diff options
author | Jeff Kirsher <jeffrey.t.kirsher@intel.com> | 2013-02-09 13:49:21 +0100 |
---|---|---|
committer | Jeff Kirsher <jeffrey.t.kirsher@intel.com> | 2013-02-16 06:46:37 +0100 |
commit | 6cfbd97b3e891ed5a70b43b7a237341f4c09cbf1 (patch) | |
tree | 4e2188cb90fd4360d1850144b115d7b0f1d83a56 /drivers | |
parent | net: use skb_reset_mac_len() in dev_gro_receive() (diff) | |
download | linux-6cfbd97b3e891ed5a70b43b7a237341f4c09cbf1.tar.xz linux-6cfbd97b3e891ed5a70b43b7a237341f4c09cbf1.zip |
e1000: fix whitespace issues and multi-line comments
Fixes whitespace issues, such as lines exceeding 80 chars, needless blank
lines and the use of spaces where tabs are needed. In addition, fix
multi-line comments to align with the networking standard.
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Tested-by: Aaron Brown <aaron.f.brown@intel.com>
Diffstat (limited to 'drivers')
-rw-r--r-- | drivers/net/ethernet/intel/e1000/e1000.h | 65 | ||||
-rw-r--r-- | drivers/net/ethernet/intel/e1000/e1000_ethtool.c | 140 | ||||
-rw-r--r-- | drivers/net/ethernet/intel/e1000/e1000_hw.c | 558 | ||||
-rw-r--r-- | drivers/net/ethernet/intel/e1000/e1000_main.c | 322 | ||||
-rw-r--r-- | drivers/net/ethernet/intel/e1000/e1000_param.c | 29 |
5 files changed, 586 insertions, 528 deletions
diff --git a/drivers/net/ethernet/intel/e1000/e1000.h b/drivers/net/ethernet/intel/e1000/e1000.h index 2b6cd02bfba0..26d9cd59ec75 100644 --- a/drivers/net/ethernet/intel/e1000/e1000.h +++ b/drivers/net/ethernet/intel/e1000/e1000.h @@ -81,68 +81,69 @@ struct e1000_adapter; #include "e1000_hw.h" -#define E1000_MAX_INTR 10 +#define E1000_MAX_INTR 10 /* TX/RX descriptor defines */ -#define E1000_DEFAULT_TXD 256 -#define E1000_MAX_TXD 256 -#define E1000_MIN_TXD 48 -#define E1000_MAX_82544_TXD 4096 +#define E1000_DEFAULT_TXD 256 +#define E1000_MAX_TXD 256 +#define E1000_MIN_TXD 48 +#define E1000_MAX_82544_TXD 4096 -#define E1000_DEFAULT_RXD 256 -#define E1000_MAX_RXD 256 -#define E1000_MIN_RXD 48 -#define E1000_MAX_82544_RXD 4096 +#define E1000_DEFAULT_RXD 256 +#define E1000_MAX_RXD 256 +#define E1000_MIN_RXD 48 +#define E1000_MAX_82544_RXD 4096 #define E1000_MIN_ITR_USECS 10 /* 100000 irq/sec */ #define E1000_MAX_ITR_USECS 10000 /* 100 irq/sec */ /* this is the size past which hardware will drop packets when setting LPE=0 */ -#define MAXIMUM_ETHERNET_VLAN_SIZE 1522 +#define MAXIMUM_ETHERNET_VLAN_SIZE 1522 /* Supported Rx Buffer Sizes */ -#define E1000_RXBUFFER_128 128 /* Used for packet split */ -#define E1000_RXBUFFER_256 256 /* Used for packet split */ -#define E1000_RXBUFFER_512 512 -#define E1000_RXBUFFER_1024 1024 -#define E1000_RXBUFFER_2048 2048 -#define E1000_RXBUFFER_4096 4096 -#define E1000_RXBUFFER_8192 8192 -#define E1000_RXBUFFER_16384 16384 +#define E1000_RXBUFFER_128 128 /* Used for packet split */ +#define E1000_RXBUFFER_256 256 /* Used for packet split */ +#define E1000_RXBUFFER_512 512 +#define E1000_RXBUFFER_1024 1024 +#define E1000_RXBUFFER_2048 2048 +#define E1000_RXBUFFER_4096 4096 +#define E1000_RXBUFFER_8192 8192 +#define E1000_RXBUFFER_16384 16384 /* SmartSpeed delimiters */ -#define E1000_SMARTSPEED_DOWNSHIFT 3 -#define E1000_SMARTSPEED_MAX 15 +#define E1000_SMARTSPEED_DOWNSHIFT 3 +#define E1000_SMARTSPEED_MAX 15 /* Packet Buffer allocations */ -#define E1000_PBA_BYTES_SHIFT 0xA -#define E1000_TX_HEAD_ADDR_SHIFT 7 -#define E1000_PBA_TX_MASK 0xFFFF0000 +#define E1000_PBA_BYTES_SHIFT 0xA +#define E1000_TX_HEAD_ADDR_SHIFT 7 +#define E1000_PBA_TX_MASK 0xFFFF0000 /* Flow Control Watermarks */ -#define E1000_FC_HIGH_DIFF 0x1638 /* High: 5688 bytes below Rx FIFO size */ -#define E1000_FC_LOW_DIFF 0x1640 /* Low: 5696 bytes below Rx FIFO size */ +#define E1000_FC_HIGH_DIFF 0x1638 /* High: 5688 bytes below Rx FIFO size */ +#define E1000_FC_LOW_DIFF 0x1640 /* Low: 5696 bytes below Rx FIFO size */ -#define E1000_FC_PAUSE_TIME 0xFFFF /* pause for the max or until send xon */ +#define E1000_FC_PAUSE_TIME 0xFFFF /* pause for the max or until send xon */ /* How many Tx Descriptors do we need to call netif_wake_queue ? */ #define E1000_TX_QUEUE_WAKE 16 /* How many Rx Buffers do we bundle into one write to the hardware ? */ -#define E1000_RX_BUFFER_WRITE 16 /* Must be power of 2 */ +#define E1000_RX_BUFFER_WRITE 16 /* Must be power of 2 */ -#define AUTO_ALL_MODES 0 -#define E1000_EEPROM_82544_APM 0x0004 -#define E1000_EEPROM_APME 0x0400 +#define AUTO_ALL_MODES 0 +#define E1000_EEPROM_82544_APM 0x0004 +#define E1000_EEPROM_APME 0x0400 #ifndef E1000_MASTER_SLAVE /* Switch to override PHY master/slave setting */ #define E1000_MASTER_SLAVE e1000_ms_hw_default #endif -#define E1000_MNG_VLAN_NONE (-1) +#define E1000_MNG_VLAN_NONE (-1) /* wrapper around a pointer to a socket buffer, - * so a DMA handle can be stored along with the buffer */ + * so a DMA handle can be stored along with the buffer + */ struct e1000_buffer { struct sk_buff *skb; dma_addr_t dma; diff --git a/drivers/net/ethernet/intel/e1000/e1000_ethtool.c b/drivers/net/ethernet/intel/e1000/e1000_ethtool.c index 14e30515f6aa..43462d596a4e 100644 --- a/drivers/net/ethernet/intel/e1000/e1000_ethtool.c +++ b/drivers/net/ethernet/intel/e1000/e1000_ethtool.c @@ -115,12 +115,12 @@ static int e1000_get_settings(struct net_device *netdev, if (hw->media_type == e1000_media_type_copper) { ecmd->supported = (SUPPORTED_10baseT_Half | - SUPPORTED_10baseT_Full | - SUPPORTED_100baseT_Half | - SUPPORTED_100baseT_Full | - SUPPORTED_1000baseT_Full| - SUPPORTED_Autoneg | - SUPPORTED_TP); + SUPPORTED_10baseT_Full | + SUPPORTED_100baseT_Half | + SUPPORTED_100baseT_Full | + SUPPORTED_1000baseT_Full| + SUPPORTED_Autoneg | + SUPPORTED_TP); ecmd->advertising = ADVERTISED_TP; if (hw->autoneg == 1) { @@ -161,8 +161,8 @@ static int e1000_get_settings(struct net_device *netdev, ethtool_cmd_speed_set(ecmd, adapter->link_speed); /* unfortunately FULL_DUPLEX != DUPLEX_FULL - * and HALF_DUPLEX != DUPLEX_HALF */ - + * and HALF_DUPLEX != DUPLEX_HALF + */ if (adapter->link_duplex == FULL_DUPLEX) ecmd->duplex = DUPLEX_FULL; else @@ -179,8 +179,7 @@ static int e1000_get_settings(struct net_device *netdev, if ((hw->media_type == e1000_media_type_copper) && netif_carrier_ok(netdev)) ecmd->eth_tp_mdix = (!!adapter->phy_info.mdix_mode ? - ETH_TP_MDI_X : - ETH_TP_MDI); + ETH_TP_MDI_X : ETH_TP_MDI); else ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID; @@ -197,8 +196,7 @@ static int e1000_set_settings(struct net_device *netdev, struct e1000_adapter *adapter = netdev_priv(netdev); struct e1000_hw *hw = &adapter->hw; - /* - * MDI setting is only allowed when autoneg enabled because + /* MDI setting is only allowed when autoneg enabled because * some hardware doesn't allow MDI setting when speed or * duplex is forced. */ @@ -224,8 +222,8 @@ static int e1000_set_settings(struct net_device *netdev, ADVERTISED_Autoneg; else hw->autoneg_advertised = ecmd->advertising | - ADVERTISED_TP | - ADVERTISED_Autoneg; + ADVERTISED_TP | + ADVERTISED_Autoneg; ecmd->advertising = hw->autoneg_advertised; } else { u32 speed = ethtool_cmd_speed(ecmd); @@ -260,8 +258,7 @@ static u32 e1000_get_link(struct net_device *netdev) { struct e1000_adapter *adapter = netdev_priv(netdev); - /* - * If the link is not reported up to netdev, interrupts are disabled, + /* If the link is not reported up to netdev, interrupts are disabled, * and so the physical link state may have changed since we last * looked. Set get_link_status to make sure that the true link * state is interrogated, rather than pulling a cached and possibly @@ -484,7 +481,7 @@ static int e1000_get_eeprom(struct net_device *netdev, le16_to_cpus(&eeprom_buff[i]); memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), - eeprom->len); + eeprom->len); kfree(eeprom_buff); return ret_val; @@ -517,15 +514,17 @@ static int e1000_set_eeprom(struct net_device *netdev, ptr = (void *)eeprom_buff; if (eeprom->offset & 1) { - /* need read/modify/write of first changed EEPROM word */ - /* only the second byte of the word is being modified */ + /* need read/modify/write of first changed EEPROM word + * only the second byte of the word is being modified + */ ret_val = e1000_read_eeprom(hw, first_word, 1, &eeprom_buff[0]); ptr++; } if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { - /* need read/modify/write of last changed EEPROM word */ - /* only the first byte of the word is being modified */ + /* need read/modify/write of last changed EEPROM word + * only the first byte of the word is being modified + */ ret_val = e1000_read_eeprom(hw, last_word, 1, &eeprom_buff[last_word - first_word]); } @@ -606,11 +605,13 @@ static int e1000_set_ringparam(struct net_device *netdev, rx_old = adapter->rx_ring; err = -ENOMEM; - txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL); + txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), + GFP_KERNEL); if (!txdr) goto err_alloc_tx; - rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL); + rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), + GFP_KERNEL); if (!rxdr) goto err_alloc_rx; @@ -619,12 +620,12 @@ static int e1000_set_ringparam(struct net_device *netdev, rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD); rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ? - E1000_MAX_RXD : E1000_MAX_82544_RXD)); + E1000_MAX_RXD : E1000_MAX_82544_RXD)); rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD); txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ? - E1000_MAX_TXD : E1000_MAX_82544_TXD)); + E1000_MAX_TXD : E1000_MAX_82544_TXD)); txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); for (i = 0; i < adapter->num_tx_queues; i++) @@ -642,7 +643,8 @@ static int e1000_set_ringparam(struct net_device *netdev, goto err_setup_tx; /* save the new, restore the old in order to free it, - * then restore the new back again */ + * then restore the new back again + */ adapter->rx_ring = rx_old; adapter->tx_ring = tx_old; @@ -784,7 +786,6 @@ static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000); if (hw->mac_type >= e1000_82543) { - REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF); REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF); @@ -795,14 +796,11 @@ static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF, 0xFFFFFFFF); } - } else { - REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF); REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF); REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF); REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF); - } value = E1000_MC_TBL_SIZE; @@ -858,13 +856,14 @@ static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) *data = 0; - /* NOTE: we don't test MSI interrupts here, yet */ - /* Hook up test interrupt handler just for this test */ + /* NOTE: we don't test MSI interrupts here, yet + * Hook up test interrupt handler just for this test + */ if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, - netdev)) + netdev)) shared_int = false; else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, - netdev->name, netdev)) { + netdev->name, netdev)) { *data = 1; return -1; } @@ -1253,14 +1252,15 @@ static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ - E1000_CTRL_FD); /* Force Duplex to FULL */ + E1000_CTRL_FD); /* Force Duplex to FULL */ if (hw->media_type == e1000_media_type_copper && hw->phy_type == e1000_phy_m88) ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ else { /* Set the ILOS bit on the fiber Nic is half - * duplex link is detected. */ + * duplex link is detected. + */ stat_reg = er32(STATUS); if ((stat_reg & E1000_STATUS_FD) == 0) ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); @@ -1446,7 +1446,7 @@ static int e1000_run_loopback_test(struct e1000_adapter *adapter) ret_val = e1000_check_lbtest_frame( rxdr->buffer_info[l].skb, - 1024); + 1024); if (!ret_val) good_cnt++; if (unlikely(++l == rxdr->count)) l = 0; @@ -1493,7 +1493,8 @@ static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) hw->serdes_has_link = false; /* On some blade server designs, link establishment - * could take as long as 2-3 minutes */ + * could take as long as 2-3 minutes + */ do { e1000_check_for_link(hw); if (hw->serdes_has_link) @@ -1545,7 +1546,8 @@ static void e1000_diag_test(struct net_device *netdev, e_info(hw, "offline testing starting\n"); /* Link test performed before hardware reset so autoneg doesn't - * interfere with test result */ + * interfere with test result + */ if (e1000_link_test(adapter, &data[4])) eth_test->flags |= ETH_TEST_FL_FAILED; @@ -1639,7 +1641,8 @@ static int e1000_wol_exclusion(struct e1000_adapter *adapter, default: /* dual port cards only support WoL on port A from now on * unless it was enabled in the eeprom for port B - * so exclude FUNC_1 ports from having WoL enabled */ + * so exclude FUNC_1 ports from having WoL enabled + */ if (er32(STATUS) & E1000_STATUS_FUNC_1 && !adapter->eeprom_wol) { wol->supported = 0; @@ -1663,7 +1666,8 @@ static void e1000_get_wol(struct net_device *netdev, wol->wolopts = 0; /* this function will set ->supported = 0 and return 1 if wol is not - * supported by this hardware */ + * supported by this hardware + */ if (e1000_wol_exclusion(adapter, wol) || !device_can_wakeup(&adapter->pdev->dev)) return; @@ -1839,7 +1843,7 @@ static void e1000_get_ethtool_stats(struct net_device *netdev, data[i] = (e1000_gstrings_stats[i].sizeof_stat == sizeof(u64)) ? *(u64 *)p : *(u32 *)p; } -/* BUG_ON(i != E1000_STATS_LEN); */ +/* BUG_ON(i != E1000_STATS_LEN); */ } static void e1000_get_strings(struct net_device *netdev, u32 stringset, @@ -1859,37 +1863,37 @@ static void e1000_get_strings(struct net_device *netdev, u32 stringset, ETH_GSTRING_LEN); p += ETH_GSTRING_LEN; } -/* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */ + /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */ break; } } static const struct ethtool_ops e1000_ethtool_ops = { - .get_settings = e1000_get_settings, - .set_settings = e1000_set_settings, - .get_drvinfo = e1000_get_drvinfo, - .get_regs_len = e1000_get_regs_len, - .get_regs = e1000_get_regs, - .get_wol = e1000_get_wol, - .set_wol = e1000_set_wol, - .get_msglevel = e1000_get_msglevel, - .set_msglevel = e1000_set_msglevel, - .nway_reset = e1000_nway_reset, - .get_link = e1000_get_link, - .get_eeprom_len = e1000_get_eeprom_len, - .get_eeprom = e1000_get_eeprom, - .set_eeprom = e1000_set_eeprom, - .get_ringparam = e1000_get_ringparam, - .set_ringparam = e1000_set_ringparam, - .get_pauseparam = e1000_get_pauseparam, - .set_pauseparam = e1000_set_pauseparam, - .self_test = e1000_diag_test, - .get_strings = e1000_get_strings, - .set_phys_id = e1000_set_phys_id, - .get_ethtool_stats = e1000_get_ethtool_stats, - .get_sset_count = e1000_get_sset_count, - .get_coalesce = e1000_get_coalesce, - .set_coalesce = e1000_set_coalesce, + .get_settings = e1000_get_settings, + .set_settings = e1000_set_settings, + .get_drvinfo = e1000_get_drvinfo, + .get_regs_len = e1000_get_regs_len, + .get_regs = e1000_get_regs, + .get_wol = e1000_get_wol, + .set_wol = e1000_set_wol, + .get_msglevel = e1000_get_msglevel, + .set_msglevel = e1000_set_msglevel, + .nway_reset = e1000_nway_reset, + .get_link = e1000_get_link, + .get_eeprom_len = e1000_get_eeprom_len, + .get_eeprom = e1000_get_eeprom, + .set_eeprom = e1000_set_eeprom, + .get_ringparam = e1000_get_ringparam, + .set_ringparam = e1000_set_ringparam, + .get_pauseparam = e1000_get_pauseparam, + .set_pauseparam = e1000_set_pauseparam, + .self_test = e1000_diag_test, + .get_strings = e1000_get_strings, + .set_phys_id = e1000_set_phys_id, + .get_ethtool_stats = e1000_get_ethtool_stats, + .get_sset_count = e1000_get_sset_count, + .get_coalesce = e1000_get_coalesce, + .set_coalesce = e1000_set_coalesce, .get_ts_info = ethtool_op_get_ts_info, }; diff --git a/drivers/net/ethernet/intel/e1000/e1000_hw.c b/drivers/net/ethernet/intel/e1000/e1000_hw.c index 8fedd2451538..2879b9631e15 100644 --- a/drivers/net/ethernet/intel/e1000/e1000_hw.c +++ b/drivers/net/ethernet/intel/e1000/e1000_hw.c @@ -164,8 +164,9 @@ static void e1000_phy_init_script(struct e1000_hw *hw) if (hw->phy_init_script) { msleep(20); - /* Save off the current value of register 0x2F5B to be restored at - * the end of this routine. */ + /* Save off the current value of register 0x2F5B to be restored + * at the end of this routine. + */ ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); /* Disabled the PHY transmitter */ @@ -466,7 +467,8 @@ s32 e1000_reset_hw(struct e1000_hw *hw) case e1000_82541: case e1000_82541_rev_2: /* These controllers can't ack the 64-bit write when issuing the - * reset, so use IO-mapping as a workaround to issue the reset */ + * reset, so use IO-mapping as a workaround to issue the reset + */ E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); break; case e1000_82545_rev_3: @@ -480,9 +482,9 @@ s32 e1000_reset_hw(struct e1000_hw *hw) break; } - /* After MAC reset, force reload of EEPROM to restore power-on settings to - * device. Later controllers reload the EEPROM automatically, so just wait - * for reload to complete. + /* After MAC reset, force reload of EEPROM to restore power-on settings + * to device. Later controllers reload the EEPROM automatically, so + * just wait for reload to complete. */ switch (hw->mac_type) { case e1000_82542_rev2_0: @@ -591,8 +593,8 @@ s32 e1000_init_hw(struct e1000_hw *hw) msleep(5); } - /* Setup the receive address. This involves initializing all of the Receive - * Address Registers (RARs 0 - 15). + /* Setup the receive address. This involves initializing all of the + * Receive Address Registers (RARs 