->options & NAND_BUSWIDTH_16;
-
- /*
- * The flag is only set (never cleared), reset it to its default value
- * before starting auto-detection.
- */
- chip->options &= ~NAND_BUSWIDTH_16;
-
- for (; type->name != NULL; type++) {
- if (is_full_id_nand(type)) {
- if (find_full_id_nand(chip, type))
- goto ident_done;
- } else if (dev_id == type->dev_id) {
- break;
- }
- }
-
- chip->onfi_version = 0;
- if (!type->name || !type->pagesize) {
- /* Check if the chip is ONFI compliant */
- if (nand_flash_detect_onfi(chip))
- goto ident_done;
-
- /* Check if the chip is JEDEC compliant */
- if (nand_flash_detect_jedec(chip))
- goto ident_done;
- }
-
- if (!type->name)
- return -ENODEV;
-
- if (!mtd->name)
- mtd->name = type->name;
-
- chip->chipsize = (uint64_t)type->chipsize << 20;
-
- if (!type->pagesize)
- nand_manufacturer_detect(chip);
- else
- nand_decode_id(chip, type);
-
- /* Get chip options */
- chip->options |= type->options;
-
-ident_done:
-
- if (chip->options & NAND_BUSWIDTH_AUTO) {
- WARN_ON(busw & NAND_BUSWIDTH_16);
- nand_set_defaults(chip);
- } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
- /*
- * Check, if buswidth is correct. Hardware drivers should set
- * chip correct!
- */
- pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
- maf_id, dev_id);
- pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
- mtd->name);
- pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
- (chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
- return -EINVAL;
- }
-
- nand_decode_bbm_options(chip);
-
- /* Calculate the address shift from the page size */
- chip->page_shift = ffs(mtd->writesize) - 1;
- /* Convert chipsize to number of pages per chip -1 */
- chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
-
- chip->bbt_erase_shift = chip->phys_erase_shift =
- ffs(mtd->erasesize) - 1;
- if (chip->chipsize & 0xffffffff)
- chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
- else {
- chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
- chip->chip_shift += 32 - 1;
- }
-
- if (chip->chip_shift - chip->page_shift > 16)
- chip->options |= NAND_ROW_ADDR_3;
-
- chip->badblockbits = 8;
- chip->erase = single_erase;
-
- /* Do not replace user supplied command function! */
- if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
- chip->cmdfunc = nand_command_lp;
-
- pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
- maf_id, dev_id);
-
- if (chip->onfi_version)
- pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
- chip->onfi_params.model);
- else if (chip->jedec_version)
- pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
- chip->jedec_params.model);
- else
- pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
- type->name);
-
- pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
- (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
- mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
- return 0;
-}
-
-static const char * const nand_ecc_modes[] = {
- [NAND_ECC_NONE] = "none",
- [NAND_ECC_SOFT] = "soft",
- [NAND_ECC_HW] = "hw",
- [NAND_ECC_HW_SYNDROME] = "hw_syndrome",
- [NAND_ECC_HW_OOB_FIRST] = "hw_oob_first",
- [NAND_ECC_ON_DIE] = "on-die",
-};
-
-static int of_get_nand_ecc_mode(struct device_node *np)
-{
- const char *pm;
- int err, i;
-
- err = of_property_read_string(np, "nand-ecc-mode", &pm);
- if (err < 0)
- return err;
-
- for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++)
- if (!strcasecmp(pm, nand_ecc_modes[i]))
- return i;
-
- /*
- * For backward compatibility we support few obsoleted values that don't
- * have their mappings into nand_ecc_modes_t anymore (they were merged
- * with other enums).
- */
- if (!strcasecmp(pm, "soft_bch"))
- return NAND_ECC_SOFT;
-
- return -ENODEV;
-}
-
-static const char * const nand_ecc_algos[] = {
- [NAND_ECC_HAMMING] = "hamming",
- [NAND_ECC_BCH] = "bch",
-};
-
-static int of_get_nand_ecc_algo(struct device_node *np)
-{
- const char *pm;
- int err, i;
-
- err = of_property_read_string(np, "nand-ecc-algo", &pm);
- if (!err) {
- for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++)
- if (!strcasecmp(pm, nand_ecc_algos[i]))
- return i;
- return -ENODEV;
- }
-
- /*
- * For backward compatibility we also read "nand-ecc-mode" checking
- * for some obsoleted values that were specifying ECC algorithm.
