diff options
author | Brian Norris <computersforpeace@gmail.com> | 2016-07-14 21:49:28 +0200 |
---|---|---|
committer | Brian Norris <computersforpeace@gmail.com> | 2016-07-16 02:06:26 +0200 |
commit | 1ed106914abdd6d73f7efba333cd6e044c59b316 (patch) | |
tree | b30cc450702e74080b6dc49c14fd8912e092e9b1 /drivers/mtd | |
parent | Documentation: atmel-quadspi: add binding file for Atmel QSPI driver (diff) | |
parent | mtd: nand: jz4780: Update MODULE_AUTHOR email address (diff) | |
download | linux-1ed106914abdd6d73f7efba333cd6e044c59b316.tar.xz linux-1ed106914abdd6d73f7efba333cd6e044c59b316.zip |
Merge tag 'nand/for-4.8' of github.com:linux-nand/linux into mtd
Pull NAND changes from Boris Brezillon:
"""
This pull request contains only one notable change:
* Addition of the MTK NAND controller driver
And a bunch of specific NAND driver improvements/fixes. Here are the
changes that are worth mentioning:
* A few fixes/improvements for the xway NAND controller driver
* A few fixes for the sunxi NAND controller driver
* Support for DMA in the sunxi NAND driver
* Support for the sunxi NAND controller IP embedded in A23/A33 SoCs
* Addition for bitflips detection in erased pages to the brcmnand driver
* Support for new brcmnand IPs
* Update of the OMAP-GPMC binding to support DMA channel description
"""
Diffstat (limited to 'drivers/mtd')
-rw-r--r-- | drivers/mtd/nand/Kconfig | 8 | ||||
-rw-r--r-- | drivers/mtd/nand/Makefile | 1 | ||||
-rw-r--r-- | drivers/mtd/nand/brcmnand/brcmnand.c | 171 | ||||
-rw-r--r-- | drivers/mtd/nand/jz4780_bch.c | 2 | ||||
-rw-r--r-- | drivers/mtd/nand/jz4780_nand.c | 2 | ||||
-rw-r--r-- | drivers/mtd/nand/mtk_ecc.c | 530 | ||||
-rw-r--r-- | drivers/mtd/nand/mtk_ecc.h | 50 | ||||
-rw-r--r-- | drivers/mtd/nand/mtk_nand.c | 1526 | ||||
-rw-r--r-- | drivers/mtd/nand/nand_ids.c | 1 | ||||
-rw-r--r-- | drivers/mtd/nand/omap2.c | 7 | ||||
-rw-r--r-- | drivers/mtd/nand/sunxi_nand.c | 397 | ||||
-rw-r--r-- | drivers/mtd/nand/xway_nand.c | 231 | ||||
-rw-r--r-- | drivers/mtd/tests/nandbiterrs.c | 2 |
13 files changed, 2806 insertions, 122 deletions
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig index eace3ef10d9d..21ff58099f3b 100644 --- a/drivers/mtd/nand/Kconfig +++ b/drivers/mtd/nand/Kconfig @@ -539,7 +539,6 @@ config MTD_NAND_FSMC config MTD_NAND_XWAY tristate "Support for NAND on Lantiq XWAY SoC" depends on LANTIQ && SOC_TYPE_XWAY - select MTD_NAND_PLATFORM help Enables support for NAND Flash chips on Lantiq XWAY SoCs. NAND is attached to the External Bus Unit (EBU). @@ -563,4 +562,11 @@ config MTD_NAND_QCOM Enables support for NAND flash chips on SoCs containing the EBI2 NAND controller. This controller is found on IPQ806x SoC. +config MTD_NAND_MTK + tristate "Support for NAND controller on MTK SoCs" + depends on HAS_DMA + help + Enables support for NAND controller on MTK SoCs. + This controller is found on mt27xx, mt81xx, mt65xx SoCs. + endif # MTD_NAND diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile index f55335373f7c..cafde6f3d957 100644 --- a/drivers/mtd/nand/Makefile +++ b/drivers/mtd/nand/Makefile @@ -57,5 +57,6 @@ obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_nand.o obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/ obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o +obj-$(CONFIG_MTD_NAND_MTK) += mtk_nand.o mtk_ecc.o nand-objs := nand_base.o nand_bbt.o nand_timings.o diff --git a/drivers/mtd/nand/brcmnand/brcmnand.c b/drivers/mtd/nand/brcmnand/brcmnand.c index b76ad7c0144f..faca01d6e0f9 100644 --- a/drivers/mtd/nand/brcmnand/brcmnand.c +++ b/drivers/mtd/nand/brcmnand/brcmnand.c @@ -340,6 +340,36 @@ static const u16 brcmnand_regs_v71[] = { [BRCMNAND_FC_BASE] = 0x400, }; +/* BRCMNAND v7.2 */ +static const u16 brcmnand_regs_v72[] = { + [BRCMNAND_CMD_START] = 0x04, + [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, + [BRCMNAND_CMD_ADDRESS] = 0x0c, + [BRCMNAND_INTFC_STATUS] = 0x14, + [BRCMNAND_CS_SELECT] = 0x18, + [BRCMNAND_CS_XOR] = 0x1c, + [BRCMNAND_LL_OP] = 0x20, + [BRCMNAND_CS0_BASE] = 0x50, + [BRCMNAND_CS1_BASE] = 0, + [BRCMNAND_CORR_THRESHOLD] = 0xdc, + [BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0, + [BRCMNAND_UNCORR_COUNT] = 0xfc, + [BRCMNAND_CORR_COUNT] = 0x100, + [BRCMNAND_CORR_EXT_ADDR] = 0x10c, + [BRCMNAND_CORR_ADDR] = 0x110, + [BRCMNAND_UNCORR_EXT_ADDR] = 0x114, + [BRCMNAND_UNCORR_ADDR] = 0x118, + [BRCMNAND_SEMAPHORE] = 0x150, + [BRCMNAND_ID] = 0x194, + [BRCMNAND_ID_EXT] = 0x198, + [BRCMNAND_LL_RDATA] = 0x19c, + [BRCMNAND_OOB_READ_BASE] = 0x200, + [BRCMNAND_OOB_READ_10_BASE] = 0, + [BRCMNAND_OOB_WRITE_BASE] = 0x400, + [BRCMNAND_OOB_WRITE_10_BASE] = 0, + [BRCMNAND_FC_BASE] = 0x600, +}; + enum brcmnand_cs_reg { BRCMNAND_CS_CFG_EXT = 0, BRCMNAND_CS_CFG, @@ -435,7 +465,9 @@ static int brcmnand_revision_init(struct brcmnand_controller *ctrl) } /* Register offsets */ - if (ctrl->nand_version >= 0x0701) + if (ctrl->nand_version >= 0x0702) + ctrl->reg_offsets = brcmnand_regs_v72; + else if (ctrl->nand_version >= 0x0701) ctrl->reg_offsets = brcmnand_regs_v71; else if (ctrl->nand_version >= 0x0600) ctrl->reg_offsets = brcmnand_regs_v60; @@ -480,7 +512,9 @@ static int brcmnand_revision_init(struct brcmnand_controller *ctrl) } /* Maximum spare area sector size (per 512B) */ - if (ctrl->nand_version >= 0x0600) + if (ctrl->nand_version >= 0x0702) + ctrl->max_oob = 128; + else if (ctrl->nand_version >= 0x0600) ctrl->max_oob = 64; else if (ctrl->nand_version >= 0x0500) ctrl->max_oob = 32; @@ -583,14 +617,20 @@ static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val) enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD; int cs = host->cs; - if (ctrl->nand_version >= 0x0600) + if (ctrl->nand_version >= 0x0702) + bits = 7; + else if (ctrl->nand_version >= 0x0600) bits = 6; else if (ctrl->nand_version >= 0x0500) bits = 5; else bits = 4; - if (ctrl->nand_version >= 0x0600) { + if (ctrl->nand_version >= 0x0702) { + if (cs >= 4) + reg = BRCMNAND_CORR_THRESHOLD_EXT; + shift = (cs % 4) * bits; + } else if (ctrl->nand_version >= 0x0600) { if (cs >= 5) reg = BRCMNAND_CORR_THRESHOLD_EXT; shift = (cs % 5) * bits; @@ -631,19 +671,28 @@ enum { static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl) { - if (ctrl->nand_version >= 0x0600) + if (ctrl->nand_version >= 0x0702) + return GENMASK(7, 0); + else if (ctrl->nand_version >= 0x0600) return GENMASK(6, 0); else return GENMASK(5, 0); } #define NAND_ACC_CONTROL_ECC_SHIFT 16 +#define NAND_ACC_CONTROL_ECC_EXT_SHIFT 13 static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl) { u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f; - return mask << NAND_ACC_CONTROL_ECC_SHIFT; + mask <<= NAND_ACC_CONTROL_ECC_SHIFT; + + /* v7.2 includes additional ECC levels */ + if (ctrl->nand_version >= 0x0702) + mask |= 0x7 << NAND_ACC_CONTROL_ECC_EXT_SHIFT; + + return mask; } static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en) @@ -667,7 +716,9 @@ static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en) static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl) { - if (ctrl->nand_version >= 0x0600) + if (ctrl->nand_version >= 0x0702) + return 9; + else if (ctrl->nand_version >= 0x0600) return 7; else if (ctrl->nand_version >= 0x0500) return 6; @@ -773,10 +824,16 @@ enum brcmnand_llop_type { * Internal support functions ***********************************************************************/ -static inline bool is_hamming_ecc(struct brcmnand_cfg *cfg) +static inline bool is_hamming_ecc(struct brcmnand_controller *ctrl, + struct brcmnand_cfg *cfg) { - return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 && - cfg->ecc_level == 15; + if (ctrl->nand_version <= 0x0701) + return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 && + cfg->ecc_level == 15; + else + return cfg->sector_size_1k == 0 && ((cfg->spare_area_size == 16 && + cfg->ecc_level == 15) || + (cfg->spare_area_size == 28 && cfg->ecc_level == 16)); } /* @@ -931,7 +988,7 @@ static int brcmstb_choose_ecc_layout(struct brcmnand_host *host) if (p->sector_size_1k) ecc_level <<= 1; - if (is_hamming_ecc(p)) { + if (is_hamming_ecc(host->ctrl, p)) { ecc->bytes = 3 * sectors; mtd_set_ooblayout(mtd, &brcmnand_hamming_ooblayout_ops); return 0; @@ -1545,6 +1602,56 @@ static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip, return ret; } +/* + * Check a page to see if it is erased (w/ bitflips) after an uncorrectable ECC + * error + * + * Because the HW ECC signals an ECC error if an erase paged has even a single + * bitflip, we must check each ECC error to see if it is actually an erased + * page with bitflips, not a truly corrupted page. + * + * On a real error, return a negative error code (-EBADMSG for ECC error), and + * buf will contain raw data. + * Otherwise, buf gets filled with 0xffs and return the maximum number of + * bitflips-per-ECC-sector to the caller. + * + */ +static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd, + struct nand_chip *chip, void *buf, u64 addr) +{ + int i, sas; + void *oob = chip->oob_poi; + int bitflips = 0; + int page = addr >> chip->page_shift; + int ret; + + if (!buf) { + buf = chip->buffers->databuf; + /* Invalidate page cache */ + chip->pagebuf = -1; + } + + sas = mtd->oobsize / chip->ecc.steps; + + /* read without ecc for verification */ + chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page); + ret = chip->ecc.read_page_raw(mtd, chip, buf, true, page); + if (ret) + return ret; + + for (i = 0; i < chip->ecc.steps; i++, oob += sas) { + ret = nand_check_erased_ecc_chunk(buf, chip->ecc.size, + oob, sas, NULL, 0, + chip->ecc.strength); + if (ret < 0) + return ret; + + bitflips = max(bitflips, ret); + } + + return bitflips; +} + static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip, u64 addr, unsigned int trans, u32 *buf, u8 *oob) { @@ -1552,9 +1659,11 @@ static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip, struct brcmnand_controller *ctrl = host->ctrl; u64 err_addr = 0; int err; + bool retry = true; dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf); +try_dmaread: brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_COUNT, 0); if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) { @@ -1575,6 +1684,34 @@ static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip, } if (mtd_is_eccerr(err)) { + /* + * On controller version and 7.0, 7.1 , DMA read after a + * prior PIO read that reported uncorrectable error, + * the DMA engine captures this error following DMA read + * cleared only on subsequent DMA read, so just retry once + * to clear a possible false error reported for current DMA + * read + */ + if ((ctrl->nand_version == 0x0700) || + (ctrl->nand_version == 0x0701)) { + if (retry) { + retry = false; + goto try_dmaread; + } + } + + /* + * Controller version 7.2 has hw encoder to detect erased page + * bitflips, apply sw verification for older controllers only + */ + if (ctrl->nand_version < 0x0702) { + err = brcmstb_nand_verify_erased_page(mtd, chip, buf, + addr); + /* erased page bitflips corrected */ + if (err > 0) + return err; + } + dev_dbg(ctrl->dev, "uncorrectable error at 0x%llx\n", (unsigned long long)err_addr); mtd->ecc_stats.failed++; @@ -1857,7 +1994,8 @@ static int brcmnand_set_cfg(struct brcmnand_host *host, return 0; } -static void brcmnand_print_cfg(char *buf, struct brcmnand_cfg *cfg) +static void brcmnand_print_cfg(struct brcmnand_host *host, + char *buf, struct brcmnand_cfg *cfg) { buf += sprintf(buf, "%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit", @@ -1868,7 +2006,7 @@ static void brcmnand_print_cfg(char *buf, struct brcmnand_cfg *cfg) cfg->spare_area_size, cfg->device_width); /* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */ - if (is_hamming_ecc(cfg)) + if (is_hamming_ecc(host->ctrl, cfg)) sprintf(buf, ", Hamming ECC"); else if (cfg->sector_size_1k) sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1); @@ -1987,7 +2125,7 @@ static int brcmnand_setup_dev(struct brcmnand_host *host) brcmnand_set_ecc_enabled(host, 1); - brcmnand_print_cfg(msg, cfg); + brcmnand_print_cfg(host, msg, cfg); dev_info(ctrl->dev, "detected %s\n", msg); /* Configure ACC_CONTROL */ @@ -1995,6 +2133,10 @@ static int brcmnand_setup_dev(struct brcmnand_host *host) tmp = nand_readreg(ctrl, offs); tmp &= ~ACC_CONTROL_PARTIAL_PAGE; tmp &= ~ACC_CONTROL_RD_ERASED; + + /* We need to turn on Read from erased paged protected by ECC */ + if (ctrl->nand_version >= 0x0702) + tmp |= ACC_CONTROL_RD_ERASED; tmp &= ~ACC_CONTROL_FAST_PGM_RDIN; if (ctrl->features & BRCMNAND_HAS_PREFETCH) { /* @@ -2195,6 +2337,7 @@ static const struct of_device_id brcmnand_of_match[] = { { .compatible = "brcm,brcmnand-v6.2" }, { .compatible = "brcm,brcmnand-v7.0" }, { .compatible = "brcm,brcmnand-v7.1" }, + { .compatible = "brcm,brcmnand-v7.2" }, {}, }; MODULE_DEVICE_TABLE(of, brcmnand_of_match); diff --git a/drivers/mtd/nand/jz4780_bch.c b/drivers/mtd/nand/jz4780_bch.c index d74f4ba4a6f4..731c6051d91e 100644 --- a/drivers/mtd/nand/jz4780_bch.c +++ b/drivers/mtd/nand/jz4780_bch.c @@ -375,6 +375,6 @@ static struct platform_driver jz4780_bch_driver = { module_platform_driver(jz4780_bch_driver); MODULE_AUTHOR("Alex Smith <alex@alex-smith.me.uk>"); -MODULE_AUTHOR("Harvey Hunt <harvey.hunt@imgtec.com>"); +MODULE_AUTHOR("Harvey Hunt <harveyhuntnexus@gmail.com>"); MODULE_DESCRIPTION("Ingenic JZ4780 BCH error correction driver"); MODULE_LICENSE("GPL v2"); diff --git a/drivers/mtd/nand/jz4780_nand.c b/drivers/mtd/nand/jz4780_nand.c index daf3c4217f4d..175f67da25af 100644 --- a/drivers/mtd/nand/jz4780_nand.c +++ b/drivers/mtd/nand/jz4780_nand.c @@ -412,6 +412,6 @@ static struct platform_driver jz4780_nand_driver = { module_platform_driver(jz4780_nand_driver); MODULE_AUTHOR("Alex Smith <alex@alex-smith.me.uk>"); -MODULE_AUTHOR("Harvey Hunt <harvey.hunt@imgtec.com>"); +MODULE_AUTHOR("Harvey Hunt <harveyhuntnexus@gmail.com>"); MODULE_DESCRIPTION("Ingenic JZ4780 NAND driver"); MODULE_LICENSE("GPL v2"); diff --git a/drivers/mtd/nand/mtk_ecc.c b/drivers/mtd/nand/mtk_ecc.c new file mode 100644 index 000000000000..25a4fbd4d24a --- /dev/null +++ b/drivers/mtd/nand/mtk_ecc.c @@ -0,0 +1,530 @@ +/* + * MTK ECC controller driver. + * Copyright (C) 2016 MediaTek Inc. + * Authors: Xiaolei Li <xiaolei.li@mediatek.com> + * Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#include <linux/platform_device.h> +#include <linux/dma-mapping.h> +#include <linux/interrupt.h> +#include <linux/clk.h> +#include <linux/module.h> +#include <linux/iopoll.h> +#include <linux/of.h> +#include <linux/of_platform.h> +#include <linux/mutex.h> + +#include "mtk_ecc.h" + +#define ECC_IDLE_MASK BIT(0) +#define ECC_IRQ_EN BIT(0) +#define ECC_OP_ENABLE (1) +#define ECC_OP_DISABLE (0) + +#define ECC_ENCCON (0x00) +#define ECC_ENCCNFG (0x04) +#define ECC_CNFG_4BIT (0) +#define ECC_CNFG_6BIT (1) +#define ECC_CNFG_8BIT (2) +#define ECC_CNFG_10BIT (3) +#define ECC_CNFG_12BIT (4) +#define ECC_CNFG_14BIT (5) +#define ECC_CNFG_16BIT (6) +#define ECC_CNFG_18BIT (7) +#define ECC_CNFG_20BIT (8) +#define ECC_CNFG_22BIT (9) +#define ECC_CNFG_24BIT (0xa) +#define ECC_CNFG_28BIT (0xb) +#define ECC_CNFG_32BIT (0xc) +#define ECC_CNFG_36BIT (0xd) +#define ECC_CNFG_40BIT (0xe) +#define ECC_CNFG_44BIT (0xf) +#define ECC_CNFG_48BIT (0x10) +#define ECC_CNFG_52BIT (0x11) +#define ECC_CNFG_56BIT (0x12) +#define ECC_CNFG_60BIT (0x13) +#define ECC_MODE_SHIFT (5) +#define ECC_MS_SHIFT (16) +#define ECC_ENCDIADDR (0x08) +#define ECC_ENCIDLE (0x0C) +#define ECC_ENCPAR(x) (0x10 + (x) * sizeof(u32)) +#define ECC_ENCIRQ_EN (0x80) +#define ECC_ENCIRQ_STA (0x84) +#define ECC_DECCON (0x100) +#define ECC_DECCNFG (0x104) +#define DEC_EMPTY_EN BIT(31) +#define DEC_CNFG_CORRECT (0x3 << 12) +#define ECC_DECIDLE (0x10C) +#define ECC_DECENUM0 (0x114) +#define ERR_MASK (0x3f) +#define ECC_DECDONE (0x124) +#define ECC_DECIRQ_EN (0x200) +#define ECC_DECIRQ_STA (0x204) + +#define ECC_TIMEOUT (500000) + +#define ECC_IDLE_REG(op) ((op) == ECC_ENCODE ? ECC_ENCIDLE : ECC_DECIDLE) +#define ECC_CTL_REG(op) ((op) == ECC_ENCODE ? ECC_ENCCON : ECC_DECCON) +#define ECC_IRQ_REG(op) ((op) == ECC_ENCODE ? \ + ECC_ENCIRQ_EN : ECC_DECIRQ_EN) + +struct mtk_ecc { + struct device *dev; + void __iomem *regs; + struct clk *clk; + + struct completion done; + struct mutex lock; + u32 sectors; +}; + +static inline void mtk_ecc_wait_idle(struct mtk_ecc *ecc, + enum mtk_ecc_operation op) +{ + struct device *dev = ecc->dev; + u32 val; + int ret; + + ret = readl_poll_timeout_atomic(ecc->regs + ECC_IDLE_REG(op), val, + val & ECC_IDLE_MASK, + 10, ECC_TIMEOUT); + if (ret) + dev_warn(dev, "%s NOT idle\n", + op == ECC_ENCODE ? "encoder" : "decoder"); +} + +static irqreturn_t mtk_ecc_irq(int irq, void *id) +{ + struct mtk_ecc *ecc = id; + enum mtk_ecc_operation op; + u32 dec, enc; + + dec = readw(ecc->regs + ECC_DECIRQ_STA) & ECC_IRQ_EN; + if (dec) { + op = ECC_DECODE; + dec = readw(ecc->regs + ECC_DECDONE); + if (dec & ecc->sectors) { + ecc->sectors = 0; + complete(&ecc->done); + } else { + return IRQ_HANDLED; + } + } else { + enc = readl(ecc->regs + ECC_ENCIRQ_STA) & ECC_IRQ_EN; + if (enc) { + op = ECC_ENCODE; + complete(&ecc->done); + } else { + return IRQ_NONE; + } + } + + writel(0, ecc->regs + ECC_IRQ_REG(op)); + + return IRQ_HANDLED; +} + +static void mtk_ecc_config(struct mtk_ecc *ecc, struct mtk_ecc_config *config) +{ + u32 ecc_bit = ECC_CNFG_4BIT, dec_sz, enc_sz; + u32 reg; + + switch (config->strength) { + case 4: + ecc_bit = ECC_CNFG_4BIT; + break; + case 6: + ecc_bit = ECC_CNFG_6BIT; + break; + case 8: + ecc_bit = ECC_CNFG_8BIT; + break; + case 10: + ecc_bit = ECC_CNFG_10BIT; + break; + case 12: + ecc_bit = ECC_CNFG_12BIT; + break; + case 14: + ecc_bit = ECC_CNFG_14BIT; + break; + case 16: + ecc_bit = ECC_CNFG_16BIT; + break; + case 18: + ecc_bit = ECC_CNFG_18BIT; + break; + case 20: + ecc_bit = ECC_CNFG_20BIT; + break; + case 22: + ecc_bit = ECC_CNFG_22BIT; + break; + case 24: + ecc_bit = ECC_CNFG_24BIT; + break; + case 28: + ecc_bit = ECC_CNFG_28BIT; + break; + case 32: + ecc_bit = ECC_CNFG_32BIT; + break; + case 36: + ecc_bit = ECC_CNFG_36BIT; + break; + case 40: + ecc_bit = ECC_CNFG_40BIT; + break; + case 44: + ecc_bit = ECC_CNFG_44BIT; + break; + case 48: + ecc_bit = ECC_CNFG_48BIT; + break; + case 52: + ecc_bit = ECC_CNFG_52BIT; + break; + case 56: + ecc_bit = ECC_CNFG_56BIT; + break; + case 60: + ecc_bit = ECC_CNFG_60BIT; + break; + default: + dev_err(ecc->dev, "invalid strength %d, default to 4 bits\n", + config->strength); + } + + if (config->op == ECC_ENCODE) { + /* configure ECC encoder (in bits) */ + enc_sz = config->len << 3; + + reg = ecc_bit | (config->mode << ECC_MODE_SHIFT); + reg |= (enc_sz << ECC_MS_SHIFT); + writel(reg, ecc->regs + ECC_ENCCNFG); + + if (config->mode != ECC_NFI_MODE) + writel(lower_32_bits(config->addr), + ecc->regs + ECC_ENCDIADDR); + + } else { + /* configure ECC decoder (in bits) */ + dec_sz = (config->len << 3) + + config->strength * ECC_PARITY_BITS; + + reg = ecc_bit | (config->mode << ECC_MODE_SHIFT); + reg |= (dec_sz << ECC_MS_SHIFT) | DEC_CNFG_CORRECT; + reg |= DEC_EMPTY_EN; + writel(reg, ecc->regs + ECC_DECCNFG); + + if (config->sectors) + ecc->sectors = 1 << (config->sectors - 1); + } +} + +void mtk_ecc_get_stats(struct mtk_ecc *ecc, struct mtk_ecc_stats *stats, + int sectors) +{ + u32 offset, i, err; + u32 bitflips = 0; + + stats->corrected = 0; + stats->failed = 0; + + for (i = 0; i < sectors; i++) { + offset = (i >> 2) << 2; + err = readl(ecc->regs + ECC_DECENUM0 + offset); + err = err >> ((i % 4) * 8); + err &= ERR_MASK; + if (err == ERR_MASK) { + /* uncorrectable errors */ + stats->failed++; + continue; + } + + stats->corrected += err; + bitflips = max_t(u32, bitflips, err); + } + + stats->bitflips = bitflips; +} +EXPORT_SYMBOL(mtk_ecc_get_stats); + +void mtk_ecc_release(struct mtk_ecc *ecc) +{ + clk_disable_unprepare(ecc->clk); + put_device(ecc->dev); +} +EXPORT_SYMBOL(mtk_ecc_release); + +static void mtk_ecc_hw_init(struct mtk_ecc *ecc) +{ + mtk_ecc_wait_idle(ecc, ECC_ENCODE); + writew(ECC_OP_DISABLE, ecc->regs + ECC_ENCCON); + + mtk_ecc_wait_idle(ecc, ECC_DECODE); + writel(ECC_OP_DISABLE, ecc->regs + ECC_DECCON); +} + +static struct mtk_ecc *mtk_ecc_get(struct device_node *np) +{ + struct platform_device *pdev; + struct mtk_ecc *ecc; + + pdev = of_find_device_by_node(np); + if (!pdev || !platform_get_drvdata(pdev)) + return ERR_PTR(-EPROBE_DEFER); + + get_device(&pdev->dev); + ecc = platform_get_drvdata(pdev); + clk_prepare_enable(ecc->clk); + mtk_ecc_hw_init(ecc); + + return ecc; +} + +struct mtk_ecc *of_mtk_ecc_get(struct device_node *of_node) +{ + struct mtk_ecc *ecc = NULL; + struct device_node *np; + + np = of_parse_phandle(of_node, "ecc-engine", 0); + if (np) { + ecc = mtk_ecc_get(np); + of_node_put(np); + } + + return ecc; +} +EXPORT_SYMBOL(of_mtk_ecc_get); + +int mtk_ecc_enable(struct mtk_ecc *ecc, struct mtk_ecc_config *config) +{ + enum mtk_ecc_operation op = config->op; + int ret; + + ret = mutex_lock_interruptible(&ecc->lock); + if (ret) { + dev_err(ecc->dev, "interrupted when attempting to lock\n"); + return ret; + } + + mtk_ecc_wait_idle(ecc, op); + mtk_ecc_config(ecc, config); + writew(ECC_OP_ENABLE, ecc->regs + ECC_CTL_REG(op)); + + init_completion(&ecc->done); + writew(ECC_IRQ_EN, ecc->regs + ECC_IRQ_REG(op)); + + return 0; +} +EXPORT_SYMBOL(mtk_ecc_enable); + +void mtk_ecc_disable(struct mtk_ecc *ecc) +{ + enum mtk_ecc_operation op = ECC_ENCODE; + + /* find out the running operation */ + if (readw(ecc->regs + ECC_CTL_REG(op)) != ECC_OP_ENABLE) + op = ECC_DECODE; + + /* disable it */ + mtk_ecc_wait_idle(ecc, op); + writew(0, ecc->regs + ECC_IRQ_REG(op)); + writew(ECC_OP_DISABLE, ecc->regs + ECC_CTL_REG(op)); + + mutex_unlock(&ecc->lock); +} +EXPORT_SYMBOL(mtk_ecc_disable); + +int mtk_ecc_wait_done(struct mtk_ecc *ecc, enum mtk_ecc_operation op) +{ + int ret; + + ret = wait_for_completion_timeout(&ecc->done, msecs_to_jiffies(500)); + if (!ret) { + dev_err(ecc->dev, "%s timeout - interrupt did not arrive)\n", + (op == ECC_ENCODE) ? "encoder" : "decoder"); + return -ETIMEDOUT; + } + + return 0; +} +EXPORT_SYMBOL(mtk_ecc_wait_done); + +int mtk_ecc_encode(struct mtk_ecc *ecc, struct mtk_ecc_config *config, + u8 *data, u32 bytes) +{ + dma_addr_t addr; + u32 *p, len, i; + int ret = 0; + + addr = dma_map_single(ecc->dev, data, bytes, DMA_TO_DEVICE); + ret = dma_mapping_error(ecc->dev, addr); + if (ret) { + dev_err(ecc->dev, "dma mapping error\n"); + return -EINVAL; + } + + config->op = ECC_ENCODE; + config->addr = addr; + ret = mtk_ecc_enable(ecc, config); + if (ret) { + dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE); + return