0 - 15). */ e1000_init_rx_addrs(hw); @@ -611,7 +613,8 @@ s32 e1000_init_hw(struct e1000_hw *hw) for (i = 0; i < mta_size; i++) { E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); /* use write flush to prevent Memory Write Block (MWB) from - * occurring when accessing our register space */ + * occurring when accessing our register space + */ E1000_WRITE_FLUSH(); } @@ -630,7 +633,9 @@ s32 e1000_init_hw(struct e1000_hw *hw) case e1000_82546_rev_3: break; default: - /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ + /* Workaround for PCI-X problem when BIOS sets MMRBC + * incorrectly. + */ if (hw->bus_type == e1000_bus_type_pcix && e1000_pcix_get_mmrbc(hw) > 2048) e1000_pcix_set_mmrbc(hw, 2048); @@ -660,7 +665,8 @@ s32 e1000_init_hw(struct e1000_hw *hw) hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { ctrl_ext = er32(CTRL_EXT); /* Relaxed ordering must be disabled to avoid a parity - * error crash in a PCI slot. */ + * error crash in a PCI slot. + */ ctrl_ext |= E1000_CTRL_EXT_RO_DIS; ew32(CTRL_EXT, ctrl_ext); } @@ -810,8 +816,9 @@ s32 e1000_setup_link(struct e1000_hw *hw) ew32(FCRTL, 0); ew32(FCRTH, 0); } else { - /* We need to set up the Receive Threshold high and low water marks - * as well as (optionally) enabling the transmission of XON frames. + /* We need to set up the Receive Threshold high and low water + * marks as well as (optionally) enabling the transmission of + * XON frames. */ if (hw->fc_send_xon) { ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); @@ -868,42 +875,46 @@ static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw) e1000_config_collision_dist(hw); /* Check for a software override of the flow control settings, and setup - * the device accordingly. If auto-negotiation is enabled, then software - * will have to set the "PAUSE" bits to the correct value in the Tranmsit - * Config Word Register (TXCW) and re-start auto-negotiation. However, if - * auto-negotiation is disabled, then software will have to manually - * configure the two flow control enable bits in the CTRL register. + * the device accordingly. If auto-negotiation is enabled, then + * software will have to set the "PAUSE" bits to the correct value in + * the Tranmsit Config Word Register (TXCW) and re-start + * auto-negotiation. However, if auto-negotiation is disabled, then + * software will have to manually configure the two flow control enable + * bits in the CTRL register. * * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause frames, but - * not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames but we do - * not support receiving pause frames). - * 3: Both Rx and TX flow control (symmetric) are enabled. + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause frames, but + * not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames but we do + * not support receiving pause frames). + * 3: Both Rx and TX flow control (symmetric) are enabled. */ switch (hw->fc) { case E1000_FC_NONE: - /* Flow control is completely disabled by a software over-ride. */ + /* Flow ctrl is completely disabled by a software over-ride */ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); break; case E1000_FC_RX_PAUSE: - /* RX Flow control is enabled and TX Flow control is disabled by a - * software over-ride. Since there really isn't a way to advertise - * that we are capable of RX Pause ONLY, we will advertise that we - * support both symmetric and asymmetric RX PAUSE. Later, we will - * disable the adapter's ability to send PAUSE frames. + /* Rx Flow control is enabled and Tx Flow control is disabled by + * a software over-ride. Since there really isn't a way to + * advertise that we are capable of Rx Pause ONLY, we will + * advertise that we support both symmetric and asymmetric Rx + * PAUSE. Later, we will disable the adapter's ability to send + * PAUSE frames. */ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); break; case E1000_FC_TX_PAUSE: - /* TX Flow control is enabled, and RX Flow control is disabled, by a - * software over-ride. + /* Tx Flow control is enabled, and Rx Flow control is disabled, + * by a software over-ride. */ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); break; case E1000_FC_FULL: - /* Flow control (both RX and TX) is enabled by a software over-ride. */ + /* Flow control (both Rx and Tx) is enabled by a software + * over-ride. + */ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); break; default: @@ -912,11 +923,11 @@ static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw) break; } - /* Since auto-negotiation is enabled, take the link out of reset (the link - * will be in reset, because we previously reset the chip). This will - * restart auto-negotiation. If auto-negotiation is successful then the - * link-up status bit will be set and the flow control enable bits (RFCE - * and TFCE) will be set according to their negotiated value. + /* Since auto-negotiation is enabled, take the link out of reset (the + * link will be in reset, because we previously reset the chip). This + * will restart auto-negotiation. If auto-negotiation is successful + * then the link-up status bit will be set and the flow control enable + * bits (RFCE and TFCE) will be set according to their negotiated value. */ e_dbg("Auto-negotiation enabled\n"); @@ -927,11 +938,12 @@ static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw) hw->txcw = txcw; msleep(1); - /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" - * indication in the Device Status Register. Time-out if a link isn't - * seen in 500 milliseconds seconds (Auto-negotiation should complete in - * less than 500 milliseconds even if the other end is doing it in SW). - * For internal serdes, we just assume a signal is present, then poll. + /* If we have a signal (the cable is plugged in) then poll for a + * "Link-Up" indication in the Device Status Register. Time-out if a + * link isn't seen in 500 milliseconds seconds (Auto-negotiation should + * complete in less than 500 milliseconds even if the other end is doing + * it in SW). For internal serdes, we just assume a signal is present, + * then poll. */ if (hw->media_type == e1000_media_type_internal_serdes || (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) { @@ -946,9 +958,9 @@ static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw) e_dbg("Never got a valid link from auto-neg!!!\n"); hw->autoneg_failed = 1; /* AutoNeg failed to achieve a link, so we'll call - * e1000_check_for_link. This routine will force the link up if - * we detect a signal. This will allow us to communicate with - * non-autonegotiating link partners. + * e1000_check_for_link. This routine will force the + * link up if we detect a signal. This will allow us to + * communicate with non-autonegotiating link partners. */ ret_val = e1000_check_for_link(hw); if (ret_val) { @@ -1042,9 +1054,9 @@ static s32 e1000_copper_link_preconfig(struct e1000_hw *hw) e_dbg("e1000_copper_link_preconfig"); ctrl = er32(CTRL); - /* With 82543, we need to force speed and duplex on the MAC equal to what - * the PHY speed and duplex configuration is. In addition, we need to - * perform a hardware reset on the PHY to take it out of reset. + /* With 82543, we need to force speed and duplex on the MAC equal to + * what the PHY speed and duplex configuration is. In addition, we need + * to perform a hardware reset on the PHY to take it out of reset. */ if (hw->mac_type > e1000_82543) { ctrl |= E1000_CTRL_SLU; @@ -1175,7 +1187,8 @@ static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw) /* when autonegotiation advertisement is only 1000Mbps then we * should disable SmartSpeed and enable Auto MasterSlave - * resolution as hardware default. */ + * resolution as hardware default. + */ if (hw->autoneg_advertised == ADVERTISE_1000_FULL) { /* Disable SmartSpeed */ ret_val = @@ -1485,13 +1498,15 @@ static s32 e1000_setup_copper_link(struct e1000_hw *hw) if (hw->autoneg) { /* Setup autoneg and flow control advertisement - * and perform autonegotiation */ + * and perform autonegotiation + */ ret_val = e1000_copper_link_autoneg(hw); if (ret_val) return ret_val; } else { /* PHY will be set to 10H, 10F, 100H,or 100F - * depending on value from forced_speed_duplex. */ + * depending on value from forced_speed_duplex. + */ e_dbg("Forcing speed and duplex\n"); ret_val = e1000_phy_force_speed_duplex(hw); if (ret_val) { @@ -1609,7 +1624,8 @@ s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) * setup the PHY advertisement registers accordingly. If * auto-negotiation is enabled, then software will have to set the * "PAUSE" bits to the correct value in the Auto-Negotiation - * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. + * Advertisement Register (PHY_AUTONEG_ADV) and re-start + * auto-negotiation. * * The possible values of the "fc" parameter are: * 0: Flow control is completely disabled @@ -1636,7 +1652,7 @@ s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) * capable of RX Pause ONLY, we will advertise that we * support both symmetric and asymmetric RX PAUSE. Later * (in e1000_config_fc_after_link_up) we will disable the - *hw's ability to send PAUSE frames. + * hw's ability to send PAUSE frames. */ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); break; @@ -1720,15 +1736,15 @@ static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) /* Are we forcing Full or Half Duplex? */ if (hw->forced_speed_duplex == e1000_100_full || hw->forced_speed_duplex == e1000_10_full) { - /* We want to force full duplex so we SET the full duplex bits in the - * Device and MII Control Registers. + /* We want to force full duplex so we SET the full duplex bits + * in the Device and MII Control Registers. */ ctrl |= E1000_CTRL_FD; mii_ctrl_reg |= MII_CR_FULL_DUPLEX; e_dbg("Full Duplex\n"); } else { - /* We want to force half duplex so we CLEAR the full duplex bits in - * the Device and MII Control Registers. + /* We want to force half duplex so we CLEAR the full duplex bits + * in the Device and MII Control Registers. */ ctrl &= ~E1000_CTRL_FD; mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX; @@ -1762,8 +1778,8 @@ static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) if (ret_val) return ret_val; - /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI - * forced whenever speed are duplex are forced. + /* Clear Auto-Crossover to force MDI manually. M88E1000 requires + * MDI forced whenever speed are duplex are forced. */ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; ret_val = @@ -1814,10 +1830,10 @@ static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) e_dbg("Waiting for forced speed/duplex link.\n"); mii_status_reg = 0; - /* We will wait for autoneg to complete or 4.5 seconds to expire. */ + /* Wait for autoneg to complete or 4.5 seconds to expire */ for (i = PHY_FORCE_TIME; i > 0; i--) { - /* Read the MII Status Register and wait for Auto-Neg Complete bit - * to be set. + /* Read the MII Status Register and wait for Auto-Neg + * Complete bit to be set. */ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); @@ -1834,20 +1850,24 @@ static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) msleep(100); } if ((i == 0) && (hw->phy_type == e1000_phy_m88)) { - /* We didn't get link. Reset the DSP and wait again for link. */ + /* We didn't get link. Reset the DSP and wait again + * for link. + */ ret_val = e1000_phy_reset_dsp(hw); if (ret_val) { e_dbg("Error Resetting PHY DSP\n"); return ret_val; } } - /* This loop will early-out if the link condition has been met. */ + /* This loop will early-out if the link condition has been + * met + */ for (i = PHY_FORCE_TIME; i > 0; i--) { if (mii_status_reg & MII_SR_LINK_STATUS) break; msleep(100); - /* Read the MII Status Register and wait for Auto-Neg Complete bit - * to be set. + /* Read the MII Status Register and wait for Auto-Neg + * Complete bit to be set. */ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); @@ -1862,9 +1882,10 @@ static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) } if (hw->phy_type == e1000_phy_m88) { - /* Because we reset the PHY above, we need to re-force TX_CLK in the - * Extended PHY Specific Control Register to 25MHz clock. This value - * defaults back to a 2.5MHz clock when the PHY is reset. + /* Because we reset the PHY above, we need to re-force TX_CLK in + * the Extended PHY Specific Control Register to 25MHz clock. + * This value defaults back to a 2.5MHz clock when the PHY is + * reset. */ ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, @@ -1879,8 +1900,9 @@ static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) if (ret_val) return ret_val; - /* In addition, because of the s/w reset above, we need to enable CRS on - * TX. This must be set for both full and half duplex operation. + /* In addition, because of the s/w reset above, we need to + * enable CRS on Tx. This must be set for both full and half + * duplex operation. */ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); @@ -1951,7 +1973,8 @@ static s32 e1000_config_mac_to_phy(struct e1000_hw *hw) e_dbg("e1000_config_mac_to_phy"); /* 82544 or newer MAC, Auto Speed Detection takes care of - * MAC speed/duplex configuration.*/ + * MAC speed/duplex configuration. + */ if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) return E1000_SUCCESS; @@ -1985,7 +2008,7 @@ static s32 e1000_config_mac_to_phy(struct e1000_hw *hw) * registers depending on negotiated values. */ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, - &phy_data); + &phy_data); if (ret_val) return ret_val; @@ -2002,7 +2025,7 @@ static s32 e1000_config_mac_to_phy(struct e1000_hw *hw) if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) ctrl |= E1000_CTRL_SPD_1000; else if ((phy_data & M88E1000_PSSR_SPEED) == - M88E1000_PSSR_100MBS) + M88E1000_PSSR_100MBS) ctrl |= E1000_CTRL_SPD_100; } @@ -2135,9 +2158,9 @@ static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw) if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { /* The AutoNeg process has completed, so we now need to * read both the Auto Negotiation Advertisement Register - * (Address 4) and the Auto_Negotiation Base Page Ability - * Register (Address 5) to determine how flow control was - * negotiated. + * (Address 4) and the Auto_Negotiation Base Page + * Ability Register (Address 5) to determine how flow + * control was negotiated. */ ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg); @@ -2148,18 +2171,19 @@ static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw) if (ret_val) return ret_val; - /* Two bits in the Auto Negotiation Advertisement Register - * (Address 4) and two bits in the Auto Negotiation Base - * Page Ability Register (Address 5) determine flow control - * for both the PHY and the link partner. The following - * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, - * 1999, describes these PAUSE resolution bits and how flow - * control is determined based upon these settings. + /* Two bits in the Auto Negotiation Advertisement + * Register (Address 4) and two bits in the Auto + * Negotiation Base Page Ability Register (Address 5) + * determine flow control for both the PHY and the link + * partner. The following table, taken out of the IEEE + * 802.3ab/D6.0 dated March 25, 1999, describes these + * PAUSE resolution bits and how flow control is + * determined based upon these settings. * NOTE: DC = Don't Care * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution - *-------|---------|-------|---------|-------------------- + *-------|---------|-------|---------|------------------ * 0 | 0 | DC | DC | E1000_FC_NONE * 0 | 1 | 0 | DC | E1000_FC_NONE * 0 | 1 | 1 | 0 | E1000_FC_NONE @@ -2178,17 +2202,18 @@ static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw) * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- + *-------|---------|-------|---------|------------------ * 1 | DC | 1 | DC | E1000_FC_FULL * */ if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { - /* Now we need to check if the user selected RX ONLY - * of pause frames. In this case, we had to advertise - * FULL flow control because we could not advertise RX - * ONLY. Hence, we must now check to see if we need to - * turn OFF the TRANSMISSION of PAUSE frames. + /* Now we need to check if the user selected Rx + * ONLY of pause frames. In this case, we had + * to advertise FULL flow control because we + * could not advertise Rx ONLY. Hence, we must + * now check to see if we need to turn OFF the + * TRANSMISSION of PAUSE frames. */ if (hw->original_fc == E1000_FC_FULL) { hw->fc = E1000_FC_FULL; @@ -2203,7 +2228,7 @@ static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw) * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- + *-------|---------|-------|---------|------------------ * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE * */ @@ -2220,7 +2245,7 @@ static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw) * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- + *-------|---------|-------|---------|------------------ * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE * */ @@ -2233,25 +2258,27 @@ static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw) e_dbg ("Flow Control = RX PAUSE frames only.