summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/nand/omap2.c
diff options
context:
space:
mode:
authorBoris Brezillon <boris.brezillon@bootlin.com>2018-02-05 23:02:04 +0100
committerBoris Brezillon <boris.brezillon@bootlin.com>2018-02-16 10:09:34 +0100
commit93db446a424cee9387b532995e6b516667079555 (patch)
tree39c7900ae38d890fb971ea5fc6f194f7e66fa797 /drivers/mtd/nand/omap2.c
parentmtd: nand: Add missing copyright information (diff)
downloadlinux-93db446a424cee9387b532995e6b516667079555.tar.xz
linux-93db446a424cee9387b532995e6b516667079555.zip
mtd: nand: move raw NAND related code to the raw/ subdir
As part of the process of sharing more code between different NAND based devices, we need to move all raw NAND related code to the raw/ subdirectory. Signed-off-by: Boris Brezillon <boris.brezillon@bootlin.com>
Diffstat (limited to 'drivers/mtd/nand/omap2.c')
-rw-r--r--drivers/mtd/nand/omap2.c2316
1 files changed, 0 insertions, 2316 deletions
diff --git a/drivers/mtd/nand/omap2.c b/drivers/mtd/nand/omap2.c
deleted file mode 100644
index 8cdf7d3d8fa7..000000000000
--- a/drivers/mtd/nand/omap2.c
+++ /dev/null
@@ -1,2316 +0,0 @@
-/*
- * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
- * Copyright © 2004 Micron Technology Inc.
- * Copyright © 2004 David Brownell
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- */
-
-#include <linux/platform_device.h>
-#include <linux/dmaengine.h>
-#include <linux/dma-mapping.h>
-#include <linux/delay.h>
-#include <linux/gpio/consumer.h>
-#include <linux/module.h>
-#include <linux/interrupt.h>
-#include <linux/jiffies.h>
-#include <linux/sched.h>
-#include <linux/mtd/mtd.h>
-#include <linux/mtd/rawnand.h>
-#include <linux/mtd/partitions.h>
-#include <linux/omap-dma.h>
-#include <linux/io.h>
-#include <linux/slab.h>
-#include <linux/of.h>
-#include <linux/of_device.h>
-
-#include <linux/mtd/nand_bch.h>
-#include <linux/platform_data/elm.h>
-
-#include <linux/omap-gpmc.h>
-#include <linux/platform_data/mtd-nand-omap2.h>
-
-#define DRIVER_NAME "omap2-nand"
-#define OMAP_NAND_TIMEOUT_MS 5000
-
-#define NAND_Ecc_P1e (1 << 0)
-#define NAND_Ecc_P2e (1 << 1)
-#define NAND_Ecc_P4e (1 << 2)
-#define NAND_Ecc_P8e (1 << 3)
-#define NAND_Ecc_P16e (1 << 4)
-#define NAND_Ecc_P32e (1 << 5)
-#define NAND_Ecc_P64e (1 << 6)
-#define NAND_Ecc_P128e (1 << 7)
-#define NAND_Ecc_P256e (1 << 8)
-#define NAND_Ecc_P512e (1 << 9)
-#define NAND_Ecc_P1024e (1 << 10)
-#define NAND_Ecc_P2048e (1 << 11)
-
-#define NAND_Ecc_P1o (1 << 16)
-#define NAND_Ecc_P2o (1 << 17)
-#define NAND_Ecc_P4o (1 << 18)
-#define NAND_Ecc_P8o (1 << 19)
-#define NAND_Ecc_P16o (1 << 20)
-#define NAND_Ecc_P32o (1 << 21)
-#define NAND_Ecc_P64o (1 << 22)
-#define NAND_Ecc_P128o (1 << 23)
-#define NAND_Ecc_P256o (1 << 24)
-#define NAND_Ecc_P512o (1 << 25)
-#define NAND_Ecc_P1024o (1 << 26)
-#define NAND_Ecc_P2048o (1 << 27)
-
-#define TF(value) (value ? 1 : 0)
-
-#define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
-#define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
-#define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
-#define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
-#define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
-#define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
-#define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
-#define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
-
-#define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
-#define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
-#define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
-#define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
-#define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
-#define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
-#define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
-#define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
-
-#define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
-#define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
-#define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
-#define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
-#define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
-#define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
-#define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
-#define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
-
-#define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
-#define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
-#define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
-#define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
-#define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
-#define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
-#define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
-#define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
-
-#define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
-#define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
-
-#define PREFETCH_CONFIG1_CS_SHIFT 24
-#define ECC_CONFIG_CS_SHIFT 1
-#define CS_MASK 0x7
-#define ENABLE_PREFETCH (0x1 << 7)
-#define DMA_MPU_MODE_SHIFT 2
-#define ECCSIZE0_SHIFT 12
-#define ECCSIZE1_SHIFT 22
-#define ECC1RESULTSIZE 0x1
-#define ECCCLEAR 0x100
-#define ECC1 0x1
-#define PREFETCH_FIFOTHRESHOLD_MAX 0x40
-#define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
-#define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
-#define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
-#define STATUS_BUFF_EMPTY 0x00000001
-
-#define SECTOR_BYTES 512
-/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
-#define BCH4_BIT_PAD 4
-
-/* GPMC ecc engine settings for read */
-#define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
-#define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */
-#define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */
-#define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */
-#define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
-
-/* GPMC ecc engine settings for write */
-#define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
-#define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */
-#define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
-
-#define BADBLOCK_MARKER_LENGTH 2
-
-static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
- 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
- 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
- 0x07, 0x0e};
-static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
- 0xac, 0x6b, 0xff, 0x99, 0x7b};
-static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
-
-/* Shared among all NAND instances to synchronize access to the ECC Engine */
-static struct nand_hw_control omap_gpmc_controller = {
- .lock = __SPIN_LOCK_UNLOCKED(omap_gpmc_controller.lock),
- .wq = __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller.wq),
-};
-
-struct omap_nand_info {
- struct nand_chip nand;
- struct platform_device *pdev;
-
- int gpmc_cs;
- bool dev_ready;
- enum nand_io xfer_type;
- int devsize;
- enum omap_ecc ecc_opt;
- struct device_node *elm_of_node;
-
- unsigned long phys_base;
- struct completion comp;
- struct dma_chan *dma;
- int gpmc_irq_fifo;
- int gpmc_irq_count;
- enum {
- OMAP_NAND_IO_READ = 0, /* read */
- OMAP_NAND_IO_WRITE, /* write */
- } iomode;
- u_char *buf;
- int buf_len;
- /* Interface to GPMC */
- struct gpmc_nand_regs reg;
- struct gpmc_nand_ops *ops;
- bool flash_bbt;
- /* fields specific for BCHx_HW ECC scheme */
- struct device *elm_dev;
- /* NAND ready gpio */
- struct gpio_desc *ready_gpiod;
-};
-
-static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
-{
- return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
-}
-
-/**
- * omap_prefetch_enable - configures and starts prefetch transfer
- * @cs: cs (chip select) number
- * @fifo_th: fifo threshold to be used for read/ write
- * @dma_mode: dma mode enable (1) or disable (0)
- * @u32_count: number of bytes to be transferred
- * @is_write: prefetch read(0) or write post(1) mode
- */
-static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
- unsigned int u32_count, int is_write, struct omap_nand_info *info)
-{
- u32 val;
-
- if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
- return -1;
-
- if (readl(info->reg.gpmc_prefetch_control))
- return -EBUSY;
-
- /* Set the amount of bytes to be prefetched */
- writel(u32_count, info->reg.gpmc_prefetch_config2);
-
- /* Set dma/mpu mode, the prefetch read / post write and
- * enable the engine. Set which cs is has requested for.
- */
- val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
- PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
- (dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1));
- writel(val, info->reg.gpmc_prefetch_config1);
-
- /* Start the prefetch engine */
- writel(0x1, info->reg.gpmc_prefetch_control);
-
- return 0;
-}
-
-/**
- * omap_prefetch_reset - disables and stops the prefetch engine
- */
-static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
-{
- u32 config1;
-
- /* check if the same module/cs is trying to reset */
- config1 = readl(info->reg.gpmc_prefetch_config1);
- if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
- return -EINVAL;
-
- /* Stop the PFPW engine */
- writel(0x0, info->reg.gpmc_prefetch_control);
-
- /* Reset/disable the PFPW engine */
- writel(0x0, info->reg.gpmc_prefetch_config1);
-
- return 0;
-}
-
-/**
- * omap_hwcontrol - hardware specific access to control-lines
- * @mtd: MTD device structure
- * @cmd: command to device
- * @ctrl:
- * NAND_NCE: bit 0 -> don't care
- * NAND_CLE: bit 1 -> Command Latch
- * NAND_ALE: bit 2 -> Address Latch
- *
- * NOTE: boards may use different bits for these!!
