summaryrefslogtreecommitdiffstats
path: root/drivers/net/wireless/iwlegacy/iwl-prph.h
diff options
context:
space:
mode:
authorLen Brown <len.brown@intel.com>2011-03-23 07:34:54 +0100
committerLen Brown <len.brown@intel.com>2011-03-23 07:34:54 +0100
commit02e2407858fd62053bf60349c0e72cd1c7a4a60e (patch)
tree0ebdbddc97d3abbc675916010e7771065b70c137 /drivers/net/wireless/iwlegacy/iwl-prph.h
parentMerge branch 'battery-sysfs-notifier' into release (diff)
parentMerge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/asy... (diff)
downloadlinux-02e2407858fd62053bf60349c0e72cd1c7a4a60e.tar.xz
linux-02e2407858fd62053bf60349c0e72cd1c7a4a60e.zip
Merge branch 'linus' into release
Conflicts: arch/x86/kernel/acpi/sleep.c Signed-off-by: Len Brown <len.brown@intel.com>
Diffstat (limited to 'drivers/net/wireless/iwlegacy/iwl-prph.h')
-rw-r--r--drivers/net/wireless/iwlegacy/iwl-prph.h523
1 files changed, 523 insertions, 0 deletions
diff --git a/drivers/net/wireless/iwlegacy/iwl-prph.h b/drivers/net/wireless/iwlegacy/iwl-prph.h
new file mode 100644
index 000000000000..30a493003ab0
--- /dev/null
+++ b/drivers/net/wireless/iwlegacy/iwl-prph.h
@@ -0,0 +1,523 @@
+/******************************************************************************
+ *
+ * This file is provided under a dual BSD/GPLv2 license. When using or
+ * redistributing this file, you may do so under either license.
+ *
+ * GPL LICENSE SUMMARY
+ *
+ * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of version 2 of the GNU General Public License as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
+ * USA
+ *
+ * The full GNU General Public License is included in this distribution
+ * in the file called LICENSE.GPL.
+ *
+ * Contact Information:
+ * Intel Linux Wireless <ilw@linux.intel.com>
+ * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+ *
+ * BSD LICENSE
+ *
+ * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name Intel Corporation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *****************************************************************************/
+
+#ifndef __iwl_legacy_prph_h__
+#define __iwl_legacy_prph_h__
+
+/*
+ * Registers in this file are internal, not PCI bus memory mapped.
+ * Driver accesses these via HBUS_TARG_PRPH_* registers.
+ */
+#define PRPH_BASE (0x00000)
+#define PRPH_END (0xFFFFF)
+
+/* APMG (power management) constants */
+#define APMG_BASE (PRPH_BASE + 0x3000)
+#define APMG_CLK_CTRL_REG (APMG_BASE + 0x0000)
+#define APMG_CLK_EN_REG (APMG_BASE + 0x0004)
+#define APMG_CLK_DIS_REG (APMG_BASE + 0x0008)
+#define APMG_PS_CTRL_REG (APMG_BASE + 0x000c)
+#define APMG_PCIDEV_STT_REG (APMG_BASE + 0x0010)
+#define APMG_RFKILL_REG (APMG_BASE + 0x0014)
+#define APMG_RTC_INT_STT_REG (APMG_BASE + 0x001c)
+#define APMG_RTC_INT_MSK_REG (APMG_BASE + 0x0020)
+#define APMG_DIGITAL_SVR_REG (APMG_BASE + 0x0058)
+#define APMG_ANALOG_SVR_REG (APMG_BASE + 0x006C)
+
+#define APMS_CLK_VAL_MRB_FUNC_MODE (0x00000001)
+#define APMG_CLK_VAL_DMA_CLK_RQT (0x00000200)
+#define APMG_CLK_VAL_BSM_CLK_RQT (0x00000800)
+
+#define APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS (0x00400000)
+#define APMG_PS_CTRL_VAL_RESET_REQ (0x04000000)
+#define APMG_PS_CTRL_MSK_PWR_SRC (0x03000000)
+#define APMG_PS_CTRL_VAL_PWR_SRC_VMAIN (0x00000000)
+#define APMG_PS_CTRL_VAL_PWR_SRC_MAX (0x01000000) /* 3945 only */
+#define APMG_PS_CTRL_VAL_PWR_SRC_VAUX (0x02000000)
+#define APMG_SVR_VOLTAGE_CONFIG_BIT_MSK (0x000001E0) /* bit 8:5 */
+#define APMG_SVR_DIGITAL_VOLTAGE_1_32 (0x00000060)
+
+#define APMG_PCIDEV_STT_VAL_L1_ACT_DIS (0x00000800)
+
+/**
+ * BSM (Bootstrap State Machine)
+ *
+ * The Bootstrap State Machine (BSM) stores a short bootstrap uCode program
+ * in special SRAM that does not power down when the embedded control
+ * processor is sleeping (e.g. for periodic power-saving shutdowns of radio).