ret; + } + + ret = mtk_ecc_wait_done(ecc, ECC_ENCODE); + if (ret) + goto timeout; + + mtk_ecc_wait_idle(ecc, ECC_ENCODE); + + /* Program ECC bytes to OOB: per sector oob = FDM + ECC + SPARE */ + len = (config->strength * ECC_PARITY_BITS + 7) >> 3; + p = (u32 *)(data + bytes); + + /* write the parity bytes generated by the ECC back to the OOB region */ + for (i = 0; i < len; i++) + p[i] = readl(ecc->regs + ECC_ENCPAR(i)); +timeout: + + dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE); + mtk_ecc_disable(ecc); + + return ret; +} +EXPORT_SYMBOL(mtk_ecc_encode); + +void mtk_ecc_adjust_strength(u32 *p) +{ + u32 ecc[] = {4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36, + 40, 44, 48, 52, 56, 60}; + int i; + + for (i = 0; i < ARRAY_SIZE(ecc); i++) { + if (*p <= ecc[i]) { + if (!i) + *p = ecc[i]; + else if (*p != ecc[i]) + *p = ecc[i - 1]; + return; + } + } + + *p = ecc[ARRAY_SIZE(ecc) - 1]; +} +EXPORT_SYMBOL(mtk_ecc_adjust_strength); + +static int mtk_ecc_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct mtk_ecc *ecc; + struct resource *res; + int irq, ret; + + ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL); + if (!ecc) + return -ENOMEM; + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + ecc->regs = devm_ioremap_resource(dev, res); + if (IS_ERR(ecc->regs)) { + dev_err(dev, "failed to map regs: %ld\n", PTR_ERR(ecc->regs)); + return PTR_ERR(ecc->regs); + } + + ecc->clk = devm_clk_get(dev, NULL); + if (IS_ERR(ecc->clk)) { + dev_err(dev, "failed to get clock: %ld\n", PTR_ERR(ecc->clk)); + return PTR_ERR(ecc->clk); + } + + irq = platform_get_irq(pdev, 0); + if (irq < 0) { + dev_err(dev, "failed to get irq\n"); + return -EINVAL; + } + + ret = dma_set_mask(dev, DMA_BIT_MASK(32)); + if (ret) { + dev_err(dev, "failed to set DMA mask\n"); + return ret; + } + + ret = devm_request_irq(dev, irq, mtk_ecc_irq, 0x0, "mtk-ecc", ecc); + if (ret) { + dev_err(dev, "failed to request irq\n"); + return -EINVAL; + } + + ecc->dev = dev; + mutex_init(&ecc->lock); + platform_set_drvdata(pdev, ecc); + dev_info(dev, "probed\n"); + + return 0; +} + +#ifdef CONFIG_PM_SLEEP +static int mtk_ecc_suspend(struct device *dev) +{ + struct mtk_ecc *ecc = dev_get_drvdata(dev); + + clk_disable_unprepare(ecc->clk); + + return 0; +} + +static int mtk_ecc_resume(struct device *dev) +{ + struct mtk_ecc *ecc = dev_get_drvdata(dev); + int ret; + + ret = clk_prepare_enable(ecc->clk); + if (ret) { + dev_err(dev, "failed to enable clk\n"); + return ret; + } + + mtk_ecc_hw_init(ecc); + + return 0; +} + +static SIMPLE_DEV_PM_OPS(mtk_ecc_pm_ops, mtk_ecc_suspend, mtk_ecc_resume); +#endif + +static const struct of_device_id mtk_ecc_dt_match[] = { + { .compatible = "mediatek,mt2701-ecc" }, + {}, +}; + +MODULE_DEVICE_TABLE(of, mtk_ecc_dt_match); + +static struct platform_driver mtk_ecc_driver = { + .probe = mtk_ecc_probe, + .driver = { + .name = "mtk-ecc", + .of_match_table = of_match_ptr(mtk_ecc_dt_match), +#ifdef CONFIG_PM_SLEEP + .pm = &mtk_ecc_pm_ops, +#endif + }, +}; + +module_platform_driver(mtk_ecc_driver); + +MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>"); +MODULE_DESCRIPTION("MTK Nand ECC Driver"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/nand/mtk_ecc.h b/drivers/mtd/nand/mtk_ecc.h new file mode 100644 index 000000000000..cbeba5cd1c13 --- /dev/null +++ b/drivers/mtd/nand/mtk_ecc.h @@ -0,0 +1,50 @@ +/* + * MTK SDG1 ECC controller + * + * Copyright (c) 2016 Mediatek + * Authors: Xiaolei Li <xiaolei.li@mediatek.com> + * Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org> + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 as published + * by the Free Software Foundation. + */ + +#ifndef __DRIVERS_MTD_NAND_MTK_ECC_H__ +#define __DRIVERS_MTD_NAND_MTK_ECC_H__ + +#include <linux/types.h> + +#define ECC_PARITY_BITS (14) + +enum mtk_ecc_mode {ECC_DMA_MODE = 0, ECC_NFI_MODE = 1}; +enum mtk_ecc_operation {ECC_ENCODE, ECC_DECODE}; + +struct device_node; +struct mtk_ecc; + +struct mtk_ecc_stats { + u32 corrected; + u32 bitflips; + u32 failed; +}; + +struct mtk_ecc_config { + enum mtk_ecc_operation op; + enum mtk_ecc_mode mode; + dma_addr_t addr; + u32 strength; + u32 sectors; + u32 len; +}; + +int mtk_ecc_encode(struct mtk_ecc *, struct mtk_ecc_config *, u8 *, u32); +void mtk_ecc_get_stats(struct mtk_ecc *, struct mtk_ecc_stats *, int); +int mtk_ecc_wait_done(struct mtk_ecc *, enum mtk_ecc_operation); +int mtk_ecc_enable(struct mtk_ecc *, struct mtk_ecc_config *); +void mtk_ecc_disable(struct mtk_ecc *); +void mtk_ecc_adjust_strength(u32 *); + +struct mtk_ecc *of_mtk_ecc_get(struct device_node *); +void mtk_ecc_release(struct mtk_ecc *); + +#endif diff --git a/drivers/mtd/nand/mtk_nand.c b/drivers/mtd/nand/mtk_nand.c new file mode 100644 index 000000000000..ddaa2acb9dd7 --- /dev/null +++ b/drivers/mtd/nand/mtk_nand.c @@ -0,0 +1,1526 @@ +/* + * MTK NAND Flash controller driver. + * Copyright (C) 2016 MediaTek Inc. + * Authors: Xiaolei Li <xiaolei.li@mediatek.com> + * Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#include <linux/platform_device.h> +#include <linux/dma-mapping.h> +#include <linux/interrupt.h> +#include <linux/delay.h> +#include <linux/clk.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/mtd.h> +#include <linux/module.h> +#include <linux/iopoll.h> +#include <linux/of.h> +#include "mtk_ecc.h" + +/* NAND controller register definition */ +#define NFI_CNFG (0x00) +#define CNFG_AHB BIT(0) +#define CNFG_READ_EN BIT(1) +#define CNFG_DMA_BURST_EN BIT(2) +#define CNFG_BYTE_RW BIT(6) +#define CNFG_HW_ECC_EN BIT(8) +#define CNFG_AUTO_FMT_EN BIT(9) +#define CNFG_OP_CUST (6 << 12) +#define NFI_PAGEFMT (0x04) +#define PAGEFMT_FDM_ECC_SHIFT (12) +#define PAGEFMT_FDM_SHIFT (8) +#define PAGEFMT_SPARE_16 (0) +#define PAGEFMT_SPARE_26 (1) +#define PAGEFMT_SPARE_27 (2) +#define PAGEFMT_SPARE_28 (3) +#define PAGEFMT_SPARE_32 (4) +#define PAGEFMT_SPARE_36 (5) +#define PAGEFMT_SPARE_40 (6) +#define PAGEFMT_SPARE_44 (7) +#define PAGEFMT_SPARE_48 (8) +#define PAGEFMT_SPARE_49 (9) +#define PAGEFMT_SPARE_50 (0xa) +#define PAGEFMT_SPARE_51 (0xb) +#define PAGEFMT_SPARE_52 (0xc) +#define PAGEFMT_SPARE_62 (0xd) +#define PAGEFMT_SPARE_63 (0xe) +#define PAGEFMT_SPARE_64 (0xf) +#define PAGEFMT_SPARE_SHIFT (4) +#define PAGEFMT_SEC_SEL_512 BIT(2) +#define PAGEFMT_512_2K (0) +#define PAGEFMT_2K_4K (1) +#define PAGEFMT_4K_8K (2) +#define PAGEFMT_8K_16K (3) +/* NFI control */ +#define NFI_CON (0x08) +#define CON_FIFO_FLUSH BIT(0) +#define CON_NFI_RST BIT(1) +#define CON_BRD BIT(8) /* burst read */ +#define CON_BWR BIT(9) /* burst write */ +#define CON_SEC_SHIFT (12) +/* Timming control register */ +#define NFI_ACCCON (0x0C) +#define NFI_INTR_EN (0x10) +#define INTR_AHB_DONE_EN BIT(6) +#define NFI_INTR_STA (0x14) +#define NFI_CMD (0x20) +#define NFI_ADDRNOB (0x30) +#define NFI_COLADDR (0x34) +#define NFI_ROWADDR (0x38) +#define NFI_STRDATA (0x40) +#define STAR_EN (1) +#define STAR_DE (0) +#define NFI_CNRNB (0x44) +#define NFI_DATAW (0x50) +#define NFI_DATAR (0x54) +#define NFI_PIO_DIRDY (0x58) +#define PIO_DI_RDY (0x01) +#define NFI_STA (0x60) +#define STA_CMD BIT(0) +#define STA_ADDR BIT(1) +#define STA_BUSY BIT(8) +#define STA_EMP_PAGE BIT(12) +#define NFI_FSM_CUSTDATA (0xe << 16) +#define NFI_FSM_MASK (0xf << 16) +#define NFI_ADDRCNTR (0x70) +#define CNTR_MASK GENMASK(16, 12) +#define NFI_STRADDR (0x80) +#define NFI_BYTELEN (0x84) +#define NFI_CSEL (0x90) +#define NFI_FDML(x) (0xA0 + (x) * sizeof(u32) * 2) +#define NFI_FDMM(x) (0xA4 + (x) * sizeof(u32) * 2) +#define NFI_FDM_MAX_SIZE (8) +#define NFI_FDM_MIN_SIZE (1) +#define NFI_MASTER_STA (0x224) +#define MASTER_STA_MASK (0x0FFF) +#define NFI_EMPTY_THRESH (0x23C) + +#define MTK_NAME "mtk-nand" +#define KB(x) ((x) * 1024UL) +#define MB(x) (KB(x) * 1024UL) + +#define MTK_TIMEOUT (500000) +#define MTK_RESET_TIMEOUT (1000000) +#define MTK_MAX_SECTOR (16) +#define MTK_NAND_MAX_NSELS (2) + +struct mtk_nfc_bad_mark_ctl { + void (*bm_swap)(struct mtd_info *, u8 *buf, int raw); + u32 sec; + u32 pos; +}; + +/* + * FDM: region used to store free OOB data + */ +struct mtk_nfc_fdm { + u32 reg_size; + u32 ecc_size; +}; + +struct mtk_nfc_nand_chip { + struct list_head node; + struct nand_chip nand; + + struct mtk_nfc_bad_mark_ctl bad_mark; + struct mtk_nfc_fdm fdm; + u32 spare_per_sector; + + int nsels; + u8 sels[0]; + /* nothing after this field */ +}; + +struct mtk_nfc_clk { + struct clk *nfi_clk; + struct clk *pad_clk; +}; + +struct mtk_nfc { + struct nand_hw_control controller; + struct mtk_ecc_config ecc_cfg; + struct mtk_nfc_clk clk; + struct mtk_ecc *ecc; + + struct device *dev; + void __iomem *regs; + + struct completion done; + struct list_head chips; + + u8 *buffer; +}; + +static inline struct mtk_nfc_nand_chip *to_mtk_nand(struct nand_chip *nand) +{ + return container_of(nand, struct mtk_nfc_nand_chip, nand); +} + +static inline u8 *data_ptr(struct nand_chip *chip, const u8 *p, int i) +{ + return (u8 *)p + i * chip->ecc.size; +} + +static inline u8 *oob_ptr(struct nand_chip *chip, int i) +{ + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + u8 *poi; + + /* map the sector's FDM data to free oob: + * the beginning of the oob area stores the FDM data of bad mark sectors + */ + + if (i < mtk_nand->bad_mark.sec) + poi = chip->oob_poi + (i + 1) * mtk_nand->fdm.reg_size; + else if (i == mtk_nand->bad_mark.sec) + poi = chip->oob_poi; + else + poi = chip->oob_poi + i * mtk_nand->fdm.reg_size; + + return poi; +} + +static inline int mtk_data_len(struct nand_chip *chip) +{ + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + + return chip->ecc.size + mtk_nand->spare_per_sector; +} + +static inline u8 *mtk_data_ptr(struct nand_chip *chip, int i) +{ + struct mtk_nfc *nfc = nand_get_controller_data(chip); + + return nfc->buffer + i * mtk_data_len(chip); +} + +static inline u8 *mtk_oob_ptr(struct nand_chip *chip, int i) +{ + struct mtk_nfc *nfc = nand_get_controller_data(chip); + + return nfc->buffer + i * mtk_data_len(chip) + chip->ecc.size; +} + +static inline void nfi_writel(struct mtk_nfc *nfc, u32 val, u32 reg) +{ + writel(val, nfc->regs + reg); +} + +static inline void nfi_writew(struct mtk_nfc *nfc, u16 val, u32 reg) +{ + writew(val, nfc->regs + reg); +} + +static inline void nfi_writeb(struct mtk_nfc *nfc, u8 val, u32 reg) +{ + writeb(val, nfc->regs + reg); +} + +static inline u32 nfi_readl(struct mtk_nfc *nfc, u32 reg) +{ + return readl_relaxed(nfc->regs + reg); +} + +static inline u16 nfi_readw(struct mtk_nfc *nfc, u32 reg) +{ + return readw_relaxed(nfc->regs + reg); +} + +static inline u8 nfi_readb(struct mtk_nfc *nfc, u32 reg) +{ + return readb_relaxed(nfc->regs + reg); +} + +static void mtk_nfc_hw_reset(struct mtk_nfc *nfc) +{ + struct device *dev = nfc->dev; + u32 val; + int ret; + + /* reset all registers and force the NFI master to terminate */ + nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON); + + /* wait for the master to finish the last transaction */ + ret = readl_poll_timeout(nfc->regs + NFI_MASTER_STA, val, + !(val & MASTER_STA_MASK), 50, + MTK_RESET_TIMEOUT); + if (ret) + dev_warn(dev, "master active in reset [0x%x] = 0x%x\n", + NFI_MASTER_STA, val); + + /* ensure any status register affected by the NFI master is reset */ + nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON); + nfi_writew(nfc, STAR_DE, NFI_STRDATA); +} + +static int mtk_nfc_send_command(struct mtk_nfc *nfc, u8 command) +{ + struct device *dev = nfc->dev; + u32 val; + int ret; + + nfi_writel(nfc, command, NFI_CMD); + + ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val, + !