- */
-static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
-{
- struct omap_nand_info *info = mtd_to_omap(mtd);
-
- if (cmd != NAND_CMD_NONE) {
- if (ctrl & NAND_CLE)
- writeb(cmd, info->reg.gpmc_nand_command);
-
- else if (ctrl & NAND_ALE)
- writeb(cmd, info->reg.gpmc_nand_address);
-
- else /* NAND_NCE */
- writeb(cmd, info->reg.gpmc_nand_data);
- }
-}
-
-/**
- * omap_read_buf8 - read data from NAND controller into buffer
- * @mtd: MTD device structure
- * @buf: buffer to store date
- * @len: number of bytes to read
- */
-static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
-{
- struct nand_chip *nand = mtd_to_nand(mtd);
-
- ioread8_rep(nand->IO_ADDR_R, buf, len);
-}
-
-/**
- * omap_write_buf8 - write buffer to NAND controller
- * @mtd: MTD device structure
- * @buf: data buffer
- * @len: number of bytes to write
- */
-static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
-{
- struct omap_nand_info *info = mtd_to_omap(mtd);
- u_char *p = (u_char *)buf;
- bool status;
-
- while (len--) {
- iowrite8(*p++, info->nand.IO_ADDR_W);
- /* wait until buffer is available for write */
- do {
- status = info->ops->nand_writebuffer_empty();
- } while (!status);
- }
-}
-
-/**
- * omap_read_buf16 - read data from NAND controller into buffer
- * @mtd: MTD device structure
- * @buf: buffer to store date
- * @len: number of bytes to read
- */
-static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
-{
- struct nand_chip *nand = mtd_to_nand(mtd);
-
- ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
-}
-
-/**
- * omap_write_buf16 - write buffer to NAND controller
- * @mtd: MTD device structure
- * @buf: data buffer
- * @len: number of bytes to write
- */
-static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
-{
- struct omap_nand_info *info = mtd_to_omap(mtd);
- u16 *p = (u16 *) buf;
- bool status;
- /* FIXME try bursts of writesw() or DMA ... */
- len >>= 1;
-
- while (len--) {
- iowrite16(*p++, info->nand.IO_ADDR_W);
- /* wait until buffer is available for write */
- do {
- status = info->ops->nand_writebuffer_empty();
- } while (!status);
- }
-}
-
-/**
- * omap_read_buf_pref - read data from NAND controller into buffer
- * @mtd: MTD device structure
- * @buf: buffer to store date
- * @len: number of bytes to read
- */
-static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
-{
- struct omap_nand_info *info = mtd_to_omap(mtd);
- uint32_t r_count = 0;
- int ret = 0;
- u32 *p = (u32 *)buf;
-
- /* take care of subpage reads */
- if (len % 4) {
- if (info->nand.options & NAND_BUSWIDTH_16)
- omap_read_buf16(mtd, buf, len % 4);
- else
- omap_read_buf8(mtd, buf, len % 4);
- p = (u32 *) (buf + len % 4);
- len -= len % 4;
- }
-
- /* configure and start prefetch transfer */
- ret = omap_prefetch_enable(info->gpmc_cs,
- PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
- if (ret) {
- /* PFPW engine is busy, use cpu copy method */
- if (info->nand.options & NAND_BUSWIDTH_16)
- omap_read_buf16(mtd, (u_char *)p, len);
- else
- omap_read_buf8(mtd, (u_char *)p, len);
- } else {
- do {
- r_count = readl(info->reg.gpmc_prefetch_status);
- r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
- r_count = r_count >> 2;
- ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
- p += r_count;
- len -= r_count << 2;
- } while (len);
- /* disable and stop the PFPW engine */
- omap_prefetch_reset(info->gpmc_cs, info);
- }
-}
-
-/**
- * omap_write_buf_pref - write buffer to NAND controller
- * @mtd: MTD device structure
- * @buf: data buffer
- * @len: number of bytes to write
- */
-static void omap_write_buf_pref(struct mtd_info *mtd,
- const u_char *buf, int len)
-{
- struct omap_nand_info *info = mtd_to_omap(mtd);
- uint32_t w_count = 0;
- int i = 0, ret = 0;
- u16 *p = (u16 *)buf;
- unsigned long tim, limit;
- u32 val;
-
- /* take care of subpage writes */
- if (len % 2 != 0) {
- writeb(*buf, info->nand.IO_ADDR_W);
- p = (u16 *)(buf + 1);
- len--;
- }
-
- /* configure and start prefetch transfer */
- ret = omap_prefetch_enable(info->gpmc_cs,
- PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
- if (ret) {
- /* PFPW engine is busy, use cpu copy method */
- if (info->nand.options & NAND_BUSWIDTH_16)
- omap_write_buf16(mtd, (u_char *)p, len);
- else
- omap_write_buf8(mtd, (u_char *)p, len);
- } else {
- while (len) {
- w_count = readl(info->reg.gpmc_prefetch_status);
- w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
- w_count = w_count >> 1;
- for (i = 0; (i < w_count) && len; i++, len -= 2)
- iowrite16(*p++, info->nand.IO_ADDR_W);
- }
- /* wait for data to flushed-out before reset the prefetch */
- tim = 0;
- limit = (loops_per_jiffy *
- msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
- do {
- cpu_relax();
- val = readl(info->reg.gpmc_prefetch_status);
- val = PREFETCH_STATUS_COUNT(val);
- } while (val && (tim++ < limit));
-
- /* disable and stop the PFPW engine */
- omap_prefetch_reset(info->gpmc_cs, info);
- }
-}
-
-/*
- * omap_nand_dma_callback: callback on the completion of dma transfer
- * @data: pointer to completion data structure
- */
-static void omap_nand_dma_callback(void *data)
-{
- complete((struct completion *) data);
-}
-
-/*
- * omap_nand_dma_transfer: configure and start dma transfer
- * @mtd: MTD device structure
- * @addr: virtual address in RAM of source/destination
- * @len: number of data bytes to be transferred
- * @is_write: flag for read/write operation
- */
-static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
- unsigned int len, int is_write)
-{
- struct omap_nand_info *info = mtd_to_omap(mtd);
- struct dma_async_tx_descriptor *tx;
- enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
- DMA_FROM_DEVICE;
- struct scatterlist sg;
- unsigned long tim, limit;
- unsigned n;
- int ret;
- u32 val;
-
- if (!virt_addr_valid(addr))
- goto out_copy;
-
- sg_init_one(&sg, addr, len);
- n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
- if (n == 0) {
- dev_err(&info->pdev->dev,
- "Couldn't DMA map a %d byte buffer\n", len);
- goto out_copy;
- }
-
- tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
- is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
- DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
- if (!tx)
- goto out_copy_unmap;
-
- tx->callback = omap_nand_dma_callback;
- tx->callback_param = &info->comp;
- dmaengine_submit(tx);
-
- init_completion(&info->comp);
-
- /* setup and start DMA using dma_addr */
- dma_async_issue_pending(info->dma);
-
- /* configure and start prefetch transfer */
- ret = omap_prefetch_enable(info->gpmc_cs,
- PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
- if (ret)
- /* PFPW engine is busy, use cpu copy method */
- goto out_copy_unmap;
-
- wait_for_completion(&info->comp);
- tim = 0;
- limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
-
- do {
- cpu_relax();
- val = readl(info->reg.gpmc_prefetch_status);
- val = PREFETCH_STATUS_COUNT(val);
- } while (val && (tim++ < limit));
-
- /* disable and stop the PFPW engine */
- omap_prefetch_reset(info->gpmc_cs, info);
-
- dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
- return 0;
-
-out_copy_unmap:
- dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
-out_copy:
- if (info->nand.options & NAND_BUSWIDTH_16)
- is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
- : omap_write_buf16(mtd, (u_char *) addr, len);
- else
- is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
- : omap_write_buf8(mtd, (u_char *) addr, len);
- return 0;
-}
-
-/**
- * omap_read_buf_dma_pref - read data from NAND controller into buffer
- * @mtd: MTD device structure
- * @buf: buffer to store date
- * @len: number of bytes to read
- */
-static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
-{
- if (len <= mtd->oobsize)
- omap_read_buf_pref(mtd, buf, len);
- else
- /* start transfer in DMA mode */
- omap_nand_dma_transfer(mtd, buf, len, 0x0);
-}
-
-/**
- * omap_write_buf_dma_pref - write buffer to NAND controller
- * @mtd: MTD device structure
- * @buf: data buffer
- * @len: number of bytes to write
- */
-static void omap_write_buf_dma_pref(struct mtd_info *mtd,
- const u_char *buf, int len)
-{
- if (len <= mtd->oobsize)
- omap_write_buf_pref(mtd, buf, len);
- else
- /* start transfer in DMA mode */
- omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
-}
-
-/*
- * omap_nand_irq - GPMC irq handler
- * @this_irq: gpmc irq number
- * @dev: omap_nand_info structure pointer is passed here
- */
-static irqreturn_t omap_nand_irq(int this_irq, void *dev)
-{
- struct omap_nand_info *info = (struct omap_nand_info *) dev;
- u32 bytes;
-
- bytes = readl(info->reg.gpmc_prefetch_status);
- bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
- bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */
- if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
- if (this_irq == info->gpmc_irq_count)
- goto done;
-
- if (info->buf_len && (info->buf_len < bytes))
- bytes = info->buf_len;
- else if (!info->buf_len)
- bytes = 0;
- iowrite32_rep(info->nand.IO_ADDR_W,
- (u32 *)info->buf, bytes >> 2);
- info->buf = info->buf + bytes;
- info->buf_len -= bytes;
-
- } else {
- ioread32_rep(info->nand.IO_ADDR_R,
- (u32 *)info->buf, bytes >> 2);
- info->buf = info->buf + bytes;
-
- if (this_irq == info->gpmc_irq_count)
- goto done;
- }
-
- return IRQ_HANDLED;
-
-done:
- complete(&info->comp);
-
- disable_irq_nosync(info->gpmc_irq_fifo);
- disable_irq_nosync(info->gpmc_irq_count);
-
- return IRQ_HANDLED;
-}
-
-/*
- * omap_read_buf_irq_pref - read data from NAND controller into buffer
- * @mtd: MTD device structure
- * @buf: buffer to store date
- * @len: number of bytes to read
- */
-static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
-{
- struct omap_nand_info *info = mtd_to_omap(mtd);
- int ret = 0;
-
- if (len <= mtd->oobsize) {
- omap_read_buf_pref(mtd, buf, len);
- return;
- }
-
- info->iomode = OMAP_NAND_IO_READ;
- info->buf = buf;
- init_completion(&info->comp);
-
- /* configure and start prefetch transfer */
- ret = omap_prefetch_enable(info->gpmc_cs,
- PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
- if (ret)
- /* PFPW engine is busy, use cpu copy method */
- goto out_copy;
-
- info->buf_len = len;
-
- enable_irq(info->gpmc_irq_count);
- enable_irq(info->gpmc_irq_fifo);
-
- /* waiting for read to complete */
- wait_for_completion(&info->comp);
-
- /* disable and stop the PFPW engine */
- omap_prefetch_reset(info->gpmc_cs, info);
- return;
-
-out_copy:
- if (info->nand.options & NAND_BUSWIDTH_16)
- omap_read_buf16(mtd, buf, len);
- else
- omap_read_buf8(mtd, buf, len);
-}
-
-/*
- * omap_write_buf_irq_pref - write buffer to NAND controller
- * @mtd: MTD device structure
- * @buf: data buffer
- * @len: number of bytes to write
- */
-static void omap_write_buf_irq_pref(struct mtd_info *mtd,
- const u_char *buf, int len)
-{
- struct omap_nand_info *info = mtd_to_omap(mtd);
- int ret = 0;
- unsigned long tim, limit;
- u32 val;
-
- if (len <= mtd->oobsize) {
- omap_write_buf_pref(mtd, buf, len);
- return;
- }
-
- info->iomode = OMAP_NAND_IO_WRITE;
- info->buf = (u_char *) buf;
- init_completion(&info->comp);
-
- /* configure and start prefetch transfer : size=24 */
- ret = omap_prefetch_enable(info->gpmc_cs,
- (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
- if (ret)
- /* PFPW engine is busy, use cpu copy method */
- goto out_copy;
-
- info->buf_len = len;
-
- enable_irq(info->gpmc_irq_count);
- enable_irq(info->gpmc_irq_fifo);
-
- /* waiting for write to complete */
- wait_for_completion(&info->comp);
-
- /* wait for data to flushed-out before reset the prefetch */
- tim = 0;
- limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
- do {
- val = readl(info->reg.gpmc_prefetch_status);
- val = PREFETCH_STATUS_COUNT(val);
- cpu_relax();
- } while (val && (tim++ < limit));
-
- /* disable and stop the PFPW engine */
- omap_prefetch_reset(info->gpmc_cs, info);
- return;
-
-out_copy:
- if (info->nand.options & NAND_BUSWIDTH_16)
- omap_write_buf16(mtd, buf, len);
- else
- omap_write_buf8(mtd, buf, len);
-}
-
-/**
- * gen_true_ecc - This function will generate true ECC value
- * @ecc_buf: buffer to store ecc code
- *
- * This generated true ECC value can be used when correcting
- * data read from NAND flash memory core
- */
-static void gen_true_ecc(u8 *ecc_buf)
-{
- u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
- ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
-
- ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
- P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
- ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
- P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
- ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
- P1e(tmp) | P2048o(tmp) | P2048e(tmp));
-}
-
-/**
- * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
- * @ecc_data1: ecc code from nand spare area
- * @ecc_data2: ecc code from hardware register obtained from hardware ecc
- * @page_data: page data
- *
- * This function compares two ECC's and indicates if there is an error.
- * If the error can be corrected it will be corrected to the buffer.
- * If there is no error, %0 is returned. If there is an error but it
- * was corrected, %1 is returned. Otherwise, %-1 is returned.
- */
-static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
- u8 *ecc_data2, /* read from register */
- u8 *page_data)
-{
- uint i;
- u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
- u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
- u8 ecc_bit[24];
- u8 ecc_sum = 0;
- u8 find_bit = 0;
- uint find_byte = 0;
- int isEccFF;
-
- isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
-
- gen_true_ecc(ecc_data1);
- gen_true_ecc(ecc_data2);
-
- for (i = 0; i <= 2; i++) {
- *(ecc_data1 + i) = ~(*(ecc_data1 + i));
- *(ecc_data2 + i) = ~(*(ecc_data2 + i));
- }
-
- for (i = 0; i < 8; i++) {
- tmp0_bit[i] = *ecc_data1 % 2;
- *ecc_data1 = *ecc_data1 / 2;
- }
-
- for (i = 0; i < 8; i++) {
- tmp1_bit[i] = *(ecc_data1 + 1) % 2;
- *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
- }
-
- for (i = 0; i < 8; i++) {
- tmp2_bit[i] = *(ecc_data1 + 2) % 2;
- *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
- }
-
- for (i = 0; i < 8; i++) {
- comp0_bit[i] = *ecc_data2 % 2;
- *ecc_data2 = *ecc_data2 / 2;
- }
-
- for (i = 0; i < 8; i++) {
- comp1_bit[i] = *(ecc_data2 + 1) % 2;
- *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
- }
-
- for (i = 0; i < 8; i++) {
- comp2_bit[i] = *(ecc_data2 + 2) % 2;
- *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
- }
-
- for (i = 0; i < 6; i++)
- ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
-
- for (i = 0; i < 8; i++)
- ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
-
- for (i = 0; i < 8; i++)
- ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
-
- ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
- ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
-
- for (i = 0; i < 24; i++)
- ecc_sum += ecc_bit[i];
-
- switch (ecc_sum) {
- case 0:
- /* Not reached because this function is not called if
- * ECC values are equal
- */
- return 0;
-
- case 1:
- /* Uncorrectable error */
- pr_debug("ECC UNCORRECTED_ERROR 1\n");
- return -EBADMSG;
-
- case 11:
- /* UN-Correctable error */
- pr_debug("ECC UNCORRECTED_ERROR B\n");
- return -EBADMSG;
-
- case 12:
- /* Correctable error */
- find_byte = (ecc_bit[23] << 8) +
- (ecc_bit[21] << 7) +
- (ecc_bit[19] << 6) +
- (ecc_bit[17] << 5) +
- (ecc_bit[15] << 4) +
- (ecc_bit[13] << 3) +
- (ecc_bit[11] << 2) +
- (ecc_bit[9] << 1) +
- ecc_bit[7];
-
- find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
-
- pr_debug("Correcting single bit ECC error at offset: "
- "%d, bit: %d\n", find_byte, find_bit);
-
- page_data[find_byte] ^= (1 << find_bit);
-
- return 1;
- default:
- if (isEccFF) {
- if (ecc_data2[0] == 0 &&
- ecc_data2[1] == 0 &&
- ecc_data2[2] == 0)
- return 0;
- }
- pr_debug("UNCORRECTED_ERROR default\n");
- return -EBADMSG;
- }
-}
-
-/**
- * omap_correct_data - Compares the ECC read with HW generated ECC
- * @mtd: MTD device structure
- * @dat: page data
- * @read_ecc: ecc read from nand flash
- * @calc_ecc: ecc read from HW ECC registers
- *
- * Compares the ecc read from nand spare area with ECC registers values
- * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
- * detection and correction. If there are no errors, %0 is returned. If
- * there were errors and all of the errors were corrected, the number of
- * corrected errors is returned. If uncorrectable errors exist, %-1 is
- * returned.
- */
-static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
- u_char *read_ecc, u_char *calc_ecc)
-{
- struct omap_nand_info *info = mtd_to_omap(mtd);
- int blockCnt = 0, i = 0, ret = 0;
- int stat = 0;
-
- /* Ex NAND_ECC_HW12_2048 */
- if ((info->nand.ecc.mode == NAND_ECC_HW) &&
- (info->nand.ecc.size == 2048))
- blockCnt = 4;
- else
- blockCnt = 1;
-
- for (i = 0; i < blockCnt; i++) {
- if (memcmp(read_ecc, calc_ecc, 3) != 0) {
- ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
- if (ret < 0)
- return ret;
- /* keep track of the number of corrected errors */
- stat += ret;
- }
- read_ecc += 3;
- calc_ecc += 3;
- dat += 512;
- }
- return stat;
-}
-
-/**
- * omap_calcuate_ecc - Generate non-inverted ECC bytes.
