diff options
author | Boris Brezillon <boris.brezillon@bootlin.com> | 2018-02-05 23:02:04 +0100 |
---|---|---|
committer | Boris Brezillon <boris.brezillon@bootlin.com> | 2018-02-16 10:09:34 +0100 |
commit | 93db446a424cee9387b532995e6b516667079555 (patch) | |
tree | 39c7900ae38d890fb971ea5fc6f194f7e66fa797 /drivers/mtd/nand/omap2.c | |
parent | mtd: nand: Add missing copyright information (diff) | |
download | linux-93db446a424cee9387b532995e6b516667079555.tar.xz linux-93db446a424cee9387b532995e6b516667079555.zip |
mtd: nand: move raw NAND related code to the raw/ subdir
As part of the process of sharing more code between different NAND
based devices, we need to move all raw NAND related code to the raw/
subdirectory.
Signed-off-by: Boris Brezillon <boris.brezillon@bootlin.com>
Diffstat (limited to 'drivers/mtd/nand/omap2.c')
-rw-r--r-- | drivers/mtd/nand/omap2.c | 2316 |
1 files changed, 0 insertions, 2316 deletions
diff --git a/drivers/mtd/nand/omap2.c b/drivers/mtd/nand/omap2.c deleted file mode 100644 index 8cdf7d3d8fa7..000000000000 --- a/drivers/mtd/nand/omap2.c +++ /dev/null @@ -1,2316 +0,0 @@ -/* - * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com> - * Copyright © 2004 Micron Technology Inc. - * Copyright © 2004 David Brownell - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - */ - -#include <linux/platform_device.h> -#include <linux/dmaengine.h> -#include <linux/dma-mapping.h> -#include <linux/delay.h> -#include <linux/gpio/consumer.h> -#include <linux/module.h> -#include <linux/interrupt.h> -#include <linux/jiffies.h> -#include <linux/sched.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/rawnand.h> -#include <linux/mtd/partitions.h> -#include <linux/omap-dma.h> -#include <linux/io.h> -#include <linux/slab.h> -#include <linux/of.h> -#include <linux/of_device.h> - -#include <linux/mtd/nand_bch.h> -#include <linux/platform_data/elm.h> - -#include <linux/omap-gpmc.h> -#include <linux/platform_data/mtd-nand-omap2.h> - -#define DRIVER_NAME "omap2-nand" -#define OMAP_NAND_TIMEOUT_MS 5000 - -#define NAND_Ecc_P1e (1 << 0) -#define NAND_Ecc_P2e (1 << 1) -#define NAND_Ecc_P4e (1 << 2) -#define NAND_Ecc_P8e (1 << 3) -#define NAND_Ecc_P16e (1 << 4) -#define NAND_Ecc_P32e (1 << 5) -#define NAND_Ecc_P64e (1 << 6) -#define NAND_Ecc_P128e (1 << 7) -#define NAND_Ecc_P256e (1 << 8) -#define NAND_Ecc_P512e (1 << 9) -#define NAND_Ecc_P1024e (1 << 10) -#define NAND_Ecc_P2048e (1 << 11) - -#define NAND_Ecc_P1o (1 << 16) -#define NAND_Ecc_P2o (1 << 17) -#define NAND_Ecc_P4o (1 << 18) -#define NAND_Ecc_P8o (1 << 19) -#define NAND_Ecc_P16o (1 << 20) -#define NAND_Ecc_P32o (1 << 21) -#define NAND_Ecc_P64o (1 << 22) -#define NAND_Ecc_P128o (1 << 23) -#define NAND_Ecc_P256o (1 << 24) -#define NAND_Ecc_P512o (1 << 25) -#define NAND_Ecc_P1024o (1 << 26) -#define NAND_Ecc_P2048o (1 << 27) - -#define TF(value) (value ? 1 : 0) - -#define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0) -#define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1) -#define P1e(a) (TF(a & NAND_Ecc_P1e) << 2) -#define P1o(a) (TF(a & NAND_Ecc_P1o) << 3) -#define P2e(a) (TF(a & NAND_Ecc_P2e) << 4) -#define P2o(a) (TF(a & NAND_Ecc_P2o) << 5) -#define P4e(a) (TF(a & NAND_Ecc_P4e) << 6) -#define P4o(a) (TF(a & NAND_Ecc_P4o) << 7) - -#define P8e(a) (TF(a & NAND_Ecc_P8e) << 0) -#define P8o(a) (TF(a & NAND_Ecc_P8o) << 1) -#define P16e(a) (TF(a & NAND_Ecc_P16e) << 2) -#define P16o(a) (TF(a & NAND_Ecc_P16o) << 3) -#define P32e(a) (TF(a & NAND_Ecc_P32e) << 4) -#define P32o(a) (TF(a & NAND_Ecc_P32o) << 5) -#define P64e(a) (TF(a & NAND_Ecc_P64e) << 6) -#define P64o(a) (TF(a & NAND_Ecc_P64o) << 7) - -#define P128e(a) (TF(a & NAND_Ecc_P128e) << 0) -#define P128o(a) (TF(a & NAND_Ecc_P128o) << 1) -#define P256e(a) (TF(a & NAND_Ecc_P256e) << 2) -#define P256o(a) (TF(a & NAND_Ecc_P256o) << 3) -#define P512e(a) (TF(a & NAND_Ecc_P512e) << 4) -#define P512o(a) (TF(a & NAND_Ecc_P512o) << 5) -#define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6) -#define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7) - -#define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0) -#define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1) -#define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2) -#define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3) -#define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4) -#define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5) -#define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6) -#define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7) - -#define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0) -#define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1) - -#define PREFETCH_CONFIG1_CS_SHIFT 24 -#define ECC_CONFIG_CS_SHIFT 1 -#define CS_MASK 0x7 -#define ENABLE_PREFETCH (0x1 << 7) -#define DMA_MPU_MODE_SHIFT 2 -#define ECCSIZE0_SHIFT 12 -#define ECCSIZE1_SHIFT 22 -#define ECC1RESULTSIZE 0x1 -#define ECCCLEAR 0x100 -#define ECC1 0x1 -#define PREFETCH_FIFOTHRESHOLD_MAX 0x40 -#define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8) -#define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff) -#define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F) -#define STATUS_BUFF_EMPTY 0x00000001 - -#define SECTOR_BYTES 512 -/* 4 bit padding to make byte aligned, 56 = 52 + 4 */ -#define BCH4_BIT_PAD 4 - -/* GPMC ecc engine settings for read */ -#define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */ -#define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */ -#define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */ -#define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */ -#define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */ - -/* GPMC ecc engine settings for write */ -#define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */ -#define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */ -#define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */ - -#define BADBLOCK_MARKER_LENGTH 2 - -static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55, - 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78, - 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93, - 0x07, 0x0e}; -static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc, - 0xac, 0x6b, 0xff, 0x99, 0x7b}; -static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10}; - -/* Shared among all NAND instances to synchronize access to the ECC Engine */ -static struct nand_hw_control omap_gpmc_controller = { - .lock = __SPIN_LOCK_UNLOCKED(omap_gpmc_controller.lock), - .wq = __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller.wq), -}; - -struct omap_nand_info { - struct nand_chip nand; - struct platform_device *pdev; - - int gpmc_cs; - bool dev_ready; - enum nand_io xfer_type; - int devsize; - enum omap_ecc ecc_opt; - struct device_node *elm_of_node; - - unsigned long phys_base; - struct completion comp; - struct dma_chan *dma; - int gpmc_irq_fifo; - int gpmc_irq_count; - enum { - OMAP_NAND_IO_READ = 0, /* read */ - OMAP_NAND_IO_WRITE, /* write */ - } iomode; - u_char *buf; - int buf_len; - /* Interface to GPMC */ - struct gpmc_nand_regs reg; - struct gpmc_nand_ops *ops; - bool flash_bbt; - /* fields specific for BCHx_HW ECC scheme */ - struct device *elm_dev; - /* NAND ready gpio */ - struct gpio_desc *ready_gpiod; -}; - -static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd) -{ - return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand); -} - -/** - * omap_prefetch_enable - configures and starts prefetch transfer - * @cs: cs (chip select) number - * @fifo_th: fifo threshold to be used for read/ write - * @dma_mode: dma mode enable (1) or disable (0) - * @u32_count: number of bytes to be transferred - * @is_write: prefetch read(0) or write post(1) mode - */ -static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode, - unsigned int u32_count, int is_write, struct omap_nand_info *info) -{ - u32 val; - - if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX) - return -1; - - if (readl(info->reg.gpmc_prefetch_control)) - return -EBUSY; - - /* Set the amount of bytes to be prefetched */ - writel(u32_count, info->reg.gpmc_prefetch_config2); - - /* Set dma/mpu mode, the prefetch read / post write and - * enable the engine. Set