- */
- err = of_property_read_string(np, "nand-ecc-mode", &pm);
- if (err < 0)
- return err;
-
- if (!strcasecmp(pm, "soft"))
- return NAND_ECC_HAMMING;
- else if (!strcasecmp(pm, "soft_bch"))
- return NAND_ECC_BCH;
-
- return -ENODEV;
-}
-
-static int of_get_nand_ecc_step_size(struct device_node *np)
-{
- int ret;
- u32 val;
-
- ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
- return ret ? ret : val;
-}
-
-static int of_get_nand_ecc_strength(struct device_node *np)
-{
- int ret;
- u32 val;
-
- ret = of_property_read_u32(np, "nand-ecc-strength", &val);
- return ret ? ret : val;
-}
-
-static int of_get_nand_bus_width(struct device_node *np)
-{
- u32 val;
-
- if (of_property_read_u32(np, "nand-bus-width", &val))
- return 8;
-
- switch (val) {
- case 8:
- case 16:
- return val;
- default:
- return -EIO;
- }
-}
-
-static bool of_get_nand_on_flash_bbt(struct device_node *np)
-{
- return of_property_read_bool(np, "nand-on-flash-bbt");
-}
-
-static int nand_dt_init(struct nand_chip *chip)
-{
- struct device_node *dn = nand_get_flash_node(chip);
- int ecc_mode, ecc_algo, ecc_strength, ecc_step;
-
- if (!dn)
- return 0;
-
- if (of_get_nand_bus_width(dn) == 16)
- chip->options |= NAND_BUSWIDTH_16;
-
- if (of_get_nand_on_flash_bbt(dn))
- chip->bbt_options |= NAND_BBT_USE_FLASH;
-
- ecc_mode = of_get_nand_ecc_mode(dn);
- ecc_algo = of_get_nand_ecc_algo(dn);
- ecc_strength = of_get_nand_ecc_strength(dn);
- ecc_step = of_get_nand_ecc_step_size(dn);
-
- if (ecc_mode >= 0)
- chip->ecc.mode = ecc_mode;
-
- if (ecc_algo >= 0)
- chip->ecc.algo = ecc_algo;
-
- if (ecc_strength >= 0)
- chip->ecc.strength = ecc_strength;
-
- if (ecc_step > 0)
- chip->ecc.size = ecc_step;
-
- if (of_property_read_bool(dn, "nand-ecc-maximize"))
- chip->ecc.options |= NAND_ECC_MAXIMIZE;
-
- return 0;
-}
-
-/**
- * nand_scan_ident - [NAND Interface] Scan for the NAND device
- * @mtd: MTD device structure
- * @maxchips: number of chips to scan for
- * @table: alternative NAND ID table
- *
- * This is the first phase of the normal nand_scan() function. It reads the
- * flash ID and sets up MTD fields accordingly.
- *
- */
-int nand_scan_ident(struct mtd_info *mtd, int maxchips,
- struct nand_flash_dev *table)
-{
- int i, nand_maf_id, nand_dev_id;
- struct nand_chip *chip = mtd_to_nand(mtd);
- int ret;
-
- /* Enforce the right timings for reset/detection */
- onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
-
- ret = nand_dt_init(chip);
- if (ret)
- return ret;
-
- if (!mtd->name && mtd->dev.parent)
- mtd->name = dev_name(mtd->dev.parent);
-
- /*
- * ->cmdfunc() is legacy and will only be used if ->exec_op() is not
- * populated.
- */
- if (!chip->exec_op) {
- /*
- * Default functions assigned for ->cmdfunc() and
- * ->select_chip() both expect ->cmd_ctrl() to be populated.
