diff options
author | Miquel Raynal <miquel.raynal@bootlin.com> | 2021-12-17 15:20:31 +0100 |
---|---|---|
committer | Miquel Raynal <miquel.raynal@bootlin.com> | 2021-12-21 18:06:35 +0100 |
commit | d8701fe890ecbab239086e7053d62d0f08587d7c (patch) | |
tree | 6a2946353767a238220aca6ef0844081cf95e21c /drivers/mtd | |
parent | dt-bindings: mtd: renesas: Describe Renesas R-Car Gen3 & RZ/N1 NAND controller (diff) | |
download | linux-d8701fe890ecbab239086e7053d62d0f08587d7c.tar.xz linux-d8701fe890ecbab239086e7053d62d0f08587d7c.zip |
mtd: rawnand: renesas: Add new NAND controller driver
Introduce Renesas NAND controller driver which currently supports the
following features on R-Car Gen3 and RZ/N1 SoCs:
- All ONFI timing modes
- Different configurations of its internal ECC controller
- On-die (not tested) and software ECC support
- Several chips (not tested)
- Subpage accesses
- DMA and PIO
This controller was originally provided by Evatronix before being bought
by Cadence.
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Tested-by: Ralph Siemsen <ralph.siemsen@linaro.org>
Acked-by: Wolfram Sang <wsa+renesas@sang-engineering.com>
Link: https://lore.kernel.org/linux-mtd/20211217142033.353599-3-miquel.raynal@bootlin.com
Diffstat (limited to 'drivers/mtd')
-rw-r--r-- | drivers/mtd/nand/raw/Kconfig | 7 | ||||
-rw-r--r-- | drivers/mtd/nand/raw/Makefile | 1 | ||||
-rw-r--r-- | drivers/mtd/nand/raw/renesas-nand-controller.c | 1424 |
3 files changed, 1432 insertions, 0 deletions
diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig index d719316467a1..5dcb401aca5a 100644 --- a/drivers/mtd/nand/raw/Kconfig +++ b/drivers/mtd/nand/raw/Kconfig @@ -461,6 +461,13 @@ config MTD_NAND_PL35X Enables support for PrimeCell SMC PL351 and PL353 NAND controller found on Zynq7000. +config MTD_NAND_RENESAS + tristate "Renesas R-Car Gen3 & RZ/N1 NAND controller" + depends on ARCH_RENESAS || COMPILE_TEST + help + Enables support for the NAND controller found on Renesas R-Car + Gen3 and RZ/N1 SoC families. + comment "Misc" config MTD_SM_COMMON diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile index 2f97958c3a33..88a566513c56 100644 --- a/drivers/mtd/nand/raw/Makefile +++ b/drivers/mtd/nand/raw/Makefile @@ -58,6 +58,7 @@ obj-$(CONFIG_MTD_NAND_ARASAN) += arasan-nand-controller.o obj-$(CONFIG_MTD_NAND_INTEL_LGM) += intel-nand-controller.o obj-$(CONFIG_MTD_NAND_ROCKCHIP) += rockchip-nand-controller.o obj-$(CONFIG_MTD_NAND_PL35X) += pl35x-nand-controller.o +obj-$(CONFIG_MTD_NAND_RENESAS) += renesas-nand-controller.o nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o nand-objs += nand_onfi.o diff --git a/drivers/mtd/nand/raw/renesas-nand-controller.c b/drivers/mtd/nand/raw/renesas-nand-controller.c new file mode 100644 index 000000000000..428e08362956 --- /dev/null +++ b/drivers/mtd/nand/raw/renesas-nand-controller.c @@ -0,0 +1,1424 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Evatronix/Renesas R-Car Gen3, RZ/N1D, RZ/N1S, RZ/N1L NAND controller driver + * + * Copyright (C) 2021 Schneider Electric + * Author: Miquel RAYNAL <miquel.raynal@bootlin.com> + */ + +#include <linux/bitfield.h> +#include <linux/clk.h> +#include <linux/dma-mapping.h> +#include <linux/interrupt.h> +#include <linux/iopoll.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/of.h> +#include <linux/platform_device.h> +#include <linux/slab.h> + +#define COMMAND_REG 0x00 +#define COMMAND_SEQ(x) FIELD_PREP(GENMASK(5, 0), (x)) +#define COMMAND_SEQ_10 COMMAND_SEQ(0x2A) +#define COMMAND_SEQ_12 COMMAND_SEQ(0x0C) +#define COMMAND_SEQ_18 COMMAND_SEQ(0x32) +#define COMMAND_SEQ_19 COMMAND_SEQ(0x13) +#define COMMAND_SEQ_GEN_IN COMMAND_SEQ_18 +#define COMMAND_SEQ_GEN_OUT COMMAND_SEQ_19 +#define COMMAND_SEQ_READ_PAGE COMMAND_SEQ_10 +#define COMMAND_SEQ_WRITE_PAGE COMMAND_SEQ_12 +#define COMMAND_INPUT_SEL_AHBS 0 +#define COMMAND_INPUT_SEL_DMA BIT(6) +#define COMMAND_FIFO_SEL 0 +#define COMMAND_DATA_SEL BIT(7) +#define COMMAND_0(x) FIELD_PREP(GENMASK(15, 8), (x)) +#define COMMAND_1(x) FIELD_PREP(GENMASK(23, 16), (x)) +#define COMMAND_2(x) FIELD_PREP(GENMASK(31, 24), (x)) + +#define CONTROL_REG 0x04 +#define CONTROL_CHECK_RB_LINE 0 +#define CONTROL_ECC_BLOCK_SIZE(x) FIELD_PREP(GENMASK(2, 1), (x)) +#define CONTROL_ECC_BLOCK_SIZE_256 CONTROL_ECC_BLOCK_SIZE(0) +#define CONTROL_ECC_BLOCK_SIZE_512 CONTROL_ECC_BLOCK_SIZE(1) +#define CONTROL_ECC_BLOCK_SIZE_1024 CONTROL_ECC_BLOCK_SIZE(2) +#define CONTROL_INT_EN BIT(4) +#define CONTROL_ECC_EN BIT(5) +#define CONTROL_BLOCK_SIZE(x) FIELD_PREP(GENMASK(7, 6), (x)) +#define CONTROL_BLOCK_SIZE_32P CONTROL_BLOCK_SIZE(0) +#define CONTROL_BLOCK_SIZE_64P CONTROL_BLOCK_SIZE(1) +#define CONTROL_BLOCK_SIZE_128P CONTROL_BLOCK_SIZE(2) +#define CONTROL_BLOCK_SIZE_256P CONTROL_BLOCK_SIZE(3) + +#define STATUS_REG 0x8 +#define MEM_RDY(cs, reg) (FIELD_GET(GENMASK(3, 0), (reg)) & BIT(cs)) +#define CTRL_RDY(reg) (FIELD_GET(BIT(8), (reg)) == 0) + +#define ECC_CTRL_REG 0x18 +#define ECC_CTRL_CAP(x) FIELD_PREP(GENMASK(2, 0), (x)) +#define ECC_CTRL_CAP_2B ECC_CTRL_CAP(0) +#define ECC_CTRL_CAP_4B ECC_CTRL_CAP(1) +#define ECC_CTRL_CAP_8B ECC_CTRL_CAP(2) +#define ECC_CTRL_CAP_16B ECC_CTRL_CAP(3) +#define ECC_CTRL_CAP_24B ECC_CTRL_CAP(4) +#define ECC_CTRL_CAP_32B ECC_CTRL_CAP(5) +#define ECC_CTRL_ERR_THRESHOLD(x) FIELD_PREP(GENMASK(13, 8), (x)) + +#define