\n"); } - /* Per the IEEE spec, at this point flow control should be - * disabled. However, we want to consider that we could - * be connected to a legacy switch that doesn't advertise - * desired flow control, but can be forced on the link - * partner. So if we advertised no flow control, that is - * what we will resolve to. If we advertised some kind of - * receive capability (Rx Pause Only or Full Flow Control) - * and the link partner advertised none, we will configure - * ourselves to enable Rx Flow Control only. We can do - * this safely for two reasons: If the link partner really - * didn't want flow control enabled, and we enable Rx, no - * harm done since we won't be receiving any PAUSE frames - * anyway. If the intent on the link partner was to have - * flow control enabled, then by us enabling RX only, we - * can at least receive pause frames and process them. - * This is a good idea because in most cases, since we are - * predominantly a server NIC, more times than not we will - * be asked to delay transmission of packets than asking - * our link partner to pause transmission of frames. + /* Per the IEEE spec, at this point flow control should + * be disabled. However, we want to consider that we + * could be connected to a legacy switch that doesn't + * advertise desired flow control, but can be forced on + * the link partner. So if we advertised no flow + * control, that is what we will resolve to. If we + * advertised some kind of receive capability (Rx Pause + * Only or Full Flow Control) and the link partner + * advertised none, we will configure ourselves to + * enable Rx Flow Control only. We can do this safely + * for two reasons: If the link partner really + * didn't want flow control enabled, and we enable Rx, + * no harm done since we won't be receiving any PAUSE + * frames anyway. If the intent on the link partner was + * to have flow control enabled, then by us enabling Rx + * only, we can at least receive pause frames and + * process them. This is a good idea because in most + * cases, since we are predominantly a server NIC, more + * times than not we will be asked to delay transmission + * of packets than asking our link partner to pause + * transmission of frames. */ else if ((hw->original_fc == E1000_FC_NONE || hw->original_fc == E1000_FC_TX_PAUSE) || @@ -2316,8 +2343,7 @@ static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw) status = er32(STATUS); rxcw = er32(RXCW); - /* - * If we don't have link (auto-negotiation failed or link partner + /* If we don't have link (auto-negotiation failed or link partner * cannot auto-negotiate), and our link partner is not trying to * auto-negotiate with us (we are receiving idles or data), * we need to force link up. We also need to give auto-negotiation @@ -2346,8 +2372,7 @@ static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw) goto out; } } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { - /* - * If we are forcing link and we are receiving /C/ ordered + /* If we are forcing link and we are receiving /C/ ordered * sets, re-enable auto-negotiation in the TXCW register * and disable forced link in the Device Control register * in an attempt to auto-negotiate with our link partner. @@ -2358,8 +2383,7 @@ static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw) hw->serdes_has_link = true; } else if (!(E1000_TXCW_ANE & er32(TXCW))) { - /* - * If we force link for non-auto-negotiation switch, check + /* If we force link for non-auto-negotiation switch, check * link status based on MAC synchronization for internal * serdes media type. */ @@ -2468,15 +2492,17 @@ s32 e1000_check_for_link(struct e1000_hw *hw) if (phy_data & MII_SR_LINK_STATUS) { hw->get_link_status = false; - /* Check if there was DownShift, must be checked immediately after - * link-up */ + /* Check if there was DownShift, must be checked + * immediately after link-up + */ e1000_check_downshift(hw); /* If we are on 82544 or 82543 silicon and speed/duplex - * are forced to 10H or 10F, then we will implement the polarity - * reversal workaround. We disable interrupts first, and upon - * returning, place the devices interrupt state to its previous - * value except for the link status change interrupt which will + * are forced to 10H or 10F, then we will implement the + * polarity reversal workaround. We disable interrupts + * first, and upon returning, place the devices + * interrupt state to its previous value except for the + * link status change interrupt which will * happen due to the execution of this workaround. */ @@ -2527,9 +2553,10 @@ s32 e1000_check_for_link(struct e1000_hw *hw) } } - /* Configure Flow Control now that Auto-Neg has completed. First, we - * need to restore the desired flow control settings because we may - * have had to re-autoneg with a different link partner. + /* Configure Flow Control now that Auto-Neg has completed. + * First, we need to restore the desired flow control settings + * because we may have had to re-autoneg with a different link + * partner. */ ret_val = e1000_config_fc_after_link_up(hw); if (ret_val) { @@ -2538,11 +2565,12 @@ s32 e1000_check_for_link(struct e1000_hw *hw) } /* At this point we know that we are on copper and we have - * auto-negotiated link. These are conditions for checking the link - * partner capability register. We use the link speed to determine if - * TBI compatibility needs to be turned on or off. If the link is not - * at gigabit speed, then TBI compatibility is not needed. If we are - * at gigabit speed, we turn on TBI compatibility. + * auto-negotiated link. These are conditions for checking the + * link partner capability register. We use the link speed to + * determine if TBI compatibility needs to be turned on or off. + * If the link is not at gigabit speed, then TBI compatibility + * is not needed. If we are at gigabit speed, we turn on TBI + * compatibility. */ if (hw->tbi_compatibility_en) { u16 speed, duplex; @@ -2554,20 +2582,23 @@ s32 e1000_check_for_link(struct e1000_hw *hw) return ret_val; } if (speed != SPEED_1000) { - /* If link speed is not set to gigabit speed, we do not need - * to enable TBI compatibility. + /* If link speed is not set to gigabit speed, we + * do not need to enable TBI compatibility. */ if (hw->tbi_compatibility_on) { - /* If we previously were in the mode, turn it off. */ + /* If we previously were in the mode, + * turn it off. + */ rctl = er32(RCTL); rctl &= ~E1000_RCTL_SBP; ew32(RCTL, rctl); hw->tbi_compatibility_on = false; } } else { - /* If TBI compatibility is was previously off, turn it on. For - * compatibility with a TBI link partner, we will store bad - * packets. Some frames have an additional byte on the end and + /* If TBI compatibility is was previously off, + * turn it on. For compatibility with a TBI link + * partner, we will store bad packets. Some + * frames have an additional byte on the end and * will look like CRC errors to to the hardware. */ if (!hw->tbi_compatibility_on) { @@ -2629,9 +2660,9 @@ s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) *duplex = FULL_DUPLEX; } - /* IGP01 PHY may advertise full duplex operation after speed downgrade even - * if it is operating at half duplex. Here we set the duplex settings to - * match the duplex in the link partner's capabilities. + /* IGP01 PHY may advertise full duplex operation after speed downgrade + * even if it is operating at half duplex. Here we set the duplex + * settings to match the duplex in the link partner's capabilities. */ if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) { ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); @@ -2697,8 +2728,8 @@ static s32 e1000_wait_autoneg(struct e1000_hw *hw) */ static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl) { - /* Raise the clock input to the Management Data Clock (by setting the MDC - * bit), and then delay 10 microseconds. + /* Raise the clock input to the Management Data Clock (by setting the + * MDC bit), and then delay 10 microseconds. */ ew32(CTRL, (*ctrl | E1000_CTRL_MDC)); E1000_WRITE_FLUSH(); @@ -2712,8 +2743,8 @@ static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl) */ static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl) { - /* Lower the clock input to the Management Data Clock (by clearing the MDC - * bit), and then delay 10 microseconds. + /* Lower the clock input to the Management Data Clock (by clearing the + * MDC bit), and then delay 10 microseconds. */ ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC)); E1000_WRITE_FLUSH(); @@ -2746,10 +2777,10 @@ static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count) ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); while (mask) { - /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and - * then raising and lowering the Management Data Clock. A "0" is - * shifted out to the PHY by setting the MDIO bit to "0" and then - * raising and lowering the clock. + /* A "1" is shifted out to the PHY by setting the MDIO bit to + * "1" and then raising and lowering the Management Data Clock. + * A "0" is shifted out to the PHY by setting the MDIO bit