- * @mtd: MTD device structure
- * @dat: The pointer to data on which ecc is computed
- * @ecc_code: The ecc_code buffer
- *
- * Using noninverted ECC can be considered ugly since writing a blank
- * page ie. padding will clear the ECC bytes. This is no problem as long
- * nobody is trying to write data on the seemingly unused page. Reading
- * an erased page will produce an ECC mismatch between generated and read
- * ECC bytes that has to be dealt with separately.
- */
-static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
- u_char *ecc_code)
-{
- struct omap_nand_info *info = mtd_to_omap(mtd);
- u32 val;
-
- val = readl(info->reg.gpmc_ecc_config);
- if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
- return -EINVAL;
-
- /* read ecc result */
- val = readl(info->reg.gpmc_ecc1_result);
- *ecc_code++ = val; /* P128e, ..., P1e */
- *ecc_code++ = val >> 16; /* P128o, ..., P1o */
- /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
- *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
-
- return 0;
-}
-
-/**
- * omap_enable_hwecc - This function enables the hardware ecc functionality
- * @mtd: MTD device structure
- * @mode: Read/Write mode
- */
-static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
-{
- struct omap_nand_info *info = mtd_to_omap(mtd);
- struct nand_chip *chip = mtd_to_nand(mtd);
- unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
- u32 val;
-
- /* clear ecc and enable bits */
- val = ECCCLEAR | ECC1;
- writel(val, info->reg.gpmc_ecc_control);
-
- /* program ecc and result sizes */
- val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
- ECC1RESULTSIZE);
- writel(val, info->reg.gpmc_ecc_size_config);
-
- switch (mode) {
- case NAND_ECC_READ:
- case NAND_ECC_WRITE:
- writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
- break;
- case NAND_ECC_READSYN:
- writel(ECCCLEAR, info->reg.gpmc_ecc_control);
- break;
- default:
- dev_info(&info->pdev->dev,
- "error: unrecognized Mode[%d]!\n", mode);
- break;
- }
-
- /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
- val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
- writel(val, info->reg.gpmc_ecc_config);
-}
-
-/**
- * omap_wait - wait until the command is done
- * @mtd: MTD device structure
- * @chip: NAND Chip structure
- *
- * Wait function is called during Program and erase operations and
- * the way it is called from MTD layer, we should wait till the NAND
- * chip is ready after the programming/erase operation has completed.
- *
- * Erase can take up to 400ms and program up to 20ms according to
- * general NAND and SmartMedia specs
- */
-static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
-{
- struct nand_chip *this = mtd_to_nand(mtd);
- struct omap_nand_info *info = mtd_to_omap(mtd);
- unsigned long timeo = jiffies;
- int status, state = this->state;
-
- if (state == FL_ERASING)
- timeo += msecs_to_jiffies(400);
- else
- timeo += msecs_to_jiffies(20);
-
- writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
- while (time_before(jiffies, timeo)) {
- status = readb(info->reg.gpmc_nand_data);
- if (status & NAND_STATUS_READY)
- break;
- cond_resched();
- }
-
- status = readb(info->reg.gpmc_nand_data);
- return status;
-}
-
-/**
- * omap_dev_ready - checks the NAND Ready GPIO line
- * @mtd: MTD device structure
- *
- * Returns true if ready and false if busy.
- */
-static int omap_dev_ready(struct mtd_info *mtd)
-{
- struct omap_nand_info *info = mtd_to_omap(mtd);
-
- return gpiod_get_value(info->ready_gpiod);
-}
-
-/**
- * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
- * @mtd: MTD device structure
- * @mode: Read/Write mode
- *
- * When using BCH with SW correction (i.e. no ELM), sector size is set
- * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
- * for both reading and writing with:
- * eccsize0 = 0 (no additional protected byte in spare area)
- * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
- */
-static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode)
-{
- unsigned int bch_type;
- unsigned int dev_width, nsectors;
- struct omap_nand_info *info = mtd_to_omap(mtd);
- enum omap_ecc ecc_opt = info->ecc_opt;
- struct nand_chip *chip = mtd_to_nand(mtd);
- u32 val, wr_mode;
- unsigned int ecc_size1, ecc_size0;
-
- /* GPMC configurations for calculating ECC */
- switch (ecc_opt) {
- case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
- bch_type = 0;
- nsectors = 1;
- wr_mode = BCH_WRAPMODE_6;
- ecc_size0 = BCH_ECC_SIZE0;
- ecc_size1 = BCH_ECC_SIZE1;
- break;
- case OMAP_ECC_BCH4_CODE_HW:
- bch_type = 0;
- nsectors = chip->ecc.steps;
- if (mode == NAND_ECC_READ) {
- wr_mode = BCH_WRAPMODE_1;
- ecc_size0 = BCH4R_ECC_SIZE0;
- ecc_size1 = BCH4R_ECC_SIZE1;
- } else {
- wr_mode = BCH_WRAPMODE_6;
- ecc_size0 = BCH_ECC_SIZE0;
- ecc_size1 = BCH_ECC_SIZE1;
- }
- break;
- case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
- bch_type = 1;
- nsectors = 1;
- wr_mode = BCH_WRAPMODE_6;
- ecc_size0 = BCH_ECC_SIZE0;
- ecc_size1 = BCH_ECC_SIZE1;
- break;
- case OMAP_ECC_BCH8_CODE_HW:
- bch_type = 1;
- nsectors = chip->ecc.steps;
- if (mode == NAND_ECC_READ) {
- wr_mode = BCH_WRAPMODE_1;
- ecc_size0 = BCH8R_ECC_SIZE0;
- ecc_size1 = BCH8R_ECC_SIZE1;
- } else {
- wr_mode = BCH_WRAPMODE_6;
- ecc_size0 = BCH_ECC_SIZE0;
- ecc_size1 = BCH_ECC_SIZE1;
- }
- break;
- case OMAP_ECC_BCH16_CODE_HW:
- bch_type = 0x2;
- nsectors = chip->ecc.steps;
- if (mode == NAND_ECC_READ) {
- wr_mode = 0x01;
- ecc_size0 = 52; /* ECC bits in nibbles per sector */
- ecc_size1 = 0; /* non-ECC bits in nibbles per sector */
- } else {
- wr_mode = 0x01;
- ecc_size0 = 0; /* extra bits in nibbles per sector */
- ecc_size1 = 52; /* OOB bits in nibbles per sector */
- }
- break;
- default:
- return;
- }
-
- writel(ECC1, info->reg.gpmc_ecc_control);
-
- /* Configure ecc size for BCH */
- val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
- writel(val, info->reg.gpmc_ecc_size_config);
-
- dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
-
- /* BCH configuration */
- val = ((1 << 16) | /* enable BCH */
- (bch_type << 12) | /* BCH4/BCH8/BCH16 */
- (wr_mode << 8) | /* wrap mode */
- (dev_width << 7) | /* bus width */
- (((nsectors-1) & 0x7) << 4) | /* number of sectors */
- (info->gpmc_cs << 1) | /* ECC CS */
- (0x1)); /* enable ECC */
-
- writel(val, info->reg.gpmc_ecc_config);
-
- /* Clear ecc and enable bits */
- writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
-}
-
-static u8 bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
-static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
- 0x97, 0x79, 0xe5, 0x24, 0xb5};
-
-/**
- * _omap_calculate_ecc_bch - Generate ECC bytes for one sector
- * @mtd: MTD device structure
- * @dat: The pointer to data on which ecc is computed
- * @ecc_code: The ecc_code buffer
- * @i: The sector number (for a multi sector page)
- *
- * Support calculating of BCH4/8/16 ECC vectors for one sector
- * within a page. Sector number is in @i.