INT_MASK_REG 0x10 +#define INT_STATUS_REG 0x14 +#define INT_CMD_END BIT(1) +#define INT_DMA_END BIT(3) +#define INT_MEM_RDY(cs) FIELD_PREP(GENMASK(11, 8), BIT(cs)) +#define INT_DMA_ENDED BIT(3) +#define MEM_IS_RDY(cs, reg) (FIELD_GET(GENMASK(11, 8), (reg)) & BIT(cs)) +#define DMA_HAS_ENDED(reg) FIELD_GET(BIT(3), (reg)) + +#define ECC_OFFSET_REG 0x1C +#define ECC_OFFSET(x) FIELD_PREP(GENMASK(15, 0), (x)) + +#define ECC_STAT_REG 0x20 +#define ECC_STAT_CORRECTABLE(cs, reg) (FIELD_GET(GENMASK(3, 0), (reg)) & BIT(cs)) +#define ECC_STAT_UNCORRECTABLE(cs, reg) (FIELD_GET(GENMASK(11, 8), (reg)) & BIT(cs)) + +#define ADDR0_COL_REG 0x24 +#define ADDR0_COL(x) FIELD_PREP(GENMASK(15, 0), (x)) + +#define ADDR0_ROW_REG 0x28 +#define ADDR0_ROW(x) FIELD_PREP(GENMASK(23, 0), (x)) + +#define ADDR1_COL_REG 0x2C +#define ADDR1_COL(x) FIELD_PREP(GENMASK(15, 0), (x)) + +#define ADDR1_ROW_REG 0x30 +#define ADDR1_ROW(x) FIELD_PREP(GENMASK(23, 0), (x)) + +#define FIFO_DATA_REG 0x38 + +#define DATA_REG 0x3C + +#define DATA_REG_SIZE_REG 0x40 + +#define DMA_ADDR_LOW_REG 0x64 + +#define DMA_ADDR_HIGH_REG 0x68 + +#define DMA_CNT_REG 0x6C + +#define DMA_CTRL_REG 0x70 +#define DMA_CTRL_INCREMENT_BURST_4 0 +#define DMA_CTRL_REGISTER_MANAGED_MODE 0 +#define DMA_CTRL_START BIT(7) + +#define MEM_CTRL_REG 0x80 +#define MEM_CTRL_CS(cs) FIELD_PREP(GENMASK(1, 0), (cs)) +#define MEM_CTRL_DIS_WP(cs) FIELD_PREP(GENMASK(11, 8), BIT((cs))) + +#define DATA_SIZE_REG 0x84 +#define DATA_SIZE(x) FIELD_PREP(GENMASK(14, 0), (x)) + +#define TIMINGS_ASYN_REG 0x88 +#define TIMINGS_ASYN_TRWP(x) FIELD_PREP(GENMASK(3, 0), max((x), 1U) - 1) +#define TIMINGS_ASYN_TRWH(x) FIELD_PREP(GENMASK(7, 4), max((x), 1U) - 1) + +#define TIM_SEQ0_REG 0x90 +#define TIM_SEQ0_TCCS(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) +#define TIM_SEQ0_TADL(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) +#define TIM_SEQ0_TRHW(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) +#define TIM_SEQ0_TWHR(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) + +#define TIM_SEQ1_REG 0x94 +#define TIM_SEQ1_TWB(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) +#define TIM_SEQ1_TRR(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) +#define TIM_SEQ1_TWW(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) + +#define TIM_GEN_SEQ0_REG 0x98 +#define TIM_GEN_SEQ0_D0(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) +#define TIM_GEN_SEQ0_D1(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) +#define TIM_GEN_SEQ0_D2(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) +#define TIM_GEN_SEQ0_D3(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) + +#define TIM_GEN_SEQ1_REG 0x9c +#define TIM_GEN_SEQ1_D4(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) +#define TIM_GEN_SEQ1_D5(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) +#define TIM_GEN_SEQ1_D6(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) +#define TIM_GEN_SEQ1_D7(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) + +#define TIM_GEN_SEQ2_REG 0xA0 +#define TIM_GEN_SEQ2_D8(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) +#define TIM_GEN_SEQ2_D9(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) +#define TIM_GEN_SEQ2_D10(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) +#define TIM_GEN_SEQ2_D11(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) + +#define FIFO_INIT_REG 0xB4 +#define FIFO_INIT BIT(0) + +#define FIFO_STATE_REG 0xB4 +#define FIFO_STATE_R_EMPTY(reg) FIELD_GET(BIT(0), (reg)) +#define FIFO_STATE_W_FULL(reg) FIELD_GET(BIT(1), (reg)) +#define FIFO_STATE_C_EMPTY(reg) FIELD_GET(BIT(2), (reg)) +#define FIFO_STATE_R_FULL(reg) FIELD_GET(BIT(6), (reg)) +#define FIFO_STATE_W_EMPTY(reg) FIELD_GET(BIT(7), (reg)) + +#define GEN_SEQ_CTRL_REG 0xB8 +#define GEN_SEQ_CMD0_EN BIT(0) +#define GEN_SEQ_CMD1_EN BIT(1) +#define GEN_SEQ_CMD2_EN BIT(2) +#define GEN_SEQ_CMD3_EN BIT(3) +#define GEN_SEQ_COL_A0(x) FIELD_PREP(GENMASK(5, 4), min((x), 2U)) +#define GEN_SEQ_COL_A1(x) FIELD_PREP(GENMASK(7, 6), min((x), 2U)) +#define GEN_SEQ_ROW_A0(x) FIELD_PREP(GENMASK(9, 8), min((x), 3U)) +#define GEN_SEQ_ROW_A1(x) FIELD_PREP(GENMASK(11, 10), min((x), 3U)) +#define GEN_SEQ_DATA_EN BIT(12) +#define GEN_SEQ_DELAY_EN(x) FIELD_PREP(GENMASK(14, 13), (x)) +#define GEN_SEQ_DELAY0_EN GEN_SEQ_DELAY_EN(1) +#define GEN_SEQ_DELAY1_EN GEN_SEQ_DELAY_EN(2) +#define GEN_SEQ_IMD_SEQ BIT(15) +#define GEN_SEQ_COMMAND_3(x) FIELD_PREP(GENMASK(26, 16), (x)) + +#define DMA_TLVL_REG 0x114 +#define DMA_TLVL(x) FIELD_PREP(GENMASK(7, 0), (x)) +#define DMA_TLVL_MAX DMA_TLVL(0xFF) + +#define TIM_GEN_SEQ3_REG 0x134 +#define TIM_GEN_SEQ3_D12(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) + +#define ECC_CNT_REG 0x14C +#define ECC_CNT(cs, reg) FIELD_GET(GENMASK(5, 0), (reg) >> ((cs) * 8)) + +#define RNANDC_CS_NUM 4 + +#define TO_CYCLES64(ps, period_ns) ((unsigned int)DIV_ROUND_UP_ULL(div_u64(ps, 1000), \ + period_ns)) + +struct rnand_chip_sel { + unsigned int cs; +}; + +struct rnand_chip { + struct nand_chip chip; + struct list_head node; + int selected_die; + u32 ctrl; + unsigned int nsels; + u32 control; + u32 ecc_ctrl; + u32 timings_asyn; + u32 tim_seq0; + u32 tim_seq1; + u32 tim_gen_seq0; + u32 tim_gen_seq1; + u32 tim_gen_seq2; + u32 tim_gen_seq3; + struct rnand_chip_sel sels[]; +}; + +struct rnandc { + struct