diff options
author | Ben Hutchings <bhutchings@solarflare.com> | 2008-05-07 13:51:12 +0200 |
---|---|---|
committer | Jeff Garzik <jgarzik@redhat.com> | 2008-05-13 07:31:40 +0200 |
commit | b9b39b625cf57cd0ea998717598b68963cbec3cb (patch) | |
tree | 19f358d15b6c75d660cf1ea369559f58ad9f0c1e /drivers/net/sfc/tx.c | |
parent | ehea: Add DLPAR memory remove support (diff) | |
download | linux-b9b39b625cf57cd0ea998717598b68963cbec3cb.tar.xz linux-b9b39b625cf57cd0ea998717598b68963cbec3cb.zip |
[netdrvr] sfc: Add TSO support
The SFC4000 controller does not have hardware support for TSO, and the
core GSO code incurs a high cost in allocating and freeing skbs. This
TSO implementation uses lightweight packet header structures and is
substantially faster.
Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
Diffstat (limited to 'drivers/net/sfc/tx.c')
-rw-r--r-- | drivers/net/sfc/tx.c | 664 |
1 files changed, 664 insertions, 0 deletions
diff --git a/drivers/net/sfc/tx.c b/drivers/net/sfc/tx.c index fbb866b2185e..9b436f5b4888 100644 --- a/drivers/net/sfc/tx.c +++ b/drivers/net/sfc/tx.c @@ -82,6 +82,46 @@ static inline void efx_dequeue_buffer(struct efx_tx_queue *tx_queue, } } +/** + * struct efx_tso_header - a DMA mapped buffer for packet headers + * @next: Linked list of free ones. + * The list is protected by the TX queue lock. + * @dma_unmap_len: Length to unmap for an oversize buffer, or 0. + * @dma_addr: The DMA address of the header below. + * + * This controls the memory used for a TSO header. Use TSOH_DATA() + * to find the packet header data. Use TSOH_SIZE() to calculate the + * total size required for a given packet header length. TSO headers + * in the free list are exactly %TSOH_STD_SIZE bytes in size. + */ +struct efx_tso_header { + union { + struct efx_tso_header *next; + size_t unmap_len; + }; + dma_addr_t dma_addr; +}; + +static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, + const struct sk_buff *skb); +static void efx_fini_tso(struct efx_tx_queue *tx_queue); +static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, + struct efx_tso_header *tsoh); + +static inline void efx_tsoh_free(struct efx_tx_queue *tx_queue, + struct efx_tx_buffer *buffer) +{ + if (buffer->tsoh) { + if (likely(!buffer->tsoh->unmap_len)) { + buffer->tsoh->next = tx_queue->tso_headers_free; + tx_queue->tso_headers_free = buffer->tsoh; + } else { + efx_tsoh_heap_free(tx_queue, buffer->tsoh); + } + buffer->tsoh = NULL; + } +} + /* * Add a socket buffer to a TX queue @@ -114,6 +154,9 @@ static inline int efx_enqueue_skb(struct efx_tx_queue *tx_queue, EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count); + if (skb_shinfo((struct sk_buff *)skb)->gso_size) + return efx_enqueue_skb_tso(tx_queue, skb); + /* Get size of the initial fragment */ len = skb_headlen(skb); @@ -166,6 +209,8 @@ static inline int efx_enqueue_skb(struct efx_tx_queue *tx_queue, insert_ptr = (tx_queue->insert_count & efx->type->txd_ring_mask); buffer = &tx_queue->buffer[insert_ptr]; + efx_tsoh_free(tx_queue, buffer); + EFX_BUG_ON_PARANOID(buffer->tsoh); EFX_BUG_ON_PARANOID(buffer->skb); EFX_BUG_ON_PARANOID(buffer->len); EFX_BUG_ON_PARANOID(buffer->continuation != 1); @@ -432,6 +477,9 @@ void efx_fini_tx_queue(struct efx_tx_queue *tx_queue) efx_release_tx_buffers(tx_queue); + /* Free up TSO header cache */ + efx_fini_tso(tx_queue); + /* Release queue's stop on port, if any */ if (tx_queue->stopped) { tx_queue->stopped = 0; @@ -450,3 +498,619 @@ void efx_remove_tx_queue(struct efx_tx_queue *tx_queue) } +/* Efx TCP segmentation acceleration. + * + * Why? Because by doing it here in the driver we can go significantly + * faster than the GSO. + * + * Requires TX checksum offload support. + */ + +/* Number of bytes inserted at the start of a TSO header buffer, + * similar to NET_IP_ALIGN. + */ +#if defined(__i386__) || defined(__x86_64__) +#define TSOH_OFFSET 0 +#else +#define TSOH_OFFSET NET_IP_ALIGN +#endif + +#define TSOH_BUFFER(tsoh) ((u8 *)(tsoh + 1) + TSOH_OFFSET) + +/* Total size of struct efx_tso_header, buffer and padding */ +#define TSOH_SIZE(hdr_len) \ + (sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len) + +/* Size of blocks on free list. Larger blocks must be allocated from + * the heap. + */ +#define TSOH_STD_SIZE 128 + +#define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2)) +#define ETH_HDR_LEN(skb) (skb_network_header(skb) - (skb)->data) +#define SKB_TCP_OFF(skb) PTR_DIFF(tcp_hdr(skb), (skb)->data) +#define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data) + +/** + * struct tso_state - TSO state for an SKB + * @remaining_len: Bytes of data we've yet to segment + * @seqnum: Current sequence number + * @packet_space: Remaining space in current packet + * @ifc: Input fragment cursor. + * Where we are in the current fragment of the incoming SKB. These + * values get updated in place when we split a fragment over + * multiple packets. + * @p: Parameters. + * These values are set once at the start of the TSO send and do + * not get changed as the routine progresses. + * + * The state used during segmentation. It is put into this data structure + * just to make it easy to pass into inline functions. + */ +struct tso_state { + unsigned remaining_len; + unsigned seqnum; + unsigned packet_space; + + struct { + /* DMA address of current position */ + dma_addr_t dma_addr; + /* Remaining length */ + unsigned int len; + /* DMA address and length of the whole fragment */ + unsigned int unmap_len; + dma_addr_t unmap_addr; + struct page *page; + unsigned page_off; + } ifc; + + struct { + /* The number of bytes of header */ + unsigned int header_length; + + /* The number of bytes to put in each outgoing segment. */ + int full_packet_size; + + /* Current IPv4 ID, host endian. */ + unsigned ipv4_id; + } p; +}; + + +/* + * Verify that our various assumptions about sk_buffs and the conditions + * under which TSO will be attempted hold true. + */ +static inline void efx_tso_check_safe(const struct sk_buff *skb) +{ + EFX_BUG_ON_PARANOID(skb->protocol != htons(ETH_P_IP)); + EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto != + skb->protocol); + EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP); + EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data) + + (tcp_hdr(skb)->doff << 2u)) > + skb_headlen(skb)); +} + + +/* + * Allocate a page worth of efx_tso_header structures, and string them + * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM. + */ +static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue) +{ + + struct pci_dev *pci_dev = tx_queue->efx->pci_dev; + struct efx_tso_header *tsoh; + dma_addr_t dma_addr; + u8 *base_kva, *kva; + + base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr); + if (base_kva == NULL) { + EFX_ERR(tx_queue->efx, "Unable to allocate page for TSO" + " headers\n"); + return -ENOMEM; + } + + /* pci_alloc_consistent() allocates pages. */ + EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u)); + + for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) { + tsoh = (struct efx_tso_header *)kva; + tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva); + tsoh->next = tx_queue->tso_headers_free; + tx_queue->tso_headers_free = tsoh; + } + + return 0; +} + + +/* Free up a TSO header, and all others in the same page. */ +static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue, + struct efx_tso_header *tsoh, + struct pci_dev *pci_dev) +{ + struct efx_tso_header **p; + unsigned long base_kva; + dma_addr_t base_dma; + + base_kva = (unsigned long)tsoh & PAGE_MASK; + base_dma = tsoh->dma_addr & PAGE_MASK; + + p = &tx_queue->tso_headers_free; + while (*p != NULL) + if (((unsigned long)*p & PAGE_MASK) == base_kva) + *p = (*p)->next; + else + p = &(*p)->next; + + pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma); +} + +static struct efx_tso_header * +efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len) +{ + struct efx_tso_header *tsoh; + + tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA); + if (unlikely(!tsoh)) + return NULL; + + tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev, + TSOH_BUFFER(tsoh), header_len, + PCI_DMA_TODEVICE); + if (unlikely(pci_dma_mapping_error(tsoh->dma_addr))) { + kfree(tsoh); + return NULL; + } + + tsoh->unmap_len = header_len; + return tsoh; +} + +static void +efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh) +{ + pci_unmap_single(tx_queue->efx->pci_dev, + tsoh->dma_addr, tsoh->unmap_len, + PCI_DMA_TODEVICE); + kfree(tsoh); +} + +/** + * efx_tx_queue_insert - push descriptors onto the TX queue + * @tx_queue: Efx TX queue + * @dma_addr: DMA address of fragment + * @len: Length of fragment + * @skb: Only non-null for end of last segment + * @end_of_packet: True if last fragment in a packet + * @unmap_addr: DMA address of fragment for unmapping + * @unmap_len: Only set this in last segment of a fragment + * + * Push descriptors onto the TX queue. Return 0 on success or 1 if + * @tx_queue full. + */ +static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue, + dma_addr_t dma_addr, unsigned len, + const struct sk_buff *skb, int end_of_packet, + dma_addr_t unmap_addr, unsigned unmap_len) +{ + struct efx_tx_buffer *buffer; + struct efx_nic *efx = tx_queue->efx; + unsigned dma_len, fill_level, insert_ptr, misalign; + int q_space; + + EFX_BUG_ON_PARANOID(len <= 0); + + fill_level = tx_queue->insert_count - tx_queue->old_read_count; + /* -1 as there is no way to represent all descriptors used */ + q_space = efx->type->txd_ring_mask - 1 - fill_level; + + while (1) { + if (unlikely(q_space-- <= 0)) { + /* It might be that completions have happened + * since the xmit path last checked. Update + * the xmit path's copy of read_count. + */ + ++tx_queue->stopped; + /* This memory barrier protects the change of + * stopped from the access of read_count. */ + smp_mb(); + tx_queue->old_read_count = + *(volatile unsigned *)&tx_queue->read_count; + fill_level = (tx_queue->insert_count + - tx_queue->old_read_count); + q_space = efx->type->txd_ring_mask - 1 - fill_level; + if (unlikely(q_space-- <= 0)) + return 1; + smp_mb(); + --tx_queue->stopped; + } + + insert_ptr = tx_queue->insert_count & efx->type->txd_ring_mask; + buffer = &tx_queue->buffer[insert_ptr]; + ++tx_queue->insert_count; + + EFX_BUG_ON_PARANOID(tx_queue->insert_count - + tx_queue->read_count > + efx->type->txd_ring_mask); + + efx_tsoh_free(tx_queue, buffer); + EFX_BUG_ON_PARANOID(buffer->len); + EFX_BUG_ON_PARANOID(buffer->unmap_len); + EFX_BUG_ON_PARANOID(buffer->skb); + EFX_BUG_ON_PARANOID(buffer->continuation != 1); + EFX_BUG_ON_PARANOID(buffer->tsoh); + + buffer->dma_addr = dma_addr; + + /* Ensure we do not cross a boundary unsupported by H/W */ + dma_len = (~dma_addr & efx->type->tx_dma_mask) + 1; + + misalign = (unsigned)dma_addr & efx->type->bug5391_mask; + if (misalign && dma_len + misalign > 512) + dma_len = 512 - misalign; + + /* If there is enough space to send then do so */ + if (dma_len >= len) + break; + + buffer->len = dma_len; /* Don't set the other members */ + dma_addr += dma_len; + len -= dma_len; + } + + EFX_BUG_ON_PARANOID(!len); + buffer->len = len; + buffer->skb = skb; + buffer->continuation = !end_of_packet; + buffer->unmap_addr = unmap_addr; + buffer->unmap_len = unmap_len; + return 0; +} + + +/* + * Put a TSO header into the TX queue. + * + * This is special-cased because we know that it is small enough to fit in + * a single fragment, and we know it doesn't cross a page boundary. It + * also allows us to not worry about end-of-packet etc. + */ +static inline void efx_tso_put_header(struct efx_tx_queue *tx_queue, + struct efx_tso_header *tsoh, unsigned len) +{ + struct efx_tx_buffer *buffer; + + buffer = &tx_queue->buffer[tx_queue->insert_count & + tx_queue->efx->type->txd_ring_mask]; + efx_tsoh_free(tx_queue, buffer); + EFX_BUG_ON_PARANOID(buffer->len); + EFX_BUG_ON_PARANOID(buffer->unmap_len); + EFX_BUG_ON_PARANOID(buffer->skb); + EFX_BUG_ON_PARANOID(buffer->continuation != 1); + EFX_BUG_ON_PARANOID(buffer->tsoh); + buffer->len = len; + buffer->dma_addr = tsoh->dma_addr; + buffer->tsoh = tsoh; + + ++tx_queue->insert_count; +} + + +/* Remove descriptors put into a tx_queue. */ +static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue) +{ + struct efx_tx_buffer *buffer; + + /* Work backwards until we hit the original insert pointer value */ + while (tx_queue->insert_count != tx_queue->write_count) { + --tx_queue->insert_count; + buffer = &tx_queue->buffer[tx_queue->insert_count & + tx_queue->efx->type->txd_ring_mask]; + efx_tsoh_free(tx_queue, buffer); + EFX_BUG_ON_PARANOID(buffer->skb); + buffer->len = 0; + buffer->continuation = 1; + if (buffer->unmap_len) { + pci_unmap_page(tx_queue->efx->pci_dev, + buffer->unmap_addr, + buffer->unmap_len, PCI_DMA_TODEVICE); + buffer->unmap_len = 0; + } + } +} + + +/* Parse the SKB header and initialise state. */ +static inline void tso_start(struct tso_state *st, const struct sk_buff *skb) +{ + /* All ethernet/IP/TCP headers combined size is TCP header size + * plus offset of TCP header relative to start of packet. + */ + st->p.header_length = ((tcp_hdr(skb)->doff << 2u) + + PTR_DIFF(tcp_hdr(skb), skb->data)); + st->p.full_packet_size = (st->p.header_length + + skb_shinfo(skb)->gso_size); + + st->p.ipv4_id = ntohs(ip_hdr(skb)->id); + st->seqnum = ntohl(tcp_hdr(skb)->seq); + + EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg); + EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn); + EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst); + + st->packet_space = st->p.full_packet_size; + st->remaining_len = skb->len - st->p.header_length; +} + + +/** + * tso_get_fragment - record fragment details and map for DMA + * @st: TSO state + * @efx: Efx NIC + * @data: Pointer to fragment data + * @len: Length of fragment + * + * Record fragment details and map for DMA. Return 0 on success, or + * -%ENOMEM if DMA mapping fails. + */ +static inline int tso_get_fragment(struct tso_state *st, struct efx_nic *efx, + int len, struct page *page, int