- */
- if ((!chip->cmdfunc || !chip->select_chip) && !chip->cmd_ctrl) {
- pr_err("->cmd_ctrl() should be provided\n");
- return -EINVAL;
- }
- }
-
- /* Set the default functions */
- nand_set_defaults(chip);
-
- /* Read the flash type */
- ret = nand_detect(chip, table);
- if (ret) {
- if (!(chip->options & NAND_SCAN_SILENT_NODEV))
- pr_warn("No NAND device found\n");
- chip->select_chip(mtd, -1);
- return ret;
- }
-
- nand_maf_id = chip->id.data[0];
- nand_dev_id = chip->id.data[1];
-
- chip->select_chip(mtd, -1);
-
- /* Check for a chip array */
- for (i = 1; i < maxchips; i++) {
- u8 id[2];
-
- /* See comment in nand_get_flash_type for reset */
- nand_reset(chip, i);
-
- chip->select_chip(mtd, i);
- /* Send the command for reading device ID */
- nand_readid_op(chip, 0, id, sizeof(id));
- /* Read manufacturer and device IDs */
- if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
- chip->select_chip(mtd, -1);
- break;
- }
- chip->select_chip(mtd, -1);
- }
- if (i > 1)
- pr_info("%d chips detected\n", i);
-
- /* Store the number of chips and calc total size for mtd */
- chip->numchips = i;
- mtd->size = i * chip->chipsize;
-
- return 0;
-}
-EXPORT_SYMBOL(nand_scan_ident);
-
-static int nand_set_ecc_soft_ops(struct mtd_info *mtd)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct nand_ecc_ctrl *ecc = &chip->ecc;
-
- if (WARN_ON(ecc->mode != NAND_ECC_SOFT))
- return -EINVAL;
-
- switch (ecc->algo) {
- case NAND_ECC_HAMMING:
- ecc->calculate = nand_calculate_ecc;
- ecc->correct = nand_correct_data;
- ecc->read_page = nand_read_page_swecc;
- ecc->read_subpage = nand_read_subpage;
- ecc->write_page = nand_write_page_swecc;
- ecc->read_page_raw = nand_read_page_raw;
- ecc->write_page_raw = nand_write_page_raw;
- ecc->read_oob = nand_read_oob_std;
- ecc->write_oob = nand_write_oob_std;
- if (!ecc->size)
- ecc->size = 256;
- ecc->bytes = 3;
- ecc->strength = 1;
- return 0;
- case NAND_ECC_BCH:
- if (!mtd_nand_has_bch()) {
- WARN(1, "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
- return -EINVAL;
- }
- ecc->calculate = nand_bch_calculate_ecc;
- ecc->correct = nand_bch_correct_data;
- ecc->read_page = nand_read_page_swecc;
- ecc->read_subpage = nand_read_subpage;
- ecc->write_page = nand_write_page_swecc;
- ecc->read_page_raw = nand_read_page_raw;
- ecc->write_page_raw = nand_write_page_raw;
- ecc->read_oob = nand_read_oob_std;
- ecc->write_oob = nand_write_oob_std;
-
- /*
- * Board driver should supply ecc.size and ecc.strength
- * values to select how many bits are correctable.
- * Otherwise, default to 4 bits for large page devices.
- */
- if (!ecc->size && (mtd->oobsize >= 64)) {
- ecc->size = 512;
- ecc->strength = 4;
- }
-
- /*
- * if no ecc placement scheme was provided pickup the default
- * large page one.
- */
- if (!mtd->ooblayout) {
- /* handle large page devices only */
- if (mtd->oobsize < 64) {
- WARN(1, "OOB layout is required when using software BCH on small pages\n");
- return -EINVAL;
- }
-
- mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
-
- }
-
- /*
- * We can only maximize ECC config when the default layout is
- * used, otherwise we don't know how many bytes can really be
- * used.