to + * "0" and then raising and lowering the clock. */ if (data & mask) ctrl |= E1000_CTRL_MDIO; @@ -2781,24 +2812,26 @@ static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw) u8 i; /* In order to read a register from the PHY, we need to shift in a total - * of 18 bits from the PHY. The first two bit (turnaround) times are used - * to avoid contention on the MDIO pin when a read operation is performed. - * These two bits are ignored by us and thrown away. Bits are "shifted in" - * by raising the input to the Management Data Clock (setting the MDC bit), - * and then reading the value of the MDIO bit. + * of 18 bits from the PHY. The first two bit (turnaround) times are + * used to avoid contention on the MDIO pin when a read operation is + * performed. These two bits are ignored by us and thrown away. Bits are + * "shifted in" by raising the input to the Management Data Clock + * (setting the MDC bit), and then reading the value of the MDIO bit. */ ctrl = er32(CTRL); - /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ + /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as + * input. + */ ctrl &= ~E1000_CTRL_MDIO_DIR; ctrl &= ~E1000_CTRL_MDIO; ew32(CTRL, ctrl); E1000_WRITE_FLUSH(); - /* Raise and Lower the clock before reading in the data. This accounts for - * the turnaround bits. The first clock occurred when we clocked out the - * last bit of the Register Address. + /* Raise and Lower the clock before reading in the data. This accounts + * for the turnaround bits. The first clock occurred when we clocked out + * the last bit of the Register Address. */ e1000_raise_mdi_clk(hw, &ctrl); e1000_lower_mdi_clk(hw, &ctrl); @@ -2870,8 +2903,8 @@ static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, if (hw->mac_type > e1000_82543) { /* Set up Op-code, Phy Address, and register address in the MDI - * Control register. The MAC will take care of interfacing with the - * PHY to retrieve the desired data. + * Control register. The MAC will take care of interfacing with + * the PHY to retrieve the desired data. */ if (hw->mac_type == e1000_ce4100) { mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | @@ -2929,31 +2962,32 @@ static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, *phy_data = (u16) mdic; } } else { - /* We must first send a preamble through the MDIO pin to signal the - * beginning of an MII instruction. This is done by sending 32 - * consecutive "1" bits. + /* We must first send a preamble through the MDIO pin to signal + * the beginning of an MII instruction. This is done by sending + * 32 consecutive "1" bits. */ e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); /* Now combine the next few fields that are required for a read * operation. We use this method instead of calling the - * e1000_shift_out_mdi_bits routine five different times. The format of - * a MII read instruction consists of a shift out of 14 bits and is - * defined as follows: + * e1000_shift_out_mdi_bits routine five different times. The + * format of a MII read instruction consists of a shift out of + * 14 bits and is defined as follows: * <Preamble><SOF><Op Code><Phy Addr><Reg Addr> - * followed by a shift in of 18 bits. This first two bits shifted in - * are TurnAround bits used to avoid contention on the MDIO pin when a - * READ operation is performed. These two bits are thrown away - * followed by a shift in of 16 bits which contains the desired data. + * followed by a shift in of 18 bits. This first two bits + * shifted in are TurnAround bits used to avoid contention on + * the MDIO pin when a READ operation is performed. These two + * bits are thrown away followed by a shift in of 16 bits which + * contains the desired data. */ mdic = ((reg_addr) | (phy_addr << 5) | (PHY_OP_READ << 10) | (PHY_SOF << 12)); e1000_shift_out_mdi_bits(hw, mdic, 14); - /* Now that we've shifted out the read command to the MII, we need to - * "shift in" the 16-bit value (18 total bits) of the requested PHY - * register address. + /* Now that we've shifted out the read command to the MII, we + * need to "shift in" the 16-bit value (18 total bits) of the + * requested PHY register address. */ *phy_data = e1000_shift_in_mdi_bits(hw); } @@ -3060,18 +3094,18 @@ static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, } } } else { - /* We'll need to use the SW defined pins to shift the write command - * out to the PHY. We first send a preamble to the PHY to signal the - * beginning of the MII instruction. This is done by sending 32 - * consecutive "1" bits. + /* We'll need to use the SW defined pins to shift the write + * command out to the PHY. We first send a preamble to the PHY + * to signal the beginning of the MII instruction. This is done + * by sending 32 consecutive "1" bits. */ e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); - /* Now combine the remaining required fields that will indicate a - * write operation. We use this method instead of calling the - * e1000_shift_out_mdi_bits routine for each field in the command. The - * format of a MII write instruction is as follows: - * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. + /* Now combine the remaining required fields that will indicate + * a write operation. We use this method instead of calling the + * e1000_shift_out_mdi_bits routine for each field in the + * command. The format of a MII write instruction is as follows: + * <Preamble><SOF><OpCode><PhyAddr><RegAddr><Turnaround><Data>. */ mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); @@ -3100,10 +3134,10 @@ s32 e1000_phy_hw_reset(struct e1000_hw *hw) e_dbg("Resetting Phy...\n"); if (hw->mac_type > e1000_82543) { - /* Read the device control register and assert the E1000_CTRL_PHY_RST - * bit. Then, take it out of reset. + /* Read the device control register and assert the + * E1000_CTRL_PHY_RST bit. Then, take it out of reset. * For e1000 hardware, we delay for 10ms between the assert - * and deassert. + * and de-assert. */ ctrl = er32(CTRL); ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); @@ -3115,8 +3149,9 @@ s32 e1000_phy_hw_reset(struct e1000_hw *hw) E1000_WRITE_FLUSH(); } else { - /* Read the Extended Device Control Register, assert the PHY_RESET_DIR - * bit to put the PHY into reset. Then, take it out of reset. + /* Read the Extended Device Control Register, assert the + * PHY_RESET_DIR bit to put the PHY into reset. Then, take it + * out of reset. */ ctrl_ext = er32(CTRL_EXT); ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; @@ -3301,7 +3336,8 @@ static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, e_dbg("e1000_phy_igp_get_info"); /* The downshift status is checked only once, after link is established, - * and it stored in the hw->speed_downgraded parameter. */ + * and it stored in the hw->speed_downgraded parameter. + */ phy_info->downshift = (e1000_downshift) hw->speed_downgraded; /* IGP01E1000 does not need to support it. */ @@ -3327,7 +3363,9 @@ static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == IGP01E1000_PSSR_SPEED_1000MBPS) { - /* Local/Remote Receiver Information are only valid at 1000 Mbps */ + /* Local/Remote Receiver Information are only valid @ 1000 + * Mbps + */ ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); if (ret_val) return ret_val; @@ -3379,7 +3417,8 @@ static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, e_dbg("e1000_phy_m88_get_info"); /* The downshift status is checked only once, after link is established, - * and it stored in the hw->speed_downgraded parameter. */ + * and it stored in the hw->speed_downgraded parameter. + */ phy_info->downshift = (e1000_downshift) hw->speed_downgraded; ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); @@ -3574,8 +3613,8 @@ s32 e1000_init_eeprom_params(struct e1000_hw *hw) } if (eeprom->type == e1000_eeprom_spi) { - /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to - * 32KB (incremented by powers of 2). + /* eeprom_size will be an enum [0..8] that maps to eeprom sizes + * 128B to 32KB (incremented by powers of 2). */ /* Set to default value for initial eeprom read. */ eeprom->word_size = 64; @@ -3585,8 +3624,9 @@ s32 e1000_init_eeprom_params(struct e1000_hw *hw) eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT; /* 256B eeprom size was not supported in earlier hardware, so we - * bump eeprom_size up one to ensure that "1" (which maps to 256B) - * is never the result used in the shifting logic below. */ + * bump eeprom_size up one to ensure that "1" (which maps to + * 256B) is never the result used in the shifting logic below. + */ if (eeprom_size) eeprom_size++; @@ -3618,8 +3658,8 @@ static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd) */ static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd) { - /* Lower the clock input to the