nand_controller controller; + struct device *dev; + void __iomem *regs; + struct clk *hclk; + struct clk *eclk; + unsigned long assigned_cs; + struct list_head chips; + struct nand_chip *selected_chip; + struct completion complete; + bool use_polling; + u8 *buf; + unsigned int buf_sz; +}; + +struct rnandc_op { + u32 command; + u32 addr0_col; + u32 addr0_row; + u32 addr1_col; + u32 addr1_row; + u32 data_size; + u32 ecc_offset; + u32 gen_seq_ctrl; + u8 *buf; + bool read; + unsigned int len; +}; + +static inline struct rnandc *to_rnandc(struct nand_controller *ctrl) +{ + return container_of(ctrl, struct rnandc, controller); +} + +static inline struct rnand_chip *to_rnand(struct nand_chip *chip) +{ + return container_of(chip, struct rnand_chip, chip); +} + +static inline unsigned int to_rnandc_cs(struct rnand_chip *nand) +{ + return nand->sels[nand->selected_die].cs; +} + +static void rnandc_dis_correction(struct rnandc *rnandc) +{ + u32 control; + + control = readl_relaxed(rnandc->regs + CONTROL_REG); + control &= ~CONTROL_ECC_EN; + writel_relaxed(control, rnandc->regs + CONTROL_REG); +} + +static void rnandc_en_correction(struct rnandc *rnandc) +{ + u32 control; + + control = readl_relaxed(rnandc->regs + CONTROL_REG); + control |= CONTROL_ECC_EN; + writel_relaxed(control, rnandc->regs + CONTROL_REG); +} + +static void rnandc_clear_status(struct rnandc *rnandc) +{ + writel_relaxed(0, rnandc->regs + INT_STATUS_REG); + writel_relaxed(0, rnandc->regs + ECC_STAT_REG); + writel_relaxed(0, rnandc->regs + ECC_CNT_REG); +} + +static void rnandc_dis_interrupts(struct rnandc *rnandc) +{ + writel_relaxed(0, rnandc->regs + INT_MASK_REG); +} + +static void rnandc_en_interrupts(struct rnandc *rnandc, u32 val) +{ + if (!rnandc->use_polling) + writel_relaxed(val, rnandc->regs + INT_MASK_REG); +} + +static void rnandc_clear_fifo(struct rnandc *rnandc) +{ + writel_relaxed(FIFO_INIT, rnandc->regs + FIFO_INIT_REG); +} + +static void rnandc_select_target(struct nand_chip *chip, int die_nr) +{ + struct rnand_chip *rnand = to_rnand(chip); + struct rnandc *rnandc = to_rnandc(chip->controller); + unsigned int cs = rnand->sels[die_nr].cs; + + if (chip == rnandc->selected_chip && die_nr == rnand->selected_die) + return; + + rnandc_clear_status(rnandc); + writel_relaxed(MEM_CTRL_CS(cs) | MEM_CTRL_DIS_WP(cs), rnandc->regs + MEM_CTRL_REG); + writel_relaxed(rnand->control, rnandc->regs + CONTROL_REG); + writel_relaxed(rnand->ecc_ctrl, rnandc->regs + ECC_CTRL_REG); + writel_relaxed(rnand->timings_asyn, rnandc->regs + TIMINGS_ASYN_REG); + writel_relaxed(rnand->tim_seq0, rnandc->regs + TIM_SEQ0_REG); + writel_relaxed(rnand->tim_seq1, rnandc->regs + TIM_SEQ1_REG); + writel_relaxed(rnand->tim_gen_seq0, rnandc->regs + TIM_GEN_SEQ0_REG); + writel_relaxed(rnand->tim_gen_seq1, rnandc->regs + TIM_GEN_SEQ1_REG); + writel_relaxed(rnand->tim_gen_seq2, rnandc->regs + TIM_GEN_SEQ2_REG); + writel_relaxed(rnand->tim_gen_seq3, rnandc->regs + TIM_GEN_SEQ3_REG); + + rnandc->selected_chip = chip; + rnand->selected_die = die_nr; +} + +static void rnandc_trigger_op(struct rnandc *rnandc, struct rnandc_op *rop) +{ + writel_relaxed(rop->addr0_col, rnandc->regs + ADDR0_COL_REG); + writel_relaxed(rop->addr0_row, rnandc->regs + ADDR0_ROW_REG); + writel_relaxed(rop->addr1_col, rnandc->regs + ADDR1_COL_REG); + writel_relaxed(rop->addr1_row, rnandc->regs + ADDR1_ROW_REG); + writel_relaxed(rop->ecc_offset, rnandc->regs + ECC_OFFSET_REG); + writel_relaxed(rop->gen_seq_ctrl, rnandc->regs + GEN_SEQ_CTRL_REG); + writel_relaxed(DATA_SIZE(rop->len), rnandc->regs + DATA_SIZE_REG); + writel_relaxed(rop->command, rnandc->regs + COMMAND_REG); +} + +static void rnandc_trigger_dma(struct rnandc *rnandc) +{ + writel_relaxed(DMA_CTRL_INCREMENT_BURST_4 | + DMA_CTRL_REGISTER_MANAGED_MODE | + DMA_CTRL_START, rnandc->regs + DMA_CTRL_REG); +} + +static irqreturn_t rnandc_irq_handler(int irq, void *private) +{ + struct rnandc *rnandc = private; + + rnandc_dis_interrupts(rnandc); + complete(&rnandc->complete); + + return IRQ_HANDLED; +} + +static int rnandc_wait_end_of_op(struct rnandc *rnandc, + struct nand_chip *chip) +{ + struct rnand_chip *rnand = to_rnand(chip); + unsigned int cs = to_rnandc_cs(rnand); + u32 status; + int ret; + + ret = readl_poll_timeout(rnandc->regs + STATUS_REG, status, + MEM_RDY(cs, status) && CTRL_RDY(status), + 1, 100000); + if (ret) + dev_err(rnandc->dev, "Operation timed out, status: 0x%08x\n", + status); + + return ret; +} + +static int rnandc_wait_end_of_io(struct rnandc *rnandc, + struct nand_chip *chip) +{ + int timeout_ms = 1000; + int ret; + + if (rnandc->use_polling) { + struct rnand_chip *rnand = to_rnand(chip); + unsigned int cs = to_rnandc_cs(rnand); + u32 status; + + ret = readl_poll_timeout(rnandc->regs + INT_STATUS_REG, status, + MEM_IS_RDY(cs, status) & + DMA_HAS_ENDED(status), + 0, timeout_ms * 1000); + } else { + ret = wait_for_completion_timeout(&rnandc->complete, + msecs_to_jiffies(timeout_ms)); + if (!ret) + ret = -ETIMEDOUT; + else + ret = 0; + } + + return ret; +} + +static int rnandc_read_page_hw_ecc(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + struct rnandc *rnandc = to_rnandc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + struct rnand_chip *rnand = to_rnand(chip); + unsigned int cs = to_rnandc_cs(rnand); + struct rnandc_op