- */
- if (mtd->ooblayout == &nand_ooblayout_lp_ops &&
- ecc->options & NAND_ECC_MAXIMIZE) {
- int steps, bytes;
-
- /* Always prefer 1k blocks over 512bytes ones */
- ecc->size = 1024;
- steps = mtd->writesize / ecc->size;
-
- /* Reserve 2 bytes for the BBM */
- bytes = (mtd->oobsize - 2) / steps;
- ecc->strength = bytes * 8 / fls(8 * ecc->size);
- }
-
- /* See nand_bch_init() for details. */
- ecc->bytes = 0;
- ecc->priv = nand_bch_init(mtd);
- if (!ecc->priv) {
- WARN(1, "BCH ECC initialization failed!\n");
- return -EINVAL;
- }
- return 0;
- default:
- WARN(1, "Unsupported ECC algorithm!\n");
- return -EINVAL;
- }
-}
-
-/**
- * nand_check_ecc_caps - check the sanity of preset ECC settings
- * @chip: nand chip info structure
- * @caps: ECC caps info structure
- * @oobavail: OOB size that the ECC engine can use
- *
- * When ECC step size and strength are already set, check if they are supported
- * by the controller and the calculated ECC bytes fit within the chip's OOB.
- * On success, the calculated ECC bytes is set.
- */
-int nand_check_ecc_caps(struct nand_chip *chip,
- const struct nand_ecc_caps *caps, int oobavail)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- const struct nand_ecc_step_info *stepinfo;
- int preset_step = chip->ecc.size;
- int preset_strength = chip->ecc.strength;
- int nsteps, ecc_bytes;
- int i, j;
-
- if (WARN_ON(oobavail < 0))
- return -EINVAL;
-
- if (!preset_step || !preset_strength)
- return -ENODATA;
-
- nsteps = mtd->writesize / preset_step;
-
- for (i = 0; i < caps->nstepinfos; i++) {
- stepinfo = &caps->stepinfos[i];
-
- if (stepinfo->stepsize != preset_step)
- continue;
-
- for (j = 0; j < stepinfo->nstrengths; j++) {
- if (stepinfo->strengths[j] != preset_strength)
- continue;
-
- ecc_bytes = caps->calc_ecc_bytes(preset_step,
- preset_strength);
- if (WARN_ON_ONCE(ecc_bytes < 0))
- return ecc_bytes;
-
- if (ecc_bytes * nsteps > oobavail) {
- pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
- preset_step, preset_strength);
- return -ENOSPC;
- }
-
- chip->ecc.bytes = ecc_bytes;
-
- return 0;
- }
- }
-
- pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
- preset_step, preset_strength);
-
- return -ENOTSUPP;
-}
-EXPORT_SYMBOL_GPL(nand_check_ecc_caps);
-
-/**
- * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
- * @chip: nand chip info structure
- * @caps: ECC engine caps info structure
- * @oobavail: OOB size that the ECC engine can use
- *
- * If a chip's ECC requirement is provided, try to meet it with the least
- * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
- * On success, the chosen ECC settings are set.
- */
-int nand_match_ecc_req(struct nand_chip *chip,
- const struct nand_ecc_caps *caps, int oobavail)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- const struct nand_ecc_step_info *stepinfo;
- int req_step = chip->ecc_step_ds;
- int req_strength = chip->ecc_strength_ds;
- int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
- int best_step, best_strength, best_ecc_bytes;
- int best_ecc_bytes_total = INT_MAX;
- int i, j;
-
- if (WARN_ON(oobavail < 0))
- return -EINVAL;
-
- /* No information provided by the NAND chip */
- if (!req_step || !req_strength)
- return -ENOTSUPP;
-
- /* number of correctable bits the chip requires in a page */
- req_corr = mtd->writesize / req_step * req_strength;
-
- for (i = 0; i < caps->nstepinfos; i++) {
- stepinfo = &caps->stepinfos[i];
- step_size = stepinfo->stepsize;
-
- for (j = 0; j < stepinfo->nstrengths; j++) {
- strength = stepinfo->strengths[j];
-
- /*
- * If both step size and strength are smaller than the
- * chip's requirement, it is not easy to compare the
- * resulted reliability.
- */
- if (step_size < req_step && strength < req_strength)
- continue;
-
- if (mtd->writesize % step_size)
- continue;
-
- nsteps = mtd->writesize / step_size;
-
- ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
- if (WARN_ON_ONCE(ecc_bytes < 0))
- continue;
- ecc_bytes_total = ecc_bytes * nsteps;
-
- if (ecc_bytes_total > oobavail ||
- strength * nsteps < req_corr)
- continue;
-
- /*
- * We assume the best is to meet the chip's requrement
- * with the least number of ECC bytes.