+ *
+ * When powering back up after sleeps (or during initial uCode load), the BSM
+ * internally loads the short bootstrap program from the special SRAM into the
+ * embedded processor's instruction SRAM, and starts the processor so it runs
+ * the bootstrap program.
+ *
+ * This bootstrap program loads (via PCI busmaster DMA) instructions and data
+ * images for a uCode program from host DRAM locations. The host driver
+ * indicates DRAM locations and sizes for instruction and data images via the
+ * four BSM_DRAM_* registers. Once the bootstrap program loads the new program,
+ * the new program starts automatically.
+ *
+ * The uCode used for open-source drivers includes two programs:
+ *
+ * 1) Initialization -- performs hardware calibration and sets up some
+ * internal data, then notifies host via "initialize alive" notification
+ * (struct iwl_init_alive_resp) that it has completed all of its work.
+ * After signal from host, it then loads and starts the runtime program.
+ * The initialization program must be used when initially setting up the
+ * NIC after loading the driver.
+ *
+ * 2) Runtime/Protocol -- performs all normal runtime operations. This
+ * notifies host via "alive" notification (struct iwl_alive_resp) that it
+ * is ready to be used.
+ *
+ * When initializing the NIC, the host driver does the following procedure:
+ *
+ * 1) Load bootstrap program (instructions only, no data image for bootstrap)
+ * into bootstrap memory. Use dword writes starting at BSM_SRAM_LOWER_BOUND
+ *
+ * 2) Point (via BSM_DRAM_*) to the "initialize" uCode data and instruction
+ * images in host DRAM.
+ *
+ * 3) Set up BSM to copy from BSM SRAM into uCode instruction SRAM when asked:
+ * BSM_WR_MEM_SRC_REG = 0
+ * BSM_WR_MEM_DST_REG = RTC_INST_LOWER_BOUND
+ * BSM_WR_MEM_DWCOUNT_REG = # dwords in bootstrap instruction image
+ *
+ * 4) Load bootstrap into instruction SRAM:
+ * BSM_WR_CTRL_REG = BSM_WR_CTRL_REG_BIT_START
+ *
+ * 5) Wait for load completion:
+ * Poll BSM_WR_CTRL_REG for BSM_WR_CTRL_REG_BIT_START = 0
+ *
+ * 6) Enable future boot loads whenever NIC's power management triggers it:
+ * BSM_WR_CTRL_REG = BSM_WR_CTRL_REG_BIT_START_EN
+ *
+ * 7) Start the NIC by removing all reset bits:
+ * CSR_RESET = 0
+ *
+ * The bootstrap uCode (already in instruction SRAM) loads initialization
+ * uCode. Initialization uCode performs data initialization, sends
+ * "initialize alive" notification to host, and waits for a signal from
+ * host to load runtime code.
