summaryrefslogtreecommitdiffstats
path: root/drivers/usb/dwc2/hcd.h
diff options
context:
space:
mode:
authorDouglas Anderson <dianders@chromium.org>2016-01-29 03:20:12 +0100
committerFelipe Balbi <balbi@kernel.org>2016-03-04 14:14:45 +0100
commit9f9f09b048f5fdfded26149defd61b737b314ba0 (patch)
tree934d7d7ccbcf1e53d7fbc3a01418eb62fbfcb4ca /drivers/usb/dwc2/hcd.h
parentusb: dwc2: host: Properly set even/odd frame (diff)
downloadlinux-9f9f09b048f5fdfded26149defd61b737b314ba0.tar.xz
linux-9f9f09b048f5fdfded26149defd61b737b314ba0.zip
usb: dwc2: host: Totally redo the microframe scheduler
This totally reimplements the microframe scheduler in dwc2 to attempt to handle periodic splits properly. The old code didn't even try, so this was a significant effort since periodic splits are one of the most complicated things in USB. I've attempted to keep the old "don't use the microframe" schduler around for now, but not sure it's needed. It has also only been lightly tested. I think it's pretty certain that this scheduler isn't perfect and might have some bugs, but it seems much better than what was there before. With this change my stressful USB test (USB webcam + USB audio + some keyboards) crackles less. Acked-by: John Youn <johnyoun@synopsys.com> Signed-off-by: Douglas Anderson <dianders@chromium.org> Tested-by: Heiko Stuebner <heiko@sntech.de> Tested-by: Stefan Wahren <stefan.wahren@i2se.com> Signed-off-by: Felipe Balbi <balbi@kernel.org>
Diffstat (limited to 'drivers/usb/dwc2/hcd.h')
-rw-r--r--drivers/usb/dwc2/hcd.h79
1 files changed, 73 insertions, 6 deletions
diff --git a/drivers/usb/dwc2/hcd.h b/drivers/usb/dwc2/hcd.h
index fd266ac53a28..140b1511a131 100644
--- a/drivers/usb/dwc2/hcd.h
+++ b/drivers/usb/dwc2/hcd.h
@@ -212,6 +212,43 @@ enum dwc2_transaction_type {
DWC2_TRANSACTION_ALL,
};
+/* The number of elements per LS bitmap (per port on multi_tt) */
+#define DWC2_ELEMENTS_PER_LS_BITMAP DIV_ROUND_UP(DWC2_LS_SCHEDULE_SLICES, \
+ BITS_PER_LONG)
+
+/**
+ * struct dwc2_tt - dwc2 data associated with a usb_tt
+ *
+ * @refcount: Number of Queue Heads (QHs) holding a reference.
+ * @usb_tt: Pointer back to the official usb_tt.
+ * @periodic_bitmaps: Bitmap for which parts of the 1ms frame are accounted
+ * for already. Each is DWC2_ELEMENTS_PER_LS_BITMAP
+ * elements (so sizeof(long) times that in bytes).
+ *
+ * This structure is stored in the hcpriv of the official usb_tt.
+ */
+struct dwc2_tt {
+ int refcount;
+ struct usb_tt *usb_tt;
+ unsigned long periodic_bitmaps[];
+};
+
+/**
+ * struct dwc2_hs_transfer_time - Info about a transfer on the high speed bus.
+ *
+ * @start_schedule_usecs: The start time on the main bus schedule. Note that
+ * the main bus schedule is tightly packed and this
+ * time should be interpreted as tightly packed (so
+ * uFrame 0 starts at 0 us, uFrame 1 starts at 100 us
+ * instead of 125 us).
+ * @duration_us: How long this transfer goes.
+ */
+
+struct dwc2_hs_transfer_time {
+ u32 start_schedule_us;
+ u16 duration_us;
+};
+
/**
* struct dwc2_qh - Software queue head structure
*
@@ -237,18 +274,33 @@ enum dwc2_transaction_type {
* @td_first: Index of first activated isochronous transfer descriptor
* @td_last: Index of last activated isochronous transfer descriptor
* @host_us: Bandwidth in microseconds per transfer as seen by host
+ * @device_us: Bandwidth in microseconds per transfer as seen by device
* @host_interval: Interval between transfers as seen by the host. If
* the host is high speed and the device is low speed this
* will be 8 times device interval.