page_off) +{ + + st->ifc.unmap_addr = pci_map_page(efx->pci_dev, page, page_off, + len, PCI_DMA_TODEVICE); + if (likely(!pci_dma_mapping_error(st->ifc.unmap_addr))) { + st->ifc.unmap_len = len; + st->ifc.len = len; + st->ifc.dma_addr = st->ifc.unmap_addr; + st->ifc.page = page; + st->ifc.page_off = page_off; + return 0; + } + return -ENOMEM; +} + + +/** + * tso_fill_packet_with_fragment - form descriptors for the current fragment + * @tx_queue: Efx TX queue + * @skb: Socket buffer + * @st: TSO state + * + * Form descriptors for the current fragment, until we reach the end + * of fragment or end-of-packet. Return 0 on success, 1 if not enough + * space in @tx_queue. + */ +static inline int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue, + const struct sk_buff *skb, + struct tso_state *st) +{ + + int n, end_of_packet, rc; + + if (st->ifc.len == 0) + return 0; + if (st->packet_space == 0) + return 0; + + EFX_BUG_ON_PARANOID(st->ifc.len <= 0); + EFX_BUG_ON_PARANOID(st->packet_space <= 0); + + n = min(st->ifc.len, st->packet_space); + + st->packet_space -= n; + st->remaining_len -= n; + st->ifc.len -= n; + st->ifc.page_off += n; + end_of_packet = st->remaining_len == 0 || st->packet_space == 0; + + rc = efx_tx_queue_insert(tx_queue, st->ifc.dma_addr, n, + st->remaining_len ? NULL : skb, + end_of_packet, st->ifc.unmap_addr, + st->ifc.len ? 0 : st->ifc.unmap_len); + + st->ifc.dma_addr += n; + + return rc; +} + + +/** + * tso_start_new_packet - generate a new header and prepare for the new packet + * @tx_queue: Efx TX queue + * @skb: Socket buffer + * @st: TSO state + * + * Generate a new header and prepare for the new packet. Return 0 on + * success, or -1 if failed to alloc header. + */ +static inline int tso_start_new_packet(struct efx_tx_queue *tx_queue, + const struct sk_buff *skb, + struct tso_state *st) +{ + struct efx_tso_header *tsoh; + struct iphdr *tsoh_iph; + struct tcphdr *tsoh_th; + unsigned ip_length; + u8 *header; + + /* Allocate a DMA-mapped header buffer. */ + if (likely(TSOH_SIZE(st->p.header_length) <= TSOH_STD_SIZE)) { + if (tx_queue->tso_headers_free == NULL) + if (efx_tsoh_block_alloc(tx_queue)) + return -1; + EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free); + tsoh = tx_queue->tso_headers_free; + tx_queue->tso_headers_free = tsoh->next; + tsoh->unmap_len = 0; + } else { + tx_queue->tso_long_headers++; + tsoh = efx_tsoh_heap_alloc(tx_queue, st->p.header_length); + if (unlikely(!tsoh)) + return -1; + } + + header = TSOH_BUFFER(tsoh); + tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb)); + tsoh_iph = (struct iphdr *)(header + SKB_IPV4_OFF(skb)); + + /* Copy and update the headers. */ + memcpy(header, skb->data, st->p.header_length); + + tsoh_th->seq = htonl(st->seqnum); + st->seqnum += skb_shinfo(skb)->gso_size; + if (st->remaining_len > skb_shinfo(skb)->gso_size) { + /* This packet will not finish the TSO burst. */ + ip_length = st->p.full_packet_size - ETH_HDR_LEN(skb); + tsoh_th->fin = 0; + tsoh_th->psh = 0; + } else { + /* This packet will be the last in the TSO burst. */ + ip_length = (st->p.header_length - ETH_HDR_LEN(skb) + + st->remaining_len); + tsoh_th->fin = tcp_hdr(skb)->fin; + tsoh_th->psh = tcp_hdr(skb)->psh; + } + tsoh_iph->tot_len = htons(ip_length); + + /* Linux leaves suitable gaps in the IP ID space for us to fill. */ + tsoh_iph->id = htons(st->p.ipv4_id); + st->p.ipv4_id++; + + st->packet_space = skb_shinfo(skb)->gso_size; + ++tx_queue->tso_packets; + + /* Form a descriptor for