which cs is has requested for. - */ - val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) | - PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH | - (dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1)); - writel(val, info->reg.gpmc_prefetch_config1); - - /* Start the prefetch engine */ - writel(0x1, info->reg.gpmc_prefetch_control); - - return 0; -} - -/** - * omap_prefetch_reset - disables and stops the prefetch engine - */ -static int omap_prefetch_reset(int cs, struct omap_nand_info *info) -{ - u32 config1; - - /* check if the same module/cs is trying to reset */ - config1 = readl(info->reg.gpmc_prefetch_config1); - if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs) - return -EINVAL; - - /* Stop the PFPW engine */ - writel(0x0, info->reg.gpmc_prefetch_control); - - /* Reset/disable the PFPW engine */ - writel(0x0, info->reg.gpmc_prefetch_config1); - - return 0; -} - -/** - * omap_hwcontrol - hardware specific access to control-lines - * @mtd: MTD device structure - * @cmd: command to device - * @ctrl: - * NAND_NCE: bit 0 -> don't care - * NAND_CLE: bit 1 -> Command Latch - * NAND_ALE: bit 2 -> Address Latch - * - * NOTE: boards may use different bits for these!! - */ -static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - - if (cmd != NAND_CMD_NONE) { - if (ctrl & NAND_CLE) - writeb(cmd, info->reg.gpmc_nand_command); - - else if (ctrl & NAND_ALE) - writeb(cmd, info->reg.gpmc_nand_address); - - else /* NAND_NCE */ - writeb(cmd, info->reg.gpmc_nand_data); - } -} - -/** - * omap_read_buf8 - read data from NAND controller into buffer - * @mtd: MTD device structure - * @buf: buffer to store date - * @len: number of bytes to read - */ -static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - - ioread8_rep(nand->IO_ADDR_R, buf, len); -} - -/** - * omap_write_buf8 - write buffer to NAND controller - * @mtd: MTD device structure - * @buf: data buffer - * @len: number of bytes to write - */ -static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - u_char *p = (u_char *)buf; - bool status; - - while (len--) { - iowrite8(*p++, info->nand.IO_ADDR_W); - /* wait until buffer is available for write */ - do { - status = info->ops->nand_writebuffer_empty(); - } while (!status); - } -} - -/** - * omap_read_buf16 - read data from NAND controller into buffer - * @mtd: MTD device structure - * @buf: buffer to store date - * @len: number of bytes to read - */ -static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - - ioread16_rep(nand->IO_ADDR_R, buf, len / 2); -} - -/** - * omap_write_buf16 - write buffer to NAND controller - * @mtd: MTD device structure - * @buf: data buffer - * @len: number of bytes to write - */ -static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - u16 *p = (u16 *) buf; - bool status; - /* FIXME try bursts of writesw() or DMA ... */ - len >>= 1; - - while (len--) { - iowrite16(*p++, info->nand.IO_ADDR_W); - /* wait until buffer is available for write */ - do { - status = info->ops->nand_writebuffer_empty(); - } while (!status); - } -} - -/** - * omap_read_buf_pref - read data from NAND controller into buffer - * @mtd: MTD device structure - * @buf: buffer to store date - * @len: number of bytes to read - */ -static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - uint32_t r_count = 0; - int ret = 0; - u32 *p = (u32 *)buf; - - /* take care of subpage reads */ - if (len % 4) { - if (info->nand.options & NAND_BUSWIDTH_16) - omap_read_buf16(mtd, buf, len % 4); - else - omap_read_buf8(mtd, buf, len % 4); - p = (u32 *) (buf + len % 4); - len -= len % 4; - } - - /* configure and start prefetch transfer */ - ret = omap_prefetch_enable(info->gpmc_cs, - PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info); - if (ret) { - /* PFPW engine is busy, use cpu copy method */ - if (info->nand.options & NAND_BUSWIDTH_16) - omap_read_buf16(mtd, (u_char *)p, len); - else - omap_read_buf8(mtd, (u_char *)p, len); - } else { - do { - r_count = readl(info->reg.gpmc_prefetch_status); - r_count = PREFETCH_STATUS_FIFO_CNT(r_count); - r_count = r_count >> 2; - ioread32_rep(info->nand.IO_ADDR_R, p, r_count); - p += r_count; - len -= r_count << 2; - } while (len); - /* disable and stop the PFPW engine */ - omap_prefetch_reset(info->gpmc_cs, info); - } -} - -/** - * omap_write_buf_pref - write buffer to NAND controller - * @mtd: MTD device structure - * @buf: data buffer - * @len: number of bytes to write - */ -static void omap_write_buf_pref(struct mtd_info *mtd, - const u_char *buf, int len) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - uint32_t w_count = 0; - int i = 0, ret = 0; - u16 *p = (u16 *)buf; - unsigned long tim, limit; - u32 val; - - /* take care of subpage writes */ - if (len % 2 != 0) { - writeb(*buf, info->nand.IO_ADDR_W); - p = (u16 *)(buf + 1); - len--; - } - - /* configure and start prefetch transfer */ - ret = omap_prefetch_enable(info->gpmc_cs, - PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info); - if (ret) { - /* PFPW engine is busy, use cpu copy method */ - if (info->nand.options & NAND_BUSWIDTH_16) - omap_write_buf16(mtd, (u_char *)p, len); - else - omap_write_buf8(mtd, (u_char *)p, len); - } else { - while (len) { - w_count = readl(info->reg.gpmc_prefetch_status); - w_count = PREFETCH_STATUS_FIFO_CNT(w_count); - w_count = w_count >> 1; - for (i = 0; (i < w_count) && len; i++, len -= 2) - iowrite16(*p++, info->nand.IO_ADDR_W); - } - /* wait for data to flushed-out before reset the prefetch */ - tim = 0; - limit = (loops_per_jiffy * - msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); - do { - cpu_relax(); - val = readl(info->reg.gpmc_prefetch_status); - val = PREFETCH_STATUS_COUNT(val); - } while (val && (tim++ < limit)); - - /* disable and stop the PFPW engine */ - omap_prefetch_reset(info->gpmc_cs, info); - } -} - -/* - * omap_nand_dma_callback: callback on the completion of dma transfer - * @data: pointer to completion data structure - */ -static void omap_nand_dma_callback(void *data) -{ - complete((struct completion *) data); -} - -/* - * omap_nand_dma_transfer: configure and start dma transfer - * @mtd: MTD device structure - * @addr: virtual address in RAM of source/destination - * @len: number of data bytes to be transferred - * @is_write: flag for read/write operation - */ -static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr, - unsigned int len, int is_write) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - struct dma_async_tx_descriptor *tx; - enum dma_data_direction dir = is_write ? DMA_TO_DEVICE : - DMA_FROM_DEVICE; - struct scatterlist sg; - unsigned long tim, limit; - unsigned n; - int ret; - u32 val; - - if (!virt_addr_valid(addr)) - goto out_copy; - - sg_init_one(&sg, addr, len); - n = dma_map_sg(info->dma->device->dev, &sg, 1, dir); - if (n == 0) { - dev_err(&info->pdev->dev, - "Couldn't DMA map a %d byte buffer\n", len); - goto out_copy; - } - - tx = dmaengine_prep_slave_sg(info->dma, &sg, n, - is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM, - DMA_PREP_INTERRUPT | DMA_CTRL_ACK); - if (!tx) - goto out_copy_unmap; - - tx->callback = omap_nand_dma_callback; - tx->callback_param = &info->comp; - dmaengine_submit(tx); - - init_completion(&info->comp); - - /* setup and start DMA using dma_addr */ - dma_async_issue_pending(info->dma); - - /* configure and start prefetch transfer */ - ret = omap_prefetch_enable(info->gpmc_cs, - PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info); - if (ret) - /* PFPW engine is busy, use cpu copy method */ - goto out_copy_unmap; - - wait_for_completion(&info->comp); - tim = 0; - limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); - - do { - cpu_relax(); - val = readl(info->reg.gpmc_prefetch_status); - val = PREFETCH_STATUS_COUNT(val); - } while (val && (tim++ < limit)); - - /* disable and stop the PFPW engine */ - omap_prefetch_reset(info->gpmc_cs, info); - - dma_unmap_sg(info->dma->device->dev, &sg, 1, dir); - return 0; - -out_copy_unmap: - dma_unmap_sg(info->dma->device->dev, &sg, 1, dir); -out_copy: - if (info->nand.options & NAND_BUSWIDTH_16) - is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len) - : omap_write_buf16(mtd, (u_char *) addr, len); - else - is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len) - : omap_write_buf8(mtd, (u_char *) addr, len); - return 0; -} - -/** - * omap_read_buf_dma_pref - read data from NAND controller into buffer - * @mtd: MTD device structure - * @buf: buffer to store date - * @len: number of bytes to read - */ -static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len) -{ - if (len <= mtd->oobsize) - omap_read_buf_pref(mtd, buf, len); - else - /* start transfer in DMA mode */ - omap_nand_dma_transfer(mtd, buf, len, 0x0); -} - -/** - * omap_write_buf_dma_pref - write buffer to NAND controller - * @mtd: MTD device structure - * @buf: data buffer - * @len: number of bytes to write - */ -static void omap_write_buf_dma_pref(struct mtd_info *mtd, - const u_char *buf, int len) -{ - if (len <= mtd->oobsize) - omap_write_buf_pref(mtd, buf, len); - else - /* start transfer in DMA mode */ - omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1); -} - -/* - * omap_nand_irq - GPMC irq handler - * @this_irq: gpmc irq number - * @dev: omap_nand_info structure pointer is passed here - */ -static irqreturn_t omap_nand_irq(int this_irq, void *dev) -{ - struct omap_nand_info *info = (struct omap_nand_info *) dev; - u32 bytes; - - bytes = readl(info->reg.gpmc_prefetch_status); - bytes = PREFETCH_STATUS_FIFO_CNT(bytes); - bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */ - if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */ - if (this_irq == info->gpmc_irq_count) - goto done; - - if (info->buf_len && (info->buf_len < bytes)) - bytes = info->buf_len; - else if (!info->buf_len) - bytes = 0; - iowrite32_rep(info->nand.IO_ADDR_W, - (u32 *)info->buf, bytes >> 2); - info->buf = info->buf + bytes; - info->buf_len -= bytes; - - } else { - ioread32_rep(info->nand.IO_ADDR_R, - (u32 *)info->buf, bytes >> 2); - info->buf = info->buf + bytes; - - if (this_irq == info->gpmc_irq_count) - goto done; - } - - return IRQ_HANDLED; - -done: - complete(&info->comp); - - disable_irq_nosync(info->gpmc_irq_fifo); - disable_irq_nosync(info->gpmc_irq_count); - - return IRQ_HANDLED; -} - -/* - * omap_read_buf_irq_pref - read data from NAND controller into buffer - * @mtd: MTD device structure - * @buf: buffer to store date - * @len: number of bytes to read - */ -static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - int ret = 0; - - if (len <= mtd->oobsize) { - omap_read_buf_pref(mtd, buf, len); - return; - } - - info->iomode = OMAP_NAND_IO_READ; - info->buf = buf; - init_completion(&info->comp); - - /* configure and start prefetch transfer */ - ret = omap_prefetch_enable(info->gpmc_cs, - PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info); - if (ret) - /* PFPW engine is busy, use cpu copy method */ - goto out_copy; - - info->buf_len = len; - - enable_irq(info->gpmc_irq_count); - enable_irq(info->gpmc_irq_fifo); - - /* waiting for read to complete */ - wait_for_completion(&info->comp); - - /* disable and stop the PFPW engine */ - omap_prefetch_reset(info->gpmc_cs, info); - return; - -out_copy: - if (info->nand.options & NAND_BUSWIDTH_16) - omap_read_buf16(mtd, buf, len); - else - omap_read_buf8(mtd, buf, len); -} - -/* - * omap_write_buf_irq_pref - write buffer to NAND controller - * @mtd: MTD device structure - * @buf: data buffer - * @len: number of bytes to write - */ -static void omap_write_buf_irq_pref(struct mtd_info *mtd, - const u_char *buf, int len) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - int ret = 0; - unsigned long tim, limit; - u32 val; - - if (len <= mtd->oobsize) { - omap_write_buf_pref(mtd, buf, len); - return; - } - - info->iomode = OMAP_NAND_IO_WRITE; - info->buf = (u_char *) buf; - init_completion(&info->comp); - - /* configure and start prefetch transfer : size=24 */ - ret = omap_prefetch_enable(info->gpmc_cs, - (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info); - if (ret) - /* PFPW engine is busy, use cpu copy method */ - goto out_copy; - - info->buf_len = len; - - enable_irq(info->gpmc_irq_count); - enable_irq(info->gpmc_irq_fifo); - - /* waiting for write to complete */ - wait_for_completion(&info->comp); - - /* wait for data to flushed-out before reset the prefetch */ - tim = 0; - limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); - do { - val = readl(info->reg.gpmc_prefetch_status); - val = PREFETCH_STATUS_COUNT(val); - cpu_relax(); - } while (val && (tim++ < limit)); - - /* disable and stop the PFPW engine */ - omap_prefetch_reset(info->gpmc_cs, info); - return; - -out_copy: - if (info->nand.options & NAND_BUSWIDTH_16) - omap_write_buf16(mtd, buf, len); - else - omap_write_buf8(mtd, buf, len); -} - -/** - * gen_true_ecc - This function will generate true ECC value - * @ecc_buf: buffer to store ecc code - * - * This generated true ECC value can be used when correcting - * data read from NAND flash memory core - */ -static void gen_true_ecc(u8 *ecc_buf) -{ - u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) | - ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8); - - ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) | - P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp)); - ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) | - P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp)); - ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) | - P1e(tmp) | P2048o(tmp) | P2048e(tmp)); -} - -/** - * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data - * @ecc_data1: ecc code from nand spare area - * @ecc_data2: ecc code from hardware register obtained from hardware ecc - * @page_data: page data - * - * This function compares two ECC's and indicates if there is an error. - * If the error can be corrected it will be corrected to the buffer. - * If there is no error, %0 is returned. If there is an error but it - * was corrected, %1 is returned. Otherwise, %-1 is returned. - */ -static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */ - u8 *ecc_data2, /* read from register */ - u8 *page_data) -{ - uint i; - u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8]; - u8 comp0_bit[8], comp1_bit[8], comp2_bit[8]; - u8 ecc_bit[24]; - u8 ecc_sum = 0; - u8 find_bit = 0; - uint find_byte = 0; - int isEccFF; - - isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF); - - gen_true_ecc(ecc_data1); - gen_true_ecc(ecc_data2); - - for (i = 0; i <= 2; i++) { - *(ecc_data1 + i) = ~(*(ecc_data1 + i)); - *(ecc_data2 + i) = ~(*(ecc_data2 + i)); - } - - for (i = 0; i < 8; i++) { - tmp0_bit[i] = *ecc_data1 % 2; - *ecc_data1 = *ecc_data1 / 2; - } - - for (i = 0; i < 8; i++) { - tmp1_bit[i] = *(ecc_data1 + 1) % 2; - *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2; - } - - for (i = 0; i < 8; i++) { - tmp2_bit[i] = *(ecc_data1 + 2) % 2; - *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2; - } - - for (i = 0; i < 8; i++) { - comp0_bit[i] = *ecc_data2 % 2; - *ecc_data2 = *ecc_data2 / 2; - } - - for (i = 0; i < 8; i++) { - comp1_bit[i] = *(ecc_data2 + 1) % 2; - *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2; - } - - for (i = 0; i < 8; i++) { - comp2_bit[i] = *(ecc_data2 + 2) % 2; - *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2; - } - - for (i = 0; i < 6; i++) - ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2]; - - for (i = 0; i < 8; i++) - ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i]; - - for (i = 0; i < 8; i++) - ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i]; - - ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0]; - ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1]; - - for (i = 0; i < 24; i++) - ecc_sum += ecc_bit[i]; - - switch (ecc_sum) { - case 0: - /* Not reached because this function is not called if - * ECC values are equal - */ - return 0; - - case 1: - /* Uncorrectable error */ - pr_debug("ECC UNCORRECTED_ERROR 1\n"); - return -EBADMSG; - - case 11: - /* UN-Correctable error */ - pr_debug("ECC UNCORRECTED_ERROR B\n"); - return -EBADMSG; - - case 12: - /* Correctable error */ - find_byte = (ecc_bit[23] << 8) + - (ecc_bit[21] << 7) + - (ecc_bit[19] << 6) + - (ecc_bit[17] << 5) + - (ecc_bit[15] << 4) + - (ecc_bit[13] << 3) + - (ecc_bit[11] << 2) + - (ecc_bit[9] << 1) + - ecc_bit[7]; - - find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1]; - - pr_debug("Correcting single bit ECC error at offset: " - "%d, bit: %d\n", find_byte, find_bit); - - page_data[find_byte] ^= (1 << find_bit); - - return 1; - default: - if (isEccFF) { - if (ecc_data2[0] == 0 && - ecc_data2[1] == 0 && - ecc_data2[2] == 0) - return 0; - } - pr_debug("UNCORRECTED_ERROR default\n"); - return -EBADMSG; - } -} - -/** - * omap_correct_data - Compares the ECC read with HW generated ECC - * @mtd: MTD device structure - * @dat: page data - * @read_ecc: ecc read from nand flash - * @calc_ecc: ecc read from HW ECC registers - * - * Compares the ecc read from nand spare area with ECC registers values - * and if ECC's mismatched, it will call 'omap_compare_ecc' for error - * detection and correction. If there are no errors, %0 is returned. If - * there were errors and all of the errors were corrected, the number of - * corrected errors is returned. If uncorrectable errors exist, %-1 is - * returned. - */ -static int omap_correct_data(struct mtd_info *mtd, u_char *dat, - u_char *read_ecc, u_char *calc_ecc) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - int blockCnt = 0, i = 0, ret = 0; - int stat = 0; - - /* Ex NAND_ECC_HW12_2048 */ - if ((info->nand.ecc.mode == NAND_ECC_HW) && - (info->nand.ecc.size == 2048)) - blockCnt = 4; - else - blockCnt = 1; - - for (i = 0; i < blockCnt; i++) { - if (memcmp(read_ecc, calc_ecc, 3) != 0) { - ret = omap_compare_ecc(read_ecc, calc_ecc, dat); - if (ret < 0) - return ret; - /* keep track of the number of corrected errors */ - stat += ret; - } - read_ecc += 3; - calc_ecc += 3; - dat += 512; - } - return stat; -} - -/** - * omap_calcuate_ecc - Generate non-inverted ECC bytes. - * @mtd: MTD device structure - * @dat: The pointer to data on which ecc is computed - * @ecc_code: The ecc_code buffer - * - * Using noninverted ECC can be considered ugly since writing a blank - * page ie. padding will clear the ECC bytes. This is no problem as long - * nobody is trying to write data on the seemingly unused page. Reading - * an erased page will produce an ECC mismatch between generated and read - * ECC bytes that has to be dealt with separately. - */ -static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat, - u_char *ecc_code) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - u32 val; - - val = readl(info->reg.gpmc_ecc_config); - if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs) - return -EINVAL; - - /* read ecc result */ - val = readl(info->reg.gpmc_ecc1_result); - *ecc_code++ = val; /* P128e, ..., P1e */ - *ecc_code++ = val >> 16; /* P128o, ..., P1o */ - /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */ - *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0); - - return 0; -} - -/** - * omap_enable_hwecc - This function enables the hardware ecc functionality - * @mtd: MTD device structure - * @mode: Read/Write mode - */ -static void omap_enable_hwecc(struct mtd_info *mtd, int mode) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - struct nand_chip *chip = mtd_to_nand(mtd); - unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; - u32 val; - - /* clear ecc and enable bits */ - val = ECCCLEAR | ECC1; - writel(val, info->reg.gpmc_ecc_control); - - /* program ecc and result sizes */ - val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) | - ECC1RESULTSIZE); - writel(val, info->reg.gpmc_ecc_size_config); - - switch (mode) { - case NAND_ECC_READ: - case NAND_ECC_WRITE: - writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control); - break; - case NAND_ECC_READSYN: - writel(ECCCLEAR, info->reg.gpmc_ecc_control); - break; - default: - dev_info(&info->pdev->dev, - "error: unrecognized Mode[%d]!\n", mode); - break; - } - - /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */ - val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1); - writel(val, info->reg.gpmc_ecc_config); -} - -/** - * omap_wait - wait until the command is done - * @mtd: MTD device structure - * @chip: NAND Chip structure - * - * Wait function is called during Program and erase operations and - * the way it is called from MTD layer, we should wait till the NAND - * chip is ready after the programming/erase operation has completed. - * - * Erase can take up to 400ms and program up to 20ms according to - * general NAND and SmartMedia specs - */ -static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct omap_nand_info *info = mtd_to_omap(mtd); - unsigned long timeo = jiffies; - int status, state = this->state; - - if (state == FL_ERASING) - timeo += msecs_to_jiffies(400); - else - timeo += msecs_to_jiffies(20); - - writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command); - while (time_before(jiffies, timeo)) { - status = readb(info->reg.gpmc_nand_data); - if (status & NAND_STATUS_READY) - break; - cond_resched(); - } - - status = readb(info->reg.gpmc_nand_data); - return status; -} - -/** - * omap_dev_ready - checks the NAND Ready GPIO line - * @mtd: MTD device structure - * - * Returns true if ready and false if busy. - */ -static int omap_dev_ready(struct mtd_info *mtd) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - - return gpiod_get_value(info->ready_gpiod); -} - -/** - * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation - * @mtd: MTD device structure - * @mode: Read/Write mode - * - * When using BCH with SW correction (i.e. no ELM), sector size is set - * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode - * for both reading and writing with: - * eccsize0 = 0 (no additional protected byte in spare area) - * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area) - */ -static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode) -{ - unsigned int bch_type; - unsigned int dev_width, nsectors; - struct omap_nand_info *info = mtd_to_omap(mtd); - enum omap_ecc ecc_opt = info->ecc_opt; - struct nand_chip *chip = mtd_to_nand(mtd); - u32 val, wr_mode; - unsigned int ecc_size1, ecc_size0; - - /* GPMC configurations for calculating ECC */ - switch (ecc_opt) { - case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: - bch_type = 0; - nsectors = 1; - wr_mode = BCH_WRAPMODE_6; - ecc_size0 = BCH_ECC_SIZE0; - ecc_size1 = BCH_ECC_SIZE1; - break; - case OMAP_ECC_BCH4_CODE_HW: - bch_type = 0; - nsectors = chip->ecc.steps; - if (mode == NAND_ECC_READ) { - wr_mode = BCH_WRAPMODE_1; - ecc_size0 = BCH4R_ECC_SIZE0; - ecc_size1 = BCH4R_ECC_SIZE1; - } else { - wr_mode = BCH_WRAPMODE_6; - ecc_size0 = BCH_ECC_SIZE0; - ecc_size1 = BCH_ECC_SIZE1; - } - break; - case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: - bch_type = 1; - nsectors = 1; - wr_mode = BCH_WRAPMODE_6; - ecc_size0 = BCH_ECC_SIZE0; - ecc_size1 = BCH_ECC_SIZE1; - break; - case OMAP_ECC_BCH8_CODE_HW: - bch_type = 1; - nsectors = chip->ecc.steps; - if (mode == NAND_ECC_READ) { - wr_mode = BCH_WRAPMODE_1; - ecc_size0 = BCH8R_ECC_SIZE0; - ecc_size1 = BCH8R_ECC_SIZE1; - } else { - wr_mode = BCH_WRAPMODE_6; - ecc_size0 = BCH_ECC_SIZE0; - ecc_size1 = BCH_ECC_SIZE1; - } - break; - case OMAP_ECC_BCH16_CODE_HW: - bch_type = 0x2; - nsectors = chip->ecc.steps; - if (mode == NAND_ECC_READ) { - wr_mode = 0x01; - ecc_size0 = 52; /* ECC bits in nibbles per sector */ - ecc_size1 = 0; /* non-ECC bits in nibbles per sector */ - } else { - wr_mode = 0x01; - ecc_size0 = 0; /* extra bits in nibbles per sector */ - ecc_size1 = 52; /* OOB bits in nibbles per sector */ - } - break; - default: - return; - } - - writel(ECC1, info->reg.gpmc_ecc_control); - - /* Configure ecc size for BCH */ - val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT); - writel(val, info->reg.gpmc_ecc_size_config); - - dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; - - /* BCH configuration */ - val = ((1 << 16) | /* enable BCH */ - (bch_type << 12) | /* BCH4/BCH8/BCH16 */ - (wr_mode << 8) | /* wrap mode */ - (dev_width << 7) | /* bus width */ - (((nsectors-1) & 0x7) << 4) | /* number of sectors */ - (info->gpmc_cs << 1) | /* ECC CS */ - (0x1)); /* enable ECC */ - - writel(val, info->reg.gpmc_ecc_config); - - /* Clear ecc and enable bits */ - writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control); -} - -static u8 bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f}; -static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2, - 0x97, 0x79, 0xe5, 0x24, 0xb5}; - -/** - * _omap_calculate_ecc_bch - Generate ECC bytes for one sector - * @mtd: MTD device structure - * @dat: The pointer to data on which ecc is