+ *
+ * 4) Point (via BSM_DRAM_*) to the "runtime" uCode data and instruction
+ * images in host DRAM. The last register loaded must be the instruction
+ * byte count register ("1" in MSbit tells initialization uCode to load
+ * the runtime uCode):
+ * BSM_DRAM_INST_BYTECOUNT_REG = byte count | BSM_DRAM_INST_LOAD
+ *
+ * 5) Wait for "alive" notification, then issue normal runtime commands.
+ *
+ * Data caching during power-downs:
+ *
+ * Just before the embedded controller powers down (e.g for automatic
+ * power-saving modes, or for RFKILL), uCode stores (via PCI busmaster DMA)
+ * a current snapshot of the embedded processor's data SRAM into host DRAM.
+ * This caches the data while the embedded processor's memory is powered down.
+ * Location and size are controlled by BSM_DRAM_DATA_* registers.
+ *
+ * NOTE: Instruction SRAM does not need to be saved, since that doesn't
+ * change during operation; the original image (from uCode distribution
+ * file) can be used for reload.
+ *
+ * When powering back up, the BSM loads the bootstrap program. Bootstrap looks
+ * at the BSM_DRAM_* registers, which now point to the runtime instruction
+ * image and the cached (modified) runtime data (*not* the initialization
+ * uCode). Bootstrap reloads these runtime images into SRAM, and restarts the
+ * uCode from where it left off before the power-down.
+ *
+ * NOTE: Initialization uCode does *not* run as part of the save/restore
+ * procedure.
+ *
+ * This save/restore method is mostly for autonomous power management during
+ * normal operation (result of POWER_TABLE_CMD). Platform suspend/resume and
+ * RFKILL should use complete restarts (with total re-initialization) of uCode,
+ * allowing total shutdown (including BSM memory).
+ *
+ * Note that, during normal operation, the host DRAM that held the initial
+ * startup data for the runtime code is now being used as a backup data cache
+ * for modified data! If you need to completely re-initialize the NIC, make
+ * sure that you use the runtime data image from the uCode distribution file,
+ * not the modified/saved runtime data. You may want to store a separate
+ * "clean" runtime data image in DRAM to avoid disk reads of distribution file.
+ */
+
+/* BSM bit fields */
+#define BSM_WR_CTRL_REG_BIT_START (0x80000000) /* start boot load now */
+#define BSM_WR_CTRL_REG_BIT_START_EN (0x40000000) /* enable boot after pwrup*/
+#define BSM_DRAM_INST_LOAD (0x80000000) /* start program load now */
+
+/* BSM addresses */
+#define BSM_BASE (PRPH_BASE + 0x3400)
+#define BSM_END (PRPH_BASE + 0x3800)
+
+#define BSM_WR_CTRL_REG (BSM_BASE + 0x000) /* ctl and status */
+#define BSM_WR_MEM_SRC_REG (BSM_BASE + 0x004) /* source in BSM mem */
+#define BSM_WR_MEM_DST_REG (BSM_BASE + 0x008) /* dest in SRAM mem */
+#define BSM_WR_DWCOUNT_REG (BSM_BASE + 0x00C) /* bytes */
+#define BSM_WR_STATUS_REG (BSM_BASE + 0x010) /* bit 0: 1 == done */
+
+/*
+ * Pointers and size regs for bootstrap load and data SRAM save/restore.
+ * NOTE: 3945 pointers use bits 31:0 of DRAM address.
+ * 4965 pointers use bits 35:4 of DRAM address.
+ */
+#define BSM_DRAM_INST_PTR_REG (BSM_BASE + 0x090)
+#define BSM_DRAM_INST_BYTECOUNT_REG (BSM_BASE + 0x094)
+#define BSM_DRAM_DATA_PTR_REG (BSM_BASE + 0x098)
+#define BSM_DRAM_DATA_BYTECOUNT_REG (BSM_BASE + 0x09C)
+
+/*
+ * BSM special memory, stays powered on during power-save sleeps.