- */
-static int _omap_calculate_ecc_bch(struct mtd_info *mtd,
- const u_char *dat, u_char *ecc_calc, int i)
-{
- struct omap_nand_info *info = mtd_to_omap(mtd);
- int eccbytes = info->nand.ecc.bytes;
- struct gpmc_nand_regs *gpmc_regs = &info->reg;
- u8 *ecc_code;
- unsigned long bch_val1, bch_val2, bch_val3, bch_val4;
- u32 val;
- int j;
-
- ecc_code = ecc_calc;
- switch (info->ecc_opt) {
- case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
- case OMAP_ECC_BCH8_CODE_HW:
- bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
- bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
- bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
- bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
- *ecc_code++ = (bch_val4 & 0xFF);
- *ecc_code++ = ((bch_val3 >> 24) & 0xFF);
- *ecc_code++ = ((bch_val3 >> 16) & 0xFF);
- *ecc_code++ = ((bch_val3 >> 8) & 0xFF);
- *ecc_code++ = (bch_val3 & 0xFF);
- *ecc_code++ = ((bch_val2 >> 24) & 0xFF);
- *ecc_code++ = ((bch_val2 >> 16) & 0xFF);
- *ecc_code++ = ((bch_val2 >> 8) & 0xFF);
- *ecc_code++ = (bch_val2 & 0xFF);
- *ecc_code++ = ((bch_val1 >> 24) & 0xFF);
- *ecc_code++ = ((bch_val1 >> 16) & 0xFF);
- *ecc_code++ = ((bch_val1 >> 8) & 0xFF);
- *ecc_code++ = (bch_val1 & 0xFF);
- break;
- case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
- case OMAP_ECC_BCH4_CODE_HW:
- bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
- bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
- *ecc_code++ = ((bch_val2 >> 12) & 0xFF);
- *ecc_code++ = ((bch_val2 >> 4) & 0xFF);
- *ecc_code++ = ((bch_val2 & 0xF) << 4) |
- ((bch_val1 >> 28) & 0xF);
- *ecc_code++ = ((bch_val1 >> 20) & 0xFF);
- *ecc_code++ = ((bch_val1 >> 12) & 0xFF);
- *ecc_code++ = ((bch_val1 >> 4) & 0xFF);
- *ecc_code++ = ((bch_val1 & 0xF) << 4);
- break;
- case OMAP_ECC_BCH16_CODE_HW:
- val = readl(gpmc_regs->gpmc_bch_result6[i]);
- ecc_code[0] = ((val >> 8) & 0xFF);
- ecc_code[1] = ((val >> 0) & 0xFF);
- val = readl(gpmc_regs->gpmc_bch_result5[i]);
- ecc_code[2] = ((val >> 24) & 0xFF);
- ecc_code[3] = ((val >> 16) & 0xFF);
- ecc_code[4] = ((val >> 8) & 0xFF);
- ecc_code[5] = ((val >> 0) & 0xFF);
- val = readl(gpmc_regs->gpmc_bch_result4[i]);
- ecc_code[6] = ((val >> 24) & 0xFF);
- ecc_code[7] = ((val >> 16) & 0xFF);
- ecc_code[8] = ((val >> 8) & 0xFF);
- ecc_code[9] = ((val >> 0) & 0xFF);
- val = readl(gpmc_regs->gpmc_bch_result3[i]);
- ecc_code[10] = ((val >> 24) & 0xFF);
- ecc_code[11] = ((val >> 16) & 0xFF);
- ecc_code[12] = ((val >> 8) & 0xFF);
- ecc_code[13] = ((val >> 0) & 0xFF);
- val = readl(gpmc_regs->gpmc_bch_result2[i]);
- ecc_code[14] = ((val >> 24) & 0xFF);
- ecc_code[15] = ((val >> 16) & 0xFF);
- ecc_code[16] = ((val >> 8) & 0xFF);
- ecc_code[17] = ((val >> 0) & 0xFF);
- val = readl(gpmc_regs->gpmc_bch_result1[i]);
- ecc_code[18] = ((val >> 24) & 0xFF);
- ecc_code[19] = ((val >> 16) & 0xFF);
- ecc_code[20] = ((val >> 8) & 0xFF);
- ecc_code[21] = ((val >> 0) & 0xFF);
- val = readl(gpmc_regs->gpmc_bch_result0[i]);
- ecc_code[22] = ((val >> 24) & 0xFF);
- ecc_code[23] = ((val >> 16) & 0xFF);
- ecc_code[24] = ((val >> 8) & 0xFF);
- ecc_code[25] = ((val >> 0) & 0xFF);
- break;
- default:
- return -EINVAL;
- }
-
- /* ECC scheme specific syndrome customizations */
- switch (info->ecc_opt) {
- case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
- /* Add constant polynomial to remainder, so that
- * ECC of blank pages results in 0x0 on reading back
- */
- for (j = 0; j < eccbytes; j++)
- ecc_calc[j] ^= bch4_polynomial[j];
- break;
- case OMAP_ECC_BCH4_CODE_HW:
- /* Set 8th ECC byte as 0x0 for ROM compatibility */
- ecc_calc[eccbytes - 1] = 0x0;
- break;
- case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
- /* Add constant polynomial to remainder, so that
- * ECC of blank pages results in 0x0 on reading back
- */
- for (j = 0; j < eccbytes; j++)
- ecc_calc[j] ^= bch8_polynomial[j];
- break;
- case OMAP_ECC_BCH8_CODE_HW:
- /* Set 14th ECC byte as 0x0 for ROM compatibility */
- ecc_calc[eccbytes - 1] = 0x0;
- break;
- case OMAP_ECC_BCH16_CODE_HW:
- break;
- default:
- return -EINVAL;
- }
-
- return 0;
-}
-
-/**
- * omap_calculate_ecc_bch_sw - ECC generator for sector for SW based correction
- * @mtd: MTD device structure
- * @dat: The pointer to data on which ecc is computed
- * @ecc_code: The ecc_code buffer
- *
- * Support calculating of BCH4/8/16 ECC vectors for one sector. This is used
- * when SW based correction is required as ECC is required for one sector
- * at a time.
- */
-static int omap_calculate_ecc_bch_sw(struct mtd_info *mtd,
- const u_char *dat, u_char *ecc_calc)
-{
- return _omap_calculate_ecc_bch(mtd, dat, ecc_calc, 0);
-}
-
-/**
- * omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors
- * @mtd: MTD device structure
- * @dat: The pointer to data on which ecc is computed
- * @ecc_code: The ecc_code buffer
- *
- * Support calculating of BCH4/8/16 ecc vectors for the entire page in one go.
- */
-static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd,
- const u_char *dat, u_char *ecc_calc)
-{
- struct omap_nand_info *info = mtd_to_omap(mtd);
- int eccbytes = info->nand.ecc.bytes;
- unsigned long nsectors;
- int i, ret;
-
- nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
- for (i = 0; i < nsectors; i++) {
- ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i);
- if (ret)
- return ret;
-
- ecc_calc += eccbytes;
- }
-
- return 0;
-}
-
-/**
- * erased_sector_bitflips - count bit flips
- * @data: data sector buffer
- * @oob: oob buffer
- * @info: omap_nand_info
- *
- * Check the bit flips in erased page falls below correctable level.
- * If falls below, report the page as erased with correctable bit
- * flip, else report as uncorrectable page.
- */
-static int erased_sector_bitflips(u_char *data, u_char *oob,
- struct omap_nand_info *info)
-{
- int flip_bits = 0, i;
-
- for (i = 0; i < info->nand.ecc.size; i++) {
- flip_bits += hweight8(~data[i]);
- if (flip_bits > info->nand.ecc.strength)
- return 0;
- }
-
- for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
- flip_bits += hweight8(~oob[i]);
- if (flip_bits > info->nand.ecc.strength)
- return 0;
- }
-
- /*
- * Bit flips falls in correctable level.
- * Fill data area with 0xFF
- */
- if (flip_bits) {
- memset(data, 0xFF, info->nand.ecc.size);
- memset(oob, 0xFF, info->nand.ecc.bytes);
- }
-
- return flip_bits;
-}
-
-/**
- * omap_elm_correct_data - corrects page data area in case error reported
- * @mtd: MTD device structure
- * @data: page data
- * @read_ecc: ecc read from nand flash
- * @calc_ecc: ecc read from HW ECC registers
- *
- * Calculated ecc vector reported as zero in case of non-error pages.
- * In case of non-zero ecc vector, first filter out erased-pages, and
- * then process data via ELM to detect bit-flips.
- */
-static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
- u_char *read_ecc, u_char *calc_ecc)
-{
- struct omap_nand_info *info = mtd_to_omap(mtd);
- struct nand_ecc_ctrl *ecc = &info->nand.ecc;
- int eccsteps = info->nand.ecc.steps;
- int i , j, stat = 0;
- int eccflag, actual_eccbytes;
- struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
- u_char *ecc_vec = calc_ecc;
- u_char *spare_ecc = read_ecc;
- u_char *erased_ecc_vec;
- u_char *buf;
- int bitflip_count;
- bool is_error_reported = false;
- u32 bit_pos, byte_pos, error_max, pos;
- int err;
-
- switch (info->ecc_opt) {
- case OMAP_ECC_BCH4_CODE_HW:
- /* omit 7th ECC byte reserved for ROM code compatibility */
- actual_eccbytes = ecc->bytes - 1;
- erased_ecc_vec = bch4_vector;
- break;
- case OMAP_ECC_BCH8_CODE_HW:
- /* omit 14th ECC byte reserved for ROM code compatibility */
- actual_eccbytes = ecc->bytes - 1;
- erased_ecc_vec = bch8_vector;
- break;
- case OMAP_ECC_BCH16_CODE_HW:
- actual_eccbytes = ecc->bytes;
- erased_ecc_vec = bch16_vector;
- break;
- default:
- dev_err(&info->pdev->dev, "invalid driver configuration\n");
- return -EINVAL;
- }
-
- /* Initialize elm error vector to zero */
- memset(err_vec, 0, sizeof(err_vec));
-
- for (i = 0; i < eccsteps ; i++) {
- eccflag = 0; /* initialize eccflag */
-
- /*
- * Check any error reported,
- * In case of error, non zero ecc reported.
- */
- for (j = 0; j < actual_eccbytes; j++) {
- if (calc_ecc[j] != 0) {
- eccflag = 1; /* non zero ecc, error present */
- break;
- }
- }
-
- if (eccflag == 1) {
- if (memcmp(calc_ecc, erased_ecc_vec,
- actual_eccbytes) == 0) {
- /*
- * calc_ecc[] matches pattern for ECC(all 0xff)
- * so this is definitely an erased-page
- */
- } else {
- buf = &data[info->nand.ecc.size * i];
- /*
- * count number of 0-bits in read_buf.
