diff options
author | Sarah Sharp <sarah.a.sharp@linux.intel.com> | 2012-04-25 02:21:50 +0200 |
---|---|---|
committer | Sarah Sharp <sarah.a.sharp@linux.intel.com> | 2012-05-19 00:41:58 +0200 |
commit | 1ea7e0e8e3d0f50901d335ea4178ab2aa8c88201 (patch) | |
tree | ae7b2d2211bcddfa9b7eb411cc5174e00a268f8b /drivers/usb | |
parent | USB: Allow drivers to disable hub-initiated LPM. (diff) | |
download | linux-1ea7e0e8e3d0f50901d335ea4178ab2aa8c88201.tar.xz linux-1ea7e0e8e3d0f50901d335ea4178ab2aa8c88201.zip |
USB: Add support to enable/disable USB3 link states.
There are various functions within the USB core that will need to
disable USB 3.0 link power states. For example, when a USB device
driver is being bound to an interface, we need to disable USB 3.0 LPM
until we know if the driver will allow hub-initiated LPM transitions.
Another example is when the USB core is switching alternate interface
settings. The USB 3.0 timeout values are dependent on what endpoints
are enabled, so we want to ensure that LPM is disabled until the new alt
setting is fully installed.
Multiple functions need to disable LPM, and those functions can even be
nested. For example, usb_bind_interface() could disable LPM, and then
call into the driver probe function, which may attempt to switch to a
different alt setting. Therefore, we need to keep a count of the number
of functions that require LPM to be disabled at any point in time.
Introduce two new USB core API calls, usb_disable_lpm() and
usb_enable_lpm(). These functions increment and decrement a new
variable in the usb_device, lpm_disable_count. If usb_disable_lpm()
fails, it will call usb_enable_lpm() in order to balance the
lpm_disable_count.
These two new functions must be called with the bandwidth_mutex locked.
If the bandwidth_mutex is not already held by the caller, it should
instead call usb_unlocked_disable_lpm() and usb_enable_lpm(), which take
the bandwidth_mutex before calling usb_disable_lpm() and
usb_enable_lpm(), respectively.
Introduce a new variable (timeout) in the usb3_lpm_params structure to
keep track of the currently enabled U1/U2 timeout values. When
usb_disable_lpm() is called, and the USB device has the U1 or U2
timeouts set to a non-zero value (meaning either device-initiated or
hub-initiated LPM is enabled), attempt to disable LPM, regardless of the
state of the lpm_disable_count. We want to ensure that all callers can
be guaranteed that LPM is disabled if usb_disable_lpm() returns zero.
Otherwise the following scenario could occur:
1. Driver A is being bound to interface 1. usb_probe_interface()
disables LPM. Driver A doesn't care if hub-initiated LPM is enabled, so
even though usb_disable_lpm() fails, the probe of the driver continues,
and the bandwidth mutex is dropped.
2. Meanwhile, Driver B is being bound to interface 2.
usb_probe_interface() grabs the bandwidth mutex and calls
usb_disable_lpm(). That call should attempt to disable LPM, even
though the lpm_disable_count is set to 1 by Driver A.
For usb_enable_lpm(), we attempt to enable LPM only when the
lpm_disable_count is zero. If some step in enabling LPM fails, it will
only have a minimal impact on power consumption, and all USB device
drivers should still work properly. Therefore don't bother to return
any error codes.
Don't enable device-initiated LPM if the device is unconfigured. The
USB device will only accept the U1/U2_ENABLE control transfers in the
configured state. Do enable hub-initiated LPM in that case, since
devices are allowed to accept the LGO_Ux link commands in any state.