(val & STA_CMD), 10, MTK_TIMEOUT); + if (ret) { + dev_warn(dev, "nfi core timed out entering command mode\n"); + return -EIO; + } + + return 0; +} + +static int mtk_nfc_send_address(struct mtk_nfc *nfc, int addr) +{ + struct device *dev = nfc->dev; + u32 val; + int ret; + + nfi_writel(nfc, addr, NFI_COLADDR); + nfi_writel(nfc, 0, NFI_ROWADDR); + nfi_writew(nfc, 1, NFI_ADDRNOB); + + ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val, + !(val & STA_ADDR), 10, MTK_TIMEOUT); + if (ret) { + dev_warn(dev, "nfi core timed out entering address mode\n"); + return -EIO; + } + + return 0; +} + +static int mtk_nfc_hw_runtime_config(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + struct mtk_nfc *nfc = nand_get_controller_data(chip); + u32 fmt, spare; + + if (!mtd->writesize) + return 0; + + spare = mtk_nand->spare_per_sector; + + switch (mtd->writesize) { + case 512: + fmt = PAGEFMT_512_2K | PAGEFMT_SEC_SEL_512; + break; + case KB(2): + if (chip->ecc.size == 512) + fmt = PAGEFMT_2K_4K | PAGEFMT_SEC_SEL_512; + else + fmt = PAGEFMT_512_2K; + break; + case KB(4): + if (chip->ecc.size == 512) + fmt = PAGEFMT_4K_8K | PAGEFMT_SEC_SEL_512; + else + fmt = PAGEFMT_2K_4K; + break; + case KB(8): + if (chip->ecc.size == 512) + fmt = PAGEFMT_8K_16K | PAGEFMT_SEC_SEL_512; + else + fmt = PAGEFMT_4K_8K; + break; + case KB(16): + fmt = PAGEFMT_8K_16K; + break; + default: + dev_err(nfc->dev, "invalid page len: %d\n", mtd->writesize); + return -EINVAL; + } + + /* + * the hardware will double the value for this eccsize, so we need to + * halve it + */ + if (chip->ecc.size == 1024) + spare >>= 1; + + switch (spare) { + case 16: + fmt |= (PAGEFMT_SPARE_16 << PAGEFMT_SPARE_SHIFT); + break; + case 26: + fmt |= (PAGEFMT_SPARE_26 << PAGEFMT_SPARE_SHIFT); + break; + case 27: + fmt |= (PAGEFMT_SPARE_27 << PAGEFMT_SPARE_SHIFT); + break; + case 28: + fmt |= (PAGEFMT_SPARE_28 << PAGEFMT_SPARE_SHIFT); + break; + case 32: + fmt |= (PAGEFMT_SPARE_32 << PAGEFMT_SPARE_SHIFT); + break; + case 36: + fmt |= (PAGEFMT_SPARE_36 << PAGEFMT_SPARE_SHIFT); + break; + case 40: + fmt |= (PAGEFMT_SPARE_40 << PAGEFMT_SPARE_SHIFT); + break; + case 44: + fmt |= (PAGEFMT_SPARE_44 << PAGEFMT_SPARE_SHIFT); + break; + case 48: + fmt |= (PAGEFMT_SPARE_48 << PAGEFMT_SPARE_SHIFT); + break; + case 49: + fmt |= (PAGEFMT_SPARE_49 << PAGEFMT_SPARE_SHIFT); + break; + case 50: + fmt |= (PAGEFMT_SPARE_50 << PAGEFMT_SPARE_SHIFT); + break; + case 51: + fmt |= (PAGEFMT_SPARE_51 << PAGEFMT_SPARE_SHIFT); + break; + case 52: + fmt |= (PAGEFMT_SPARE_52 << PAGEFMT_SPARE_SHIFT); + break; + case 62: + fmt |= (PAGEFMT_SPARE_62 << PAGEFMT_SPARE_SHIFT); + break; + case 63: + fmt |= (PAGEFMT_SPARE_63 << PAGEFMT_SPARE_SHIFT); + break; + case 64: + fmt |= (PAGEFMT_SPARE_64 << PAGEFMT_SPARE_SHIFT); + break; + default: + dev_err(nfc->dev, "invalid spare per sector %d\n", spare); + return -EINVAL; + } + + fmt |= mtk_nand->fdm.reg_size << PAGEFMT_FDM_SHIFT; + fmt |= mtk_nand->fdm.ecc_size << PAGEFMT_FDM_ECC_SHIFT; + nfi_writew(nfc, fmt, NFI_PAGEFMT); + + nfc->ecc_cfg.strength = chip->ecc.strength; + nfc->ecc_cfg.len = chip->ecc.size + mtk_nand->fdm.ecc_size; + + return 0; +} + +static void mtk_nfc_select_chip(struct mtd_info *mtd, int chip) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct mtk_nfc *nfc = nand_get_controller_data(nand); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(nand); + + if (chip < 0) + return; + + mtk_nfc_hw_runtime_config(mtd); + + nfi_writel(nfc, mtk_nand->sels[chip], NFI_CSEL); +} + +static int mtk_nfc_dev_ready(struct mtd_info *mtd) +{ + struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd)); + + if (nfi_readl(nfc, NFI_STA) & STA_BUSY) + return 0; + + return 1; +} + +static void mtk_nfc_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl) +{ + struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd)); + + if (ctrl & NAND_ALE) { + mtk_nfc_send_address(nfc, dat); + } else if (ctrl & NAND_CLE) { + mtk_nfc_hw_reset(nfc); + + nfi_writew(nfc, CNFG_OP_CUST, NFI_CNFG); + mtk_nfc_send_command(nfc, dat); + } +} + +static inline void mtk_nfc_wait_ioready(struct mtk_nfc *nfc) +{ + int rc; + u8 val; + + rc = readb_poll_timeout_atomic(nfc->regs + NFI_PIO_DIRDY, val, + val & PIO_DI_RDY, 10, MTK_TIMEOUT); + if (rc < 0) + dev_err(nfc->dev, "data not ready\n"); +} + +static inline u8 mtk_nfc_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mtk_nfc *nfc = nand_get_controller_data(chip); + u32 reg; + + /* after each byte read, the NFI_STA reg is reset by the hardware */ + reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK; + if (reg != NFI_FSM_CUSTDATA) { + reg = nfi_readw(nfc, NFI_CNFG); + reg |= CNFG_BYTE_RW | CNFG_READ_EN; + nfi_writew(nfc, reg, NFI_CNFG); + + /* + * set to max sector to allow the HW to continue reading over + * unaligned accesses + */ + reg = (MTK_MAX_SECTOR << CON_SEC_SHIFT) | CON_BRD; + nfi_writel(nfc, reg, NFI_CON); + + /* trigger to fetch data */ + nfi_writew(nfc, STAR_EN, NFI_STRDATA); + } + + mtk_nfc_wait_ioready(nfc); + + return nfi_readb(nfc, NFI_DATAR); +} + +static void mtk_nfc_read_buf(struct mtd_info *mtd, u8 *buf, int len) +{ + int i; + + for (i = 0; i < len; i++) + buf[i] = mtk_nfc_read_byte(mtd); +} + +static void mtk_nfc_write_byte(struct mtd_info *mtd, u8 byte) +{ + struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd)); + u32 reg; + + reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK; + + if (reg != NFI_FSM_CUSTDATA) { + reg = nfi_readw(nfc, NFI_CNFG) | CNFG_BYTE_RW; + nfi_writew(nfc, reg, NFI_CNFG); + + reg = MTK_MAX_SECTOR << CON_SEC_SHIFT | CON_BWR; + nfi_writel(nfc, reg, NFI_CON); + + nfi_writew(nfc, STAR_EN, NFI_STRDATA); + } + + mtk_nfc_wait_ioready(nfc); + nfi_writeb(nfc, byte, NFI_DATAW); +} + +static void mtk_nfc_write_buf(struct mtd_info *mtd, const u8 *buf, int len) +{ + int i; + + for (i = 0; i < len; i++) + mtk_nfc_write_byte(mtd, buf[i]); +} + +static int mtk_nfc_sector_encode(struct nand_chip *chip, u8 *data) +{ + struct mtk_nfc *nfc = nand_get_controller_data(chip); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + int size = chip->ecc.size + mtk_nand->fdm.reg_size; + + nfc->ecc_cfg.mode = ECC_DMA_MODE; + nfc->ecc_cfg.op = ECC_ENCODE; + + return mtk_ecc_encode(nfc->ecc, &nfc->ecc_cfg, data, size); +} + +static void mtk_nfc_no_bad_mark_swap(struct mtd_info *a, u8 *b, int c) +{ + /* nop */ +} + +static void mtk_nfc_bad_mark_swap(struct mtd_info *mtd, u8 *buf, int raw) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mtk_nfc_nand_chip *nand = to_mtk_nand(chip); + u32 bad_pos = nand->bad_mark.pos; + + if (raw) + bad_pos += nand->bad_mark.sec * mtk_data_len(chip); + else + bad_pos += nand->bad_mark.sec * chip->ecc.size; + + swap(chip->oob_poi[0], buf[bad_pos]); +} + +static int mtk_nfc_format_subpage(struct mtd_info *mtd, u32 offset, + u32 len, const u8 *buf) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + struct mtk_nfc *nfc = nand_get_controller_data(chip); + struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; + u32 start, end; + int i, ret; + + start = offset / chip->ecc.size; + end = DIV_ROUND_UP(offset + len, chip->ecc.size); + + memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize); + for (i = 0; i < chip->ecc.steps; i++) { + memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i), + chip->ecc.size); + + if (start > i || i >= end) + continue; + + if (i == mtk_nand->bad_mark.sec) + mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1); + + memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size); + + /* program the CRC back to the OOB */ + ret = mtk_nfc_sector_encode(chip, mtk_data_ptr(chip, i)); + if (ret < 0) + return ret; + } + + return 0; +} + +static void mtk_nfc_format_page(struct mtd_info *mtd, const u8 *buf) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + struct mtk_nfc *nfc = nand_get_controller_data(chip); + struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; + u32 i; + + memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize); + for (i = 0; i < chip->ecc.steps; i++) { + if (buf) + memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i), + chip->ecc.size); + + if (i == mtk_nand->bad_mark.sec) + mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1); + + memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size); + } +} + +static inline void mtk_nfc_read_fdm(struct nand_chip *chip, u32 start, + u32 sectors) +{ + struct mtk_nfc *nfc = nand_get_controller_data(chip); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; + u32 vall, valm; + u8 *oobptr; + int i, j; + + for (i = 0; i < sectors; i++) { + oobptr = oob_ptr(chip, start + i); + vall = nfi_readl(nfc, NFI_FDML(i)); + valm = nfi_readl(nfc, NFI_FDMM(i)); + + for (j = 0; j < fdm->reg_size; j++) + oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8); + } +} + +static inline void mtk_nfc_write_fdm(struct nand_chip *chip) +{ + struct mtk_nfc *nfc = nand_get_controller_data(chip); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; + u32 vall, valm; + u8 *oobptr; + int i, j; + + for (i = 0; i < chip->ecc.steps; i++) { + oobptr = oob_ptr(chip, i); + vall = 0; + valm = 0; + for (j = 0; j < 8; j++) { + if (j < 4) + vall |= (j < fdm->reg_size ? oobptr[j] : 0xff) + << (j * 8); + else + valm |= (j < fdm->reg_size ? oobptr[j] : 0xff) + << ((j - 4) * 8); + } + nfi_writel(nfc, vall, NFI_FDML(i)); + nfi_writel(nfc, valm, NFI_FDMM(i)); + } +} + +static int mtk_nfc_do_write_page(struct mtd_info *mtd, struct nand_chip *chip, + const u8 *buf, int page, int len) +{ + struct mtk_nfc *nfc = nand_get_controller_data(chip); + struct device *dev = nfc->dev; + dma_addr_t addr; + u32 reg; + int ret; + + addr = dma_map_single(dev, (void *)buf, len, DMA_TO_DEVICE); + ret = dma_mapping_error(nfc->dev, addr); + if (ret) { + dev_err(nfc->dev, "dma mapping error\n"); + return -EINVAL; + } + + reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AHB | CNFG_DMA_BURST_EN; + nfi_writew(nfc, reg, NFI_CNFG); + + nfi_writel(nfc, chip->ecc.steps << CON_SEC_SHIFT, NFI_CON); + nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR); + nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN); + + init_completion(&nfc->done); + + reg = nfi_readl(nfc, NFI_CON) | CON_BWR; + nfi_writel(nfc, reg, NFI_CON); + nfi_writew(nfc, STAR_EN, NFI_STRDATA); + + ret = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500)); + if (!ret) { + dev_err(dev, "program ahb done timeout\n"); + nfi_writew(nfc, 0, NFI_INTR_EN); + ret = -ETIMEDOUT; + goto timeout; + } + + ret = readl_poll_timeout_atomic(nfc->regs + NFI_ADDRCNTR, reg, + (reg & CNTR_MASK) >= chip->ecc.steps, + 10, MTK_TIMEOUT); + if (ret) + dev_err(dev, "hwecc write timeout\n"); + +timeout: + + dma_unmap_single(nfc->dev, addr, len, DMA_TO_DEVICE); + nfi_writel(nfc, 0, NFI_CON); + + return ret; +} + +static int mtk_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip, + const u8 *buf, int page, int raw) +{ + struct mtk_nfc *nfc = nand_get_controller_data(chip); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + size_t len; + const