EEPROM (by clearing the SK bit), and then - * wait 50 microseconds. + /* Lower the clock input to the EEPROM (by clearing the SK bit), and + * then wait 50 microseconds. */ *eecd = *eecd & ~E1000_EECD_SK; ew32(EECD, *eecd); @@ -3651,10 +3691,11 @@ static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count) eecd |= E1000_EECD_DO; } do { - /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", - * and then raising and then lowering the clock (the SK bit controls - * the clock input to the EEPROM). A "0" is shifted out to the EEPROM - * by setting "DI" to "0" and then raising and then lowering the clock. + /* A "1" is shifted out to the EEPROM by setting bit "DI" to a + * "1", and then raising and then lowering the clock (the SK bit + * controls the clock input to the EEPROM). A "0" is shifted + * out to the EEPROM by setting "DI" to "0" and then raising and + * then lowering the clock. */ eecd &= ~E1000_EECD_DI; @@ -3691,9 +3732,9 @@ static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count) /* In order to read a register from the EEPROM, we need to shift 'count' * bits in from the EEPROM. Bits are "shifted in" by raising the clock - * input to the EEPROM (setting the SK bit), and then reading the value of - * the "DO" bit. During this "shifting in" process the "DI" bit should - * always be clear. + * input to the EEPROM (setting the SK bit), and then reading the value + * of the "DO" bit. During this "shifting in" process the "DI" bit + * should always be clear. */ eecd = er32(EECD); @@ -3945,8 +3986,8 @@ static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, if (eeprom->word_size == 0) e1000_init_eeprom_params(hw); - /* A check for invalid values: offset too large, too many words, and not - * enough words. + /* A check for invalid values: offset too large, too many words, and + * not enough words. */ if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || (words == 0)) { @@ -3964,7 +4005,8 @@ static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, return -E1000_ERR_EEPROM; /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have - * acquired the EEPROM at this point, so any returns should release it */ + * acquired the EEPROM at this point, so any returns should release it + */ if (eeprom->type == e1000_eeprom_spi) { u16 word_in; u8 read_opcode = EEPROM_READ_OPCODE_SPI; @@ -3976,7 +4018,9 @@ static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, e1000_standby_eeprom(hw); - /* Some SPI eeproms use the 8th address bit embedded in the opcode */ + /* Some SPI eeproms use the 8th address bit embedded in the + * opcode + */ if ((eeprom->address_bits == 8) && (offset >= 128)) read_opcode |= EEPROM_A8_OPCODE_SPI; @@ -3985,11 +4029,13 @@ static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, e1000_shift_out_ee_bits(hw, (u16) (offset * 2), eeprom->address_bits); - /* Read the data. The address of the eeprom internally increments with - * each byte (spi) being read, saving on the overhead of eeprom setup - * and tear-down. The address counter will roll over if reading beyond - * the size of the eeprom, thus allowing the entire memory to be read - * starting from any offset. */ + /* Read the data. The address of the eeprom internally + * increments with each byte (spi) being read, saving on the + * overhead of eeprom setup and tear-down. The address counter + * will roll over if reading beyond the size of the eeprom, thus + * allowing the entire memory to be read starting from any + * offset. + */ for (i = 0; i < words; i++) { word_in = e1000_shift_in_ee_bits(hw, 16); data[i] = (word_in >> 8) | (word_in << 8); @@ -4003,8 +4049,9 @@ static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, e1000_shift_out_ee_bits(hw, (u16) (offset + i), eeprom->address_bits); - /* Read the data. For microwire, each word requires the overhead - * of eeprom setup and tear-down. */ + /* Read the data. For microwire, each word requires the + * overhead of eeprom setup and tear-down. + */ data[i] = e1000_shift_in_ee_bits(hw, 16); e1000_standby_eeprom(hw); } @@ -4119,8 +4166,8 @@ static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, if (eeprom->word_size == 0) e1000_init_eeprom_params(hw); - /* A check for invalid values: offset too large, too many words, and not - * enough words. + /* A check for invalid values: offset too large, too many words, and + * not enough words. */ if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || (words == 0)) { @@ -4174,7 +4221,9 @@ static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words, e1000_standby_eeprom(hw); - /* Some SPI eeproms use the 8th address bit embedded in the opcode */ + /* Some SPI eeproms use the 8th address bit embedded in the + * opcode + */ if ((eeprom->address_bits == 8) && (offset >= 128)) write_opcode |= EEPROM_A8_OPCODE_SPI; @@ -4186,16 +4235,19 @@ static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words, /* Send the data */ - /* Loop to allow for up to whole page write (32 bytes) of eeprom */ + /* Loop to allow for up to whole page write (32 bytes) of + * eeprom + */ while (widx < words) { u16 word_out = data[widx]; word_out = (word_out >> 8) | (word_out << 8); e1000_shift_out_ee_bits(hw, word_out, 16); widx++; - /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE - * operation, while the smaller eeproms are capable of an 8-byte - * PAGE WRITE operation. Break the inner loop to pass new address + /* Some larger eeprom sizes are capable of a 32-byte + * PAGE WRITE operation, while the smaller eeproms are + * capable of an 8-byte PAGE WRITE operation. Break the + * inner loop to pass new address */ if ((((offset + widx) * 2) % eeprom->page_size) == 0) { e1000_standby_eeprom(hw); @@ -4249,14 +4301,15 @@ static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, /* Send the data */ e1000_shift_out_ee_bits(hw, data[words_written], 16); - /* Toggle the CS line. This in effect tells the EEPROM to execute - * the previous command. + /* Toggle the CS line. This in effect tells the EEPROM to + * execute the previous command. */ e1000_standby_eeprom(hw); - /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will - * signal that the command has been completed by raising the DO signal. - * If DO does not go high in 10 milliseconds, then error out. + /* Read DO repeatedly until it is high (equal to '1'). The + * EEPROM will signal that the command has been completed by + * raising the DO signal. If DO does not go high in 10 + * milliseconds, then error out. */ for (i = 0; i < 200; i++) { eecd = er32(EECD); @@ -4483,7 +4536,8 @@ static void e1000_clear_vfta(struct e1000_hw *hw) for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { /* If the offset we want to clear is the same offset of the * manageability VLAN ID, then clear all bits except that of the - * manageability unit */ + * manageability unit + */ vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); E1000_WRITE_FLUSH(); @@ -4911,12 +4965,12 @@ void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats, * counters overcount this packet as a CRC error and undercount * the packet as a good packet */ - /* This packet should not be counted as a CRC error. */ + /* This packet should not be counted as a CRC error. */ stats->crcerrs--; - /* This packet does count as a Good Packet Received. */ + /* This packet does count as a Good Packet Received. */ stats->gprc++; - /* Adjust the Good Octets received counters */ + /* Adjust the Good Octets received counters */ carry_bit = 0x80000000 & stats->gorcl; stats->gorcl += frame_len; /* If the high bit of Gorcl (the low 32 bits of the Good Octets @@ -5196,8 +5250,9 @@ static s32 e1000_check_polarity(struct e1000_hw *hw, if (ret_val) return ret_val; - /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to - * find the polarity status */ + /* If speed is 1000 Mbps, must read the + * IGP01E1000_PHY_PCS_INIT_REG to find the polarity status + */ if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == IGP01E1000_PSSR_SPEED_1000MBPS) { @@ -5213,8 +5268,9 @@ static s32 e1000_check_polarity(struct e1000_hw *hw, e1000_rev_polarity_reversed : e1000_rev_polarity_normal; } else { - /* For 10 Mbps, read the polarity bit in the status register. (for - * 100 Mbps this bit is always 0) */ + /* For 10 Mbps, read the polarity bit in the status + * register. (for 100 Mbps this bit is always 0) + */ *polarity = (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ? e1000_rev_polarity_reversed : @@ -5374,8 +5430,9 @@ static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up) } } else { if (hw->dsp_config_state == e1000_dsp_config_activated) { - /* Save off the current value of register 0x2F5B to be restored at - * the end of the routines. */ + /* Save off the current value of register 0x2F5B to be + * restored at the end