Don't enable or disable LPM if the device is marked as not being LPM
capable. This can happen if:
- the USB device doesn't have a SS BOS descriptor,
- the device's parent hub has a zeroed bHeaderDecodeLatency value, or
- the xHCI host doesn't support LPM.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: Andiry Xu <andiry.xu@amd.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Diffstat (limited to 'drivers/usb')
-rw-r--r-- | drivers/usb/core/hub.c | 414 |
1 files changed, 414 insertions, 0 deletions
diff --git a/drivers/usb/core/hub.c b/drivers/usb/core/hub.c index 5219507bf227..fd1ec481aec1 100644 --- a/drivers/usb/core/hub.c +++ b/drivers/usb/core/hub.c @@ -3050,11 +3050,425 @@ void usb_root_hub_lost_power(struct usb_device *rhdev) } EXPORT_SYMBOL_GPL(usb_root_hub_lost_power); +static const char * const usb3_lpm_names[] = { + "U0", + "U1", + "U2", + "U3", +}; + +/* + * Send a Set SEL control transfer to the device, prior to enabling + * device-initiated U1 or U2. This lets the device know the exit latencies from + * the time the device initiates a U1 or U2 exit, to the time it will receive a + * packet from the host. + * + * This function will fail if the SEL or PEL values for udev are greater than + * the maximum allowed values for the link state to be enabled. + */ +static int usb_req_set_sel(struct usb_device *udev, enum usb3_link_state state) +{ + struct usb_set_sel_req *sel_values; + unsigned long long u1_sel; + unsigned long long u1_pel; + unsigned long long u2_sel; + unsigned long long u2_pel; + int ret; + + /* Convert SEL and PEL stored in ns to us */ + u1_sel = DIV_ROUND_UP(udev->u1_params.sel, 1000); + u1_pel = DIV_ROUND_UP(udev->u1_params.pel, 1000); + u2_sel = DIV_ROUND_UP(udev->u2_params.sel, 1000); + u2_pel = DIV_ROUND_UP(udev->u2_params.pel, 1000); + + /* + * Make sure that the calculated SEL and PEL values for the link + * state we're enabling aren't bigger than the max SEL/PEL + * value that will fit in the SET SEL control transfer. + * Otherwise the device would get an incorrect idea of the exit + * latency for the link state, and could start a device-initiated + * U1/U2 when the exit latencies are too high. + */ + if ((state == USB3_LPM_U1 && + (u1_sel > USB3_LPM_MAX_U1_SEL_PEL || + u1_pel > USB3_LPM_MAX_U1_SEL_PEL)) || + (state == USB3_LPM_U2 && + (u2_sel > USB3_LPM_MAX_U2_SEL_PEL || + u2_pel > USB3_LPM_MAX_U2_SEL_PEL))) { + dev_dbg(&udev->dev, "Device-initiated %s disabled due " + "to long SEL %llu ms or PEL %llu ms\n", + usb3_lpm_names[state], u1_sel, u1_pel); + return -EINVAL; + } + + /* + * If we're enabling device-initiated LPM for one link state, + * but the other link state has a too high SEL or PEL value, + * just set those values to the max in the Set SEL request. + */ + if (u1_sel > USB3_LPM_MAX_U1_SEL_PEL) + u1_sel = USB3_LPM_MAX_U1_SEL_PEL; + + if (u1_pel > USB3_LPM_MAX_U1_SEL_PEL) + u1_pel = USB3_LPM_MAX_U1_SEL_PEL; + + if (u2_sel > USB3_LPM_MAX_U2_SEL_PEL) + u2_sel = USB3_LPM_MAX_U2_SEL_PEL; + + if (u2_pel > USB3_LPM_MAX_U2_SEL_PEL) + u2_pel = USB3_LPM_MAX_U2_SEL_PEL; + + /* + * usb_enable_lpm() can be called as part of a failed device reset, + * which may be initiated by an error path of a mass storage driver. + * Therefore, use GFP_NOIO. + */ + sel_values = kmalloc(sizeof *(sel_values), GFP_NOIO); + if (!sel_values) + return -ENOMEM; + + sel_values->u1_sel = u1_sel; + sel_values->u1_pel = u1_pel; + sel_values->u2_sel = cpu_to_le16(u2_sel); + sel_values->u2_pel = cpu_to_le16(u2_pel); + + ret = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), + USB_REQ_SET_SEL, + USB_RECIP_DEVICE, + 0, 0, + sel_values, sizeof *(sel_values), + USB_CTRL_SET_TIMEOUT); + kfree(sel_values); + return ret; +} + +/* + * Enable or disable device-initiated U1 or U2 transitions. + */ +static int usb_set_device_initiated_lpm(struct usb_device *udev, + enum usb3_link_state state, bool enable) +{ + int ret; + int feature; + + switch (state) { + case USB3_LPM_U1: + feature = USB_DEVICE_U1_ENABLE; + break; + case USB3_LPM_U2: + feature = USB_DEVICE_U2_ENABLE; + break; + default: + dev_warn(&udev->dev, "%s: Can't %s non-U1 or U2 state.