- * @next_active_frame: (Micro)frame before we next need to put something on
+ * @device_interval: Interval between transfers as seen by the device.
+ * interval.
+ * @next_active_frame: (Micro)frame _before_ we next need to put something on
* the bus. We'll move the qh to active here. If the
* host is in high speed mode this will be a uframe. If
* the host is in low speed mode this will be a full frame.
* @start_active_frame: If we are partway through a split transfer, this will be
* what next_active_frame was when we started. Otherwise
* it should always be the same as next_active_frame.
- * @assigned_uframe: The uframe (0 -7) assigned by dwc2_find_uframe().
- * @frame_usecs: Internal variable used by the microframe scheduler
+ * @num_hs_transfers: Number of transfers in hs_transfers.
+ * Normally this is 1 but can be more than one for splits.
+ * Always >= 1 unless the host is in low/full speed mode.
+ * @hs_transfers: Transfers that are scheduled as seen by the high speed
+ * bus. Not used if host is in low or full speed mode (but
+ * note that it IS USED if the device is low or full speed
+ * as long as the HOST is in high speed mode).
+ * @ls_start_schedule_slice: Start time (in slices) on the low speed bus
+ * schedule that's being used by this device. This
+ * will be on the periodic_bitmap in a
+ * "struct dwc2_tt". Not used if this device is high
+ * speed. Note that this is in "schedule slice" which
+ * is tightly packed.
+ * @ls_duration_us: Duration on the low speed bus schedule.
* @ntd: Actual number of transfer descriptors in a list
* @qtd_list: List of QTDs for this QH
* @channel: Host channel currently processing transfers for this QH
@@ -261,8 +313,12 @@ enum dwc2_transaction_type {
* descriptor and indicates original XferSize value for the
* descriptor
* @unreserve_timer: Timer for releasing periodic reservation.
+ * @dwc2_tt: Pointer to our tt info (or NULL if no tt).
+ * @ttport: Port number within our tt.
* @tt_buffer_dirty True if clear_tt_buffer_complete is pending
* @unreserve_pending: True if we planned to unreserve but haven't yet.
+ * @schedule_low_speed: True if we have a low/full speed component (either the
+ * host is in low/full speed mode or do_split).
*
* A Queue Head (QH) holds the static characteristics of an endpoint and
* maintains a list of transfers (QTDs) for that endpoint. A QH structure may
@@ -280,11 +336,14 @@ struct dwc2_qh {
u8 td_first;
u8 td_last;
u16 host_us;
+ u16 device_us;
u16 host_interval;
+ u16 device_interval;
u16 next_active_frame;
u16 start_active_frame;
- u16 assigned_uframe;
- u16 frame_usecs[8];
+ s16 num_hs_transfers;
+ struct dwc2_hs_transfer_time hs_transfers[DWC2_HS_SCHEDULE_UFRAMES];
+ u32 ls_start_schedule_slice;
u16 ntd;
struct list_head qtd_list;
struct dwc2_host_chan *channel;
@@ -294,8 +353,11 @@ struct dwc2_qh {
u32 desc_list_sz;
u32 *n_bytes;
struct timer_list unreserve_timer;
+ struct dwc2_tt *dwc_tt;
+ int ttport;
unsigned tt_buffer_dirty:1;
unsigned unreserve_pending:1;
+ unsigned schedule_low_speed:1;
};
/**
@@ -462,7 +524,6 @@ extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
/* Schedule Queue Functions */
/* Implemented in hcd_queue.c */
-extern void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg);
extern struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
struct dwc2_hcd_urb *urb,
gfp_t mem_flags);
@@ -728,6 +789,12 @@ extern void dwc2_host_start(struct dwc2_hsotg *hsotg);
extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg);
extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
int *hub_addr, int *hub_port);
+extern struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg,
+ void *context, gfp_t mem_flags,
+ int *ttport);
+
+extern void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg,
+ struct dwc2_tt *dwc_tt);
extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
int status);