- * This check can be removed once a similar
- * check is introduced in generic NAND driver
- */
- bitflip_count = erased_sector_bitflips(
- buf, read_ecc, info);
- if (bitflip_count) {
- /*
- * number of 0-bits within ECC limits
- * So this may be an erased-page
- */
- stat += bitflip_count;
- } else {
- /*
- * Too many 0-bits. It may be a
- * - programmed-page, OR
- * - erased-page with many bit-flips
- * So this page requires check by ELM
- */
- err_vec[i].error_reported = true;
- is_error_reported = true;
- }
- }
- }
-
- /* Update the ecc vector */
- calc_ecc += ecc->bytes;
- read_ecc += ecc->bytes;
- }
-
- /* Check if any error reported */
- if (!is_error_reported)
- return stat;
-
- /* Decode BCH error using ELM module */
- elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
-
- err = 0;
- for (i = 0; i < eccsteps; i++) {
- if (err_vec[i].error_uncorrectable) {
- dev_err(&info->pdev->dev,
- "uncorrectable bit-flips found\n");
- err = -EBADMSG;
- } else if (err_vec[i].error_reported) {
- for (j = 0; j < err_vec[i].error_count; j++) {
- switch (info->ecc_opt) {
- case OMAP_ECC_BCH4_CODE_HW:
- /* Add 4 bits to take care of padding */
- pos = err_vec[i].error_loc[j] +
- BCH4_BIT_PAD;
- break;
- case OMAP_ECC_BCH8_CODE_HW:
- case OMAP_ECC_BCH16_CODE_HW:
- pos = err_vec[i].error_loc[j];
- break;
- default:
- return -EINVAL;
- }
- error_max = (ecc->size + actual_eccbytes) * 8;
- /* Calculate bit position of error */
- bit_pos = pos % 8;
-
- /* Calculate byte position of error */
- byte_pos = (error_max - pos - 1) / 8;
-
- if (pos < error_max) {
- if (byte_pos < 512) {
- pr_debug("bitflip@dat[%d]=%x\n",
- byte_pos, data[byte_pos]);
- data[byte_pos] ^= 1 << bit_pos;
- } else {
- pr_debug("bitflip@oob[%d]=%x\n",
- (byte_pos - 512),
- spare_ecc[byte_pos - 512]);
- spare_ecc[byte_pos - 512] ^=
- 1 << bit_pos;
- }
- } else {
- dev_err(&info->pdev->dev,
- "invalid bit-flip @ %d:%d\n",
- byte_pos, bit_pos);
- err = -EBADMSG;
- }
- }
- }
-
- /* Update number of correctable errors */
- stat += err_vec[i].error_count;
-
- /* Update page data with sector size */
- data += ecc->size;
- spare_ecc += ecc->bytes;
- }
-
- return (err) ? err : stat;
-}
-
-/**
- * omap_write_page_bch - BCH ecc based write page function for entire page
- * @mtd: mtd info structure
- * @chip: nand chip info structure
- * @buf: data buffer
- * @oob_required: must write chip->oob_poi to OOB
- * @page: page
- *
- * Custom write page method evolved to support multi sector writing in one shot
- */
-static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
- const uint8_t *buf, int oob_required, int page)
-{
- int ret;
- uint8_t *ecc_calc = chip->ecc.calc_buf;
-
- nand_prog_page_begin_op(chip, page, 0, NULL, 0);
-
- /* Enable GPMC ecc engine */
- chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
-
- /* Write data */
- chip->write_buf(mtd, buf, mtd->writesize);
-
- /* Update ecc vector from GPMC result registers */
- omap_calculate_ecc_bch_multi(mtd, buf, &ecc_calc[0]);
-
- ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
- chip->ecc.total);
- if (ret)
- return ret;
-
- /* Write ecc vector to OOB area */
- chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
-
- return nand_prog_page_end_op(chip);
-}
-
-/**
- * omap_write_subpage_bch - BCH hardware ECC based subpage write
- * @mtd: mtd info structure
- * @chip: nand chip info structure
- * @offset: column address of subpage within the page
- * @data_len: data length
- * @buf: data buffer
- * @oob_required: must write chip->oob_poi to OOB
- * @page: page number to write
- *
- * OMAP optimized subpage write method.
- */
-static int omap_write_subpage_bch(struct mtd_info *mtd,
- struct nand_chip *chip, u32 offset,
- u32 data_len, const u8 *buf,
- int oob_required, int page)
-{
- u8 *ecc_calc = chip->ecc.calc_buf;
- int ecc_size = chip->ecc.size;
- int ecc_bytes = chip->ecc.bytes;
- int ecc_steps = chip->ecc.steps;
- u32 start_step = offset / ecc_size;
- u32 end_step = (offset + data_len - 1) / ecc_size;
- int step, ret = 0;
-
- /*
- * Write entire page at one go as it would be optimal
- * as ECC is calculated by hardware.
- * ECC is calculated for all subpages but we choose
- * only what we want.
- */
- nand_prog_page_begin_op(chip, page, 0, NULL, 0);
-
- /* Enable GPMC ECC engine */
- chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
-
- /* Write data */
- chip->write_buf(mtd, buf, mtd->writesize);
-
- for (step = 0; step < ecc_steps; step++) {
- /* mask ECC of un-touched subpages by padding 0xFF */
- if (step < start_step || step > end_step)
- memset(ecc_calc, 0xff, ecc_bytes);
- else
- ret = _omap_calculate_ecc_bch(mtd, buf, ecc_calc, step);
-
- if (ret)
- return ret;
-
- buf += ecc_size;
- ecc_calc += ecc_bytes;
- }
-
- /* copy calculated ECC for whole page to chip->buffer->oob */
- /* this include masked-value(0xFF) for unwritten subpages */
- ecc_calc = chip->ecc.calc_buf;
- ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
- chip->ecc.total);
- if (ret)
- return ret;
-
- /* write OOB buffer to NAND device */
- chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
-
- return nand_prog_page_end_op(chip);
-}
-
-/**
- * omap_read_page_bch - BCH ecc based page read function for entire page
- * @mtd: mtd info structure
- * @chip: nand chip info structure
- * @buf: buffer to store read data
- * @oob_required: caller requires OOB data read to chip->oob_poi
- * @page: page number to read
- *
- * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
- * used for error correction.
- * Custom method evolved to support ELM error correction & multi sector
- * reading. On reading page data area is read along with OOB data with
- * ecc engine enabled. ecc vector updated after read of OOB data.
- * For non error pages ecc vector reported as zero.
- */
-static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
- uint8_t *buf, int oob_required, int page)
-{
- uint8_t *ecc_calc = chip->ecc.calc_buf;
- uint8_t *ecc_code = chip->ecc.code_buf;
- int stat, ret;
- unsigned int max_bitflips = 0;
-
- nand_read_page_op(chip, page, 0, NULL, 0);
-
- /* Enable GPMC ecc engine */
- chip->ecc.hwctl(mtd, NAND_ECC_READ);
-
- /* Read data */
- chip->read_buf(mtd, buf, mtd->writesize);
-
- /* Read oob bytes */
- nand_change_read_column_op(chip,
- mtd->writesize + BADBLOCK_MARKER_LENGTH,
- chip->oob_poi + BADBLOCK_MARKER_LENGTH,
- chip->ecc.total, false);
-
- /* Calculate ecc bytes */
- omap_calculate_ecc_bch_multi(mtd, buf, ecc_calc);
-
- ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
- chip->ecc.total);
- if (ret)
- return ret;
-
- stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);
-
- if (stat < 0) {
- mtd->ecc_stats.failed++;
- } else {
- mtd->ecc_stats.corrected += stat;
- max_bitflips = max_t(unsigned int, max_bitflips, stat);
- }
-
- return max_bitflips;
-}
-
-/**
- * is_elm_present - checks for presence of ELM module by scanning DT nodes
- * @omap_nand_info: NAND device structure containing platform data
- */
-static bool is_elm_present(struct omap_nand_info *info,
- struct device_node *elm_node)
-{
- struct platform_device *pdev;
-
- /* check whether elm-id is passed via DT */
- if (!elm_node) {
- dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
- return false;
- }
- pdev = of_find_device_by_node(elm_node);
- /* check whether ELM device is registered */
- if (!pdev) {
- dev_err(&info->pdev->dev, "ELM device not found\n");
- return false;
- }
- /* ELM module available, now configure it */
- info->elm_dev = &pdev->dev;
- return true;
-}
-
-static bool omap2_nand_ecc_check(struct omap_nand_info *info)
-{
- bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
-
- switch (info->ecc_opt) {
- case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
- case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
- ecc_needs_omap_bch = false;
- ecc_needs_bch = true;
- ecc_needs_elm = false;
- break;
- case OMAP_ECC_BCH4_CODE_HW:
- case OMAP_ECC_BCH8_CODE_HW:
- case OMAP_ECC_BCH16_CODE_HW:
- ecc_needs_omap_bch = true;
- ecc_needs_bch = false;
- ecc_needs_elm = true;
- break;
- default:
- ecc_needs_omap_bch = false;
- ecc_needs_bch = false;
- ecc_needs_elm = false;
- break;
- }
-
- if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH)) {
- dev_err(&info->pdev->dev,
- "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
- return false;
- }
- if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
- dev_err(&info->pdev->dev,
- "CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
- return false;
- }
- if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) {
- dev_err(&info->pdev->dev, "ELM not available\n");
- return false;
- }
-
- return true;
-}
-
-static const char * const nand_xfer_types[] = {
- [NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled",
- [NAND_OMAP_POLLED] = "polled",
- [NAND_OMAP_PREFETCH_DMA] = "prefetch-dma",
- [NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq",
-};
-
-static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info)
-{