computed - * @ecc_code: The ecc_code buffer - * @i: The sector number (for a multi sector page) - * - * Support calculating of BCH4/8/16 ECC vectors for one sector - * within a page. Sector number is in @i. - */ -static int _omap_calculate_ecc_bch(struct mtd_info *mtd, - const u_char *dat, u_char *ecc_calc, int i) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - int eccbytes = info->nand.ecc.bytes; - struct gpmc_nand_regs *gpmc_regs = &info->reg; - u8 *ecc_code; - unsigned long bch_val1, bch_val2, bch_val3, bch_val4; - u32 val; - int j; - - ecc_code = ecc_calc; - switch (info->ecc_opt) { - case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: - case OMAP_ECC_BCH8_CODE_HW: - bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]); - bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]); - bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]); - bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]); - *ecc_code++ = (bch_val4 & 0xFF); - *ecc_code++ = ((bch_val3 >> 24) & 0xFF); - *ecc_code++ = ((bch_val3 >> 16) & 0xFF); - *ecc_code++ = ((bch_val3 >> 8) & 0xFF); - *ecc_code++ = (bch_val3 & 0xFF); - *ecc_code++ = ((bch_val2 >> 24) & 0xFF); - *ecc_code++ = ((bch_val2 >> 16) & 0xFF); - *ecc_code++ = ((bch_val2 >> 8) & 0xFF); - *ecc_code++ = (bch_val2 & 0xFF); - *ecc_code++ = ((bch_val1 >> 24) & 0xFF); - *ecc_code++ = ((bch_val1 >> 16) & 0xFF); - *ecc_code++ = ((bch_val1 >> 8) & 0xFF); - *ecc_code++ = (bch_val1 & 0xFF); - break; - case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: - case OMAP_ECC_BCH4_CODE_HW: - bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]); - bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]); - *ecc_code++ = ((bch_val2 >> 12) & 0xFF); - *ecc_code++ = ((bch_val2 >> 4) & 0xFF); - *ecc_code++ = ((bch_val2 & 0xF) << 4) | - ((bch_val1 >> 28) & 0xF); - *ecc_code++ = ((bch_val1 >> 20) & 0xFF); - *ecc_code++ = ((bch_val1 >> 12) & 0xFF); - *ecc_code++ = ((bch_val1 >> 4) & 0xFF); - *ecc_code++ = ((bch_val1 & 0xF) << 4); - break; - case OMAP_ECC_BCH16_CODE_HW: - val = readl(gpmc_regs->gpmc_bch_result6[i]); - ecc_code[0] = ((val >> 8) & 0xFF); - ecc_code[1] = ((val >> 0) & 0xFF); - val = readl(gpmc_regs->gpmc_bch_result5[i]); - ecc_code[2] = ((val >> 24) & 0xFF); - ecc_code[3] = ((val >> 16) & 0xFF); - ecc_code[4] = ((val >> 8) & 0xFF); - ecc_code[5] = ((val >> 0) & 0xFF); - val = readl(gpmc_regs->gpmc_bch_result4[i]); - ecc_code[6] = ((val >> 24) & 0xFF); - ecc_code[7] = ((val >> 16) & 0xFF); - ecc_code[8] = ((val >> 8) & 0xFF); - ecc_code[9] = ((val >> 0) & 0xFF); - val = readl(gpmc_regs->gpmc_bch_result3[i]); - ecc_code[10] = ((val >> 24) & 0xFF); - ecc_code[11] = ((val >> 16) & 0xFF); - ecc_code[12] = ((val >> 8) & 0xFF); - ecc_code[13] = ((val >> 0) & 0xFF); - val = readl(gpmc_regs->gpmc_bch_result2[i]); - ecc_code[14] = ((val >> 24) & 0xFF); - ecc_code[15] = ((val >> 16) & 0xFF); - ecc_code[16] = ((val >> 8) & 0xFF); - ecc_code[17] = ((val >> 0) & 0xFF); - val = readl(gpmc_regs->gpmc_bch_result1[i]); - ecc_code[18] = ((val >> 24) & 0xFF); - ecc_code[19] = ((val >> 16) & 0xFF); - ecc_code[20] = ((val >> 8) & 0xFF); - ecc_code[21] = ((val >> 0) & 0xFF); - val = readl(gpmc_regs->gpmc_bch_result0[i]); - ecc_code[22] = ((val >> 24) & 0xFF); - ecc_code[23] = ((val >> 16) & 0xFF); - ecc_code[24] = ((val >> 8) & 0xFF); - ecc_code[25] = ((val >> 0) & 0xFF); - break; - default: - return -EINVAL; - } - - /* ECC scheme specific syndrome customizations */ - switch (info->ecc_opt) { - case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: - /* Add constant polynomial to remainder, so that - * ECC of blank pages results in 0x0 on reading back - */ - for (j = 0; j < eccbytes; j++) - ecc_calc[j] ^= bch4_polynomial[j]; - break; - case OMAP_ECC_BCH4_CODE_HW: - /* Set 8th ECC byte as 0x0 for ROM compatibility */ - ecc_calc[eccbytes - 1] = 0x0; - break; - case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: - /* Add constant polynomial to remainder, so that - * ECC of blank pages results in 0x0 on reading back - */ - for (j = 0; j < eccbytes; j++) - ecc_calc[j] ^= bch8_polynomial[j]; - break; - case OMAP_ECC_BCH8_CODE_HW: - /* Set 14th ECC byte as 0x0 for ROM compatibility */ - ecc_calc[eccbytes - 1] = 0x0; - break; - case OMAP_ECC_BCH16_CODE_HW: - break; - default: - return -EINVAL; - } - - return 0; -} - -/** - * omap_calculate_ecc_bch_sw - ECC generator for sector for SW based correction - * @mtd: MTD device structure - * @dat: The pointer to data on which ecc is computed - * @ecc_code: The ecc_code buffer - * - * Support calculating of BCH4/8/16 ECC vectors for one sector. This is used - * when SW based correction is required as ECC is required for one sector - * at a time. - */ -static int omap_calculate_ecc_bch_sw(struct mtd_info *mtd, - const u_char *dat, u_char *ecc_calc) -{ - return _omap_calculate_ecc_bch(mtd, dat, ecc_calc, 0); -} - -/** - * omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors - * @mtd: MTD device structure - * @dat: The pointer to data on which ecc is computed - * @ecc_code: The ecc_code buffer - * - * Support calculating of BCH4/8/16 ecc vectors for the entire page in one go. - */ -static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd, - const u_char *dat, u_char *ecc_calc) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - int eccbytes = info->nand.ecc.bytes; - unsigned long nsectors; - int i, ret; - - nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1; - for (i = 0; i < nsectors; i++) { - ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i); - if (ret) - return ret; - - ecc_calc += eccbytes; - } - - return 0; -} - -/** - * erased_sector_bitflips - count bit flips - * @data: data sector buffer - * @oob: oob buffer - * @info: omap_nand_info - * - * Check the bit flips in erased page falls below correctable level. - * If falls below, report the page as erased with correctable bit - * flip, else report as uncorrectable page. - */ -static int erased_sector_bitflips(u_char *data, u_char *oob, - struct omap_nand_info *info) -{ - int flip_bits = 0, i; - - for (i = 0; i < info->nand.ecc.size; i++) { - flip_bits += hweight8(~data[i]); - if (flip_bits > info->nand.ecc.strength) - return 0; - } - - for (i = 0; i < info->nand.ecc.bytes - 1; i++) { - flip_bits += hweight8(~oob[i]); - if (flip_bits > info->nand.ecc.strength) - return 0; - } - - /* - * Bit flips falls in correctable level. - * Fill data area with 0xFF - */ - if (flip_bits) { - memset(data, 0xFF, info->nand.ecc.size); - memset(oob, 0xFF, info->nand.ecc.bytes); - } - - return flip_bits; -} - -/** - * omap_elm_correct_data - corrects page data area in case error reported - * @mtd: MTD device structure - * @data: page data - * @read_ecc: ecc read from nand flash - * @calc_ecc: ecc read from HW ECC registers - * - * Calculated ecc vector reported as zero in case of non-error pages. - * In case of non-zero ecc vector, first filter out erased-pages, and - * then process data via ELM to detect bit-flips. - */ -static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data, - u_char *read_ecc, u_char *calc_ecc) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - struct nand_ecc_ctrl *ecc = &info->nand.ecc; - int eccsteps = info->nand.ecc.steps; - int i , j, stat = 0; - int eccflag, actual_eccbytes; - struct elm_errorvec err_vec[ERROR_VECTOR_MAX]; - u_char *ecc_vec = calc_ecc; - u_char *spare_ecc = read_ecc; - u_char *erased_ecc_vec; - u_char *buf; - int bitflip_count; - bool is_error_reported = false; - u32 bit_pos, byte_pos, error_max, pos; - int err; - - switch (info->ecc_opt) { - case OMAP_ECC_BCH4_CODE_HW: - /* omit 7th ECC byte reserved for ROM code compatibility */ - actual_eccbytes = ecc->bytes - 1; - erased_ecc_vec = bch4_vector; - break; - case OMAP_ECC_BCH8_CODE_HW: - /* omit 14th ECC byte reserved for ROM code compatibility */ - actual_eccbytes = ecc->bytes - 1; - erased_ecc_vec = bch8_vector; - break; - case OMAP_ECC_BCH16_CODE_HW: - actual_eccbytes = ecc->bytes; - erased_ecc_vec = bch16_vector; - break; - default: - dev_err(&info->pdev->dev, "invalid driver configuration\n"); - return -EINVAL; - } - - /* Initialize elm error vector to zero */ - memset(err_vec, 0, sizeof(err_vec)); - - for (i = 0; i < eccsteps ; i++) { - eccflag = 0; /* initialize eccflag */ - - /* - * Check any error reported, - * In case of error, non zero ecc reported. - */ - for (j = 0; j < actual_eccbytes; j++) { - if (calc_ecc[j] != 0) { - eccflag = 1; /* non zero ecc, error present */ - break; - } - } - - if (eccflag == 1) { - if (memcmp(calc_ecc, erased_ecc_vec, - actual_eccbytes) == 0) { - /* - * calc_ecc[] matches pattern for ECC(all 0xff) - * so this is definitely an erased-page - */ - } else { - buf = &data[info->nand.ecc.size * i]; - /* - * count number of 0-bits in read_buf. - * This check can be removed once a similar - * check is introduced in generic NAND driver - */ - bitflip_count = erased_sector_bitflips( - buf, read_ecc, info); - if (bitflip_count) { - /* - * number of 0-bits within ECC limits - * So this may be an erased-page - */ - stat += bitflip_count; - } else { - /* - * Too many 0-bits. It may be a - * - programmed-page, OR - * - erased-page with many bit-flips - * So this page requires check by ELM - */ - err_vec[i].error_reported = true; - is_error_reported = true; - } - } - } - - /* Update the ecc vector */ - calc_ecc += ecc->bytes; - read_ecc += ecc->bytes; - } - - /* Check if any error reported */ - if (!is_error_reported) - return stat; - - /* Decode BCH error using ELM module */ - elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec); - - err = 0; - for (i = 0; i < eccsteps; i++) { - if (err_vec[i].error_uncorrectable) { - dev_err(&info->pdev->dev, - "uncorrectable bit-flips found\n"); - err = -EBADMSG; - } else if (err_vec[i].error_reported) { - for (j = 0; j < err_vec[i].error_count; j++) { - switch (info->ecc_opt) { - case OMAP_ECC_BCH4_CODE_HW: - /* Add 4 bits to take care of padding */ - pos = err_vec[i].error_loc[j] + - BCH4_BIT_PAD; - break; - case OMAP_ECC_BCH8_CODE_HW: - case OMAP_ECC_BCH16_CODE_HW: - pos = err_vec[i].error_loc[j]; - break; - default: - return -EINVAL; - } - error_max = (ecc->size + actual_eccbytes) * 8; - /* Calculate bit position of error */ - bit_pos = pos % 8; - - /* Calculate byte position of error */ - byte_pos = (error_max - pos - 1) / 8; - - if (pos < error_max) { - if (byte_pos < 512) { - pr_debug("bitflip@dat[%d]=%x\n", - byte_pos, data[byte_pos]); - data[byte_pos] ^= 1 << bit_pos; - } else { - pr_debug("bitflip@oob[%d]=%x\n", - (byte_pos - 512), - spare_ecc[byte_pos - 512]); - spare_ecc[byte_pos - 512] ^= - 1 << bit_pos; - } - } else { - dev_err(&info->pdev->dev, - "invalid bit-flip @ %d:%d\n", - byte_pos, bit_pos); - err = -EBADMSG; - } - } - } - - /* Update number of correctable errors */ - stat += err_vec[i].error_count; - - /* Update page data with sector size */ - data += ecc->size; - spare_ecc += ecc->bytes; - } - - return (err) ? err : stat; -} - -/** - * omap_write_page_bch - BCH ecc based write page function for entire page - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: data buffer - * @oob_required: must write chip->oob_poi to OOB - * @page: page - * - * Custom write page method evolved to support multi sector writing in one shot - */ -static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf, int oob_required, int page) -{ - int ret; - uint8_t *ecc_calc = chip->ecc.calc_buf; - - nand_prog_page_begin_op(chip, page, 0, NULL, 0); - - /* Enable GPMC ecc engine */ - chip->ecc.hwctl(mtd, NAND_ECC_WRITE); - - /* Write data */ - chip->write_buf(mtd, buf, mtd->writesize); - - /* Update ecc vector from GPMC result registers */ - omap_calculate_ecc_bch_multi(mtd, buf, &ecc_calc[0]); - - ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, - chip->ecc.total); - if (ret) - return ret; - - /* Write ecc vector to OOB area */ - chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); - - return nand_prog_page_end_op(chip); -} - -/** - * omap_write_subpage_bch - BCH hardware ECC based subpage write - * @mtd: mtd info structure - * @chip: nand chip info structure - * @offset: column address of subpage within the page - * @data_len: data length - * @buf: data buffer - * @oob_required: must write chip->oob_poi to OOB - * @page: page number to write - * - * OMAP optimized subpage write method. - */ -static int omap_write_subpage_bch(struct mtd_info *mtd, - struct nand_chip *chip, u32 offset, - u32 data_len, const u8 *buf, - int oob_required, int page) -{ - u8 *ecc_calc = chip->ecc.calc_buf; - int ecc_size = chip->ecc.size; - int ecc_bytes = chip->ecc.bytes; - int ecc_steps = chip->ecc.steps; - u32 start_step = offset / ecc_size; - u32 end_step = (offset + data_len - 1) / ecc_size; - int step, ret = 0; - - /* - * Write entire page at one go as it would be optimal - * as ECC is calculated by hardware. - * ECC is calculated for all subpages but we choose - * only what we want. - */ - nand_prog_page_begin_op(chip, page, 0, NULL, 0); - - /* Enable GPMC ECC engine */ - chip->ecc.hwctl(mtd, NAND_ECC_WRITE); - - /* Write data */ - chip->write_buf(mtd, buf, mtd->writesize); - - for (step = 0; step < ecc_steps; step++) { - /* mask ECC of un-touched subpages by padding 0xFF */ - if (step < start_step || step > end_step) - memset(ecc_calc, 0xff, ecc_bytes); - else - ret = _omap_calculate_ecc_bch(mtd, buf, ecc_calc, step); - - if (ret) - return ret; - - buf += ecc_size; - ecc_calc += ecc_bytes; - } - - /* copy calculated ECC for whole page to chip->buffer->oob */ - /* this include masked-value(0xFF) for unwritten subpages */ - ecc_calc = chip->ecc.calc_buf; - ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, - chip->ecc.total); - if (ret) - return ret; - - /* write OOB buffer to NAND device */ - chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); - - return nand_prog_page_end_op(chip); -} - -/** - * omap_read_page_bch - BCH ecc based page read function for entire page - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: buffer to store read data - * @oob_required: caller requires OOB data read to chip->oob_poi - * @page: page number to read - * - * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module - * used for error correction. - * Custom method evolved to support ELM error correction & multi sector - * reading. On reading page data area is read along with OOB data with - * ecc engine enabled. ecc vector updated after read of OOB data. - * For non error pages ecc vector reported as zero. - */ -static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int oob_required, int page) -{ - uint8_t *ecc_calc = chip->ecc.calc_buf; - uint8_t *ecc_code = chip->ecc.code_buf; - int stat, ret; - unsigned int max_bitflips = 0; - - nand_read_page_op(chip, page, 0, NULL, 0); - - /* Enable GPMC ecc engine */ - chip->ecc.hwctl(mtd, NAND_ECC_READ); - - /* Read data */ - chip->read_buf(mtd, buf, mtd->writesize); - - /* Read oob bytes */ - nand_change_read_column_op(chip, - mtd->writesize + BADBLOCK_MARKER_LENGTH, - chip->oob_poi + BADBLOCK_MARKER_LENGTH, - chip->ecc.total, false); - - /* Calculate ecc bytes */ - omap_calculate_ecc_bch_multi(mtd, buf, ecc_calc); - - ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, - chip->ecc.total); - if (ret) - return ret; - - stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc); - - if (stat < 0) { - mtd->ecc_stats.failed++; - } else { - mtd->ecc_stats.corrected += stat; - max_bitflips = max_t(unsigned int, max_bitflips, stat); - } - - return max_bitflips; -} - -/** - * is_elm_present - checks for presence of ELM module by scanning DT nodes - * @omap_nand_info: NAND device structure containing platform data - */ -static bool is_elm_present(struct omap_nand_info *info, - struct device_node *elm_node) -{ - struct platform_device *pdev; - - /* check whether elm-id is passed via DT */ - if (!elm_node) { - dev_err(&info->pdev->dev, "ELM devicetree node not found\n"); - return false; - } - pdev = of_find_device_by_node(elm_node); - /* check whether ELM device is registered */ - if (!pdev) { - dev_err(&info->pdev->dev, "ELM device not found\n"); - return false; - } - /* ELM module available, now configure it */ - info->elm_dev = &pdev->dev; - return true; -} - -static bool omap2_nand_ecc_check(struct omap_nand_info *info) -{ - bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm; - - switch (info->ecc_opt) { - case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: - case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: - ecc_needs_omap_bch = false; - ecc_needs_bch = true; - ecc_needs_elm = false; - break; - case OMAP_ECC_BCH4_CODE_HW: - case OMAP_ECC_BCH8_CODE_HW: - case OMAP_ECC_BCH16_CODE_HW: - ecc_needs_omap_bch = true; - ecc_needs_bch = false; - ecc_needs_elm = true; - break; - default: - ecc_needs_omap_bch = false; - ecc_needs_bch = false; - ecc_needs_elm = false; - break; - } - - if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH)) { - dev_err(&info->pdev->dev, - "CONFIG_MTD_NAND_ECC_BCH not enabled\n"); - return false; - } - if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) { - dev_err(&info->pdev->dev, - "CONFIG_MTD_NAND_OMAP_BCH not enabled\n"); - return false; - } - if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) { - dev_err(&info->pdev->dev, "ELM not available\n"); - return false; - } - - return true; -} - -static const char * const nand_xfer_types[] = { - [NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled", - [NAND_OMAP_POLLED] = "polled", - [NAND_OMAP_PREFETCH_DMA] = "prefetch-dma", - [NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq", -}; - -static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info) -{ - struct device_node *child = dev->of_node; - int i; - const char *s; - u32 cs; - - if (of_property_read_u32(child, "reg", &cs) < 0) { - dev_err(dev, "reg not found in DT\n"); - return -EINVAL; - } - - info->gpmc_cs = cs; - - /* detect availability of ELM module. Won't be present pre-OMAP4 */ - info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0); - if (!info->elm_of_node) { - info->elm_of_node = of_parse_phandle(child, "elm_id", 0); - if (!info->elm_of_node) - dev_dbg(dev, "ti,elm-id not in DT\n"); - } - - /* select ecc-scheme for NAND */ - if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) { - dev_err(dev, "ti,nand-ecc-opt not found\n"); - return -EINVAL; - } - - if (!strcmp(s, "sw")) { - info->ecc_opt = OMAP_ECC_HAM1_CODE_SW; - } else if (!strcmp(s, "ham1") || - !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) { - info->ecc_opt = OMAP_ECC_HAM1_CODE_HW; - } else if (!strcmp(s, "bch4")) { - if (info->elm_of_node) - info->ecc_opt = OMAP_ECC_BCH4_CODE_HW; - else - info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW; - } else if (!strcmp(s, "bch8")) { - if (info->elm_of_node) - info->ecc_opt = OMAP_ECC_BCH8_CODE_HW; - else - info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW; - } else if (!strcmp(s, "bch16")) { - info->ecc_opt = OMAP_ECC_BCH16_CODE_HW; - } else { - dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n"); - return -EINVAL; - } - - /* select data transfer mode */ - if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) { - for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) { - if (!strcasecmp(s, nand_xfer_types[i])) { - info->xfer_type = i; - return 0; - } - } - - dev_err(dev, "unrecognized value for ti,nand-xfer-type\n"); - return -EINVAL; - } - - return 0; -} - -static int omap_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - struct nand_chip *chip = &info->nand; - int off = BADBLOCK_MARKER_LENGTH; - - if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW && - !(chip->options & NAND_BUSWIDTH_16)) - off = 1; - - if (section) - return -ERANGE; - - oobregion->offset = off; - oobregion->length = chip->ecc.total; - - return 0; -} - -static int omap_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - struct nand_chip *chip = &info->nand; - int off = BADBLOCK_MARKER_LENGTH; - - if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW && - !(chip->options & NAND_BUSWIDTH_16)) - off = 1; - - if (section) - return -ERANGE; - - off += chip->ecc.total; - if (off >= mtd->oobsize) - return -ERANGE; - - oobregion->offset = off; - oobregion->length = mtd->oobsize - off; - - return 0; -} - -static const struct mtd_ooblayout_ops omap_ooblayout_ops = { - .ecc = omap_ooblayout_ecc, - .free = omap_ooblayout_free, -}; - -static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - int off = BADBLOCK_MARKER_LENGTH; - - if (section >= chip->ecc.steps) - return -ERANGE; - - /* - * When SW correction is employed, one OMAP specific marker byte is - * reserved after each ECC step. - */ - oobregion->offset = off + (section * (chip->ecc.bytes + 1)); - oobregion->length = chip->ecc.bytes; - - return 0; -} - -static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - int off = BADBLOCK_MARKER_LENGTH; - - if (section) - return -ERANGE; - - /* - * When SW correction is employed, one OMAP specific marker byte is - * reserved after each ECC step. - */ - off += ((chip->ecc.bytes + 1) * chip->ecc.steps); - if (off >= mtd->oobsize) - return -ERANGE; - - oobregion->offset = off; - oobregion->length = mtd->oobsize - off; - - return 0; -} - -static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = { - .ecc = omap_sw_ooblayout_ecc, - .free = omap_sw_ooblayout_free, -}; - -static int omap_nand_probe(struct platform_device *pdev) -{ - struct omap_nand_info *info; - struct mtd_info *mtd; - struct nand_chip *nand_chip; - int err; - dma_cap_mask_t mask; - struct resource *res; - struct device *dev = &pdev->dev; - int min_oobbytes = BADBLOCK_MARKER_LENGTH; - int oobbytes_per_step; - - info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info), - GFP_KERNEL); - if (!info) - return -ENOMEM; - - info->pdev = pdev; - - err = omap_get_dt_info(dev, info); - if (err) - return err; - - info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs); - if (!info->ops) { - dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n"); - return -ENODEV; - } - - nand_chip = &info->nand; - mtd = nand_to_mtd(nand_chip); - mtd->dev.parent = &pdev->dev; - nand_chip->ecc.priv = NULL; - nand_set_flash_node(nand_chip, dev->of_node); - - if (!mtd->name) { - mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, - "omap2-nand.%d", info->gpmc_cs); - if (!mtd->name) { - dev_err(&pdev->dev, "Failed to set MTD name\n"); - return -ENOMEM; - } - } - - res = platform_get_resource(pdev, IORESOURCE_MEM, 0); - nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res); - if (IS_ERR(nand_chip->IO_ADDR_R)) - return PTR_ERR(nand_chip->IO_ADDR_R); - - info->phys_base = res->start; - - nand_chip->controller = &omap_gpmc_controller; - - nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R; - nand_chip->cmd_ctrl = omap_hwcontrol; - - info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb", - GPIOD_IN); - if (IS_ERR(info->ready_gpiod)) { - dev_err(dev, "failed to get ready gpio\n"); - return PTR_ERR(info->ready_gpiod); - } - - /* - * If RDY/BSY line is connected to OMAP then use the omap ready - * function and the generic nand_wait function which reads the status - * register after monitoring the RDY/BSY line. Otherwise use a standard - * chip delay which is slightly more than tR (AC Timing) of the NAND - * device and read status register until you get a failure or success - */ - if (info->ready_gpiod) { - nand_chip->dev_ready = omap_dev_ready; - nand_chip->chip_delay = 0; - } else { - nand_chip->waitfunc = omap_wait; - nand_chip->chip_delay = 50; - } - - if (info->flash_bbt) - nand_chip->bbt_options |= NAND_BBT_USE_FLASH; - - /* scan NAND device connected to chip controller */ - nand_chip->options |= info->devsize & NAND_BUSWIDTH_16; - err = nand_scan_ident(mtd, 1, NULL); - if (err) { - dev_err(&info->pdev->dev, - "scan failed, may be bus-width mismatch\n"); - goto return_error; - } - - if (nand_chip->bbt_options & NAND_BBT_USE_FLASH) - nand_chip->bbt_options |= NAND_BBT_NO_OOB; - else - nand_chip->options |= NAND_SKIP_BBTSCAN; - - /* re-populate low-level callbacks based on xfer modes */ - switch (info->xfer_type) { - case NAND_OMAP_PREFETCH_POLLED: - nand_chip->read_buf = omap_read_buf_pref; - nand_chip->write_buf = omap_write_buf_pref; - break; - - case NAND_OMAP_POLLED: - /* Use nand_base defaults for {read,write}_buf */ - break; - - case NAND_OMAP_PREFETCH_DMA: - dma_cap_zero(mask); - dma_cap_set(DMA_SLAVE, mask); - info->dma = dma_request_chan(pdev->dev.parent, "rxtx"); - - if (IS_ERR(info->dma)) { - dev_err(&pdev->dev, "DMA engine request failed\n"); - err = PTR_ERR(info->dma); - goto return_error; - } else { - struct dma_slave_config cfg; - - memset(&cfg, 0, sizeof(cfg)); - cfg.src_addr = info->phys_base; - cfg.dst_addr = info->phys_base; - cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; - cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; - cfg.src_maxburst = 16; - cfg.dst_maxburst = 16; - err = dmaengine_slave_config(info->dma, &cfg); - if (err) { - dev_err(&pdev->dev, "DMA engine slave config failed: %d\n", - err); - goto return_error; - } - nand_chip->read_buf = omap_read_buf_dma_pref; - nand_chip->write_buf = omap_write_buf_dma_pref; - } - break; - - case NAND_OMAP_PREFETCH_IRQ: - info->gpmc_irq_fifo = platform_get_irq(pdev, 0); - if (info->gpmc_irq_fifo <= 0) { - dev_err(&pdev->dev, "error getting fifo irq\n"); - err = -ENODEV; - goto return_error; - } - err = devm_request_irq(&pdev->dev, info->gpmc_irq_fifo, - omap_nand_irq, IRQF_SHARED, - "gpmc-nand-fifo", info); - if (err) { - dev_err(&pdev->dev, "requesting irq(%d) error:%d", - info->gpmc_irq_fifo, err); - info->gpmc_irq_fifo = 0; - goto return_error; - } - - info->gpmc_irq_count = platform_get_irq(pdev, 1); - if (info->gpmc_irq_count <= 0) { - dev_err(&pdev->dev, "error getting count irq\n"); - err = -ENODEV; - goto return_error; - } - err = devm_request_irq(&pdev->dev, info->gpmc_irq_count, - omap_nand_irq, IRQF_SHARED, - "gpmc-nand-count", info); - if (err) { - dev_err(&pdev->dev, "requesting irq(%d) error:%d", - info->gpmc_irq_count, err); - info->gpmc_irq_count = 0; - goto return_error; - } - - nand_chip->read_buf = omap_read_buf_irq_pref; - nand_chip->write_buf = omap_write_buf_irq_pref; - - break; - - default: - dev_err(&pdev->dev, - "xfer_type(%d) not supported!\n", info->xfer_type); - err = -EINVAL; - goto return_error; - } - - if (!omap2_nand_ecc_check(info)) { - err = -EINVAL; - goto return_error; - } - - /* - * Bail out earlier to let NAND_ECC_SOFT code create its own - * ooblayout instead of using ours. - */ - if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) { - nand_chip->ecc.mode = NAND_ECC_SOFT; - nand_chip->ecc.algo = NAND_ECC_HAMMING; - goto scan_tail; - } - - /* populate MTD interface based on ECC scheme */ - switch (info->ecc_opt) { - case OMAP_ECC_HAM1_CODE_HW: - pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n"); - nand_chip->ecc.mode = NAND_ECC_HW; - nand_chip->ecc.bytes = 3; - nand_chip->ecc.size = 512; - nand_chip->ecc.strength = 1; - nand_chip->ecc.calculate = omap_calculate_ecc; - nand_chip->ecc.hwctl = omap_enable_hwecc; - nand_chip->ecc.correct = omap_correct_data; - mtd_set_ooblayout(mtd, &omap_ooblayout_ops); - oobbytes_per_step = nand_chip->ecc.bytes; - - if (!(nand_chip->options & NAND_BUSWIDTH_16)) - min_oobbytes = 1; - - break; - - case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: - pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n"); - nand_chip->ecc.mode = NAND_ECC_HW; - nand_chip->ecc.size = 512; - nand_chip->ecc.bytes = 7; - nand_chip->ecc.strength = 4; - nand_chip->ecc.hwctl = omap_enable_hwecc_bch; - nand_chip->ecc.correct = nand_bch_correct_data; - nand_chip->ecc.calculate = omap_calculate_ecc_bch_sw; - mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops); - /* Reserve one byte for the OMAP marker */ - oobbytes_per_step = nand_chip->ecc.bytes + 1; - /* software bch library is used for locating errors */ - nand_chip->ecc.priv = nand_bch_init(mtd); - if (!nand_chip->ecc.priv) { - dev_err(&info->pdev->dev, "unable to use BCH library\n"); - err = -EINVAL; - goto return_error; - } - break; - - case OMAP_ECC_BCH4_CODE_HW: - pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n"); - nand_chip->ecc.mode = NAND_ECC_HW; - nand_chip->ecc.size = 512; - /* 14th bit is kept reserved for ROM-code compatibility */ - nand_chip->ecc.bytes = 7 + 1; - nand_chip->ecc.strength = 4; - nand_chip->ecc.hwctl = omap_enable_hwecc_bch; - nand_chip->ecc.correct = omap_elm_correct_data; - nand_chip->ecc.read_page = omap_read_page_bch; - nand_chip->ecc.write_page = omap_write_page_bch; - nand_chip->ecc.write_subpage = omap_write_subpage_bch; - mtd_set_ooblayout(mtd, &omap_ooblayout_ops); - oobbytes_per_step = nand_chip->ecc.bytes; - - err = elm_config(info->elm_dev, BCH4_ECC, - mtd->writesize / nand_chip->ecc.size, - nand_chip->ecc.size, nand_chip->ecc.bytes); - if (err < 0) - goto return_error; - break; - - case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: - pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n"); - nand_chip->ecc.mode = NAND_ECC_HW; - nand_chip->ecc.size = 512; - nand_chip->ecc.bytes = 13; - nand_chip->ecc.strength = 8; - nand_chip->ecc.hwctl = omap_enable_hwecc_bch; - nand_chip->ecc.correct = nand_bch_correct_data; - nand_chip->ecc.calculate = omap_calculate_ecc_bch_sw; - mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops); - /* Reserve one byte for the OMAP marker */ - oobbytes_per_step = nand_chip->ecc.bytes + 1; - /* software bch library is used for locating errors */ - nand_chip->ecc.priv = nand_bch_init(mtd); - if (!nand_chip->ecc.priv) { - dev_err(&info->pdev->dev, "unable to use BCH library\n"); - err = -EINVAL; - goto return_error; - } - break; - - case OMAP_ECC_BCH8_CODE_HW: - pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n"); - nand_chip->ecc.mode = NAND_ECC_HW; - nand_chip->ecc.size = 512; - /* 14th bit is kept reserved for ROM-code compatibility */ - nand_chip->ecc.bytes = 13 + 1; - nand_chip->ecc.strength = 8; - nand_chip->ecc.hwctl = omap_enable_hwecc_bch; - nand_chip->ecc.correct = omap_elm_correct_data; - nand_chip->ecc.read_page = omap_read_page_bch; - nand_chip->ecc.write_page = omap_write_page_bch; - nand_chip->ecc.write_subpage = omap_write_subpage_bch; - mtd_set_ooblayout(mtd, &omap_ooblayout_ops); - oobbytes_per_step = nand_chip->ecc.bytes; - - err = elm_config(info->elm_dev, BCH8_ECC, - mtd->writesize / nand_chip->ecc.size, - nand_chip->ecc.size, nand_chip->ecc.bytes); - if (err < 0) - goto return_error; - - break; - - case OMAP_ECC_BCH16_CODE_HW: - pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n"); - nand_chip->ecc.mode = NAND_ECC_HW; - nand_chip->ecc.size = 512; - nand_chip->ecc.bytes = 26; - nand_chip->ecc.strength = 16; - nand_chip->ecc.hwctl = omap_enable_hwecc_bch; - nand_chip->ecc.correct = omap_elm_correct_data; - nand_chip->ecc.read_page = omap_read_page_bch; - nand_chip->ecc.write_page = omap_write_page_bch; - nand_chip->ecc.write_subpage = omap_write_subpage_bch; - mtd_set_ooblayout(mtd, &omap_ooblayout_ops); - oobbytes_per_step = nand_chip->ecc.bytes; - - err = elm_config(info->elm_dev, BCH16_ECC, - mtd->writesize / nand_chip->ecc.size, - nand_chip->ecc.size, nand_chip->ecc.bytes); - if (err < 0) - goto return_error; - - break; - default: - dev_err(&info->pdev->dev, "invalid or unsupported ECC scheme\n"); - err = -EINVAL; - goto return_error; - } - - /* check if NAND device's OOB is enough to store ECC signatures */ - min_oobbytes += (oobbytes_per_step * - (mtd->writesize / nand_chip->ecc.size)); - if (mtd->oobsize < min_oobbytes) { - dev_err(&info->pdev->dev, - "not enough OOB bytes required = %d, available=%d\n", - min_oobbytes, mtd->oobsize); - err = -EINVAL; - goto return_error; - } - -scan_tail: - /* second phase scan */ - err = nand_scan_tail(mtd); - if (err) - goto return_error; - - err = mtd_device_register(mtd, NULL, 0); - if (err) - goto return_error; - - platform_set_drvdata(pdev, mtd); - - return 0; - -return_error: - if (!IS_ERR_OR_NULL(info->dma)) - dma_release_channel(info->dma); - if (nand_chip->ecc.priv) { - nand_bch_free(nand_chip->ecc.priv); - nand_chip->ecc.priv = NULL; - } - return err; -} - -static int omap_nand_remove(struct platform_device *pdev) -{ - struct mtd_info *mtd = platform_get_drvdata(pdev); - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct omap_nand_info *info = mtd_to_omap(mtd); - if (nand_chip->ecc.priv) { - nand_bch_free(nand_chip->ecc.priv); - nand_chip->ecc.priv = NULL; - } - if (info->dma) - dma_release_channel(info->dma); - nand_release(mtd); - return 0; -} - -static const struct of_device_id omap_nand_ids[] = { - { .compatible = "ti,omap2-nand", }, - {}, -}; -MODULE_DEVICE_TABLE(of, omap_nand_ids); - -static struct platform_driver omap_nand_driver = { - .probe = omap_nand_probe, - .remove = omap_nand_remove, - .driver = { - .name = DRIVER_NAME, - .of_match_table = of_match_ptr(omap_nand_ids), - }, -}; - -module_platform_driver(omap_nand_driver); - -MODULE_ALIAS("platform:" DRIVER_NAME); -MODULE_LICENSE("GPL"); -MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards"); |