+ * Read/write, address range from LOWER_BOUND to (LOWER_BOUND + SIZE -1)
+ */
+#define BSM_SRAM_LOWER_BOUND (PRPH_BASE + 0x3800)
+#define BSM_SRAM_SIZE (1024) /* bytes */
+
+
+/* 3945 Tx scheduler registers */
+#define ALM_SCD_BASE (PRPH_BASE + 0x2E00)
+#define ALM_SCD_MODE_REG (ALM_SCD_BASE + 0x000)
+#define ALM_SCD_ARASTAT_REG (ALM_SCD_BASE + 0x004)
+#define ALM_SCD_TXFACT_REG (ALM_SCD_BASE + 0x010)
+#define ALM_SCD_TXF4MF_REG (ALM_SCD_BASE + 0x014)
+#define ALM_SCD_TXF5MF_REG (ALM_SCD_BASE + 0x020)
+#define ALM_SCD_SBYP_MODE_1_REG (ALM_SCD_BASE + 0x02C)
+#define ALM_SCD_SBYP_MODE_2_REG (ALM_SCD_BASE + 0x030)
+
+/**
+ * Tx Scheduler
+ *
+ * The Tx Scheduler selects the next frame to be transmitted, choosing TFDs
+ * (Transmit Frame Descriptors) from up to 16 circular Tx queues resident in
+ * host DRAM. It steers each frame's Tx command (which contains the frame
+ * data) into one of up to 7 prioritized Tx DMA FIFO channels within the
+ * device. A queue maps to only one (selectable by driver) Tx DMA channel,
+ * but one DMA channel may take input from several queues.
+ *
+ * Tx DMA FIFOs have dedicated purposes. For 4965, they are used as follows
+ * (cf. default_queue_to_tx_fifo in iwl-4965.c):
+ *
+ * 0 -- EDCA BK (background) frames, lowest priority
+ * 1 -- EDCA BE (best effort) frames, normal priority
+ * 2 -- EDCA VI (video) frames, higher priority
+ * 3 -- EDCA VO (voice) and management frames, highest priority
+ * 4 -- Commands (e.g. RXON, etc.)
+ * 5 -- unused (HCCA)
+ * 6 -- unused (HCCA)
+ * 7 -- not used by driver (device-internal only)
+ *
+ *
+ * Driver should normally map queues 0-6 to Tx DMA/FIFO channels 0-6.
+ * In addition, driver can map the remaining queues to Tx DMA/FIFO
+ * channels 0-3 to support 11n aggregation via EDCA DMA channels.
+ *
+ * The driver sets up each queue to work in one of two modes:
+ *
+ * 1) Scheduler-Ack, in which the scheduler automatically supports a
+ * block-ack (BA) window of up to 64 TFDs. In this mode, each queue
+ * contains TFDs for a unique combination of Recipient Address (RA)
+ * and Traffic Identifier (TID), that is, traffic of a given
+ * Quality-Of-Service (QOS) priority, destined for a single station.
+ *
+ * In scheduler-ack mode, the scheduler keeps track of the Tx status of
+ * each frame within the BA window, including whether it's been transmitted,
+ * and whether it's been acknowledged by the receiving station. The device
+ * automatically processes block-acks received from the receiving STA,
+ * and reschedules un-acked frames to be retransmitted (successful
+ * Tx completion may end up being out-of-order).
+ *
+ * The driver must maintain the queue's Byte Count table in host DRAM
+ * (struct iwl4965_sched_queue_byte_cnt_tbl) for this mode.
+ * This mode does not support fragmentation.
+ *
+ * 2) FIFO (a.k.a. non-Scheduler-ACK), in which each TFD is processed in order.
+ * The device may automatically retry Tx, but will retry only one frame
+ * at a time, until receiving ACK from receiving station, or reaching
+ * retry limit and giving up.