- */
- if (ecc_bytes_total < best_ecc_bytes_total) {
- best_ecc_bytes_total = ecc_bytes_total;
- best_step = step_size;
- best_strength = strength;
- best_ecc_bytes = ecc_bytes;
- }
- }
- }
-
- if (best_ecc_bytes_total == INT_MAX)
- return -ENOTSUPP;
-
- chip->ecc.size = best_step;
- chip->ecc.strength = best_strength;
- chip->ecc.bytes = best_ecc_bytes;
-
- return 0;
-}
-EXPORT_SYMBOL_GPL(nand_match_ecc_req);
-
-/**
- * nand_maximize_ecc - choose the max ECC strength available
- * @chip: nand chip info structure
- * @caps: ECC engine caps info structure
- * @oobavail: OOB size that the ECC engine can use
- *
- * Choose the max ECC strength that is supported on the controller, and can fit
- * within the chip's OOB. On success, the chosen ECC settings are set.
- */
-int nand_maximize_ecc(struct nand_chip *chip,
- const struct nand_ecc_caps *caps, int oobavail)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- const struct nand_ecc_step_info *stepinfo;
- int step_size, strength, nsteps, ecc_bytes, corr;
- int best_corr = 0;
- int best_step = 0;
- int best_strength, best_ecc_bytes;
- int i, j;
-
- if (WARN_ON(oobavail < 0))
- return -EINVAL;
-
- for (i = 0; i < caps->nstepinfos; i++) {
- stepinfo = &caps->stepinfos[i];
- step_size = stepinfo->stepsize;
-
- /* If chip->ecc.size is already set, respect it */
- if (chip->ecc.size && step_size != chip->ecc.size)
- continue;
-
- for (j = 0; j < stepinfo->nstrengths; j++) {
- strength = stepinfo->strengths[j];
-
- if (mtd->writesize % step_size)
- continue;
-
- nsteps = mtd->writesize / step_size;
-
- ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
- if (WARN_ON_ONCE(ecc_bytes < 0))
- continue;
-
- if (ecc_bytes * nsteps > oobavail)
- continue;
-
- corr = strength * nsteps;
-
- /*
- * If the number of correctable bits is the same,
- * bigger step_size has more reliability.
- */
- if (corr > best_corr ||
- (corr == best_corr && step_size > best_step)) {
- best_corr = corr;
- best_step = step_size;
- best_strength = strength;
- best_ecc_bytes = ecc_bytes;
- }
- }
- }
-
- if (!best_corr)
- return -ENOTSUPP;
-
- chip->ecc.size = best_step;
- chip->ecc.strength = best_strength;
- chip->ecc.bytes = best_ecc_bytes;
-
- return 0;
-}
-EXPORT_SYMBOL_GPL(nand_maximize_ecc);
-
-/*
- * Check if the chip configuration meet the datasheet requirements.
-
- * If our configuration corrects A bits per B bytes and the minimum
- * required correction level is X bits per Y bytes, then we must ensure
- * both of the following are true:
- *
- * (1) A / B >= X / Y
- * (2) A >= X
- *
- * Requirement (1) ensures we can correct for the required bitflip density.
- * Requirement (2) ensures we can correct even when all bitflips are clumped
- * in the same sector.
- */
-static bool nand_ecc_strength_good(struct mtd_info *mtd)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct nand_ecc_ctrl *ecc = &chip->ecc;
- int corr, ds_corr;
-
- if (ecc->size == 0 || chip->ecc_step_ds == 0)
- /* Not enough information */
- return true;
-
- /*
- * We get the number of corrected bits per page to compare
- * the correction density.
- */
- corr = (mtd->writesize * ecc->strength) / ecc->size;
- ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
-
- return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
-}
-
-/**
- * nand_scan_tail - [NAND Interface] Scan for the NAND device
- * @mtd: MTD device structure
- *
- * This is the second phase of the normal nand_scan() function. It fills out
- * all the uninitialized function pointers with the defaults and scans for a
- * bad block table if appropriate.