- struct device_node *child = dev->of_node;
- int i;
- const char *s;
- u32 cs;
-
- if (of_property_read_u32(child, "reg", &cs) < 0) {
- dev_err(dev, "reg not found in DT\n");
- return -EINVAL;
- }
-
- info->gpmc_cs = cs;
-
- /* detect availability of ELM module. Won't be present pre-OMAP4 */
- info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0);
- if (!info->elm_of_node) {
- info->elm_of_node = of_parse_phandle(child, "elm_id", 0);
- if (!info->elm_of_node)
- dev_dbg(dev, "ti,elm-id not in DT\n");
- }
-
- /* select ecc-scheme for NAND */
- if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) {
- dev_err(dev, "ti,nand-ecc-opt not found\n");
- return -EINVAL;
- }
-
- if (!strcmp(s, "sw")) {
- info->ecc_opt = OMAP_ECC_HAM1_CODE_SW;
- } else if (!strcmp(s, "ham1") ||
- !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) {
- info->ecc_opt = OMAP_ECC_HAM1_CODE_HW;
- } else if (!strcmp(s, "bch4")) {
- if (info->elm_of_node)
- info->ecc_opt = OMAP_ECC_BCH4_CODE_HW;
- else
- info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW;
- } else if (!strcmp(s, "bch8")) {
- if (info->elm_of_node)
- info->ecc_opt = OMAP_ECC_BCH8_CODE_HW;
- else
- info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
- } else if (!strcmp(s, "bch16")) {
- info->ecc_opt = OMAP_ECC_BCH16_CODE_HW;
- } else {
- dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n");
- return -EINVAL;
- }
-
- /* select data transfer mode */
- if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) {
- for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) {
- if (!strcasecmp(s, nand_xfer_types[i])) {
- info->xfer_type = i;
- return 0;
- }
- }
-
- dev_err(dev, "unrecognized value for ti,nand-xfer-type\n");
- return -EINVAL;
- }
-
- return 0;
-}
-
-static int omap_ooblayout_ecc(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
-{
- struct omap_nand_info *info = mtd_to_omap(mtd);
- struct nand_chip *chip = &info->nand;
- int off = BADBLOCK_MARKER_LENGTH;
-
- if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
- !(chip->options & NAND_BUSWIDTH_16))
- off = 1;
-
- if (section)
- return -ERANGE;
-
- oobregion->offset = off;
- oobregion->length = chip->ecc.total;
-
- return 0;
-}
-
-static int omap_ooblayout_free(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
-{
- struct omap_nand_info *info = mtd_to_omap(mtd);
- struct nand_chip *chip = &info->nand;
- int off = BADBLOCK_MARKER_LENGTH;
-
- if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
- !(chip->options & NAND_BUSWIDTH_16))
- off = 1;
-
- if (section)
- return -ERANGE;
-
- off += chip->ecc.total;
- if (off >= mtd->oobsize)
- return -ERANGE;
-
- oobregion->offset = off;
- oobregion->length = mtd->oobsize - off;
-
- return 0;
-}
-
-static const struct mtd_ooblayout_ops omap_ooblayout_ops = {
- .ecc = omap_ooblayout_ecc,
- .free = omap_ooblayout_free,
-};
-
-static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- int off = BADBLOCK_MARKER_LENGTH;
-
- if (section >= chip->ecc.steps)
- return -ERANGE;
-
- /*
- * When SW correction is employed, one OMAP specific marker byte is
- * reserved after each ECC step.
- */
- oobregion->offset = off + (section * (chip->ecc.bytes + 1));
- oobregion->length = chip->ecc.bytes;
-
- return 0;
-}
-
-static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- int off = BADBLOCK_MARKER_LENGTH;
-
- if (section)
- return -ERANGE;
-
- /*
- * When SW correction is employed, one OMAP specific marker byte is
- * reserved after each ECC step.
- */
- off += ((chip->ecc.bytes + 1) * chip->ecc.steps);
- if (off >= mtd->oobsize)
- return -ERANGE;
-
- oobregion->offset = off;
- oobregion->length = mtd->oobsize - off;
-
- return 0;
-}
-
-static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = {
- .ecc = omap_sw_ooblayout_ecc,
- .free = omap_sw_ooblayout_free,
-};
-
-static int omap_nand_probe(struct platform_device *pdev)
-{
- struct omap_nand_info *info;
- struct mtd_info *mtd;
- struct nand_chip *nand_chip;
- int err;
- dma_cap_mask_t mask;
- struct resource *res;
- struct device *dev = &pdev->dev;
- int min_oobbytes = BADBLOCK_MARKER_LENGTH;
- int oobbytes_per_step;
-
- info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
- GFP_KERNEL);
- if (!info)
- return -ENOMEM;
-
- info->pdev = pdev;
-
- err = omap_get_dt_info(dev, info);
- if (err)
- return err;
-
- info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs);
- if (!info->ops) {
- dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n");
- return -ENODEV;
- }
-
- nand_chip = &info->nand;
- mtd = nand_to_mtd(nand_chip);
- mtd->dev.parent = &pdev->dev;
- nand_chip->ecc.priv = NULL;
- nand_set_flash_node(nand_chip, dev->of_node);
-
- if (!mtd->name) {
- mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
- "omap2-nand.%d", info->gpmc_cs);
- if (!mtd->name) {
- dev_err(&pdev->dev, "Failed to set MTD name\n");
- return -ENOMEM;
- }
- }
-
- res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
- nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
- if (IS_ERR(nand_chip->IO_ADDR_R))
- return PTR_ERR(nand_chip->IO_ADDR_R);
-
- info->phys_base = res->start;
-
- nand_chip->controller = &omap_gpmc_controller;
-
- nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
- nand_chip->cmd_ctrl = omap_hwcontrol;
-
- info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb",
- GPIOD_IN);
- if (IS_ERR(info->ready_gpiod)) {
- dev_err(dev, "failed to get ready gpio\n");
- return PTR_ERR(info->ready_gpiod);
- }
-
- /*
- * If RDY/BSY line is connected to OMAP then use the omap ready
- * function and the generic nand_wait function which reads the status
- * register after monitoring the RDY/BSY line. Otherwise use a standard
- * chip delay which is slightly more than tR (AC Timing) of the NAND
- * device and read status register until you get a failure or success
- */
- if (info->ready_gpiod) {
- nand_chip->dev_ready = omap_dev_ready;
- nand_chip->chip_delay = 0;
- } else {
- nand_chip->waitfunc = omap_wait;
- nand_chip->chip_delay = 50;
- }
-
- if (info->flash_bbt)
- nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
-
- /* scan NAND device connected to chip controller */
- nand_chip->options |= info->devsize & NAND_BUSWIDTH_16;
- err = nand_scan_ident(mtd, 1, NULL);
- if (err) {
- dev_err(&info->pdev->dev,
- "scan failed, may be bus-width mismatch\n");
- goto return_error;
- }
-
- if (nand_chip->bbt_options & NAND_BBT_USE_FLASH)
- nand_chip->bbt_options |= NAND_BBT_NO_OOB;
- else
- nand_chip->options |= NAND_SKIP_BBTSCAN;
-
- /* re-populate low-level callbacks based on xfer modes */
- switch (info->xfer_type) {
- case NAND_OMAP_PREFETCH_POLLED:
- nand_chip->read_buf = omap_read_buf_pref;
- nand_chip->write_buf = omap_write_buf_pref;
- break;
-
- case NAND_OMAP_POLLED:
- /* Use nand_base defaults for {read,write}_buf */
- break;
-
- case NAND_OMAP_PREFETCH_DMA:
- dma_cap_zero(mask);
- dma_cap_set(DMA_SLAVE, mask);
- info->dma = dma_request_chan(pdev->dev.parent, "rxtx");
-
- if (IS_ERR(info->dma)) {
- dev_err(&pdev->dev, "DMA engine request failed\n");
- err = PTR_ERR(info->dma);
- goto return_error;
- } else {
- struct dma_slave_config cfg;
-
- memset(&cfg, 0, sizeof(cfg));
- cfg.src_addr = info->phys_base;
- cfg.dst_addr = info->phys_base;
- cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
- cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
- cfg.src_maxburst = 16;
- cfg.dst_maxburst = 16;
- err = dmaengine_slave_config(info->dma, &cfg);
- if (err) {
- dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
- err);
- goto return_error;
- }
- nand_chip->read_buf = omap_read_buf_dma_pref;
- nand_chip->write_buf = omap_write_buf_dma_pref;
- }
- break;
-
- case NAND_OMAP_PREFETCH_IRQ:
- info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
- if (info->gpmc_irq_fifo <= 0) {
- dev_err(&pdev->dev, "error getting fifo irq\n");
- err = -ENODEV;
- goto return_error;
- }
- err = devm_request_irq(&pdev->dev, info->gpmc_irq_fifo,
- omap_nand_irq, IRQF_SHARED,
- "gpmc-nand-fifo", info);
- if (err) {
- dev_err(&pdev->dev, "requesting irq(%d) error:%d",
- info->gpmc_irq_fifo, err);
- info->gpmc_irq_fifo = 0;
- goto return_error;
- }
-
- info->gpmc_irq_count = platform_get_irq(pdev, 1);
- if (info->gpmc_irq_count <= 0) {
- dev_err(&pdev->dev, "error getting count irq\n");
- err = -ENODEV;
- goto return_error;
- }
- err = devm_request_irq(&pdev->dev, info->gpmc_irq_count,
- omap_nand_irq, IRQF_SHARED,
- "gpmc-nand-count", info);
- if (err) {
- dev_err(&pdev->dev, "requesting irq(%d) error:%d",
- info->gpmc_irq_count, err);
- info->gpmc_irq_count = 0;
- goto return_error;
- }
-
- nand_chip->read_buf = omap_read_buf_irq_pref;
- nand_chip->write_buf = omap_write_buf_irq_pref;
-
- break;
-
- default:
- dev_err(&pdev->dev,
- "xfer_type(%d) not supported!\n", info->xfer_type);
- err = -EINVAL;
- goto return_error;
- }
-
- if (!omap2_nand_ecc_check(info)) {
- err = -EINVAL;
- goto return_error;
- }
-
- /*
- * Bail out earlier to let NAND_ECC_SOFT code create its own
- * ooblayout instead of using ours.