+ *
+ * The command queue (#4/#9) must use this mode!
+ * This mode does not require use of the Byte Count table in host DRAM.
+ *
+ * Driver controls scheduler operation via 3 means:
+ * 1) Scheduler registers
+ * 2) Shared scheduler data base in internal 4956 SRAM
+ * 3) Shared data in host DRAM
+ *
+ * Initialization:
+ *
+ * When loading, driver should allocate memory for:
+ * 1) 16 TFD circular buffers, each with space for (typically) 256 TFDs.
+ * 2) 16 Byte Count circular buffers in 16 KBytes contiguous memory
+ * (1024 bytes for each queue).
+ *
+ * After receiving "Alive" response from uCode, driver must initialize
+ * the scheduler (especially for queue #4/#9, the command queue, otherwise
+ * the driver can't issue commands!):
+ */
+
+/**
+ * Max Tx window size is the max number of contiguous TFDs that the scheduler
+ * can keep track of at one time when creating block-ack chains of frames.
+ * Note that "64" matches the number of ack bits in a block-ack packet.
+ * Driver should use SCD_WIN_SIZE and SCD_FRAME_LIMIT values to initialize
+ * IWL49_SCD_CONTEXT_QUEUE_OFFSET(x) values.
+ */
+#define SCD_WIN_SIZE 64
+#define SCD_FRAME_LIMIT 64
+
+/* SCD registers are internal, must be accessed via HBUS_TARG_PRPH regs */
+#define IWL49_SCD_START_OFFSET 0xa02c00
+
+/*
+ * 4965 tells driver SRAM address for internal scheduler structs via this reg.
+ * Value is valid only after "Alive" response from uCode.
+ */
+#define IWL49_SCD_SRAM_BASE_ADDR (IWL49_SCD_START_OFFSET + 0x0)
+
+/*
+ * Driver may need to update queue-empty bits after changing queue's
+ * write and read pointers (indexes) during (re-)initialization (i.e. when
+ * scheduler is not tracking what's happening).
+ * Bit fields:
+ * 31-16: Write mask -- 1: update empty bit, 0: don't change empty bit
+ * 15-00: Empty state, one for each queue -- 1: empty, 0: non-empty
+ * NOTE: This register is not used by Linux driver.
+ */
+#define IWL49_SCD_EMPTY_BITS (IWL49_SCD_START_OFFSET + 0x4)
+
+/*
+ * Physical base address of array of byte count (BC) circular buffers (CBs).
+ * Each Tx queue has a BC CB in host DRAM to support Scheduler-ACK mode.
+ * This register points to BC CB for queue 0, must be on 1024-byte boundary.
+ * Others are spaced by 1024 bytes.
+ * Each BC CB is 2 bytes * (256 + 64) = 740 bytes, followed by 384 bytes pad.
+ * (Index into a queue's BC CB) = (index into queue's TFD CB) = (SSN & 0xff).
+ * Bit fields:
+ * 25-00: Byte Count CB physical address [35:10], must be 1024-byte aligned.
+ */
+#define IWL49_SCD_DRAM_BASE_ADDR (IWL49_SCD_START_OFFSET + 0x10)
+
+/*
+ * Enables any/all Tx DMA/FIFO channels.
+ * Scheduler generates requests for only the active channels.
+ * Set this to 0xff to enable all 8 channels (normal usage).
+ * Bit fields:
+ * 7- 0: Enable (1), disable (0), one bit for each channel 0-7
+ */
+#define IWL49_SCD_TXFACT (IWL49_SCD_START_OFFSET + 0x1c)
+/*
+ * Queue (x) Write Pointers (indexes, really!), one for each Tx queue.
+ * Initialized and updated by driver as new TFDs are added to queue.
+ * NOTE: If using Block Ack, index must correspond to frame's
+ * Start Sequence Number; index = (SSN & 0xff)
+ * NOTE: Alternative to HBUS_TARG_WRPTR, which is what Linux driver uses?