rop = { + .command = COMMAND_INPUT_SEL_DMA | COMMAND_0(NAND_CMD_READ0) | + COMMAND_2(NAND_CMD_READSTART) | COMMAND_FIFO_SEL | + COMMAND_SEQ_READ_PAGE, + .addr0_row = page, + .len = mtd->writesize, + .ecc_offset = ECC_OFFSET(mtd->writesize + 2), + }; + unsigned int max_bitflips = 0; + dma_addr_t dma_addr; + u32 ecc_stat; + int bf, ret, i; + + /* Prepare controller */ + rnandc_select_target(chip, chip->cur_cs); + rnandc_clear_status(rnandc); + reinit_completion(&rnandc->complete); + rnandc_en_interrupts(rnandc, INT_DMA_ENDED); + rnandc_en_correction(rnandc); + + /* Configure DMA */ + dma_addr = dma_map_single(rnandc->dev, rnandc->buf, mtd->writesize, + DMA_FROM_DEVICE); + writel(dma_addr, rnandc->regs + DMA_ADDR_LOW_REG); + writel(mtd->writesize, rnandc->regs + DMA_CNT_REG); + writel(DMA_TLVL_MAX, rnandc->regs + DMA_TLVL_REG); + + rnandc_trigger_op(rnandc, &rop); + rnandc_trigger_dma(rnandc); + + ret = rnandc_wait_end_of_io(rnandc, chip); + dma_unmap_single(rnandc->dev, dma_addr, mtd->writesize, DMA_FROM_DEVICE); + rnandc_dis_correction(rnandc); + if (ret) { + dev_err(rnandc->dev, "Read page operation never ending\n"); + return ret; + } + + ecc_stat = readl_relaxed(rnandc->regs + ECC_STAT_REG); + + if (oob_required || ECC_STAT_UNCORRECTABLE(cs, ecc_stat)) { + ret = nand_change_read_column_op(chip, mtd->writesize, + chip->oob_poi, mtd->oobsize, + false); + if (ret) + return ret; + } + + if (ECC_STAT_UNCORRECTABLE(cs, ecc_stat)) { + for (i = 0; i < chip->ecc.steps; i++) { + unsigned int off = i * chip->ecc.size; + unsigned int eccoff = i * chip->ecc.bytes; + + bf = nand_check_erased_ecc_chunk(rnandc->buf + off, + chip->ecc.size, + chip->oob_poi + 2 + eccoff, + chip->ecc.bytes, + NULL, 0, + chip->ecc.strength); + if (bf < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += bf; + max_bitflips = max_t(unsigned int, max_bitflips, bf); + } + } + } else if (ECC_STAT_CORRECTABLE(cs, ecc_stat)) { + bf = ECC_CNT(cs, readl_relaxed(rnandc->regs + ECC_CNT_REG)); + /* + * The number of bitflips is an approximation given the fact + * that this controller does not provide per-chunk details but + * only gives statistics on the entire page. + */ + mtd->ecc_stats.corrected += bf; + } + + memcpy(buf, rnandc->buf, mtd->writesize); + + return 0; +} + +static int rnandc_read_subpage_hw_ecc(struct nand_chip *chip, u32 req_offset, + u32 req_len, u8 *bufpoi, int page) +{ + struct rnandc *rnandc = to_rnandc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + struct rnand_chip *rnand = to_rnand(chip); + unsigned int cs = to_rnandc_cs(rnand); + unsigned int page_off = round_down(req_offset, chip->ecc.size); + unsigned int real_len = round_up(req_offset + req_len - page_off, + chip->ecc.size); + unsigned int start_chunk = page_off / chip->ecc.size; + unsigned int nchunks = real_len / chip->ecc.size; + unsigned int ecc_off = 2 + (start_chunk * chip->ecc.bytes); + struct rnandc_op rop = { + .command = COMMAND_INPUT_SEL_AHBS | COMMAND_0(NAND_CMD_READ0) | + COMMAND_2(NAND_CMD_READSTART) | COMMAND_FIFO_SEL | + COMMAND_SEQ_READ_PAGE, + .addr0_row = page, + .addr0_col = page_off, + .len = real_len, + .ecc_offset = ECC_OFFSET(mtd->writesize + ecc_off), + }; + unsigned int max_bitflips = 0, i; + u32 ecc_stat; + int bf, ret; + + /* Prepare controller */ + rnandc_select_target(chip, chip->cur_cs); + rnandc_clear_status(rnandc); + rnandc_en_correction(rnandc); + rnandc_trigger_op(rnandc, &rop); + + while (!FIFO_STATE_C_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) + cpu_relax(); + + while (FIFO_STATE_R_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) + cpu_relax(); + + ioread32_rep(rnandc->regs + FIFO_DATA_REG, bufpoi + page_off, + real_len / 4); + + if (!FIFO_STATE_R_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) { + dev_err(rnandc->dev, "Clearing residual data in the read FIFO\n"); + rnandc_clear_fifo(rnandc); + } + + ret = rnandc_wait_end_of_op(rnandc, chip); + rnandc_dis_correction(rnandc); + if (ret) { + dev_err(rnandc->dev, "Read subpage operation never ending\n"); + return ret; + } + + ecc_stat = readl_relaxed(rnandc->regs + ECC_STAT_REG); + + if (ECC_STAT_UNCORRECTABLE(cs, ecc_stat)) { + ret = nand_change_read_column_op(chip, mtd->writesize, + chip->oob_poi, mtd->oobsize, + false); + if (ret) + return ret; + + for (i = start_chunk; i < nchunks; i++) { + unsigned int dataoff = i * chip->ecc.size; + unsigned int eccoff = 2 + (i * chip->ecc.bytes); + + bf = nand_check_erased_ecc_chunk(bufpoi + dataoff, + chip->ecc.size, + chip->oob_poi + eccoff, + chip->ecc.bytes, + NULL, 0, + chip->ecc.strength); + if (bf < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += bf; + max_bitflips = max_t(unsigned int, max_bitflips, bf); + } + } + } else if (ECC_STAT_CORRECTABLE(cs, ecc_stat)) { + bf = ECC_CNT(cs, readl_relaxed(rnandc->regs + ECC_CNT_REG)); + /* + * The number of bitflips is an approximation given the fact + * that this controller does not provide per-chunk details but + * only gives statistics on the entire page. + */ + mtd->ecc_stats.corrected += bf; + } + + return 0; +} + +static int rnandc_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf, + int oob_required, int page) +{ + struct rnandc *rnandc = to_rnandc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + struct rnand_chip *rnand = to_rnand(chip); + unsigned