- */
-int nand_scan_tail(struct mtd_info *mtd)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct nand_ecc_ctrl *ecc = &chip->ecc;
- int ret, i;
-
- /* New bad blocks should be marked in OOB, flash-based BBT, or both */
- if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
- !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
- return -EINVAL;
- }
-
- chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
- if (!chip->data_buf)
- return -ENOMEM;
-
- /*
- * FIXME: some NAND manufacturer drivers expect the first die to be
- * selected when manufacturer->init() is called. They should be fixed
- * to explictly select the relevant die when interacting with the NAND
- * chip.
- */
- chip->select_chip(mtd, 0);
- ret = nand_manufacturer_init(chip);
- chip->select_chip(mtd, -1);
- if (ret)
- goto err_free_buf;
-
- /* Set the internal oob buffer location, just after the page data */
- chip->oob_poi = chip->data_buf + mtd->writesize;
-
- /*
- * If no default placement scheme is given, select an appropriate one.
- */
- if (!mtd->ooblayout &&
- !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) {
- switch (mtd->oobsize) {
- case 8:
- case 16:
- mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops);
- break;
- case 64:
- case 128:
- mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops);
- break;
- default:
- /*
- * Expose the whole OOB area to users if ECC_NONE
- * is passed. We could do that for all kind of
- * ->oobsize, but we must keep the old large/small
- * page with ECC layout when ->oobsize <= 128 for
- * compatibility reasons.
- */
- if (ecc->mode == NAND_ECC_NONE) {
- mtd_set_ooblayout(mtd,
- &nand_ooblayout_lp_ops);
- break;
- }
-
- WARN(1, "No oob scheme defined for oobsize %d\n",
- mtd->oobsize);
- ret = -EINVAL;
- goto err_nand_manuf_cleanup;
- }
- }
-
- /*
- * Check ECC mode, default to software if 3byte/512byte hardware ECC is
- * selected and we have 256 byte pagesize fallback to software ECC
- */
-
- switch (ecc->mode) {
- case NAND_ECC_HW_OOB_FIRST:
- /* Similar to NAND_ECC_HW, but a separate read_page handle */
- if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
- WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
- ret = -EINVAL;
- goto err_nand_manuf_cleanup;
- }
- if (!ecc->read_page)
- ecc->read_page = nand_read_page_hwecc_oob_first;
-
- case NAND_ECC_HW:
- /* Use standard hwecc read page function? */
- if (!ecc->read_page)
- ecc->read_page = nand_read_page_hwecc;
- if (!ecc->write_page)
- ecc->write_page = nand_write_page_hwecc;
- if (!ecc->read_page_raw)
- ecc->read_page_raw = nand_read_page_raw;
- if (!ecc->write_page_raw)
- ecc->write_page_raw = nand_write_page_raw;
- if (!ecc->read_oob)
- ecc->read_oob = nand_read_oob_std;
- if (!ecc->write_oob)
- ecc->write_oob = nand_write_oob_std;
- if (!ecc->read_subpage)
- ecc->read_subpage = nand_read_subpage;
- if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
- ecc->write_subpage = nand_write_subpage_hwecc;
-
- case NAND_ECC_HW_SYNDROME:
- if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
- (!ecc->read_page ||
- ecc->read_page == nand_read_page_hwecc ||
- !ecc->write_page ||
- ecc->write_page == nand_write_page_hwecc)) {
- WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
- ret = -EINVAL;
- goto err_nand_manuf_cleanup;
- }
- /* Use standard syndrome read/write page function? */
- if (!ecc->read_page)
- ecc->read_page = nand_read_page_syndrome;
- if (!ecc->write_page)
- ecc->write_page = nand_write_page_syndrome;
- if (!ecc->read_page_raw)
- ecc->read_page_raw = nand_read_page_raw_syndrome;
- if (!ecc->write_page_raw)
- ecc->write_page_raw = nand_write_page_raw_syndrome;
- if (!ecc->read_oob)
- ecc->read_oob = nand_read_oob_syndrome;
- if (!ecc->write_oob)
- ecc->write_oob = nand_write_oob_syndrome;
-
- if (mtd->writesize >= ecc->size) {
- if (!ecc->strength) {
- WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
- ret = -EINVAL;
- goto err_nand_manuf_cleanup;
- }
- break;
- }
- pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
- ecc->size, mtd->writesize);
- ecc->mode = NAND_ECC_SOFT;
- ecc->algo = NAND_ECC_HAMMING;
-
- case NAND_ECC_SOFT:
- ret = nand_set_ecc_soft_ops(mtd);
- if (ret) {
- ret = -EINVAL;
- goto err_nand_manuf_cleanup;
- }
- break;
-
- case NAND_ECC_ON_DIE:
- if (!ecc->read_page || !ecc->write_page) {
- WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
- ret = -EINVAL;
- goto err_nand_manuf_cleanup;
- }
- if (!ecc->read_oob)
- ecc->read_oob = nand_read_oob_std;
- if (!ecc->write_oob)
- ecc->write_oob = nand_write_oob_std;
- break;
-
- case NAND_ECC_NONE:
- pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
- ecc->read_page = nand_read_page_raw;
- ecc->write_page = nand_write_page_raw;
- ecc->read_oob = nand_read_oob_std;
- ecc->read_page_raw = nand_read_page_raw;
- ecc->write_page_raw = nand_write_page_raw;
- ecc->write_oob = nand_write_oob_std;
- ecc->size = mtd->writesize;
- ecc->bytes = 0;
- ecc->strength = 0;
- break;
-
- default:
- WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode);
- ret = -EINVAL;
- goto err_nand_manuf_cleanup;
- }
-
- if (ecc->correct || ecc->calculate) {
- ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
- ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
- if (!ecc->calc_buf || !ecc->code_buf) {
- ret = -ENOMEM;
- goto err_nand_manuf_cleanup;
- }
- }
-
- /* For many systems, the standard OOB write also works for raw */
- if (!ecc->read_oob_raw)
- ecc->read_oob_raw = ecc->read_oob;
- if (!ecc->write_oob_raw)
- ecc->write_oob_raw = ecc->write_oob;
-
- /* propagate ecc info to mtd_info */
- mtd->ecc_strength = ecc->strength;
- mtd->ecc_step_size = ecc->size;
-
- /*
- * Set the number of read / write steps for one page depending on ECC
- * mode.
- */
- ecc->steps = mtd->writesize / ecc->size;
- if (ecc->steps * ecc->size != mtd->writesize) {
- WARN(1, "Invalid ECC parameters\n");
- ret = -EINVAL;
- goto err_nand_manuf_cleanup;
- }
- ecc->total = ecc->steps * ecc->bytes;
- if (ecc->total > mtd->oobsize) {
- WARN(1, "Total number of ECC bytes exceeded oobsize\n");
- ret = -EINVAL;
- goto err_nand_manuf_cleanup;
- }
-
- /*
- * The number of bytes available for a client to place data into
- * the out of band area.
- */
- ret = mtd_ooblayout_count_freebytes(mtd);
- if (ret < 0)
- ret = 0;
-
- mtd->oobavail = ret;
-
- /* ECC sanity check: warn if it's too weak */
- if (!nand_ecc_strength_good(mtd))
- pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
- mtd->name);
-
- /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
- if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
- switch (ecc->steps) {
- case 2:
- mtd->subpage_sft = 1;
- break;
- case 4:
- case 8:
- case 16:
- mtd->subpage_sft = 2;
- break;
- }
- }
- chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
-
- /* Initialize state */
- chip->state = FL_READY;
-
- /* Invalidate the pagebuffer reference */
- chip->pagebuf = -1;
-
- /* Large page NAND with SOFT_ECC should support subpage reads */
- switch (ecc->mode) {
- case NAND_ECC_SOFT:
- if (chip->page_shift > 9)
- chip->options |= NAND_SUBPAGE_READ;
- break;
-
- default:
- break;
- }
-
- /* Fill in remaining MTD driver data */
- mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
- mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
- MTD_CAP_NANDFLASH;
- mtd->_erase = nand_erase;
- mtd->_point = NULL;
- mtd->_unpoint = NULL;
- mtd->_panic_write = panic_nand_write;
- mtd->_read_oob = nand_read_oob;
- mtd->_write_oob = nand_write_oob;
- mtd->_sync = nand_sync;
- mtd->_lock = NULL;
- mtd->_unlock = NULL;
- mtd->_suspend = nand_suspend;
- mtd->_resume = nand_resume;
- mtd->_reboot = nand_shutdown;
- mtd->_block_isreserved = nand_block_isreserved;
- mtd->_block_isbad = nand_block_isbad;
- mtd->_block_markbad = nand_block_markbad;
- mtd->_max_bad_blocks = nand_max_bad_blocks;
- mtd->writebufsize = mtd->writesize;
-
- /*
- * Initialize bitflip_threshold to its default prior scan_bbt() call.
- * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
- * properly set.
- */
- if (!mtd->bitflip_threshold)
- mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
-
- /* Initialize the ->data_interface field. */
- ret = nand_init_data_interface(chip);
- if (ret)
- goto err_nand_manuf_cleanup;
-
- /* Enter fastest possible mode on all dies. */
- for (i = 0; i < chip->numchips; i++) {
- chip->select_chip(mtd, i);
- ret = nand_setup_data_interface(chip, i);
- chip->select_chip(mtd, -1);
-
- if (ret)
- goto err_nand_manuf_cleanup;
- }
-
- /* Check, if we should skip the bad block table scan */
- if (chip->options & NAND_SKIP_BBTSCAN)
- return 0;
-
- /* Build bad block table */
- ret = chip->scan_bbt(mtd);
- if (ret)
- goto err_nand_manuf_cleanup;
-
- return 0;
-
-
-err_nand_manuf_cleanup:
- nand_manufacturer_cleanup(chip);
-
-err_free_buf:
- kfree(chip->data_buf);
- kfree(ecc->code_buf);
- kfree(ecc->calc_buf);
-
- return ret;
-}
-EXPORT_SYMBOL(nand_scan_tail);
-
-/*
- * is_module_text_address() isn't exported, and it's mostly a pointless
- * test if this is a module _anyway_ -- they'd have to try _really_ hard
- * to call us from in-kernel code if the core NAND support is modular.
- */
-#ifdef MODULE
-#define caller_is_module() (1)
-#else
-#define caller_is_module() \
- is_module_text_address((unsigned long)__builtin_return_address(0))
-#endif
-
-/**
- * nand_scan - [NAND Interface] Scan for the NAND device
- * @mtd: MTD device structure
- * @maxchips: number of chips to scan for
- *
- * This fills out all the uninitialized function pointers with the defaults.
- * The flash ID is read and the mtd/chip structures are filled with the
- * appropriate values.
- */
-int nand_scan(struct mtd_info *mtd, int maxchips)
-{
- int ret;
-
- ret = nand_scan_ident(mtd, maxchips, NULL);
- if (!ret)
- ret = nand_scan_tail(mtd);
- return ret;
-}
-EXPORT_SYMBOL(nand_scan);
-
-/**
- * nand_cleanup - [NAND Interface] Free resources held by the NAND device
- * @chip: NAND chip object
- */
-void nand_cleanup(struct nand_chip *chip)
-{
- if (chip->ecc.mode == NAND_ECC_SOFT &&
- chip->ecc.algo == NAND_ECC_BCH)
- nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
-
- /* Free bad block table memory */
- kfree(chip->bbt);
- kfree(chip->data_buf);
- kfree(chip->ecc.code_buf);
- kfree(chip->ecc.calc_buf);
-
- /* Free bad block descriptor memory */
- if (chip->badblock_pattern && chip->badblock_pattern->options
- & NAND_BBT_DYNAMICSTRUCT)
- kfree(chip->badblock_pattern);
-
- /* Free manufacturer priv data. */
- nand_manufacturer_cleanup(chip);
-}
-EXPORT_SYMBOL_GPL(nand_cleanup);
-
-/**
- * nand_release - [NAND Interface] Unregister the MTD device and free resources
- * held by the NAND device
- * @mtd: MTD device structure
- */
-void nand_release(struct mtd_info *mtd)
-{
- mtd_device_unregister(mtd);
- nand_cleanup(mtd_to_nand(mtd));
-}
-EXPORT_SYMBOL_GPL(nand_release);
-
-MODULE_LICENSE("GPL");
-MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
-MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
-MODULE_DESCRIPTION("Generic NAND flash driver code");