+ */
+#define IWL49_SCD_QUEUE_WRPTR(x) (IWL49_SCD_START_OFFSET + 0x24 + (x) * 4)
+
+/*
+ * Queue (x) Read Pointers (indexes, really!), one for each Tx queue.
+ * For FIFO mode, index indicates next frame to transmit.
+ * For Scheduler-ACK mode, index indicates first frame in Tx window.
+ * Initialized by driver, updated by scheduler.
+ */
+#define IWL49_SCD_QUEUE_RDPTR(x) (IWL49_SCD_START_OFFSET + 0x64 + (x) * 4)
+
+/*
+ * Select which queues work in chain mode (1) vs. not (0).
+ * Use chain mode to build chains of aggregated frames.
+ * Bit fields:
+ * 31-16: Reserved
+ * 15-00: Mode, one bit for each queue -- 1: Chain mode, 0: one-at-a-time
+ * NOTE: If driver sets up queue for chain mode, it should be also set up
+ * Scheduler-ACK mode as well, via SCD_QUEUE_STATUS_BITS(x).
+ */
+#define IWL49_SCD_QUEUECHAIN_SEL (IWL49_SCD_START_OFFSET + 0xd0)
+
+/*
+ * Select which queues interrupt driver when scheduler increments
+ * a queue's read pointer (index).
+ * Bit fields:
+ * 31-16: Reserved
+ * 15-00: Interrupt enable, one bit for each queue -- 1: enabled, 0: disabled
+ * NOTE: This functionality is apparently a no-op; driver relies on interrupts
+ * from Rx queue to read Tx command responses and update Tx queues.
+ */
+#define IWL49_SCD_INTERRUPT_MASK (IWL49_SCD_START_OFFSET + 0xe4)
+
+/*
+ * Queue search status registers. One for each queue.
+ * Sets up queue mode and assigns queue to Tx DMA channel.
+ * Bit fields:
+ * 19-10: Write mask/enable bits for bits 0-9
+ * 9: Driver should init to "0"
+ * 8: Scheduler-ACK mode (1), non-Scheduler-ACK (i.e. FIFO) mode (0).
+ * Driver should init to "1" for aggregation mode, or "0" otherwise.
+ * 7-6: Driver should init to "0"
+ * 5: Window Size Left; indicates whether scheduler can request
+ * another TFD, based on window size, etc. Driver should init
+ * this bit to "1" for aggregation mode, or "0" for non-agg.
+ * 4-1: Tx FIFO to use (range 0-7).
+ * 0: Queue is active (1), not active (0).
+ * Other bits should be written as "0"
+ *
+ * NOTE: If enabling Scheduler-ACK mode, chain mode should also be enabled
+ * via SCD_QUEUECHAIN_SEL.
+ */
+#define IWL49_SCD_QUEUE_STATUS_BITS(x)\
+ (IWL49_SCD_START_OFFSET + 0x104 + (x) * 4)
+
+/* Bit field positions */
+#define IWL49_SCD_QUEUE_STTS_REG_POS_ACTIVE (0)
+#define IWL49_SCD_QUEUE_STTS_REG_POS_TXF (1)
+#define IWL49_SCD_QUEUE_STTS_REG_POS_WSL (5)
+#define IWL49_SCD_QUEUE_STTS_REG_POS_SCD_ACK (8)
+
+/* Write masks */
+#define IWL49_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN (10)
+#define IWL49_SCD_QUEUE_STTS_REG_MSK (0x0007FC00)
+
+/**
+ * 4965 internal SRAM structures for scheduler, shared with driver ...
