summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/nand/nand_ecc.c
diff options
context:
space:
mode:
authorBoris Brezillon <boris.brezillon@bootlin.com>2018-02-05 23:02:04 +0100
committerBoris Brezillon <boris.brezillon@bootlin.com>2018-02-16 10:09:34 +0100
commit93db446a424cee9387b532995e6b516667079555 (patch)
tree39c7900ae38d890fb971ea5fc6f194f7e66fa797 /drivers/mtd/nand/nand_ecc.c
parentmtd: nand: Add missing copyright information (diff)
downloadlinux-93db446a424cee9387b532995e6b516667079555.tar.xz
linux-93db446a424cee9387b532995e6b516667079555.zip
mtd: nand: move raw NAND related code to the raw/ subdir
As part of the process of sharing more code between different NAND based devices, we need to move all raw NAND related code to the raw/ subdirectory. Signed-off-by: Boris Brezillon <boris.brezillon@bootlin.com>
Diffstat (limited to 'drivers/mtd/nand/nand_ecc.c')
-rw-r--r--drivers/mtd/nand/nand_ecc.c531
1 files changed, 0 insertions, 531 deletions
diff --git a/drivers/mtd/nand/nand_ecc.c b/drivers/mtd/nand/nand_ecc.c
deleted file mode 100644
index 3630f0fe8fa4..000000000000
--- a/drivers/mtd/nand/nand_ecc.c
+++ /dev/null
@@ -1,531 +0,0 @@
-/*
- * This file contains an ECC algorithm that detects and corrects 1 bit
- * errors in a 256 byte block of data.
- *
- * Copyright © 2008 Koninklijke Philips Electronics NV.
- * Author: Frans Meulenbroeks
- *
- * Completely replaces the previous ECC implementation which was written by:
- * Steven J. Hill (sjhill@realitydiluted.com)
- * Thomas Gleixner (tglx@linutronix.de)
- *
- * Information on how this algorithm works and how it was developed
- * can be found in Documentation/mtd/nand_ecc.txt
- *
- * This file is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by the
- * Free Software Foundation; either version 2 or (at your option) any
- * later version.
- *
- * This file is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- * for more details.
- *
- * You should have received a copy of the GNU General Public License along
- * with this file; if not, write to the Free Software Foundation, Inc.,
- * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
- *
- */
-
-/*
- * The STANDALONE macro is useful when running the code outside the kernel
- * e.g. when running the code in a testbed or a benchmark program.
- * When STANDALONE is used, the module related macros are commented out
- * as well as the linux include files.
- * Instead a private definition of mtd_info is given to satisfy the compiler
- * (the code does not use mtd_info, so the code does not care)
- */
-#ifndef STANDALONE
-#include <linux/types.h>
-#include <linux/kernel.h>
-#include <linux/module.h>
-#include <linux/mtd/mtd.h>
-#include <linux/mtd/rawnand.h>
-#include <linux/mtd/nand_ecc.h>
-#include <asm/byteorder.h>
-#else
-#include <stdint.h>
-struct mtd_info;
-#define EXPORT_SYMBOL(x) /* x */
-
-#define MODULE_LICENSE(x) /* x */
-#define MODULE_AUTHOR(x) /* x */
-#define MODULE_DESCRIPTION(x) /* x */
-
-#define pr_err printf
-#endif
-
-/*
- * invparity is a 256 byte table that contains the odd parity
- * for each byte. So if the number of bits in a byte is even,
- * the array element is 1, and when the number of bits is odd
- * the array eleemnt is 0.
- */
-static const char invparity[256] = {
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
-};
-
-/*
- * bitsperbyte contains the number of bits per byte
- * this is only used for testing and repairing parity
- * (a precalculated value slightly improves performance)
- */
-static const char bitsperbyte[256] = {
- 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
- 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
- 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
- 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
- 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
- 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8,
-};
-
-/*
- * addressbits is a lookup table to filter out the bits from the xor-ed
- * ECC data that identify the faulty location.