u8 *bufpoi; + u32 reg; + int ret; + + if (!raw) { + /* OOB => FDM: from register, ECC: from HW */ + reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AUTO_FMT_EN; + nfi_writew(nfc, reg | CNFG_HW_ECC_EN, NFI_CNFG); + + nfc->ecc_cfg.op = ECC_ENCODE; + nfc->ecc_cfg.mode = ECC_NFI_MODE; + ret = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg); + if (ret) { + /* clear NFI config */ + reg = nfi_readw(nfc, NFI_CNFG); + reg &= ~(CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN); + nfi_writew(nfc, reg, NFI_CNFG); + + return ret; + } + + memcpy(nfc->buffer, buf, mtd->writesize); + mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, raw); + bufpoi = nfc->buffer; + + /* write OOB into the FDM registers (OOB area in MTK NAND) */ + mtk_nfc_write_fdm(chip); + } else { + bufpoi = buf; + } + + len = mtd->writesize + (raw ? mtd->oobsize : 0); + ret = mtk_nfc_do_write_page(mtd, chip, bufpoi, page, len); + + if (!raw) + mtk_ecc_disable(nfc->ecc); + + return ret; +} + +static int mtk_nfc_write_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, const u8 *buf, + int oob_on, int page) +{ + return mtk_nfc_write_page(mtd, chip, buf, page, 0); +} + +static int mtk_nfc_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, + const u8 *buf, int oob_on, int pg) +{ + struct mtk_nfc *nfc = nand_get_controller_data(chip); + + mtk_nfc_format_page(mtd, buf); + return mtk_nfc_write_page(mtd, chip, nfc->buffer, pg, 1); +} + +static int mtk_nfc_write_subpage_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, u32 offset, + u32 data_len, const u8 *buf, + int oob_on, int page) +{ + struct mtk_nfc *nfc = nand_get_controller_data(chip); + int ret; + + ret = mtk_nfc_format_subpage(mtd, offset, data_len, buf); + if (ret < 0) + return ret; + + /* use the data in the private buffer (now with FDM and CRC) */ + return mtk_nfc_write_page(mtd, chip, nfc->buffer, page, 1); +} + +static int mtk_nfc_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + int ret; + + chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); + + ret = mtk_nfc_write_page_raw(mtd, chip, NULL, 1, page); + if (ret < 0) + return -EIO; + + chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); + ret = chip->waitfunc(mtd, chip); + + return ret & NAND_STATUS_FAIL ? -EIO : 0; +} + +static int mtk_nfc_update_ecc_stats(struct mtd_info *mtd, u8 *buf, u32 sectors) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mtk_nfc *nfc = nand_get_controller_data(chip); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + struct mtk_ecc_stats stats; + int rc, i; + + rc = nfi_readl(nfc, NFI_STA) & STA_EMP_PAGE; + if (rc) { + memset(buf, 0xff, sectors * chip->ecc.size); + for (i = 0; i < sectors; i++) + memset(oob_ptr(chip, i), 0xff, mtk_nand->fdm.reg_size); + return 0; + } + + mtk_ecc_get_stats(nfc->ecc, &stats, sectors); + mtd->ecc_stats.corrected += stats.corrected; + mtd->ecc_stats.failed += stats.failed; + + return stats.bitflips; +} + +static int mtk_nfc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, + u32 data_offs, u32 readlen, + u8 *bufpoi, int page, int raw) +{ + struct mtk_nfc *nfc = nand_get_controller_data(chip); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + u32 spare = mtk_nand->spare_per_sector; + u32 column, sectors, start, end, reg; + dma_addr_t addr; + int bitflips; + size_t len; + u8 *buf; + int rc; + + start = data_offs / chip->ecc.size; + end = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size); + + sectors = end - start; + column = start * (chip->ecc.size + spare); + + len = sectors * chip->ecc.size + (raw ? sectors * spare : 0); + buf = bufpoi + start * chip->ecc.size; + + if (column != 0) + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, column, -1); + + addr = dma_map_single(nfc->dev, buf, len, DMA_FROM_DEVICE); + rc = dma_mapping_error(nfc->dev, addr); + if (rc) { + dev_err(nfc->dev, "dma mapping error\n"); + + return -EINVAL; + } + + reg = nfi_readw(nfc, NFI_CNFG); + reg |= CNFG_READ_EN | CNFG_DMA_BURST_EN | CNFG_AHB; + if (!raw) { + reg |= CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN; + nfi_writew(nfc, reg, NFI_CNFG); + + nfc->ecc_cfg.mode = ECC_NFI_MODE; + nfc->ecc_cfg.sectors = sectors; + nfc->ecc_cfg.op = ECC_DECODE; + rc = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg); + if (rc) { + dev_err(nfc->dev, "ecc enable\n"); + /* clear NFI_CNFG */ + reg &= ~(CNFG_DMA_BURST_EN | CNFG_AHB | CNFG_READ_EN | + CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN); + nfi_writew(nfc, reg, NFI_CNFG); + dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE); + + return rc; + } + } else { + nfi_writew(nfc, reg, NFI_CNFG); + } + + nfi_writel(nfc, sectors << CON_SEC_SHIFT, NFI_CON); + nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN); + nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR); + + init_completion(&nfc->done); + reg = nfi_readl(nfc, NFI_CON) | CON_BRD; + nfi_writel(nfc, reg, NFI_CON); + nfi_writew(nfc, STAR_EN, NFI_STRDATA); + + rc = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500)); + if (!rc) + dev_warn(nfc->dev, "read ahb/dma done timeout\n"); + + rc = readl_poll_timeout_atomic(nfc->regs + NFI_BYTELEN, reg, + (reg & CNTR_MASK) >= sectors, 10, + MTK_TIMEOUT); + if (rc < 0) { + dev_err(nfc->dev, "subpage done timeout\n"); + bitflips = -EIO; + } else { + bitflips = 0; + if (!raw) { + rc = mtk_ecc_wait_done(nfc->ecc, ECC_DECODE); + bitflips = rc < 0 ? -ETIMEDOUT : + mtk_nfc_update_ecc_stats(mtd, buf, sectors); + mtk_nfc_read_fdm(chip, start, sectors); + } + } + + dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE); + + if (raw) + goto done; + + mtk_ecc_disable(nfc->ecc); + + if (clamp(mtk_nand->bad_mark.sec, start, end) == mtk_nand->bad_mark.sec) + mtk_nand->bad_mark.bm_swap(mtd, bufpoi, raw); +done: + nfi_writel(nfc, 0, NFI_CON); + + return bitflips; +} + +static int mtk_nfc_read_subpage_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, u32 off, + u32 len, u8 *p, int pg) +{ + return mtk_nfc_read_subpage(mtd, chip, off, len, p, pg, 0); +} + +static int mtk_nfc_read_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, u8 *p, + int oob_on, int pg) +{ + return mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, p, pg, 0); +} + +static int mtk_nfc_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, + u8 *buf, int oob_on, int page) +{ + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + struct mtk_nfc *nfc = nand_get_controller_data(chip); + struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; + int i, ret; + + memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize); + ret = mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, nfc->buffer, + page, 1); + if (ret < 0) + return ret; + + for (i = 0; i < chip->ecc.steps; i++) { + memcpy(oob_ptr(chip, i), mtk_oob_ptr(chip, i), fdm->reg_size); + + if (i == mtk_nand->bad_mark.sec) + mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1); + + if (buf) + memcpy(data_ptr(chip, buf, i), mtk_data_ptr(chip, i), + chip->ecc.size); + } + + return ret; +} + +static int mtk_nfc_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); + + return mtk_nfc_read_page_raw(mtd, chip, NULL, 1, page); +} + +static inline void mtk_nfc_hw_init(struct mtk_nfc *nfc) +{ + /* + * ACCON: access timing control register + * ------------------------------------- + * 31:28: minimum required time for CS post pulling down after accessing + * the device + * 27:22: minimum required time for CS pre pulling down before accessing + * the device + * 21:16: minimum required time from NCEB low to NREB low + * 15:12: minimum required time from NWEB high to NREB low. + * 11:08: write enable hold time + * 07:04: write wait states + * 03:00: read wait states + */ + nfi_writel(nfc, 0x10804211, NFI_ACCCON); + + /* + * CNRNB: nand ready/busy register + * ------------------------------- + * 7:4: timeout register for polling the NAND busy/ready signal + * 0 : poll the status of the busy/ready signal after [7:4]*16 cycles. + */ + nfi_writew(nfc, 0xf1, NFI_CNRNB); + nfi_writew(nfc, PAGEFMT_8K_16K, NFI_PAGEFMT); + + mtk_nfc_hw_reset(nfc); + + nfi_readl(nfc, NFI_INTR_STA); + nfi_writel(nfc, 0, NFI_INTR_EN); +} + +static irqreturn_t mtk_nfc_irq(int irq, void *id) +{ + struct mtk_nfc *nfc = id; + u16 sta, ien; + + sta = nfi_readw(nfc, NFI_INTR_STA); + ien = nfi_readw(nfc, NFI_INTR_EN); + + if (!(sta & ien)) + return IRQ_NONE; + + nfi_writew(nfc, ~sta & ien, NFI_INTR_EN); + complete(&nfc->done); + + return IRQ_HANDLED; +} + +static int mtk_nfc_enable_clk(struct device *dev, struct mtk_nfc_clk *clk) +{ + int ret; + + ret = clk_prepare_enable(clk->nfi_clk); + if (ret) { + dev_err(dev, "failed to enable nfi clk\n"); + return ret; + } + + ret = clk_prepare_enable(clk->pad_clk); + if (ret) { + dev_err(dev, "failed to enable pad clk\n"); + clk_disable_unprepare(clk->nfi_clk); + return ret; + } + + return 0; +} + +static void mtk_nfc_disable_clk(struct mtk_nfc_clk *clk) +{ + clk_disable_unprepare(clk->nfi_clk); + clk_disable_unprepare(clk->pad_clk); +} + +static int mtk_nfc_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oob_region) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; + u32 eccsteps; + + eccsteps = mtd->writesize / chip->ecc.size; + + if (section >= eccsteps) + return -ERANGE; + + oob_region->length = fdm->reg_size - fdm->ecc_size; + oob_region->offset = section * fdm->reg_size + fdm->ecc_size; + + return 0; +} + +static int mtk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oob_region) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + u32 eccsteps; + + if (section) + return -ERANGE; + + eccsteps = mtd->writesize / chip->ecc.size; + oob_region->offset = mtk_nand->fdm.reg_size * eccsteps; + oob_region->length = mtd->oobsize - oob_region->offset; + + return 0; +} + +static const struct mtd_ooblayout_ops mtk_nfc_ooblayout_ops = { + .free = mtk_nfc_ooblayout_free, + .ecc = mtk_nfc_ooblayout_ecc, +}; + +static void mtk_nfc_set_fdm(struct mtk_nfc_fdm *fdm, struct mtd_info *mtd) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct mtk_nfc_nand_chip *chip = to_mtk_nand(nand); + u32 ecc_bytes; + + ecc_bytes = DIV_ROUND_UP(nand->ecc.strength * ECC_PARITY_BITS, 8); + + fdm->reg_size = chip->spare_per_sector - ecc_bytes; + if (fdm->reg_size > NFI_FDM_MAX_SIZE) + fdm->reg_size = NFI_FDM_MAX_SIZE; + + /* bad block mark storage */ + fdm->ecc_size = 1; +} + +static void mtk_nfc_set_bad_mark_ctl(struct mtk_nfc_bad_mark_ctl *bm_ctl, + struct mtd_info *mtd) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + + if (mtd->writesize == 512) { + bm_ctl->bm_swap = mtk_nfc_no_bad_mark_swap; + } else { + bm_ctl->bm_swap = mtk_nfc_bad_mark_swap; + bm_ctl->sec = mtd->writesize / mtk_data_len(nand); + bm_ctl->pos = mtd->writesize % mtk_data_len(nand); + } +} + +static void mtk_nfc_set_spare_per_sector(u32 *sps, struct mtd_info *mtd) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + u32 spare[] = {16, 26, 27, 28, 32, 36, 40, 44, + 48, 49, 50, 51, 52, 62, 63, 64}; + u32 eccsteps, i; + + eccsteps = mtd->writesize / nand->ecc.size; + *sps = mtd->oobsize / eccsteps; + + if (nand->ecc.size == 1024) + *sps >>= 1; + + for (i = 0; i < ARRAY_SIZE(spare); i++) { + if (*sps <= spare[i]) { + if (!i) + *sps = spare[i]; + else if (*sps != spare[i]) + *sps = spare[i - 1]; + break; + } + } + + if (i >= ARRAY_SIZE(spare)) + *sps = spare[ARRAY_SIZE(spare) - 1]; + + if (nand->ecc.size == 1024) + *sps <<= 1; +} + +static int mtk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + u32 spare; + int free; + + /* support only ecc hw mode */ + if (nand->ecc.mode != NAND_ECC_HW) { + dev_err(dev, "ecc.mode not supported\n"); + return -EINVAL; + } + + /* if optional dt settings not present */ + if (!nand->ecc.size || !nand->ecc.strength) { + /* use datasheet requirements */ + nand->ecc.strength = nand->ecc_strength_ds; + nand->ecc.size = nand->ecc_step_ds; + + /* + * align eccstrength and eccsize + * this controller only supports 512 and 1024 sizes + */ + if (nand->ecc.size < 1024) { + if (mtd->writesize > 512) { + nand->ecc.size = 1024; + nand->ecc.strength <<= 1; + } else { + nand->ecc.size = 512; + } + } else { + nand->ecc.size = 1024; + } + + mtk_nfc_set_spare_per_sector(&spare, mtd); + + /* calculate oob bytes except ecc parity data */ + free = ((nand->ecc.strength * ECC_PARITY_BITS) + 7) >> 3; + free = spare - free; + + /* + * enhance ecc strength if oob left is bigger than max FDM size + * or reduce ecc strength if oob size is not enough for ecc + * parity data. + */ + if (free > NFI_FDM_MAX_SIZE) { + spare -= NFI_FDM_MAX_SIZE; + nand->ecc.strength = (spare << 3) / ECC_PARITY_BITS; + } else if (free < 0) { + spare -= NFI_FDM_MIN_SIZE; + nand->ecc.strength = (spare << 3) / ECC_PARITY_BITS; + } + } + + mtk_ecc_adjust_strength(&nand->ecc.strength); + + dev_info(dev, "eccsize %d eccstrength %d\n", + nand->ecc.size, nand->ecc.strength); + + return 0; +} + +static int mtk_nfc_nand_chip_init(struct device *dev, struct mtk_nfc *nfc, + struct device_node *np) +{ + struct mtk_nfc_nand_chip *chip; + struct nand_chip *nand; + struct mtd_info *mtd; + int nsels, len; + u32 tmp; + int ret; + int i; + + if (!of_get_property(np, "reg", &nsels)) + return -ENODEV; + + nsels /= sizeof(u32); + if (!nsels || nsels > MTK_NAND_MAX_NSELS) { + dev_err(dev, "invalid reg property size %d\n", nsels); + return -EINVAL; + } + + chip = devm_kzalloc(dev, sizeof(*chip) + nsels * sizeof(u8), + GFP_KERNEL); + if (!chip) + return -ENOMEM; + + chip->nsels = nsels; + for (i = 0; i < nsels; i++) { + ret = of_property_read_u32_index(np, "reg", i, &tmp); + if (ret) { + dev_err(dev, "reg property failure : %d\n", ret); + return ret; + } + chip->sels[i] = tmp; + } + + nand = &chip->nand; + nand->controller = &nfc->controller; + + nand_set_flash_node(nand, np); + nand_set_controller_data(nand, nfc); + + nand->options |= NAND_USE_BOUNCE_BUFFER | NAND_SUBPAGE_READ; + nand->dev_ready = mtk_nfc_dev_ready; + nand->select_chip = mtk_nfc_select_chip; + nand->write_byte = mtk_nfc_write_byte; + nand->write_buf = mtk_nfc_write_buf; + nand->read_byte = mtk_nfc_read_byte; + nand->read_buf = mtk_nfc_read_buf; + nand->cmd_ctrl = mtk_nfc_cmd_ctrl; + + /* set default mode in case dt entry is missing */ + nand->ecc.mode = NAND_ECC_HW; + + nand->ecc.write_subpage = mtk_nfc_write_subpage_hwecc; + nand->ecc.write_page_raw = mtk_nfc_write_page_raw; + nand->ecc.write_page = mtk_nfc_write_page_hwecc; + nand->ecc.write_oob_raw = mtk_nfc_write_oob_std; + nand->ecc.write_oob = mtk_nfc_write_oob_std; + + nand->ecc.read_subpage = mtk_nfc_read_subpage_hwecc; + nand->ecc.read_page_raw = mtk_nfc_read_page_raw; + nand->ecc.read_page = mtk_nfc_read_page_hwecc; + nand->ecc.read_oob_raw = mtk_nfc_read_oob_std; + nand->ecc.read_oob = mtk_nfc_read_oob_std; + + mtd = nand_to_mtd(nand); + mtd->owner = THIS_MODULE; + mtd->dev.parent = dev; + mtd->name = MTK_NAME; + mtd_set_ooblayout(mtd, &mtk_nfc_ooblayout_ops); + + mtk_nfc_hw_init(nfc); + + ret = nand_scan_ident(mtd, nsels, NULL); + if (ret) + return -ENODEV; + + /* store bbt magic in page, cause OOB is not protected */ + if (nand->bbt_options & NAND_BBT_USE_FLASH) + nand->bbt_options |= NAND_BBT_NO_OOB; + + ret = mtk_nfc_ecc_init(dev, mtd); + if (ret) + return -EINVAL; + + if (nand->options & NAND_BUSWIDTH_16) { + dev_err(dev, "16bits buswidth not supported"); + return -EINVAL; + } + + mtk_nfc_set_spare_per_sector(&chip->spare_per_sector, mtd); + mtk_nfc_set_fdm(&chip->fdm, mtd); + mtk_nfc_set_bad_mark_ctl(&chip->bad_mark, mtd); + + len = mtd->writesize + mtd->oobsize; + nfc->buffer = devm_kzalloc(dev, len, GFP_KERNEL); + if (!nfc->buffer) + return -ENOMEM; + + ret = nand_scan_tail(mtd); + if (ret) + return -ENODEV; + + ret = mtd_device_parse_register(mtd, NULL, NULL, NULL, 0); + if (ret) { + dev_err(dev, "mtd parse partition error\n"); + nand_release(mtd); + return ret; + } + + list_add_tail(&chip->node, &nfc->chips); + + return 0; +} + +static int mtk_nfc_nand_chips_init(struct device *dev, struct mtk_nfc *nfc) +{ + struct device_node *np = dev->of_node; + struct device_node *nand_np; + int ret; + + for_each_child_of_node(np, nand_np) { + ret = mtk_nfc_nand_chip_init(dev, nfc, nand_np); + if (ret) { + of_node_put(nand_np); + return ret; + } + } + + return 0; +} + +static int mtk_nfc_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct device_node *np = dev->of_node; + struct mtk_nfc *nfc; + struct resource *res; + int ret, irq; + + nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); + if (!nfc) + return -ENOMEM; + + spin_lock_init(&nfc->controller.lock); + init_waitqueue_head(&nfc->controller.wq); + INIT_LIST_HEAD(&nfc->chips); + + /* probe defer if not ready */ + nfc->ecc = of_mtk_ecc_get(np); + if (IS_ERR(nfc->ecc)) + return PTR_ERR(nfc->ecc); + else if (!nfc->ecc) + return -ENODEV; + + nfc->dev = dev; + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + nfc->regs = devm_ioremap_resource(dev, res); + if (IS_ERR(nfc->regs)) { + ret = PTR_ERR(nfc->regs); + dev_err(dev, "no nfi base\n"); + goto release_ecc; + } + + nfc->clk.nfi_clk = devm_clk_get(dev, "nfi_clk"); + if (IS_ERR(nfc->clk.nfi_clk)) { + dev_err(dev, "no clk\n"); + ret = PTR_ERR(nfc->clk.nfi_clk); + goto release_ecc; + } + + nfc->clk.pad_clk = devm_clk_get(dev, "pad_clk"); + if (IS_ERR(nfc->clk.pad_clk)) { + dev_err(dev, "no pad clk\n"); + ret = PTR_ERR(nfc->clk.pad_clk); + goto release_ecc; + } + + ret = mtk_nfc_enable_clk(dev, &nfc->clk); + if (ret) + goto release_ecc; + + irq = platform_get_irq(pdev, 0); + if (irq < 0) { + dev_err(dev, "no nfi irq resource\n"); + ret = -EINVAL; + goto clk_disable; + } + + ret = devm_request_irq(dev, irq, mtk_nfc_irq, 0x0, "mtk-nand", nfc); + if (ret) { + dev_err(dev, "failed to request nfi irq\n"); + goto clk_disable; + } + + ret = dma_set_mask(dev, DMA_BIT_MASK(32)); + if (ret) { + dev_err(dev, "failed to set dma mask\n"); + goto clk_disable; + } + + platform_set_drvdata(pdev, nfc); + + ret = mtk_nfc_nand_chips_init(dev, nfc); + if (ret) { + dev_err(dev, "failed to init nand chips\n"); + goto clk_disable; + } + + return 0; + +clk_disable: + mtk_nfc_disable_clk(&nfc->clk); + +release_ecc: + mtk_ecc_release(nfc->ecc); + + return ret; +} + +static int mtk_nfc_remove(struct platform_device *pdev) +{ + struct mtk_nfc *nfc = platform_get_drvdata(pdev); + struct mtk_nfc_nand_chip *chip; + + while (!list_empty(&nfc->chips)) { + chip = list_first_entry(&nfc->chips, struct mtk_nfc_nand_chip, + node); + nand_release(nand_to_mtd(&chip->nand)); + list_del(&chip->node); + } + + mtk_ecc_release(nfc->ecc); + mtk_nfc_disable_clk(&nfc->clk); + + return 0; +} + +#ifdef CONFIG_PM_SLEEP +static int mtk_nfc_suspend(struct device *dev) +{ + struct mtk_nfc *nfc = dev_get_drvdata(dev); + + mtk_nfc_disable_clk(&nfc->clk); + + return 0; +} + +static int mtk_nfc_resume(struct device *dev) +{ + struct mtk_nfc *nfc = dev_get_drvdata(dev); + struct mtk_nfc_nand_chip *chip; + struct nand_chip *nand; + struct mtd_info *mtd; + int ret; + u32 i; + + udelay(200); + + ret = mtk_nfc_enable_clk(dev, &nfc->clk); + if (ret) + return ret; + + mtk_nfc_hw_init(nfc); + + /* reset NAND chip if VCC was powered off */ + list_for_each_entry(chip, &nfc->chips, node) { + nand = &chip->nand; + mtd = nand_to_mtd(nand); + for (i = 0; i < chip->nsels; i++) { + nand->select_chip(mtd, i); + nand->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); + } + } + + return 0; +} + +static SIMPLE_DEV_PM_OPS(mtk_nfc_pm_ops, mtk_nfc_suspend, mtk_nfc_resume); +#endif + +static const struct of_device_id mtk_nfc_id_table[] = { + { .compatible = "mediatek,mt2701-nfc" }, + {} +}; +MODULE_DEVICE_TABLE(of, mtk_nfc_id_table); + +static struct platform_driver mtk_nfc_driver = { + .probe = mtk_nfc_probe, + .remove = mtk_nfc_remove, + .driver = { + .name = MTK_NAME, + .of_match_table = mtk_nfc_id_table, +#ifdef CONFIG_PM_SLEEP + .pm = &mtk_nfc_pm_ops, +#endif + }, +}; + +module_platform_driver(mtk_nfc_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>"); +MODULE_DESCRIPTION("MTK Nand Flash Controller Driver"); diff --git a/drivers/mtd/nand/nand_ids.c b/drivers/mtd/nand/nand_ids.c index ccc05f5b2695..2af9869a115e 100644 --- a/drivers/mtd/nand/nand_ids.c +++ b/drivers/mtd/nand/nand_ids.c @@ -168,6 +168,7 @@ struct nand_flash_dev nand_flash_ids[] = { /* Manufacturer IDs */ struct nand_manufacturers nand_manuf_ids[] = { {NAND_MFR_TOSHIBA, "Toshiba"}, + {NAND_MFR_ESMT, "ESMT"}, {NAND_MFR_SAMSUNG, "Samsung"}, {NAND_MFR_FUJITSU, "Fujitsu"}, {NAND_MFR_NATIONAL, "National"}, diff --git a/drivers/mtd/nand/omap2.c b/drivers/mtd/nand/omap2.c index 08e158895635..83b9091233d4 100644 --- a/drivers/mtd/nand/omap2.c +++ b/drivers/mtd/nand/omap2.c @@ -118,8 +118,6 @@ #define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F) #define STATUS_BUFF_EMPTY 0x00000001 -#define OMAP24XX_DMA_GPMC 4 - #define SECTOR_BYTES 512 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */ #define BCH4_BIT_PAD 4 @@ -1808,7 +1806,6 @@ static int omap_nand_probe(struct platform_device *pdev) struct nand_chip *nand_chip; int err; dma_cap_mask_t mask; - unsigned sig; struct resource *res; struct device *dev = &pdev->dev; int min_oobbytes = BADBLOCK_MARKER_LENGTH; @@ -1921,8 +1918,8 @@ static int omap_nand_probe(struct platform_device *pdev) case NAND_OMAP_PREFETCH_DMA: dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); - sig = OMAP24XX_DMA_GPMC; - info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig); + info->dma = dma_request_chan(pdev->dev.parent, "rxtx"); + if (!info->dma) { dev_err(&pdev->dev, "DMA engine request failed\n"); err = -ENXIO; diff --git a/drivers/mtd/nand/sunxi_nand.c b/drivers/mtd/nand/sunxi_nand.c index a83a690688b4..e414b31b71c1 100644 --- a/drivers/mtd/nand/sunxi_nand.c +++ b/drivers/mtd/nand/sunxi_nand.c @@ -39,6 +39,7 @@ #include <linux/gpio.h> #include <linux/interrupt.h> #include <linux/iopoll.h> +#include <linux/reset.h> #define NFC_REG_CTL 0x0000 #define NFC_REG_ST 0x0004 @@ -153,6 +154,7 @@ /* define bit use in NFC_ECC_ST */ #define NFC_ECC_ERR(x) BIT(x) +#define NFC_ECC_ERR_MSK GENMASK(15, 0) #define NFC_ECC_PAT_FOUND(x) BIT(x + 16) #define NFC_ECC_ERR_CNT(b, x) (((x) >> (((b) % 4) * 8)) & 0xff) @@ -269,10 +271,12 @@ struct sunxi_nfc { void __iomem *regs; struct clk *ahb_clk; struct clk *mod_clk; + struct reset_control *reset; unsigned long assigned_cs; unsigned long clk_rate; struct list_head chips; struct completion complete; + struct dma_chan *dmac; }; static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_hw_control *ctrl) @@ -365,6 +369,67 @@ static int sunxi_nfc_rst(struct sunxi_nfc *nfc) return ret; } +static int sunxi_nfc_dma_op_prepare(struct mtd_info *mtd, const void *buf, + int chunksize, int nchunks, + enum dma_data_direction ddir, + struct scatterlist *sg) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + struct dma_async_tx_descriptor *dmad; + enum dma_transfer_direction tdir; + dma_cookie_t dmat; + int ret; + + if (ddir == DMA_FROM_DEVICE) + tdir = DMA_DEV_TO_MEM; + else + tdir = DMA_MEM_TO_DEV; + + sg_init_one(sg, buf, nchunks * chunksize); + ret = dma_map_sg(nfc->dev, sg, 1, ddir); + if (!ret) + return -ENOMEM; + + dmad = dmaengine_prep_slave_sg(nfc->dmac, sg, 1, tdir, DMA_CTRL_ACK); + if (!dmad) { + ret = -EINVAL; + goto err_unmap_buf; + } + + writel(readl(nfc->regs + NFC_REG_CTL) | NFC_RAM_METHOD, + nfc->regs + NFC_REG_CTL); + writel(nchunks, nfc->regs + NFC_REG_SECTOR_NUM); + writel(chunksize, nfc->regs + NFC_REG_CNT); + dmat = dmaengine_submit(dmad); + + ret = dma_submit_error(dmat); + if (ret) + goto err_clr_dma_flag; + + return 0; + +err_clr_dma_flag: + writel(readl(nfc->regs + NFC_REG_CTL) & ~NFC_RAM_METHOD, + nfc->regs + NFC_REG_CTL); + +err_unmap_buf: + dma_unmap_sg(nfc->dev, sg, 1, ddir); + return ret; +} + +static void sunxi_nfc_dma_op_cleanup(struct mtd_info *mtd, + enum dma_data_direction ddir, + struct scatterlist *sg) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + + dma_unmap_sg(nfc->dev, sg, 1, ddir); + writel(readl(nfc->regs + NFC_REG_CTL) & ~NFC_RAM_METHOD, + nfc->regs + NFC_REG_CTL); +} + static int sunxi_nfc_dev_ready(struct mtd_info *mtd) { struct nand_chip *nand = mtd_to_nand(mtd); @@ -822,17 +887,15 @@ static void sunxi_nfc_hw_ecc_update_stats(struct mtd_info *mtd, } static int sunxi_nfc_hw_ecc_correct(struct mtd_info *mtd, u8 *data, u8 *oob, - int step, bool *erased) + int step, u32 status, bool *erased) { struct nand_chip *nand = mtd_to_nand(mtd); struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); struct nand_ecc_ctrl *ecc = &nand->ecc; - u32 status, tmp; + u32 tmp; *erased = false; - status = readl(nfc->regs + NFC_REG_ECC_ST); - if (status & NFC_ECC_ERR(step)) return -EBADMSG; @@ -898,6 +961,7 @@ static int sunxi_nfc_hw_ecc_read_chunk(struct mtd_info *mtd, *cur_off = oob_off + ecc->bytes + 4; ret = sunxi_nfc_hw_ecc_correct(mtd, data, oob_required ? oob : NULL, 0, + readl(nfc->regs + NFC_REG_ECC_ST), &erased); if (erased) return 1; @@ -967,6 +1031,130 @@ static void sunxi_nfc_hw_ecc_read_extra_oob(struct mtd_info *mtd, *cur_off = mtd->oobsize + mtd->writesize; } +static int sunxi_nfc_hw_ecc_read_chunks_dma(struct mtd_info *mtd, uint8_t *buf, + int oob_required, int page, + int nchunks) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + bool randomized = nand->options & NAND_NEED_SCRAMBLING; + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + struct nand_ecc_ctrl *ecc = &nand->ecc; + unsigned int max_bitflips = 0; + int ret, i, raw_mode = 0; + struct scatterlist sg; + u32 status; + + ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); + if (ret) + return ret; + + ret = sunxi_nfc_dma_op_prepare(mtd, buf, ecc->size, nchunks, + DMA_FROM_DEVICE, &sg); + if (ret) + return ret; + + sunxi_nfc_hw_ecc_enable(mtd); + sunxi_nfc_randomizer_config(mtd, page, false); + sunxi_nfc_randomizer_enable(mtd); + + writel((NAND_CMD_RNDOUTSTART << 16) | (NAND_CMD_RNDOUT << 8) | + NAND_CMD_READSTART, nfc->regs + NFC_REG_RCMD_SET); + + dma_async_issue_pending(nfc->dmac); + + writel(NFC_PAGE_OP | NFC_DATA_SWAP_METHOD | NFC_DATA_TRANS, + nfc->regs + NFC_REG_CMD); + + ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, true, 0); + if (ret) + dmaengine_terminate_all(nfc->dmac); + + sunxi_nfc_randomizer_disable(mtd); + sunxi_nfc_hw_ecc_disable(mtd); + + sunxi_nfc_dma_op_cleanup(mtd, DMA_FROM_DEVICE, &sg); + + if (ret) + return ret; + + status = readl(nfc->regs + NFC_REG_ECC_ST); + + for (i = 0; i < nchunks; i++) { + int data_off = i * ecc->size; + int oob_off = i * (ecc->bytes + 4); + u8 *data = buf + data_off; + u8 *oob = nand->oob_poi + oob_off; + bool erased; + + ret = sunxi_nfc_hw_ecc_correct(mtd, randomized ? data : NULL, + oob_required ? oob : NULL, + i, status, &erased); + + /* ECC errors are handled in the second loop. */ + if (ret < 0) + continue; + + if (oob_required && !erased) { + /* TODO: use DMA to retrieve OOB */ + nand->cmdfunc(mtd, NAND_CMD_RNDOUT, + mtd->writesize + oob_off, -1); + nand->read_buf(mtd, oob, ecc->bytes + 4); + + sunxi_nfc_hw_ecc_get_prot_oob_bytes(mtd, oob, i, + !i, page); + } + + if (erased) + raw_mode = 1; + + sunxi_nfc_hw_ecc_update_stats(mtd, &max_bitflips, ret); + } + + if (status & NFC_ECC_ERR_MSK) { + for (i = 0; i < nchunks; i++) { + int data_off = i * ecc->size; + int oob_off = i * (ecc->bytes + 4); + u8 *data = buf + data_off; + u8 *oob = nand->oob_poi + oob_off; + + if (!(status & NFC_ECC_ERR(i))) + continue; + + /* + * Re-read the data with the randomizer disabled to + * identify bitflips in erased pages. + */ + if (randomized) { + /* TODO: use DMA to read page in raw mode */ + nand->cmdfunc(mtd, NAND_CMD_RNDOUT, + data_off, -1); + nand->read_buf(mtd, data, ecc->size); + } + + /* TODO: use DMA to retrieve OOB */ + nand->cmdfunc(mtd, NAND_CMD_RNDOUT, + mtd->writesize + oob_off, -1); + nand->read_buf(mtd, oob, ecc->bytes + 4); + + ret = nand_check_erased_ecc_chunk(data, ecc->size, + oob, ecc->bytes + 4, + NULL, 0, + ecc->strength); + if (ret >= 0) + raw_mode = 1; + + sunxi_nfc_hw_ecc_update_stats(mtd, &max_bitflips, ret); + } + } + + if (oob_required) + sunxi_nfc_hw_ecc_read_extra_oob(mtd, nand->oob_poi, + NULL, !raw_mode, + page); + + return max_bitflips; +} + static int sunxi_nfc_hw_ecc_write_chunk(struct mtd_info *mtd, const u8 *data, int data_off, const u8 *oob, int oob_off, @@ -1065,6 +1253,23 @@ static int sunxi_nfc_hw_ecc_read_page(struct mtd_info *mtd, return max_bitflips; } +static int sunxi_nfc_hw_ecc_read_page_dma(struct mtd_info *mtd, + struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + int ret; + + ret = sunxi_nfc_hw_ecc_read_chunks_dma(mtd, buf, oob_required, page, + chip->ecc.steps); + if (ret >= 0) + return ret; + + /* Fallback to PIO mode */ + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, 0, -1); + + return sunxi_nfc_hw_ecc_read_page(mtd, chip, buf, oob_required, page); +} + static int sunxi_nfc_hw_ecc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, u32 data_offs, u32 readlen, @@ -1098,6 +1303,25 @@ static int sunxi_nfc_hw_ecc_read_subpage(struct mtd_info *mtd, return max_bitflips; } +static int sunxi_nfc_hw_ecc_read_subpage_dma(struct mtd_info *mtd, + struct nand_chip *chip, + u32 data_offs, u32 readlen, + u8 *buf, int page) +{ + int nchunks = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size); + int ret; + + ret = sunxi_nfc_hw_ecc_read_chunks_dma(mtd, buf, false, page, nchunks); + if (ret >= 0) + return ret; + + /* Fallback to PIO mode */ + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, 0, -1); + + return sunxi_nfc_hw_ecc_read_subpage(mtd, chip, data_offs, readlen, + buf, page); +} + static int sunxi_nfc_hw_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required, @@ -1130,6 +1354,99 @@ static int sunxi_nfc_hw_ecc_write_page(struct mtd_info *mtd, return 0; } +static int sunxi_nfc_hw_ecc_write_subpage(struct mtd_info *mtd, + struct nand_chip *chip, + u32 data_offs, u32 data_len, + const u8 *buf, int oob_required, + int page) +{ + struct nand_ecc_ctrl *ecc = &chip->ecc; + int ret, i, cur_off = 0; + + sunxi_nfc_hw_ecc_enable(mtd); + + for (i = data_offs / ecc->size; + i < DIV_ROUND_UP(data_offs + data_len, ecc->size); i++) { + int data_off = i * ecc->size; + int oob_off = i * (ecc->bytes + 4); + const u8 *data = buf + data_off; + const u8 *oob = chip->oob_poi + oob_off; + + ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob, + oob_off + mtd->writesize, + &cur_off, !i, page); + if (ret) + return ret; + } + + sunxi_nfc_hw_ecc_disable(mtd); + + return 0; +} + +static int sunxi_nfc_hw_ecc_write_page_dma(struct mtd_info *mtd, + struct nand_chip *chip, + const u8 *buf, + int oob_required, + int page) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + struct nand_ecc_ctrl *ecc = &nand->ecc; + struct scatterlist sg; + int ret, i; + + ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); + if (ret) + return ret; + + ret = sunxi_nfc_dma_op_prepare(mtd, buf, ecc->size, ecc->steps, + DMA_TO_DEVICE, &sg); + if (ret) + goto pio_fallback; + + for (i = 0; i < ecc->steps; i++) { + const u8 *oob = nand->oob_poi + (i * (ecc->bytes + 4)); + + sunxi_nfc_hw_ecc_set_prot_oob_bytes(mtd, oob, i, !i, page); + } + + sunxi_nfc_hw_ecc_enable(mtd); + sunxi_nfc_randomizer_config(mtd, page, false); + sunxi_nfc_randomizer_enable(mtd); + + writel((NAND_CMD_RNDIN << 8) | NAND_CMD_PAGEPROG, + nfc->regs + NFC_REG_RCMD_SET); + + dma_async_issue_pending(nfc->dmac); + + writel(NFC_PAGE_OP | NFC_DATA_SWAP_METHOD | + NFC_DATA_TRANS | NFC_ACCESS_DIR, + nfc->regs + NFC_REG_CMD); + + ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, true, 0); + if (ret) + dmaengine_terminate_all(nfc->dmac); + + sunxi_nfc_randomizer_disable(mtd); + sunxi_nfc_hw_ecc_disable(mtd); + + sunxi_nfc_dma_op_cleanup(mtd, DMA_TO_DEVICE, &sg); + + if (ret) + return ret; + + if (oob_required || (chip->options & NAND_NEED_SCRAMBLING)) + /* TODO: use DMA to transfer extra OOB bytes ? */ + sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi, + NULL, page); + + return 0; + +pio_fallback: + return sunxi_nfc_hw_ecc_write_page(mtd, chip, buf, oob_required, page); +} + static int sunxi_nfc_hw_syndrome_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, @@ -1497,10 +1814,19 @@ static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd, int ret; int i; + if (ecc->size != 512 && ecc->size != 1024) + return -EINVAL; + data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; + /* Prefer 1k ECC chunk over 512 ones */ + if (ecc->size == 512 && mtd->writesize > 512) { + ecc->size = 1024; + ecc->strength *= 2; + } + /* Add ECC info retrieval from DT */ for (i = 0; i < ARRAY_SIZE(strengths); i++) { if (ecc->strength <= strengths[i]) @@ -1550,14 +1876,28 @@ static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc, struct device_node *np) { + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); + struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); int ret; ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np); if (ret) return ret; - ecc->read_page = sunxi_nfc_hw_ecc_read_page; - ecc->write_page = sunxi_nfc_hw_ecc_write_page; + if (nfc->dmac) { + ecc->read_page = sunxi_nfc_hw_ecc_read_page_dma; + ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage_dma; + ecc->write_page = sunxi_nfc_hw_ecc_write_page_dma; + nand->options |= NAND_USE_BOUNCE_BUFFER; + } else { + ecc->read_page = sunxi_nfc_hw_ecc_read_page; + ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage; + ecc->write_page = sunxi_nfc_hw_ecc_write_page; + } + + /* TODO: support DMA for raw accesses and subpage write */ + ecc->write_subpage = sunxi_nfc_hw_ecc_write_subpage; ecc->read_oob_raw = nand_read_oob_std; ecc->write_oob_raw = nand_write_oob_std; ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage; @@ -1871,26 +2211,59 @@ static int sunxi_nfc_probe(struct platform_device *pdev) if (ret) goto out_ahb_clk_unprepare; + nfc->reset = devm_reset_control_get_optional(dev, "ahb"); + if (!IS_ERR(nfc->reset)) { + ret = reset_control_deassert(nfc->reset); + if (ret) { + dev_err(dev, "reset err %d\n", ret); + goto out_mod_clk_unprepare; + } + } else if (PTR_ERR(nfc->reset) != -ENOENT) { + ret = PTR_ERR(nfc->reset); + goto out_mod_clk_unprepare; + } + ret = sunxi_nfc_rst(nfc); if (ret) - goto out_mod_clk_unprepare; + goto out_ahb_reset_reassert; writel(0, nfc->regs + NFC_REG_INT); ret = devm_request_irq(dev, irq, sunxi_nfc_interrupt, 0, "sunxi-nand", nfc); if (ret) - goto out_mod_clk_unprepare; + goto out_ahb_reset_reassert; + + nfc->dmac = dma_request_slave_channel(dev, "rxtx"); + if (nfc->dmac) { + struct dma_slave_config dmac_cfg = { }; + + dmac_cfg.src_addr = r->start + NFC_REG_IO_DATA; + dmac_cfg.dst_addr = dmac_cfg.src_addr; + dmac_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + dmac_cfg.dst_addr_width = dmac_cfg.src_addr_width; + dmac_cfg.src_maxburst = 4; + dmac_cfg.dst_maxburst = 4; + dmaengine_slave_config(nfc->dmac, &dmac_cfg); + } else { + dev_warn(dev, "failed to request rxtx DMA channel\n"); + } platform_set_drvdata(pdev, nfc); ret = sunxi_nand_chips_init(dev, nfc); if (ret) { dev_err(dev, "failed to init nand chips\n"); - goto out_mod_clk_unprepare; + goto out_release_dmac; } return 0; +out_release_dmac: + if (nfc->dmac) + dma_release_channel(nfc->dmac); +out_ahb_reset_reassert: + if (!IS_ERR(nfc->reset)) + reset_control_assert(nfc->reset); out_mod_clk_unprepare: clk_disable_unprepare(nfc->mod_clk); out_ahb_clk_unprepare: @@ -1904,6 +2277,12 @@ static int sunxi_nfc_remove(struct platform_device *pdev) struct sunxi_nfc *nfc = platform_get_drvdata(pdev); sunxi_nand_chips_cleanup(nfc); + + if (!IS_ERR(nfc->reset)) + reset_control_assert(nfc->reset); + + if (nfc->dmac) + dma_release_channel(nfc->dmac); clk_disable_unprepare(nfc->mod_clk); clk_disable_unprepare(nfc->ahb_clk); diff --git a/drivers/mtd/nand/xway_nand.c b/drivers/mtd/nand/xway_nand.c index 0cf0ac07a8c2..1f2948c0c458 100644 --- a/drivers/mtd/nand/xway_nand.c +++ b/drivers/mtd/nand/xway_nand.c @@ -4,6 +4,7 @@ * by the Free Software Foundation. * * Copyright © 2012 John Crispin <blogic@openwrt.org> + * Copyright © 2016 Hauke Mehrtens <hauke@hauke-m.de> */ #include <linux/mtd/nand.h> @@ -16,20 +17,28 @@ #define EBU_ADDSEL1 0x24 #define EBU_NAND_CON 0xB0 #define EBU_NAND_WAIT 0xB4 +#define NAND_WAIT_RD BIT(0) /* NAND flash status output */ +#define NAND_WAIT_WR_C BIT(3) /* NAND Write/Read complete */ #define EBU_NAND_ECC0 0xB8 #define EBU_NAND_ECC_AC 0xBC -/* nand commands */ -#define NAND_CMD_ALE (1 << 2) -#define NAND_CMD_CLE (1 << 3) -#define NAND_CMD_CS (1 << 4) -#define NAND_WRITE_CMD_RESET 0xff +/* + * nand commands + * The pins of the NAND chip are selected based on the address bits of the + * "register" read and write. There are no special registers, but an + * address range and the lower address bits are used to activate the + * correct line. For example when the bit (1 << 2) is set in the address + * the ALE pin will be activated. + */ +#define NAND_CMD_ALE BIT(2) /* address latch enable */ +#define NAND_CMD_CLE BIT(3) /* command latch enable */ +#define NAND_CMD_CS BIT(4) /* chip select */ +#define NAND_CMD_SE BIT(5) /* spare area access latch */ +#define NAND_CMD_WP BIT(6) /* write protect */ #define NAND_WRITE_CMD (NAND_CMD_CS | NAND_CMD_CLE) #define NAND_WRITE_ADDR (NAND_CMD_CS | NAND_CMD_ALE) #define NAND_WRITE_DATA (NAND_CMD_CS) #define NAND_READ_DATA (NAND_CMD_CS) -#define NAND_WAIT_WR_C (1 << 3) -#define NAND_WAIT_RD (0x1) /* we need to tel the ebu which addr we mapped the nand to */ #define ADDSEL1_MASK(x) (x << 4) @@ -54,31 +63,41 @@ #define NAND_CON_CSMUX (1 << 1) #define NAND_CON_NANDM 1 -static void xway_reset_chip(struct nand_chip *chip) +struct xway_nand_data { + struct nand_chip chip; + unsigned long csflags; + void __iomem *nandaddr; +}; + +static u8 xway_readb(struct mtd_info *mtd, int op) { - unsigned long nandaddr = (unsigned long) chip->IO_ADDR_W; - unsigned long flags; + struct nand_chip *chip = mtd_to_nand(mtd); + struct xway_nand_data *data = nand_get_controller_data(chip); - nandaddr &= ~NAND_WRITE_ADDR; - nandaddr |= NAND_WRITE_CMD; + return readb(data->nandaddr + op); +} - /* finish with a reset */ - spin_lock_irqsave(&ebu_lock, flags); - writeb(NAND_WRITE_CMD_RESET, (void __iomem *) nandaddr); - while ((ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_WR_C) == 0) - ; - spin_unlock_irqrestore(&ebu_lock, flags); +static void xway_writeb(struct mtd_info *mtd, int op, u8 value) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct xway_nand_data *data = nand_get_controller_data(chip); + + writeb(value, data->nandaddr + op); } -static void xway_select_chip(struct mtd_info *mtd, int chip) +static void xway_select_chip(struct mtd_info *mtd, int select) { + struct nand_chip *chip = mtd_to_nand(mtd); + struct xway_nand_data *data = nand_get_controller_data(chip); - switch (chip) { + switch (select) { case -1: ltq_ebu_w32_mask(NAND_CON_CE, 0, EBU_NAND_CON); ltq_ebu_w32_mask(NAND_CON_NANDM, 0, EBU_NAND_CON); + spin_unlock_irqrestore(&ebu_lock, data->csflags); break; case 0: + spin_lock_irqsave(&ebu_lock, data->csflags); ltq_ebu_w32_mask(0, NAND_CON_NANDM, EBU_NAND_CON); ltq_ebu_w32_mask(0, NAND_CON_CE, EBU_NAND_CON); break; @@ -89,26 +108,16 @@ static void xway_select_chip(struct mtd_info *mtd, int chip) static void xway_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) { - struct nand_chip *this = mtd_to_nand(mtd); - unsigned long nandaddr = (unsigned long) this->IO_ADDR_W; - unsigned long flags; - - if (ctrl & NAND_CTRL_CHANGE) { - nandaddr &= ~(NAND_WRITE_CMD | NAND_WRITE_ADDR); - if (ctrl & NAND_CLE) - nandaddr |= NAND_WRITE_CMD; - else - nandaddr |= NAND_WRITE_ADDR; - this->IO_ADDR_W = (void __iomem *) nandaddr; - } + if (cmd == NAND_CMD_NONE) + return; - if (cmd != NAND_CMD_NONE) { - spin_lock_irqsave(&ebu_lock, flags); - writeb(cmd, this->IO_ADDR_W); - while ((ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_WR_C) == 0) - ; - spin_unlock_irqrestore(&ebu_lock, flags); - } + if (ctrl & NAND_CLE) + xway_writeb(mtd, NAND_WRITE_CMD, cmd); + else if (ctrl & NAND_ALE) + xway_writeb(mtd, NAND_WRITE_ADDR, cmd); + + while ((ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_WR_C) == 0) + ; } static int xway_dev_ready(struct mtd_info *mtd) @@ -118,80 +127,122 @@ static int xway_dev_ready(struct mtd_info *mtd) static unsigned char xway_read_byte(struct mtd_info *mtd) { - struct nand_chip *this = mtd_to_nand(mtd); - unsigned long nandaddr = (unsigned long) this->IO_ADDR_R; - unsigned long flags; - int ret; + return xway_readb(mtd, NAND_READ_DATA); +} + +static void xway_read_buf(struct mtd_info *mtd, u_char *buf, int len) +{ + int i; - spin_lock_irqsave(&ebu_lock, flags); - ret = ltq_r8((void __iomem *)(nandaddr + NAND_READ_DATA)); - spin_unlock_irqrestore(&ebu_lock, flags); + for (i = 0; i < len; i++) + buf[i] = xway_readb(mtd, NAND_WRITE_DATA); +} - return ret; +static void xway_write_buf(struct mtd_info *mtd, const u_char *buf, int len) +{ + int i; + + for (i = 0; i < len; i++) + xway_writeb(mtd, NAND_WRITE_DATA, buf[i]); } +/* + * Probe for the NAND device. + */ static int xway_nand_probe(struct platform_device *pdev) { - struct nand_chip *this = platform_get_drvdata(pdev); - unsigned long nandaddr = (unsigned long) this->IO_ADDR_W; - const __be32 *cs = of_get_property(pdev->dev.of_node, - "lantiq,cs", NULL); + struct xway_nand_data *data; + struct mtd_info *mtd; + struct resource *res; + int err; + u32 cs; u32 cs_flag = 0; + /* Allocate memory for the device structure (and zero it) */ + data = devm_kzalloc(&pdev->dev, sizeof(struct xway_nand_data), + GFP_KERNEL); + if (!data) + return -ENOMEM; + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + data->nandaddr = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(data->nandaddr)) + return PTR_ERR(data->nandaddr); + + nand_set_flash_node(&data->chip, pdev->dev.of_node); + mtd = nand_to_mtd(&data->chip); + mtd->dev.parent = &pdev->dev; + + data->chip.cmd_ctrl = xway_cmd_ctrl; + data->chip.dev_ready = xway_dev_ready; + data->chip.select_chip = xway_select_chip; + data->chip.write_buf = xway_write_buf; + data->chip.read_buf = xway_read_buf; + data->chip.read_byte = xway_read_byte; + data->chip.chip_delay = 30; + + data->chip.ecc.mode = NAND_ECC_SOFT; + data->chip.ecc.algo = NAND_ECC_HAMMING; + + platform_set_drvdata(pdev, data); + nand_set_controller_data(&data->chip, data); + /* load our CS from the DT. Either we find a valid 1 or default to 0 */ - if (cs && (*cs == 1)) + err = of_property_read_u32(pdev->dev.of_node, "lantiq,cs", &cs); + if (!err && cs == 1) cs_flag = NAND_CON_IN_CS1 | NAND_CON_OUT_CS1; /* setup the EBU to run in NAND mode on our base addr */ - ltq_ebu_w32(CPHYSADDR(nandaddr) - | ADDSEL1_MASK(3) | ADDSEL1_REGEN, EBU_ADDSEL1); + ltq_ebu_w32(CPHYSADDR(data->nandaddr) + | ADDSEL1_MASK(3) | ADDSEL1_REGEN, EBU_ADDSEL1); ltq_ebu_w32(BUSCON1_SETUP | BUSCON1_BCGEN_RES | BUSCON1_WAITWRC2 - | BUSCON1_WAITRDC2 | BUSCON1_HOLDC1 | BUSCON1_RECOVC1 - | BUSCON1_CMULT4, LTQ_EBU_BUSCON1); + | BUSCON1_WAITRDC2 | BUSCON1_HOLDC1 | BUSCON1_RECOVC1 + | BUSCON1_CMULT4, LTQ_EBU_BUSCON1); ltq_ebu_w32(NAND_CON_NANDM | NAND_CON_CSMUX | NAND_CON_CS_P - | NAND_CON_SE_P | NAND_CON_WP_P | NAND_CON_PRE_P - | cs_flag, EBU_NAND_CON); + | NAND_CON_SE_P | NAND_CON_WP_P | NAND_CON_PRE_P + | cs_flag, EBU_NAND_CON); - /* finish with a reset */ - xway_reset_chip(this); + /* Scan to find existence of the device */ + err = nand_scan(mtd, 1); + if (err) + return err; - return 0; -} + err = mtd_device_register(mtd, NULL, 0); + if (err) + nand_release(mtd); -static struct platform_nand_data xway_nand_data = { - .chip = { - .nr_chips = 1, - .chip_delay = 30, - }, - .ctrl = { - .probe = xway_nand_probe, - .cmd_ctrl = xway_cmd_ctrl, - .dev_ready = xway_dev_ready, - .select_chip = xway_select_chip, - .read_byte = xway_read_byte, - } -}; + return err; +} /* - * Try to find the node inside the DT. If it is available attach out - * platform_nand_data + * Remove a NAND device. */ -static int __init xway_register_nand(void) +static int xway_nand_remove(struct platform_device *pdev) { - struct device_node *node; - struct platform_device *pdev; - - node = of_find_compatible_node(NULL, NULL, "lantiq,nand-xway"); - if (!node) - return -ENOENT; - pdev = of_find_device_by_node(node); - if (!pdev) - return -EINVAL; - pdev->dev.platform_data = &xway_nand_data; - of_node_put(node); + struct xway_nand_data *data = platform_get_drvdata(pdev); + + nand_release(nand_to_mtd(&data->chip)); + return 0; } -subsys_initcall(xway_register_nand); +static const struct of_device_id xway_nand_match[] = { + { .compatible = "lantiq,nand-xway" }, + {}, +}; +MODULE_DEVICE_TABLE(of, xway_nand_match); + +static struct platform_driver xway_nand_driver = { + .probe = xway_nand_probe, + .remove = xway_nand_remove, + .driver = { + .name = "lantiq,nand-xway", + .of_match_table = xway_nand_match, + }, +}; + +module_platform_driver(xway_nand_driver); + +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/tests/nandbiterrs.c b/drivers/mtd/tests/nandbiterrs.c index 09a4ccac53a2..f26dec896afa 100644 --- a/drivers/mtd/tests/nandbiterrs.c +++ b/drivers/mtd/tests/nandbiterrs.c @@ -290,7 +290,7 @@ static int overwrite_test(void) while (opno < max_overwrite) { - err = rewrite_page(0); + err = write_page(0); if (err) break; |