+ *
+ * Driver should clear and initialize the following areas after receiving
+ * "Alive" response from 4965 uCode, i.e. after initial
+ * uCode load, or after a uCode load done for error recovery:
+ *
+ * SCD_CONTEXT_DATA_OFFSET (size 128 bytes)
+ * SCD_TX_STTS_BITMAP_OFFSET (size 256 bytes)
+ * SCD_TRANSLATE_TBL_OFFSET (size 32 bytes)
+ *
+ * Driver accesses SRAM via HBUS_TARG_MEM_* registers.
+ * Driver reads base address of this scheduler area from SCD_SRAM_BASE_ADDR.
+ * All OFFSET values must be added to this base address.
+ */
+
+/*
+ * Queue context. One 8-byte entry for each of 16 queues.
+ *
+ * Driver should clear this entire area (size 0x80) to 0 after receiving
+ * "Alive" notification from uCode. Additionally, driver should init
+ * each queue's entry as follows:
+ *
+ * LS Dword bit fields:
+ * 0-06: Max Tx window size for Scheduler-ACK. Driver should init to 64.
+ *
+ * MS Dword bit fields:
+ * 16-22: Frame limit. Driver should init to 10 (0xa).
+ *
+ * Driver should init all other bits to 0.
+ *
+ * Init must be done after driver receives "Alive" response from 4965 uCode,
+ * and when setting up queue for aggregation.
+ */
+#define IWL49_SCD_CONTEXT_DATA_OFFSET 0x380
+#define IWL49_SCD_CONTEXT_QUEUE_OFFSET(x) \
+ (IWL49_SCD_CONTEXT_DATA_OFFSET + ((x) * 8))
+
+#define IWL49_SCD_QUEUE_CTX_REG1_WIN_SIZE_POS (0)
+#define IWL49_SCD_QUEUE_CTX_REG1_WIN_SIZE_MSK (0x0000007F)
+#define IWL49_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS (16)
+#define IWL49_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK (0x007F0000)
+
+/*
+ * Tx Status Bitmap
+ *
+ * Driver should clear this entire area (size 0x100) to 0 after receiving
+ * "Alive" notification from uCode. Area is used only by device itself;
+ * no other support (besides clearing) is required from driver.
+ */
+#define IWL49_SCD_TX_STTS_BITMAP_OFFSET 0x400
+
+/*
+ * RAxTID to queue translation mapping.
+ *
+ * When queue is in Scheduler-ACK mode, frames placed in a that queue must be
+ * for only one combination of receiver address (RA) and traffic ID (TID), i.e.
+ * one QOS priority level destined for one station (for this wireless link,
+ * not final destination). The SCD_TRANSLATE_TABLE area provides 16 16-bit
+ * mappings, one for each of the 16 queues. If queue is not in Scheduler-ACK
+ * mode, the device ignores the mapping value.
+ *
+ * Bit fields, for each 16-bit map:
+ * 15-9: Reserved, set to 0
+ * 8-4: Index into device's station table for recipient station
+ * 3-0: Traffic ID (tid), range 0-15
+ *
+ * Driver should clear this entire area (size 32 bytes) to 0 after receiving
+ * "Alive" notification from uCode. To update a 16-bit map value, driver
+ * must read a dword-aligned value from device SRAM, replace the 16-bit map
+ * value of interest, and write the dword value back into device SRAM.
+ */
+#define IWL49_SCD_TRANSLATE_TBL_OFFSET 0x500
+
+/* Find translation table dword to read/write for given queue */
+#define IWL49_SCD_TRANSLATE_TBL_OFFSET_QUEUE(x) \
+ ((IWL49_SCD_TRANSLATE_TBL_OFFSET + ((x) * 2)) & 0xfffffffc)
+
+#define IWL_SCD_TXFIFO_POS_TID (0)
+#define IWL_SCD_TXFIFO_POS_RA (4)
+#define IWL_SCD_QUEUE_RA_TID_MAP_RATID_MSK (0x01FF)
+
+/*********************** END TX SCHEDULER *************************************/
+
+#endif /* __iwl_legacy_prph_h__ */