- * this is only used for repairing parity
- * see the comments in nand_correct_data for more details
- */
-static const char addressbits[256] = {
- 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
- 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
- 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
- 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
- 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
- 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
- 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
- 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
- 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
- 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
- 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
- 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
- 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
- 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
- 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
- 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
- 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
- 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
- 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
- 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
- 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
- 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
- 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
- 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
- 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
- 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
- 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
- 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
- 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
- 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
- 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
- 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f
-};
-
-/**
- * __nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256/512-byte
- * block
- * @buf: input buffer with raw data
- * @eccsize: data bytes per ECC step (256 or 512)
- * @code: output buffer with ECC
- */
-void __nand_calculate_ecc(const unsigned char *buf, unsigned int eccsize,
- unsigned char *code)
-{
- int i;
- const uint32_t *bp = (uint32_t *)buf;
- /* 256 or 512 bytes/ecc */
- const uint32_t eccsize_mult = eccsize >> 8;
- uint32_t cur; /* current value in buffer */
- /* rp0..rp15..rp17 are the various accumulated parities (per byte) */
- uint32_t rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
- uint32_t rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15, rp16;
- uint32_t uninitialized_var(rp17); /* to make compiler happy */
- uint32_t par; /* the cumulative parity for all data */
- uint32_t tmppar; /* the cumulative parity for this iteration;
- for rp12, rp14 and rp16 at the end of the
- loop */
-
- par = 0;
- rp4 = 0;
- rp6 = 0;
- rp8 = 0;
- rp10 = 0;
- rp12 = 0;
- rp14 = 0;
- rp16 = 0;
-
- /*
- * The loop is unrolled a number of times;
- * This avoids if statements to decide on which rp value to update
- * Also we process the data by longwords.
- * Note: passing unaligned data might give a performance penalty.
- * It is assumed that the buffers are aligned.
- * tmppar is the cumulative sum of this iteration.
- * needed for calculating rp12, rp14, rp16 and par
- * also used as a performance improvement for rp6, rp8 and rp10
- */
- for (i = 0; i < eccsize_mult << 2; i++) {
- cur = *bp++;
- tmppar = cur;
- rp4 ^= cur;
- cur = *bp++;
- tmppar ^= cur;
- rp6 ^= tmppar;
- cur = *bp++;
- tmppar ^= cur;
- rp4 ^= cur;
- cur = *bp++;
- tmppar ^= cur;
- rp8 ^= tmppar;
-
- cur = *bp++;
- tmppar ^= cur;
- rp4 ^= cur;
- rp6 ^= cur;
- cur = *bp++;
- tmppar ^= cur;
- rp6 ^= cur;
- cur = *bp++;
- tmppar ^= cur;
- rp4 ^= cur;
- cur = *bp++;
- tmppar ^= cur;
- rp10 ^= tmppar;
-
- cur = *bp++;
- tmppar ^= cur;
- rp4 ^= cur;
- rp6 ^= cur;
- rp8 ^= cur;
- cur = *bp++;
- tmppar ^= cur;
- rp6 ^= cur;
- rp8 ^= cur;
- cur = *bp++;
- tmppar ^= cur;
- rp4 ^= cur;
- rp8 ^= cur;
- cur = *bp++;
- tmppar ^= cur;
- rp8 ^= cur;
-
- cur = *bp++;
- tmppar ^= cur;
- rp4 ^= cur;
- rp6 ^= cur;
- cur = *bp++;
- tmppar ^= cur;
- rp6 ^= cur;
- cur = *bp++;
- tmppar ^= cur;
- rp4 ^= cur;
- cur = *bp++;
- tmppar ^= cur;
-
- par ^= tmppar;
- if ((i & 0x1) == 0)
- rp12 ^= tmppar;
- if ((i & 0x2) == 0)
- rp14 ^= tmppar;
- if (eccsize_mult == 2 && (i & 0x4) == 0)
- rp16 ^= tmppar;
- }
-
- /*
- * handle the fact that we use longword operations
- * we'll bring rp4..rp14..rp16 back to single byte entities by
- * shifting and xoring first fold the upper and lower 16 bits,
- * then the upper and lower 8 bits.