\n", + __func__, enable ? "enable" : "disable"); + return -EINVAL; + } + + if (udev->state != USB_STATE_CONFIGURED) { + dev_dbg(&udev->dev, "%s: Can't %s %s state " + "for unconfigured device.\n", + __func__, enable ? "enable" : "disable", + usb3_lpm_names[state]); + return 0; + } + + if (enable) { + /* + * First, let the device know about the exit latencies + * associated with the link state we're about to enable. + */ + ret = usb_req_set_sel(udev, state); + if (ret < 0) { + dev_warn(&udev->dev, "Set SEL for device-initiated " + "%s failed.\n", usb3_lpm_names[state]); + return -EBUSY; + } + /* + * Now send the control transfer to enable device-initiated LPM + * for either U1 or U2. + */ + ret = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), + USB_REQ_SET_FEATURE, + USB_RECIP_DEVICE, + feature, + 0, NULL, 0, + USB_CTRL_SET_TIMEOUT); + } else { + ret = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), + USB_REQ_CLEAR_FEATURE, + USB_RECIP_DEVICE, + feature, + 0, NULL, 0, + USB_CTRL_SET_TIMEOUT); + } + if (ret < 0) { + dev_warn(&udev->dev, "%s of device-initiated %s failed.\n", + enable ? "Enable" : "Disable", + usb3_lpm_names[state]); + return -EBUSY; + } + return 0; +} + +static int usb_set_lpm_timeout(struct usb_device *udev, + enum usb3_link_state state, int timeout) +{ + int ret; + int feature; + + switch (state) { + case USB3_LPM_U1: + feature = USB_PORT_FEAT_U1_TIMEOUT; + break; + case USB3_LPM_U2: + feature = USB_PORT_FEAT_U2_TIMEOUT; + break; + default: + dev_warn(&udev->dev, "%s: Can't set timeout for non-U1 or U2 state.\n", + __func__); + return -EINVAL; + } + + if (state == USB3_LPM_U1 && timeout > USB3_LPM_U1_MAX_TIMEOUT && + timeout != USB3_LPM_DEVICE_INITIATED) { + dev_warn(&udev->dev, "Failed to set %s timeout to 0x%x, " + "which is a reserved value.\n", + usb3_lpm_names[state], timeout); + return -EINVAL; + } + + ret = set_port_feature(udev->parent, + USB_PORT_LPM_TIMEOUT(timeout) | udev->portnum, + feature); + if (ret < 0) { + dev_warn(&udev->dev, "Failed to set %s timeout to 0x%x," + "error code %i\n", usb3_lpm_names[state], + timeout, ret); + return -EBUSY; + } + if (state == USB3_LPM_U1) + udev->u1_params.timeout = timeout; + else + udev->u2_params.timeout = timeout; + return 0; +} + +/* + * Enable the hub-initiated U1/U2 idle timeouts, and enable device-initiated + * U1/U2 entry. + * + * We will attempt to enable U1 or U2, but there are no guarantees that the + * control transfers to set the hub timeout or enable device-initiated U1/U2 + * will be successful. + * + * If we cannot set the parent hub U1/U2 timeout, we attempt to let the xHCI + * driver know about it. If that call fails, it should be harmless, and just + * take up more slightly more bus bandwidth for unnecessary U1/U2 exit latency. + */ +static void usb_enable_link_state(struct usb_hcd *hcd, struct usb_device *udev, + enum usb3_link_state state) +{ + int timeout; + + /* We allow the host controller to set the U1/U2 timeout internally + * first, so that it can change its schedule to account for the + * additional latency to send data to a device in a lower power + * link state. + */ + timeout = hcd->driver->enable_usb3_lpm_timeout(hcd, udev, state); + + /* xHCI host controller doesn't want to enable this LPM state. */ + if (timeout == 0) + return; + + if (timeout < 0) { + dev_warn(&udev->dev, "Could not enable %s link state, " + "xHCI error %i.\n", usb3_lpm_names[state], + timeout); + return; + } + + if (usb_set_lpm_timeout(udev, state, timeout)) + /* If we can't set the parent hub U1/U2 timeout, + * device-initiated LPM won't be allowed either, so let the xHCI + * host know that this link state won't be enabled. + */ + hcd->driver->disable_usb3_lpm_timeout(hcd, udev, state); + + /* Only a configured device will accept the Set Feature U1/U2_ENABLE */ + else if (udev->actconfig) + usb_set_device_initiated_lpm(udev, state, true); + +} + +/* + * Disable the hub-initiated U1/U2 idle timeouts, and disable device-initiated + * U1/U2 entry. + * + * If this function returns -EBUSY, the parent hub will still allow U1/U2 entry. + * If zero is returned, the parent will not allow the link to go into U1/U2. + * + * If zero is returned, device-initiated