int cs = to_rnandc_cs(rnand); + struct rnandc_op rop = { + .command = COMMAND_INPUT_SEL_DMA | COMMAND_0(NAND_CMD_SEQIN) | + COMMAND_1(NAND_CMD_PAGEPROG) | COMMAND_FIFO_SEL | + COMMAND_SEQ_WRITE_PAGE, + .addr0_row = page, + .len = mtd->writesize, + .ecc_offset = ECC_OFFSET(mtd->writesize + 2), + }; + dma_addr_t dma_addr; + int ret; + + memcpy(rnandc->buf, buf, mtd->writesize); + + /* Prepare controller */ + rnandc_select_target(chip, chip->cur_cs); + rnandc_clear_status(rnandc); + reinit_completion(&rnandc->complete); + rnandc_en_interrupts(rnandc, INT_MEM_RDY(cs)); + rnandc_en_correction(rnandc); + + /* Configure DMA */ + dma_addr = dma_map_single(rnandc->dev, (void *)rnandc->buf, mtd->writesize, + DMA_TO_DEVICE); + writel(dma_addr, rnandc->regs + DMA_ADDR_LOW_REG); + writel(mtd->writesize, rnandc->regs + DMA_CNT_REG); + writel(DMA_TLVL_MAX, rnandc->regs + DMA_TLVL_REG); + + rnandc_trigger_op(rnandc, &rop); + rnandc_trigger_dma(rnandc); + + ret = rnandc_wait_end_of_io(rnandc, chip); + dma_unmap_single(rnandc->dev, dma_addr, mtd->writesize, DMA_TO_DEVICE); + rnandc_dis_correction(rnandc); + if (ret) { + dev_err(rnandc->dev, "Write page operation never ending\n"); + return ret; + } + + if (!oob_required) + return 0; + + return nand_change_write_column_op(chip, mtd->writesize, chip->oob_poi, + mtd->oobsize, false); +} + +static int rnandc_write_subpage_hw_ecc(struct nand_chip *chip, u32 req_offset, + u32 req_len, const u8 *bufpoi, + int oob_required, int page) +{ + struct rnandc *rnandc = to_rnandc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned int page_off = round_down(req_offset, chip->ecc.size); + unsigned int real_len = round_up(req_offset + req_len - page_off, + chip->ecc.size); + unsigned int start_chunk = page_off / chip->ecc.size; + unsigned int ecc_off = 2 + (start_chunk * chip->ecc.bytes); + struct rnandc_op rop = { + .command = COMMAND_INPUT_SEL_AHBS | COMMAND_0(NAND_CMD_SEQIN) | + COMMAND_1(NAND_CMD_PAGEPROG) | COMMAND_FIFO_SEL | + COMMAND_SEQ_WRITE_PAGE, + .addr0_row = page, + .addr0_col = page_off, + .len = real_len, + .ecc_offset = ECC_OFFSET(mtd->writesize + ecc_off), + }; + int ret; + + /* Prepare controller */ + rnandc_select_target(chip, chip->cur_cs); + rnandc_clear_status(rnandc); + rnandc_en_correction(rnandc); + rnandc_trigger_op(rnandc, &rop); + + while (FIFO_STATE_W_FULL(readl(rnandc->regs + FIFO_STATE_REG))) + cpu_relax(); + + iowrite32_rep(rnandc->regs + FIFO_DATA_REG, bufpoi + page_off, + real_len / 4); + + while (!FIFO_STATE_W_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) + cpu_relax(); + + ret = rnandc_wait_end_of_op(rnandc, chip); + rnandc_dis_correction(rnandc); + if (ret) { + dev_err(rnandc->dev, "Write subpage operation never ending\n"); + return ret; + } + + return 0; +} + +/* + * This controller is simple enough and thus does not need to use the parser + * provided by the core, instead, handle every situation here. + */ +static int rnandc_exec_op(struct nand_chip *chip, + const struct nand_operation *op, bool check_only) +{ + struct rnandc *rnandc = to_rnandc(chip->controller); + const struct nand_op_instr *instr = NULL; + struct rnandc_op rop = { + .command = COMMAND_INPUT_SEL_AHBS, + .gen_seq_ctrl = GEN_SEQ_IMD_SEQ, + }; + unsigned int cmd_phase = 0, addr_phase = 0, data_phase = 0, + delay_phase = 0, delays = 0; + unsigned int op_id, col_addrs, row_addrs, naddrs, remainder, words, i; + const u8 *addrs; + u32 last_bytes; + int ret; + + if (!check_only) + rnandc_select_target(chip, op->cs); + + for (op_id = 0; op_id < op->ninstrs; op_id++) { + instr = &op->instrs[op_id]; + + nand_op_trace(" ", instr); + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + switch (cmd_phase++) { + case 0: + rop.command |= COMMAND_0(instr->ctx.cmd.opcode); + rop.gen_seq_ctrl |= GEN_SEQ_CMD0_EN; + break; + case 1: + rop.gen_seq_ctrl |= GEN_SEQ_COMMAND_3(instr->ctx.cmd.opcode); + rop.gen_seq_ctrl |= GEN_SEQ_CMD3_EN; + if (addr_phase == 0) + addr_phase = 1; + break; + case 2: + rop.command |= COMMAND_2(instr->ctx.cmd.opcode); + rop.gen_seq_ctrl |= GEN_SEQ_CMD2_EN; + if (addr_phase <= 1) + addr_phase = 2; + break; + case 3: + rop.command |= COMMAND_1(instr->ctx.cmd.opcode); + rop.gen_seq_ctrl |= GEN_SEQ_CMD1_EN; + if (addr_phase <= 1) + addr_phase = 2; + if (delay_phase == 0) + delay_phase = 1; + if (data_phase == 0) + data_phase = 1; + break; + default: + return -EOPNOTSUPP; + } + break; + + case NAND_OP_ADDR_INSTR: + addrs = instr->ctx.addr.addrs; + naddrs = instr->ctx.addr.naddrs; + if (naddrs > 5) + return -EOPNOTSUPP; + + col_addrs = min(2U, naddrs); + row_addrs = naddrs > 2 ? naddrs - col_addrs : 0; + + switch (addr_phase++) { + case 0: + for (i = 0; i < col_addrs; i++) + rop.addr0_col |= addrs[i] << (i * 8); + rop.gen_seq_ctrl |= GEN_SEQ_COL_A0(col_addrs); + + for (i = 0; i < row_addrs; i++) + rop.addr0_row |= addrs[2 + i] << (i * 8); + rop.gen_seq_ctrl |= GEN_SEQ_ROW_A0(row_addrs); + + if (cmd_phase == 0) + cmd_phase = 1; + break; + case 1: + for (i = 0; i < col_addrs; i++) + rop.addr1_col |= addrs[i] << (i * 8); + rop.gen_seq_ctrl |= GEN_SEQ_COL_A1(col_addrs); + + for (i = 0; i < row_addrs; i++) + rop.addr1_row |= addrs[2 + i] << (i * 8); + rop.gen_seq_ctrl |= GEN_SEQ_ROW_A1(row_addrs); + + if (cmd_phase <= 1) + cmd_phase = 2; + break; + default: + return -EOPNOTSUPP; + } + break; + + case NAND_OP_DATA_IN_INSTR: + rop.read = true; + fallthrough; + case NAND_OP_DATA_OUT_INSTR: + rop.gen_seq_ctrl |= GEN_SEQ_DATA_EN; + rop.buf = instr->ctx.data.buf.in; + rop.len = instr->ctx.data.len; + rop.command |= COMMAND_FIFO_SEL; + + switch (data_phase++) { + case 0: + if (cmd_phase <= 2) + cmd_phase = 3; + if (addr_phase <= 1) + addr_phase = 2; + if (delay_phase == 0) + delay_phase = 1; + break; + default: + return -EOPNOTSUPP; + } + break; + + case NAND_OP_WAITRDY_INSTR: + switch (delay_phase++) { + case 0: + rop.gen_seq_ctrl |= GEN_SEQ_DELAY0_EN; + + if (cmd_phase <= 2) + cmd_phase = 3; + break; + case 1: + rop.gen_seq_ctrl |= GEN_SEQ_DELAY1_EN; + + if (cmd_phase <= 3) + cmd_phase = 4; + if (data_phase == 0) + data_phase = 1; + break; + default: + return -EOPNOTSUPP; + } + break; + } + } + + /* + * Sequence 19 is generic and dedicated to write operations. + * Sequence 18 is also generic and works for all other operations. + */ + if (rop.buf && !rop.read) + rop.command |= COMMAND_SEQ_GEN_OUT; + else + rop.command |= COMMAND_SEQ_GEN_IN; + + if (delays > 1) { + dev_err(rnandc->dev, "Cannot handle more than one wait delay\n"); + return -EOPNOTSUPP; + } + + if (check_only) + return 0; + + rnandc_trigger_op(rnandc, &rop); + + words = rop.len / sizeof(u32); + remainder = rop.len % sizeof(u32); + if (rop.buf && rop.read) { + while (!FIFO_STATE_C_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) + cpu_relax(); + + while (FIFO_STATE_R_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) + cpu_relax(); + + ioread32_rep(rnandc->regs + FIFO_DATA_REG, rop.buf, words); + if (remainder) { + last_bytes = readl_relaxed(rnandc->regs + FIFO_DATA_REG); + memcpy(rop.buf + (words * sizeof(u32)), &last_bytes, + remainder); + } + + if (!FIFO_STATE_R_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) { + dev_warn(rnandc->dev, + "Clearing residual data in the read FIFO\n"); + rnandc_clear_fifo(rnandc); + } + } else if (rop.len && !rop.read) { + while (FIFO_STATE_W_FULL(readl(rnandc->regs + FIFO_STATE_REG))) + cpu_relax(); + + iowrite32_rep(rnandc->regs + FIFO_DATA_REG, rop.buf, + DIV_ROUND_UP(rop.len, 4)); + + if (remainder) { + last_bytes = 0; + memcpy(&last_bytes, rop.buf + (words * sizeof(u32)), remainder); + writel_relaxed(last_bytes, rnandc->regs + FIFO_DATA_REG); + } + + while (!FIFO_STATE_W_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) + cpu_relax(); + } + + ret = rnandc_wait_end_of_op(rnandc, chip); + if (ret) + return ret; + + return 0; +} + +static int rnandc_setup_interface(struct nand_chip *chip, int chipnr, + const struct nand_interface_config *conf) +{ + struct rnand_chip *rnand = to_rnand(chip); + struct rnandc *rnandc = to_rnandc(chip->controller); + unsigned int period_ns = 1000000000 / clk_get_rate(rnandc->eclk); + const struct nand_sdr_timings *sdr; + unsigned int cyc, cle, ale, bef_dly, ca_to_data; + + sdr = nand_get_sdr_timings(conf); + if (IS_ERR(sdr)) + return PTR_ERR(sdr); + + if (sdr->tRP_min != sdr->tWP_min || sdr->tREH_min != sdr->tWH_min) { + dev_err(rnandc->dev, "Read and write hold times must be identical\n"); + return -EINVAL; + } + + if (chipnr < 0) + return 0; + + rnand->timings_asyn = + TIMINGS_ASYN_TRWP(TO_CYCLES64(sdr->tRP_min, period_ns)) | + TIMINGS_ASYN_TRWH(TO_CYCLES64(sdr->tREH_min, period_ns)); + rnand->tim_seq0 = + TIM_SEQ0_TCCS(TO_CYCLES64(sdr->tCCS_min, period_ns)) | + TIM_SEQ0_TADL(TO_CYCLES64(sdr->tADL_min, period_ns)) | + TIM_SEQ0_TRHW(TO_CYCLES64(sdr->tRHW_min, period_ns)) | + TIM_SEQ0_TWHR(TO_CYCLES64(sdr->tWHR_min, period_ns)); + rnand->tim_seq1 = + TIM_SEQ1_TWB(TO_CYCLES64(sdr->tWB_max, period_ns)) | + TIM_SEQ1_TRR(TO_CYCLES64(sdr->tRR_min, period_ns)) | + TIM_SEQ1_TWW(TO_CYCLES64(sdr->tWW_min, period_ns)); + + cyc = sdr->tDS_min + sdr->tDH_min; + cle = sdr->tCLH_min + sdr->tCLS_min; + ale = sdr->tALH_min + sdr->tALS_min; + bef_dly = sdr->tWB_max - sdr->tDH_min; + ca_to_data = sdr->tWHR_min + sdr->tREA_max - sdr->tDH_min; + + /* + * D0 = CMD -> ADDR = tCLH + tCLS - 1 cycle + * D1 = CMD -> CMD = tCLH + tCLS - 1 cycle + * D2 = CMD -> DLY = tWB - tDH + * D3 = CMD -> DATA = tWHR + tREA - tDH + */ + rnand->tim_gen_seq0 = + TIM_GEN_SEQ0_D0(TO_CYCLES64(cle - cyc, period_ns)) | + TIM_GEN_SEQ0_D1(TO_CYCLES64(cle - cyc, period_ns)) | + TIM_GEN_SEQ0_D2(TO_CYCLES64(bef_dly, period_ns)) | + TIM_GEN_SEQ0_D3(TO_CYCLES64(ca_to_data, period_ns)); + + /* + * D4 = ADDR -> CMD = tALH + tALS - 1 cyle + * D5 = ADDR -> ADDR = tALH + tALS - 1 cyle + * D6 = ADDR -> DLY = tWB - tDH + * D7 = ADDR -> DATA = tWHR + tREA - tDH + */ + rnand->tim_gen_seq1 = + TIM_GEN_SEQ1_D4(TO_CYCLES64(ale - cyc, period_ns)) | + TIM_GEN_SEQ1_D5(TO_CYCLES64(ale - cyc, period_ns)) | + TIM_GEN_SEQ1_D6(TO_CYCLES64(bef_dly, period_ns)) | + TIM_GEN_SEQ1_D7(TO_CYCLES64(ca_to_data, period_ns)); + + /* + * D8 = DLY -> DATA = tRR + tREA + * D9 = DLY -> CMD = tRR + * D10 = DATA -> CMD = tCLH + tCLS - 1 cycle + * D11 = DATA -> DLY = tWB - tDH + */ + rnand->tim_gen_seq2 = + TIM_GEN_SEQ2_D8(TO_CYCLES64(sdr->tRR_min + sdr->tREA_max, period_ns)) | + TIM_GEN_SEQ2_D9(TO_CYCLES64(sdr->tRR_min, period_ns)) | + TIM_GEN_SEQ2_D10(TO_CYCLES64(cle - cyc, period_ns)) | + TIM_GEN_SEQ2_D11(TO_CYCLES64(bef_dly, period_ns)); + + /* D12 = DATA -> END = tCLH - tDH */ + rnand->tim_gen_seq3 = + TIM_GEN_SEQ3_D12(TO_CYCLES64(sdr->tCLH_min - sdr->tDH_min, period_ns)); + + return 0; +} + +static int rnandc_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + unsigned int eccbytes = round_up(chip->ecc.bytes, 4) * chip->ecc.steps; + + if (section) + return -ERANGE; + + oobregion->offset = 2; + oobregion->length = eccbytes; + + return 0; +} + +static int rnandc_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + unsigned int eccbytes = round_up(chip->ecc.bytes, 4) * chip->ecc.steps; + + if (section) + return -ERANGE; + + oobregion->offset = 2 + eccbytes; + oobregion->length = mtd->oobsize - oobregion->offset; + + return 0; +} + +static const struct mtd_ooblayout_ops rnandc_ooblayout_ops = { + .ecc = rnandc_ooblayout_ecc, + .free = rnandc_ooblayout_free, +}; + +static int rnandc_hw_ecc_controller_init(struct nand_chip *chip) +{ + struct rnand_chip *rnand = to_rnand(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + struct rnandc *rnandc = to_rnandc(chip->controller); + + if (mtd->writesize > SZ_16K) { + dev_err(rnandc->dev, "Unsupported page size\n"); + return -EINVAL; + } + + switch (chip->ecc.size) { + case SZ_256: + rnand->control |= CONTROL_ECC_BLOCK_SIZE_256; + break; + case SZ_512: + rnand->control |= CONTROL_ECC_BLOCK_SIZE_512; + break; + case SZ_1K: + rnand->control |= CONTROL_ECC_BLOCK_SIZE_1024; + break; + default: + dev_err(rnandc->dev, "Unsupported ECC chunk size\n"); + return -EINVAL; + } + + switch (chip->ecc.strength) { + case 2: + chip->ecc.bytes = 4; + rnand->ecc_ctrl |= ECC_CTRL_CAP_2B; + break; + case 4: + chip->ecc.bytes = 7; + rnand->ecc_ctrl |= ECC_CTRL_CAP_4B; + break; + case 8: + chip->ecc.bytes = 14; + rnand->ecc_ctrl |= ECC_CTRL_CAP_8B; + break; + case 16: + chip->ecc.bytes = 28; + rnand->ecc_ctrl |= ECC_CTRL_CAP_16B; + break; + case 24: + chip->ecc.bytes = 42; + rnand->ecc_ctrl |= ECC_CTRL_CAP_24B; + break; + case 32: + chip->ecc.bytes = 56; + rnand->ecc_ctrl |= ECC_CTRL_CAP_32B; + break; + default: + dev_err(rnandc->dev, "Unsupported ECC strength\n"); + return -EINVAL; + } + + rnand->ecc_ctrl |= ECC_CTRL_ERR_THRESHOLD(chip->ecc.strength); + + mtd_set_ooblayout(mtd, &rnandc_ooblayout_ops); + chip->ecc.steps = mtd->writesize / chip->ecc.size; + chip->ecc.read_page = rnandc_read_page_hw_ecc; + chip->ecc.read_subpage = rnandc_read_subpage_hw_ecc; + chip->ecc.write_page = rnandc_write_page_hw_ecc; + chip->ecc.write_subpage = rnandc_write_subpage_hw_ecc; + + return 0; +} + +static int rnandc_ecc_init(struct nand_chip *chip) +{ + struct nand_ecc_ctrl *ecc = &chip->ecc; + const struct nand_ecc_props *requirements = + nanddev_get_ecc_requirements(&chip->base); + struct rnandc *rnandc = to_rnandc(chip->controller); + int ret; + + if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE && + (!ecc->size || !ecc->strength)) { + if (requirements->step_size && requirements->strength) { + ecc->size = requirements->step_size; + ecc->strength = requirements->strength; + } else { + dev_err(rnandc->dev, "No minimum ECC strength\n"); + return -EINVAL; + } + } + + switch (ecc->engine_type) { + case NAND_ECC_ENGINE_TYPE_ON_HOST: + ret = rnandc_hw_ecc_controller_init(chip); + if (ret) + return ret; + break; + case NAND_ECC_ENGINE_TYPE_NONE: + case NAND_ECC_ENGINE_TYPE_SOFT: + case NAND_ECC_ENGINE_TYPE_ON_DIE: + break; + default: + return -EINVAL; + } + + return 0; +} + +static int rnandc_attach_chip(struct nand_chip *chip) +{ + struct rnand_chip *rnand = to_rnand(chip); + struct rnandc *rnandc = to_rnandc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_memory_organization *memorg = nanddev_get_memorg(&chip->base); + int ret; + + /* Do not store BBT bits in the OOB section as it is not protected */ + if (chip->bbt_options & NAND_BBT_USE_FLASH) + chip->bbt_options |= NAND_BBT_NO_OOB; + + if (mtd->writesize <= 512) { + dev_err(rnandc->dev, "Small page devices not supported\n"); + return -EINVAL; + } + + rnand->control |= CONTROL_CHECK_RB_LINE | CONTROL_INT_EN; + + switch (memorg->pages_per_eraseblock) { + case 32: + rnand->control |= CONTROL_BLOCK_SIZE_32P; + break; + case 64: + rnand->control |= CONTROL_BLOCK_SIZE_64P; + break; + case 128: + rnand->control |= CONTROL_BLOCK_SIZE_128P; + break; + case 256: + rnand->control |= CONTROL_BLOCK_SIZE_256P; + break; + default: + dev_err(rnandc->dev, "Unsupported memory organization\n"); + return -EINVAL; + } + + chip->options |= NAND_SUBPAGE_READ; + + ret = rnandc_ecc_init(chip); + if (ret) { + dev_err(rnandc->dev, "ECC initialization failed (%d)\n", ret); + return ret; + } + + /* Force an update of the configuration registers */ + rnand->selected_die = -1; + + return 0; +} + +static const struct nand_controller_ops rnandc_ops = { + .attach_chip = rnandc_attach_chip, + .exec_op = rnandc_exec_op, + .setup_interface = rnandc_setup_interface, +}; + +static int rnandc_alloc_dma_buf(struct rnandc *rnandc, + struct mtd_info *new_mtd) +{ + unsigned int max_len = new_mtd->writesize + new_mtd->oobsize; + struct rnand_chip *entry, *temp; + struct nand_chip *chip; + struct mtd_info *mtd; + + list_for_each_entry_safe(entry, temp, &rnandc->chips, node) { + chip = &entry->chip; + mtd = nand_to_mtd(chip); + max_len = max(max_len, mtd->writesize + mtd->oobsize); + } + + if (rnandc->buf && rnandc->buf_sz < max_len) { + devm_kfree(rnandc->dev, rnandc->buf); + rnandc->buf = NULL; + } + + if (!rnandc->buf) { + rnandc->buf_sz = max_len; + rnandc->buf = devm_kmalloc(rnandc->dev, max_len, + GFP_KERNEL | GFP_DMA); + if (!rnandc->buf) + return -ENOMEM; + } + + return 0; +} + +static int rnandc_chip_init(struct rnandc *rnandc, struct device_node *np) +{ + struct rnand_chip *rnand; + struct mtd_info *mtd; + struct nand_chip *chip; + int nsels, ret, i; + u32 cs; + + nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); + if (nsels <= 0) { + ret = (nsels < 0) ? nsels : -EINVAL; + dev_err(rnandc->dev, "Invalid reg property (%d)\n", ret); + return ret; + } + + /* Alloc the driver's NAND chip structure */ + rnand = devm_kzalloc(rnandc->dev, struct_size(rnand, sels, nsels), + GFP_KERNEL); + if (!rnand) + return -ENOMEM; + + rnand->nsels = nsels; + rnand->selected_die = -1; + + for (i = 0; i < nsels; i++) { + ret = of_property_read_u32_index(np, "reg", i, &cs); + if (ret) { + dev_err(rnandc->dev, "Incomplete reg property (%d)\n", ret); + return ret; + } + + if (cs >= RNANDC_CS_NUM) { + dev_err(rnandc->dev, "Invalid reg property (%d)\n", cs); + return -EINVAL; + } + + if (test_and_set_bit(cs, &rnandc->assigned_cs)) { + dev_err(rnandc->dev, "CS %d already assigned\n", cs); + return -EINVAL; + } + + /* + * No need to check for RB or WP properties, there is a 1:1 + * mandatory mapping with the CS. + */ + rnand->sels[i].cs = cs; + } + + chip = &rnand->chip; + chip->controller = &rnandc->controller; + nand_set_flash_node(chip, np); + + mtd = nand_to_mtd(chip); + mtd->dev.parent = rnandc->dev; + if (!mtd->name) { + dev_err(rnandc->dev, "Missing MTD label\n"); + return -EINVAL; + } + + ret = nand_scan(chip, rnand->nsels); + if (ret) { + dev_err(rnandc->dev, "Failed to scan the NAND chip (%d)\n", ret); + return ret; + } + + ret = rnandc_alloc_dma_buf(rnandc, mtd); + if (ret) + goto cleanup_nand; + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(rnandc->dev, "Failed to register MTD device (%d)\n", ret); + goto cleanup_nand; + } + + list_add_tail(&rnand->node, &rnandc->chips); + + return 0; + +cleanup_nand: + nand_cleanup(chip); + + return ret; +} + +static void rnandc_chips_cleanup(struct rnandc *rnandc) +{ + struct rnand_chip *entry, *temp; + struct nand_chip *chip; + int ret; + + list_for_each_entry_safe(entry, temp, &rnandc->chips, node) { + chip = &entry->chip; + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + list_del(&entry->node); + } +} + +static int rnandc_chips_init(struct rnandc *rnandc) +{ + struct device_node *np; + int ret; + + for_each_child_of_node(rnandc->dev->of_node, np) { + ret = rnandc_chip_init(rnandc, np); + if (ret) { + of_node_put(np); + goto cleanup_chips; + } + } + + return 0; + +cleanup_chips: + rnandc_chips_cleanup(rnandc); + + return ret; +} + +static int rnandc_probe(struct platform_device *pdev) +{ + struct rnandc *rnandc; + int irq, ret; + + rnandc = devm_kzalloc(&pdev->dev, sizeof(*rnandc), GFP_KERNEL); + if (!rnandc) + return -ENOMEM; + + rnandc->dev = &pdev->dev; + nand_controller_init(&rnandc->controller); + rnandc->controller.ops = &rnandc_ops; + INIT_LIST_HEAD(&rnandc->chips); + init_completion(&rnandc->complete); + + rnandc->regs = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(rnandc->regs)) + return PTR_ERR(rnandc->regs); + + /* APB clock */ + rnandc->hclk = devm_clk_get(&pdev->dev, "hclk"); + if (IS_ERR(rnandc->hclk)) + return PTR_ERR(rnandc->hclk); + + /* External NAND bus clock */ + rnandc->eclk = devm_clk_get(&pdev->dev, "eclk"); + if (IS_ERR(rnandc->eclk)) + return PTR_ERR(rnandc->eclk); + + ret = clk_prepare_enable(rnandc->hclk); + if (ret) + return ret; + + ret = clk_prepare_enable(rnandc->eclk); + if (ret) + goto disable_hclk; + + rnandc_dis_interrupts(rnandc); + irq = platform_get_irq_optional(pdev, 0); + if (irq == -EPROBE_DEFER) { + ret = irq; + goto disable_eclk; + } else if (irq < 0) { + dev_info(&pdev->dev, "No IRQ found, fallback to polling\n"); + rnandc->use_polling = true; + } else { + ret = devm_request_irq(&pdev->dev, irq, rnandc_irq_handler, 0, + "renesas-nand-controller", rnandc); + if (ret < 0) + goto disable_eclk; + } + + ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); + if (ret) + goto disable_eclk; + + rnandc_clear_fifo(rnandc); + + platform_set_drvdata(pdev, rnandc); + + ret = rnandc_chips_init(rnandc); + if (ret) + goto disable_eclk; + + return 0; + +disable_eclk: + clk_disable_unprepare(rnandc->eclk); +disable_hclk: + clk_disable_unprepare(rnandc->hclk); + + return ret; +} + +static int rnandc_remove(struct platform_device *pdev) +{ + struct rnandc *rnandc = platform_get_drvdata(pdev); + + rnandc_chips_cleanup(rnandc); + + clk_disable_unprepare(rnandc->eclk); + clk_disable_unprepare(rnandc->hclk); + + return 0; +} + +static const struct of_device_id rnandc_id_table[] = { + { .compatible = "renesas,rcar-gen3-nandc" }, + { .compatible = "renesas,rzn1-nandc" }, + {} /* sentinel */ +}; +MODULE_DEVICE_TABLE(of, rnandc_id_table); + +static struct platform_driver rnandc_driver = { + .driver = { + .name = "renesas-nandc", + .of_match_table = of_match_ptr(rnandc_id_table), + }, + .probe = rnandc_probe, + .remove = rnandc_remove, +}; +module_platform_driver(rnandc_driver); + +MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>"); +MODULE_DESCRIPTION("Renesas R-Car Gen3 & RZ/N1 NAND controller driver"); +MODULE_LICENSE("GPL v2"); |