- */
- rp4 ^= (rp4 >> 16);
- rp4 ^= (rp4 >> 8);
- rp4 &= 0xff;
- rp6 ^= (rp6 >> 16);
- rp6 ^= (rp6 >> 8);
- rp6 &= 0xff;
- rp8 ^= (rp8 >> 16);
- rp8 ^= (rp8 >> 8);
- rp8 &= 0xff;
- rp10 ^= (rp10 >> 16);
- rp10 ^= (rp10 >> 8);
- rp10 &= 0xff;
- rp12 ^= (rp12 >> 16);
- rp12 ^= (rp12 >> 8);
- rp12 &= 0xff;
- rp14 ^= (rp14 >> 16);
- rp14 ^= (rp14 >> 8);
- rp14 &= 0xff;
- if (eccsize_mult == 2) {
- rp16 ^= (rp16 >> 16);
- rp16 ^= (rp16 >> 8);
- rp16 &= 0xff;
- }
-
- /*
- * we also need to calculate the row parity for rp0..rp3
- * This is present in par, because par is now
- * rp3 rp3 rp2 rp2 in little endian and
- * rp2 rp2 rp3 rp3 in big endian
- * as well as
- * rp1 rp0 rp1 rp0 in little endian and
- * rp0 rp1 rp0 rp1 in big endian
- * First calculate rp2 and rp3
- */
-#ifdef __BIG_ENDIAN
- rp2 = (par >> 16);
- rp2 ^= (rp2 >> 8);
- rp2 &= 0xff;
- rp3 = par & 0xffff;
- rp3 ^= (rp3 >> 8);
- rp3 &= 0xff;
-#else
- rp3 = (par >> 16);
- rp3 ^= (rp3 >> 8);
- rp3 &= 0xff;
- rp2 = par & 0xffff;
- rp2 ^= (rp2 >> 8);
- rp2 &= 0xff;
-#endif
-
- /* reduce par to 16 bits then calculate rp1 and rp0 */
- par ^= (par >> 16);
-#ifdef __BIG_ENDIAN
- rp0 = (par >> 8) & 0xff;
- rp1 = (par & 0xff);
-#else
- rp1 = (par >> 8) & 0xff;
- rp0 = (par & 0xff);
-#endif
-
- /* finally reduce par to 8 bits */
- par ^= (par >> 8);
- par &= 0xff;
-
- /*
- * and calculate rp5..rp15..rp17
- * note that par = rp4 ^ rp5 and due to the commutative property
- * of the ^ operator we can say:
- * rp5 = (par ^ rp4);
- * The & 0xff seems superfluous, but benchmarking learned that
- * leaving it out gives slightly worse results. No idea why, probably
- * it has to do with the way the pipeline in pentium is organized.
- */
- rp5 = (par ^ rp4) & 0xff;
- rp7 = (par ^ rp6) & 0xff;
- rp9 = (par ^ rp8) & 0xff;
- rp11 = (par ^ rp10) & 0xff;
- rp13 = (par ^ rp12) & 0xff;
- rp15 = (par ^ rp14) & 0xff;
- if (eccsize_mult == 2)
- rp17 = (par ^ rp16) & 0xff;
-
- /*
- * Finally calculate the ECC bits.
- * Again here it might seem that there are performance optimisations
- * possible, but benchmarks showed that on the system this is developed
- * the code below is the fastest
- */
-#ifdef CONFIG_MTD_NAND_ECC_SMC
- code[0] =
- (invparity[rp7] << 7) |
- (invparity[rp6] << 6) |
- (invparity[rp5] << 5) |
- (invparity[rp4] << 4) |
- (invparity[rp3] << 3) |
- (invparity[rp2] << 2) |
- (invparity[rp1] << 1) |
- (invparity[rp0]);
- code[1] =
- (invparity[rp15] << 7) |
- (invparity[rp14] << 6) |
- (invparity[rp13] << 5) |
- (invparity[rp12] << 4) |
- (invparity[rp11] << 3) |
- (invparity[rp10] << 2) |
- (invparity[rp9] << 1) |
- (invparity[rp8]);
-#else
- code[1] =
- (invparity[rp7] << 7) |
- (invparity[rp6] << 6) |
- (invparity[rp5] << 5) |
- (invparity[rp4] << 4) |
- (invparity[rp3] << 3) |
- (invparity[rp2] << 2) |
- (invparity[rp1] << 1) |
- (invparity[rp0]);
- code[0] =
- (invparity[rp15] << 7) |
- (invparity[rp14] << 6) |
- (invparity[rp13] << 5) |
- (invparity[rp12] << 4) |
- (invparity[rp11] << 3) |
- (invparity[rp10] << 2) |
- (invparity[rp9] << 1) |
- (invparity[rp8]);
-#endif
- if (eccsize_mult == 1)
- code[2] =
- (invparity[par & 0xf0] << 7) |
- (invparity[par & 0x0f] << 6) |
- (invparity[par & 0xcc] << 5) |
- (invparity[par & 0x33] << 4) |
- (invparity[par & 0xaa] << 3) |
- (invparity[par & 0x55] << 2) |
- 3;
- else
- code[2] =
- (invparity[par & 0xf0] << 7) |
- (invparity[par & 0x0f] << 6) |
- (invparity[par & 0xcc] << 5) |
- (invparity[par & 0x33] << 4) |
- (invparity[par & 0xaa] << 3) |
- (invparity[par & 0x55] << 2) |
- (invparity[rp17] << 1) |
- (invparity[rp16] << 0);
-}
-EXPORT_SYMBOL(__nand_calculate_ecc);
-
-/**
- * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256/512-byte