- */
- if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) {
- nand_chip->ecc.mode = NAND_ECC_SOFT;
- nand_chip->ecc.algo = NAND_ECC_HAMMING;
- goto scan_tail;
- }
-
- /* populate MTD interface based on ECC scheme */
- switch (info->ecc_opt) {
- case OMAP_ECC_HAM1_CODE_HW:
- pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
- nand_chip->ecc.mode = NAND_ECC_HW;
- nand_chip->ecc.bytes = 3;
- nand_chip->ecc.size = 512;
- nand_chip->ecc.strength = 1;
- nand_chip->ecc.calculate = omap_calculate_ecc;
- nand_chip->ecc.hwctl = omap_enable_hwecc;
- nand_chip->ecc.correct = omap_correct_data;
- mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
- oobbytes_per_step = nand_chip->ecc.bytes;
-
- if (!(nand_chip->options & NAND_BUSWIDTH_16))
- min_oobbytes = 1;
-
- break;
-
- case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
- pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
- nand_chip->ecc.mode = NAND_ECC_HW;
- nand_chip->ecc.size = 512;
- nand_chip->ecc.bytes = 7;
- nand_chip->ecc.strength = 4;
- nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
- nand_chip->ecc.correct = nand_bch_correct_data;
- nand_chip->ecc.calculate = omap_calculate_ecc_bch_sw;
- mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
- /* Reserve one byte for the OMAP marker */
- oobbytes_per_step = nand_chip->ecc.bytes + 1;
- /* software bch library is used for locating errors */
- nand_chip->ecc.priv = nand_bch_init(mtd);
- if (!nand_chip->ecc.priv) {
- dev_err(&info->pdev->dev, "unable to use BCH library\n");
- err = -EINVAL;
- goto return_error;
- }
- break;
-
- case OMAP_ECC_BCH4_CODE_HW:
- pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
- nand_chip->ecc.mode = NAND_ECC_HW;
- nand_chip->ecc.size = 512;
- /* 14th bit is kept reserved for ROM-code compatibility */
- nand_chip->ecc.bytes = 7 + 1;
- nand_chip->ecc.strength = 4;
- nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
- nand_chip->ecc.correct = omap_elm_correct_data;
- nand_chip->ecc.read_page = omap_read_page_bch;
- nand_chip->ecc.write_page = omap_write_page_bch;
- nand_chip->ecc.write_subpage = omap_write_subpage_bch;
- mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
- oobbytes_per_step = nand_chip->ecc.bytes;
-
- err = elm_config(info->elm_dev, BCH4_ECC,
- mtd->writesize / nand_chip->ecc.size,
- nand_chip->ecc.size, nand_chip->ecc.bytes);
- if (err < 0)
- goto return_error;
- break;
-
- case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
- pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
- nand_chip->ecc.mode = NAND_ECC_HW;
- nand_chip->ecc.size = 512;
- nand_chip->ecc.bytes = 13;
- nand_chip->ecc.strength = 8;
- nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
- nand_chip->ecc.correct = nand_bch_correct_data;
- nand_chip->ecc.calculate = omap_calculate_ecc_bch_sw;
- mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
- /* Reserve one byte for the OMAP marker */
- oobbytes_per_step = nand_chip->ecc.bytes + 1;
- /* software bch library is used for locating errors */
- nand_chip->ecc.priv = nand_bch_init(mtd);
- if (!nand_chip->ecc.priv) {
- dev_err(&info->pdev->dev, "unable to use BCH library\n");
- err = -EINVAL;
- goto return_error;
- }
- break;
-
- case OMAP_ECC_BCH8_CODE_HW:
- pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
- nand_chip->ecc.mode = NAND_ECC_HW;
- nand_chip->ecc.size = 512;
- /* 14th bit is kept reserved for ROM-code compatibility */
- nand_chip->ecc.bytes = 13 + 1;
- nand_chip->ecc.strength = 8;
- nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
- nand_chip->ecc.correct = omap_elm_correct_data;
- nand_chip->ecc.read_page = omap_read_page_bch;
- nand_chip->ecc.write_page = omap_write_page_bch;
- nand_chip->ecc.write_subpage = omap_write_subpage_bch;
- mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
- oobbytes_per_step = nand_chip->ecc.bytes;
-
- err = elm_config(info->elm_dev, BCH8_ECC,
- mtd->writesize / nand_chip->ecc.size,
- nand_chip->ecc.size, nand_chip->ecc.bytes);
- if (err < 0)
- goto return_error;
-
- break;
-
- case OMAP_ECC_BCH16_CODE_HW:
- pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
- nand_chip->ecc.mode = NAND_ECC_HW;
- nand_chip->ecc.size = 512;
- nand_chip->ecc.bytes = 26;
- nand_chip->ecc.strength = 16;
- nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
- nand_chip->ecc.correct = omap_elm_correct_data;
- nand_chip->ecc.read_page = omap_read_page_bch;
- nand_chip->ecc.write_page = omap_write_page_bch;
- nand_chip->ecc.write_subpage = omap_write_subpage_bch;
- mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
- oobbytes_per_step = nand_chip->ecc.bytes;
-
- err = elm_config(info->elm_dev, BCH16_ECC,
- mtd->writesize / nand_chip->ecc.size,
- nand_chip->ecc.size, nand_chip->ecc.bytes);
- if (err < 0)
- goto return_error;
-
- break;
- default:
- dev_err(&info->pdev->dev, "invalid or unsupported ECC scheme\n");
- err = -EINVAL;
- goto return_error;
- }
-
- /* check if NAND device's OOB is enough to store ECC signatures */
- min_oobbytes += (oobbytes_per_step *
- (mtd->writesize / nand_chip->ecc.size));
- if (mtd->oobsize < min_oobbytes) {
- dev_err(&info->pdev->dev,
- "not enough OOB bytes required = %d, available=%d\n",
- min_oobbytes, mtd->oobsize);
- err = -EINVAL;
- goto return_error;
- }
-
-scan_tail:
- /* second phase scan */
- err = nand_scan_tail(mtd);
- if (err)
- goto return_error;
-
- err = mtd_device_register(mtd, NULL, 0);
- if (err)
- goto return_error;
-
- platform_set_drvdata(pdev, mtd);
-
- return 0;
-
-return_error:
- if (!IS_ERR_OR_NULL(info->dma))
- dma_release_channel(info->dma);
- if (nand_chip->ecc.priv) {
- nand_bch_free(nand_chip->ecc.priv);
- nand_chip->ecc.priv = NULL;
- }
- return err;
-}
-
-static int omap_nand_remove(struct platform_device *pdev)
-{
- struct mtd_info *mtd = platform_get_drvdata(pdev);
- struct nand_chip *nand_chip = mtd_to_nand(mtd);
- struct omap_nand_info *info = mtd_to_omap(mtd);
- if (nand_chip->ecc.priv) {
- nand_bch_free(nand_chip->ecc.priv);
- nand_chip->ecc.priv = NULL;
- }
- if (info->dma)
- dma_release_channel(info->dma);
- nand_release(mtd);
- return 0;
-}
-
-static const struct of_device_id omap_nand_ids[] = {
- { .compatible = "ti,omap2-nand", },
- {},
-};
-MODULE_DEVICE_TABLE(of, omap_nand_ids);
-
-static struct platform_driver omap_nand_driver = {
- .probe = omap_nand_probe,
- .remove = omap_nand_remove,
- .driver = {
- .name = DRIVER_NAME,
- .of_match_table = of_match_ptr(omap_nand_ids),
- },
-};
-
-module_platform_driver(omap_nand_driver);
-
-MODULE_ALIAS("platform:" DRIVER_NAME);
-MODULE_LICENSE("GPL");
-MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");