U1/U2 entry may still be enabled, but + * it won't have an effect on the bus link state because the parent hub will + * still disallow device-initiated U1/U2 entry. + * + * If zero is returned, the xHCI host controller may still think U1/U2 entry is + * possible. The result will be slightly more bus bandwidth will be taken up + * (to account for U1/U2 exit latency), but it should be harmless. + */ +static int usb_disable_link_state(struct usb_hcd *hcd, struct usb_device *udev, + enum usb3_link_state state) +{ + int feature; + + switch (state) { + case USB3_LPM_U1: + feature = USB_PORT_FEAT_U1_TIMEOUT; + break; + case USB3_LPM_U2: + feature = USB_PORT_FEAT_U2_TIMEOUT; + break; + default: + dev_warn(&udev->dev, "%s: Can't disable non-U1 or U2 state.\n", + __func__); + return -EINVAL; + } + + if (usb_set_lpm_timeout(udev, state, 0)) + return -EBUSY; + + usb_set_device_initiated_lpm(udev, state, false); + + if (hcd->driver->disable_usb3_lpm_timeout(hcd, udev, state)) + dev_warn(&udev->dev, "Could not disable xHCI %s timeout, " + "bus schedule bandwidth may be impacted.\n", + usb3_lpm_names[state]); + return 0; +} + +/* + * Disable hub-initiated and device-initiated U1 and U2 entry. + * Caller must own the bandwidth_mutex. + * + * This will call usb_enable_lpm() on failure, which will decrement + * lpm_disable_count, and will re-enable LPM if lpm_disable_count reaches zero. + */ +int usb_disable_lpm(struct usb_device *udev) +{ + struct usb_hcd *hcd; + + if (!udev || !udev->parent || + udev->speed != USB_SPEED_SUPER || + !udev->lpm_capable) + return 0; + + hcd = bus_to_hcd(udev->bus); + if (!hcd || !hcd->driver->disable_usb3_lpm_timeout) + return 0; + + udev->lpm_disable_count++; + if ((udev->u1_params.timeout == 0 && udev->u1_params.timeout == 0)) + return 0; + + /* If LPM is enabled, attempt to disable it. */ + if (usb_disable_link_state(hcd, udev, USB3_LPM_U1)) + goto enable_lpm; + if (usb_disable_link_state(hcd, udev, USB3_LPM_U2)) + goto enable_lpm; + + return 0; + +enable_lpm: + usb_enable_lpm(udev); + return -EBUSY; +} +EXPORT_SYMBOL_GPL(usb_disable_lpm); + +/* Grab the bandwidth_mutex before calling usb_disable_lpm() */ +int usb_unlocked_disable_lpm(struct usb_device *udev) +{ + struct usb_hcd *hcd = bus_to_hcd(udev->bus); + int ret; + + if (!hcd) + return -EINVAL; + + mutex_lock(hcd->bandwidth_mutex); + ret = usb_disable_lpm(udev); + mutex_unlock(hcd->bandwidth_mutex); + + return ret; +} +EXPORT_SYMBOL_GPL(usb_unlocked_disable_lpm); + +/* + * Attempt to enable device-initiated and hub-initiated U1 and U2 entry. The + * xHCI host policy may prevent U1 or U2 from being enabled. + * + * Other callers may have disabled link PM, so U1 and U2 entry will be disabled + * until the lpm_disable_count drops to zero. Caller must own the + * bandwidth_mutex. + */ +void usb_enable_lpm(struct usb_device *udev) +{ + struct usb_hcd *hcd; + + if (!udev || !udev->parent || + udev->speed != USB_SPEED_SUPER || + !udev->lpm_capable) + return; + + udev->lpm_disable_count--; + hcd = bus_to_hcd(udev->bus); + /* Double check that we can both enable and disable LPM. + * Device must be configured to accept set feature U1/U2 timeout. + */ + if (!hcd || !hcd->driver->enable_usb3_lpm_timeout || + !hcd->driver->disable_usb3_lpm_timeout) + return; + + if (udev->lpm_disable_count > 0) + return; + + usb_enable_link_state(hcd, udev, USB3_LPM_U1); + usb_enable_link_state(hcd, udev, USB3_LPM_U2); +} +EXPORT_SYMBOL_GPL(usb_enable_lpm); + +/* Grab the bandwidth_mutex before calling usb_enable_lpm() */ +void usb_unlocked_enable_lpm(struct usb_device *udev) +{ + struct usb_hcd *hcd = bus_to_hcd(udev->bus); + + if (!hcd) + return; + + mutex_lock(hcd->bandwidth_mutex); + usb_enable_lpm(udev); + mutex_unlock(hcd->bandwidth_mutex); +} +EXPORT_SYMBOL_GPL(usb_unlocked_enable_lpm); + + #else /* CONFIG_PM */ #define hub_suspend NULL #define hub_resume NULL #define hub_reset_resume NULL + +int usb_disable_lpm(struct usb_device *udev) +{ + return 0; +} + +void usb_enable_lpm(struct usb_device *udev) { } + +int usb_unlocked_disable_lpm(struct usb_device *udev) +{ + return 0; +} + +void usb_unlocked_enable_lpm(struct usb_device *udev) { } #endif |