- * block
- * @mtd: MTD block structure
- * @buf: input buffer with raw data
- * @code: output buffer with ECC
- */
-int nand_calculate_ecc(struct mtd_info *mtd, const unsigned char *buf,
- unsigned char *code)
-{
- __nand_calculate_ecc(buf,
- mtd_to_nand(mtd)->ecc.size, code);
-
- return 0;
-}
-EXPORT_SYMBOL(nand_calculate_ecc);
-
-/**
- * __nand_correct_data - [NAND Interface] Detect and correct bit error(s)
- * @buf: raw data read from the chip
- * @read_ecc: ECC from the chip
- * @calc_ecc: the ECC calculated from raw data
- * @eccsize: data bytes per ECC step (256 or 512)
- *
- * Detect and correct a 1 bit error for eccsize byte block
- */
-int __nand_correct_data(unsigned char *buf,
- unsigned char *read_ecc, unsigned char *calc_ecc,
- unsigned int eccsize)
-{
- unsigned char b0, b1, b2, bit_addr;
- unsigned int byte_addr;
- /* 256 or 512 bytes/ecc */
- const uint32_t eccsize_mult = eccsize >> 8;
-
- /*
- * b0 to b2 indicate which bit is faulty (if any)
- * we might need the xor result more than once,
- * so keep them in a local var
- */
-#ifdef CONFIG_MTD_NAND_ECC_SMC
- b0 = read_ecc[0] ^ calc_ecc[0];
- b1 = read_ecc[1] ^ calc_ecc[1];
-#else
- b0 = read_ecc[1] ^ calc_ecc[1];
- b1 = read_ecc[0] ^ calc_ecc[0];
-#endif
- b2 = read_ecc[2] ^ calc_ecc[2];
-
- /* check if there are any bitfaults */
-
- /* repeated if statements are slightly more efficient than switch ... */
- /* ordered in order of likelihood */
-
- if ((b0 | b1 | b2) == 0)
- return 0; /* no error */
-
- if ((((b0 ^ (b0 >> 1)) & 0x55) == 0x55) &&
- (((b1 ^ (b1 >> 1)) & 0x55) == 0x55) &&
- ((eccsize_mult == 1 && ((b2 ^ (b2 >> 1)) & 0x54) == 0x54) ||
- (eccsize_mult == 2 && ((b2 ^ (b2 >> 1)) & 0x55) == 0x55))) {
- /* single bit error */
- /*
- * rp17/rp15/13/11/9/7/5/3/1 indicate which byte is the faulty
- * byte, cp 5/3/1 indicate the faulty bit.
- * A lookup table (called addressbits) is used to filter
- * the bits from the byte they are in.
- * A marginal optimisation is possible by having three
- * different lookup tables.
- * One as we have now (for b0), one for b2
- * (that would avoid the >> 1), and one for b1 (with all values
- * << 4). However it was felt that introducing two more tables
- * hardly justify the gain.
- *
- * The b2 shift is there to get rid of the lowest two bits.
- * We could also do addressbits[b2] >> 1 but for the
- * performance it does not make any difference
- */
- if (eccsize_mult == 1)
- byte_addr = (addressbits[b1] << 4) + addressbits[b0];
- else
- byte_addr = (addressbits[b2 & 0x3] << 8) +
- (addressbits[b1] << 4) + addressbits[b0];
- bit_addr = addressbits[b2 >> 2];
- /* flip the bit */
- buf[byte_addr] ^= (1 << bit_addr);
- return 1;
-
- }
- /* count nr of bits; use table lookup, faster than calculating it */
- if ((bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2]) == 1)
- return 1; /* error in ECC data; no action needed */
-
- pr_err("%s: uncorrectable ECC error\n", __func__);
- return -EBADMSG;
-}
-EXPORT_SYMBOL(__nand_correct_data);
-
-/**
- * nand_correct_data - [NAND Interface] Detect and correct bit error(s)
- * @mtd: MTD block structure
- * @buf: raw data read from the chip
- * @read_ecc: ECC from the chip
- * @calc_ecc: the ECC calculated from raw data
- *
- * Detect and correct a 1 bit error for 256/512 byte block
- */
-int nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
- unsigned char *read_ecc, unsigned char *calc_ecc)
-{
- return __nand_correct_data(buf, read_ecc, calc_ecc,
- mtd_to_nand(mtd)->ecc.size);
-}
-EXPORT_SYMBOL(nand_correct_data);
-
-MODULE_LICENSE("GPL");
-MODULE_AUTHOR("Frans Meulenbroeks <fransmeulenbroeks@gmail.com>");
-MODULE_DESCRIPTION("Generic NAND ECC support");