diff options
author | Cindy H Kao <cindy.h.kao@intel.com> | 2010-04-08 04:42:42 +0200 |
---|---|---|
committer | Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com> | 2010-05-11 23:05:30 +0200 |
commit | f4e413458104210bc29aa5c437882c68b4b20100 (patch) | |
tree | 72508e9a5d3620986120304db7fe78f0326b0743 /drivers/net/wimax/i2400m/i2400m.h | |
parent | wimax/i2400m: correct the error path handlers in dev_start() (diff) | |
download | linux-f4e413458104210bc29aa5c437882c68b4b20100.tar.xz linux-f4e413458104210bc29aa5c437882c68b4b20100.zip |
wimax/i2400m: fix for missed reset events if triggered by dev_reset_handle()
The problem is only seen on SDIO interface since on USB, a bus reset would
really re-probe the driver, but on SDIO interface, a bus reset will not
re-enumerate the SDIO bus, so no driver re-probe is happening. Therefore,
on SDIO interface, the reset event should be still detected and handled by
dev_reset_handle().
Problem description:
Whenever a reboot barker is received during operational mode (i2400m->boot_mode == 0),
dev_reset_handle() is invoked to handle that function reset event.
dev_reset_handle() then sets the flag i2400m->boot_mode to 1 indicating the device is
back to bootmode before proceeding to dev_stop() and dev_start().
If dev_start() returns failure, a bus reset is triggered by dev_reset_handle().
The flag i2400m->boot_mode then remains 1 when the second reboot barker arrives.
However the interrupt service routine i2400ms_rx() instead of invoking dev_reset_handle()
to handle that reset event, it filters out that boot event to bootmode because it sees
the flag i2400m->boot_mode equal to 1.
The fix:
Maintain the flag i2400m->boot_mode within dev_reset_handle() and set the flag
i2400m->boot_mode to 1 when entering dev_reset_handle(). It remains 1
until the dev_reset_handle() issues a bus reset. ie: the bus reset is
taking place just like it happens for the first time during operational mode.
To denote the actual device state and the state we expect, a flag i2400m->alive
is introduced in addition to the existing flag i2400m->updown.
It's maintained with the same way for i2400m->updown but instead of reflecting
the actual state like i2400m->updown does, i2400m->alive maintains the state
we expect. i2400m->alive is set 1 just like whenever i2400m->updown is set 1.
Yet i2400m->alive remains 1 since we expect the device to be up all the time
until the driver is removed. See the doc for @alive in i2400m.h.
An enumeration I2400M_BUS_RESET_RETRIES is added to define the maximum number of
bus resets that a device reboot can retry.
A counter i2400m->bus_reset_retries is added to track how many bus resets
have been retried in one device reboot. If I2400M_BUS_RESET_RETRIES bus resets
were retried in this boot, we give up any further retrying so the device would enter
low power state. The counter i2400m->bus_reset_retries is incremented whenever
dev_reset_handle() is issuing a bus reset and is cleared to 0 when dev_start() is
successfully done, ie: a successful reboot.
Signed-off-by: Cindy H Kao <cindy.h.kao@intel.com>
Diffstat (limited to 'drivers/net/wimax/i2400m/i2400m.h')
-rw-r--r-- | drivers/net/wimax/i2400m/i2400m.h | 34 |
1 files changed, 34 insertions, 0 deletions
diff --git a/drivers/net/wimax/i2400m/i2400m.h b/drivers/net/wimax/i2400m/i2400m.h index da218b98e27f..ad8e6a3be1e3 100644 --- a/drivers/net/wimax/i2400m/i2400m.h +++ b/drivers/net/wimax/i2400m/i2400m.h @@ -177,6 +177,11 @@ enum { I2400M_BM_ACK_BUF_SIZE = 256, }; +enum { + /* Maximum number of bus reset can be retried */ + I2400M_BUS_RESET_RETRIES = 3, +}; + /** * struct i2400m_poke_table - Hardware poke table for the Intel 2400m * @@ -517,6 +522,29 @@ struct i2400m_barker_db; * same. * * @pm_notifier: used to register for PM events + * + * @bus_reset_retries: counter for the number of bus resets attempted for + * this boot. It's not for tracking the number of bus resets during + * the whole driver life cycle (from insmod to rmmod) but for the + * number of dev_start() executed until dev_start() returns a success + * (ie: a good boot means a dev_stop() followed by a successful + * dev_start()). dev_reset_handler() increments this counter whenever + * it is triggering a bus reset. It checks this counter to decide if a + * subsequent bus reset should be retried. dev_reset_handler() retries + * the bus reset until dev_start() succeeds or the counter reaches + * I2400M_BUS_RESET_RETRIES. The counter is cleared to 0 in + * dev_reset_handle() when dev_start() returns a success, + * ie: a successul boot is completed. + * + * @alive: flag to denote if the device *should* be alive. This flag is + * everything like @updown (see doc for @updown) except reflecting + * the device state *we expect* rather than the actual state as denoted + * by @updown. It is set 1 whenever @updown is set 1 in dev_start(). + * Then the device is expected to be alive all the time + * (i2400m->alive remains 1) until the driver is removed. Therefore + * all the device reboot events detected can be still handled properly + * by either dev_reset_handle() or .pre_reset/.post_reset as long as + * the driver presents. It is set 0 along with @updown in dev_stop(). */ struct i2400m { struct wimax_dev wimax_dev; /* FIRST! See doc */ @@ -591,6 +619,12 @@ struct i2400m { struct i2400m_barker_db *barker; struct notifier_block pm_notifier; + + /* counting bus reset retries in this boot */ + atomic_t bus_reset_retries; + + /* if the device is expected to be alive */ + unsigned alive; }; |