this header. */ + efx_tso_put_header(tx_queue, tsoh, st->p.header_length); + + return 0; +} + + +/** + * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer + * @tx_queue: Efx TX queue + * @skb: Socket buffer + * + * Context: You must hold netif_tx_lock() to call this function. + * + * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if + * @skb was not enqueued. In all cases @skb is consumed. Return + * %NETDEV_TX_OK or %NETDEV_TX_BUSY. + */ +static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, + const struct sk_buff *skb) +{ + int frag_i, rc, rc2 = NETDEV_TX_OK; + struct tso_state state; + skb_frag_t *f; + + /* Verify TSO is safe - these checks should never fail. */ + efx_tso_check_safe(skb); + + EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count); + + tso_start(&state, skb); + + /* Assume that skb header area contains exactly the headers, and + * all payload is in the frag list. + */ + if (skb_headlen(skb) == state.p.header_length) { + /* Grab the first payload fragment. */ + EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1); + frag_i = 0; + f = &skb_shinfo(skb)->frags[frag_i]; + rc = tso_get_fragment(&state, tx_queue->efx, + f->size, f->page, f->page_offset); + if (rc) + goto mem_err; + } else { + /* It may look like this code fragment assumes that the + * skb->data portion does not cross a page boundary, but + * that is not the case. It is guaranteed to be direct + * mapped memory, and therefore is physically contiguous, + * and so DMA will work fine. kmap_atomic() on this region + * will just return the direct mapping, so that will work + * too. + */ + int page_off = (unsigned long)skb->data & (PAGE_SIZE - 1); + int hl = state.p.header_length; + rc = tso_get_fragment(&state, tx_queue->efx, + skb_headlen(skb) - hl, + virt_to_page(skb->data), page_off + hl); + if (rc) + goto mem_err; + frag_i = -1; + } + + if (tso_start_new_packet(tx_queue, skb, &state) < 0) + goto mem_err; + + while (1) { + rc = tso_fill_packet_with_fragment(tx_queue, skb, &state); + if (unlikely(rc)) + goto stop; + + /* Move onto the next fragment? */ + if (state.ifc.len == 0) { + if (++frag_i >= skb_shinfo(skb)->nr_frags) + /* End of payload reached. */ + break; + f = &skb_shinfo(skb)->frags[frag_i]; + rc = tso_get_fragment(&state, tx_queue->efx, + f->size, f->page, f->page_offset); + if (rc) + goto mem_err; + } + + /* Start at new packet? */ + if (state.packet_space == 0 && + tso_start_new_packet(tx_queue, skb, &state) < 0) + goto mem_err; + } + + /* Pass off to hardware */ + falcon_push_buffers(tx_queue); + + tx_queue->tso_bursts++; + return NETDEV_TX_OK; + + mem_err: + EFX_ERR(tx_queue->efx, "Out of memory for TSO headers, or PCI mapping" + " error\n"); + dev_kfree_skb_any((struct sk_buff *)skb); + goto unwind; + + stop: + rc2 = NETDEV_TX_BUSY; + + /* Stop the queue if it wasn't stopped before. */ + if (tx_queue->stopped == 1) + efx_stop_queue(tx_queue->efx); + + unwind: + efx_enqueue_unwind(tx_queue); + return rc2; +} + + +/* + * Free up all TSO datastructures associated with tx_queue. This + * routine should be called only once the tx_queue is both empty and + * will no longer be used. + */ +static void efx_fini_tso(struct efx_tx_queue *tx_queue) +{ + unsigned i; + + if (tx_queue->buffer) + for (i = 0; i <= tx_queue->efx->type->txd_ring_mask; ++i) + efx_tsoh_free(tx_queue, &tx_queue->buffer[i]); + + while (tx_queue->tso_headers_free != NULL) + efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free, + tx_queue->efx->pci_dev); +} |