of the routines. + */ ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); @@ -5391,7 +5448,7 @@ static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up) msleep(20); ret_val = e1000_write_phy_reg(hw, 0x0000, - IGP01E1000_IEEE_FORCE_GIGA); + IGP01E1000_IEEE_FORCE_GIGA); if (ret_val) return ret_val; for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { @@ -5412,7 +5469,7 @@ static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up) } ret_val = e1000_write_phy_reg(hw, 0x0000, - IGP01E1000_IEEE_RESTART_AUTONEG); + IGP01E1000_IEEE_RESTART_AUTONEG); if (ret_val) return ret_val; @@ -5429,8 +5486,9 @@ static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up) } if (hw->ffe_config_state == e1000_ffe_config_active) { - /* Save off the current value of register 0x2F5B to be restored at - * the end of the routines. */ + /* Save off the current value of register 0x2F5B to be + * restored at the end of the routines. + */ ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); @@ -5446,7 +5504,7 @@ static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up) msleep(20); ret_val = e1000_write_phy_reg(hw, 0x0000, - IGP01E1000_IEEE_FORCE_GIGA); + IGP01E1000_IEEE_FORCE_GIGA); if (ret_val) return ret_val; ret_val = @@ -5456,7 +5514,7 @@ static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up) return ret_val; ret_val = e1000_write_phy_reg(hw, 0x0000, - IGP01E1000_IEEE_RESTART_AUTONEG); + IGP01E1000_IEEE_RESTART_AUTONEG); if (ret_val) return ret_val; @@ -5542,8 +5600,9 @@ static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) return E1000_SUCCESS; /* During driver activity LPLU should not be used or it will attain link - * from the lowest speeds starting from 10Mbps. The capability is used for - * Dx transitions and states */ + * from the lowest speeds starting from 10Mbps. The capability is used + * for Dx transitions and states + */ if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) { ret_val = @@ -5563,10 +5622,11 @@ static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) return ret_val; } - /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during - * Dx states where the power conservation is most important. During - * driver activity we should enable SmartSpeed, so performance is - * maintained. */ + /* LPLU and SmartSpeed are mutually exclusive. LPLU is used + * during Dx states where the power conservation is most + * important. During driver activity we should enable + * SmartSpeed, so performance is maintained. + */ if (hw->smart_speed == e1000_smart_speed_on) { ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, diff --git a/drivers/net/ethernet/intel/e1000/e1000_main.c b/drivers/net/ethernet/intel/e1000/e1000_main.c index d947e3aae1e8..8502c625dbef 100644 --- a/drivers/net/ethernet/intel/e1000/e1000_main.c +++ b/drivers/net/ethernet/intel/e1000/e1000_main.c @@ -239,7 +239,6 @@ struct net_device *e1000_get_hw_dev(struct e1000_hw *hw) * e1000_init_module is the first routine called when the driver is * loaded. All it does is register with the PCI subsystem. **/ - static int __init e1000_init_module(void) { int ret; @@ -266,7 +265,6 @@ module_init(e1000_init_module); * e1000_exit_module is called just before the driver is removed * from memory. **/ - static void __exit e1000_exit_module(void) { pci_unregister_driver(&e1000_driver); @@ -301,7 +299,6 @@ static void e1000_free_irq(struct e1000_adapter *adapter) * e1000_irq_disable - Mask off interrupt generation on the NIC * @adapter: board private structure **/ - static void e1000_irq_disable(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; @@ -315,7 +312,6 @@ static void e1000_irq_disable(struct e1000_adapter *adapter) * e1000_irq_enable - Enable default interrupt generation settings * @adapter: board private structure **/ - static void e1000_irq_enable(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; @@ -398,11 +394,12 @@ static void e1000_configure(struct e1000_adapter *adapter) e1000_configure_rx(adapter); /* call E1000_DESC_UNUSED which always leaves * at least 1 descriptor unused to make sure - * next_to_use != next_to_clean */ + * next_to_use != next_to_clean + */ for (i = 0; i < adapter->num_rx_queues; i++) { struct e1000_rx_ring *ring = &adapter->rx_ring[i]; adapter->alloc_rx_buf(adapter, ring, - E1000_DESC_UNUSED(ring)); + E1000_DESC_UNUSED(ring)); } } @@ -433,9 +430,7 @@ int e1000_up(struct e1000_adapter *adapter) * The phy may be powered down to save power and turn off link when the * driver is unloaded and wake on lan is not enabled (among others) * *** this routine MUST be followed by a call to e1000_reset *** - * **/ - void e1000_power_up_phy(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; @@ -444,7 +439,8 @@ void e1000_power_up_phy(struct e1000_adapter *adapter) /* Just clear the power down bit to wake the phy back up */ if (hw->media_type == e1000_media_type_copper) { /* according to the manual, the phy will retain its - * settings across a power-down/up cycle */ + * settings across a power-down/up cycle + */ e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); mii_reg &= ~MII_CR_POWER_DOWN; e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); @@ -459,7 +455,8 @@ static void e1000_power_down_phy(struct e1000_adapter *adapter) * The PHY cannot be powered down if any of the following is true * * (a) WoL is enabled * (b) AMT is active - * (c) SoL/IDER session is active */ + * (c) SoL/IDER session is active + */ if (!adapter->wol && hw->mac_type >= e1000_82540 && hw->media_type == e1000_media_type_copper) { u16 mii_reg = 0; @@ -529,8 +526,7 @@ void e1000_down(struct e1000_adapter *adapter) e1000_irq_disable(adapter); - /* - * Setting DOWN must be after irq_disable to prevent + /* Setting DOWN must be after irq_disable to prevent * a screaming interrupt. Setting DOWN also prevents * tasks from rescheduling. */ @@ -627,14 +623,14 @@ void e1000_reset(struct e1000_adapter *adapter) * rounded up to the next 1KB and expressed in KB. Likewise, * the Rx FIFO should be large enough to accommodate at least * one full receive packet and is similarly rounded up and - * expressed in KB. */ + * expressed in KB. + */ pba = er32(PBA); /* upper 16 bits has Tx packet buffer allocation size in KB */ tx_space = pba >> 16; /* lower 16 bits has Rx packet buffer allocation size in KB */ pba &= 0xffff; - /* - * the tx fifo also stores 16 bytes of information about the tx + /* the Tx fifo also stores 16 bytes of information about the Tx * but don't include ethernet FCS because hardware appends it */ min_tx_space = (hw->max_frame_size + @@ -649,7 +645,8 @@ void e1000_reset(struct e1000_adapter *adapter) /* If current Tx allocation is less than the min Tx FIFO size, * and the min Tx FIFO size is less than the current Rx FIFO - * allocation, take space away from current Rx allocation */ + * allocation, take space away from current Rx allocation + */ if (tx_space < min_tx_space && ((min_tx_space - tx_space) < pba)) { pba = pba - (min_tx_space - tx_space); @@ -663,8 +660,9 @@ void e1000_reset(struct e1000_adapter *adapter) break; } - /* if short on rx space, rx wins and must trump tx - * adjustment or use Early Receive if available */ + /* if short on Rx space, Rx wins and must trump Tx + * adjustment or use Early Receive if available + */ if (pba < min_rx_space) pba = min_rx_space; } @@ -672,8 +670,7 @@ void e1000_reset(struct e1000_adapter *adapter) ew32(PBA, pba); - /* - * flow control settings: + /* flow control settings: * The high water mark must be low enough to fit one full frame * (or the size used for early receive) above it in the Rx FIFO. * Set it to the lower of: @@ -707,7 +704,8 @@ void e1000_reset(struct e1000_adapter *adapter) u32 ctrl = er32(CTRL); /* clear phy power management bit if we are in gig only mode, * which if enabled will attempt negotiation to 100Mb, which - * can cause a loss of link at power off or driver unload */ + * can cause a loss of link at power off or driver unload + */ ctrl &= ~E1000_CTRL_SWDPIN3; ew32(CTRL, ctrl); } @@ -808,9 +806,8 @@ static int e1000_is_need_ioport(struct pci_dev *pdev) static netdev_features_t e1000_fix_features(struct net_device *netdev, netdev_features_t features) { - /* - * Since there is no support for separate rx/tx vlan accel - * enable/disable make sure tx flag is always in same state as rx. + /* Since there is no support for separate Rx/Tx vlan accel + * enable/disable make sure Tx flag is always in same state as Rx. */ if (features & NETIF_F_HW_VLAN_RX) features |= NETIF_F_HW_VLAN_TX; @@ -1012,16 +1009,14 @@ static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent) if (err) goto err_sw_init; - /* - * there is a workaround being applied below that limits + /* there is a workaround being applied below that limits * 64-bit DMA addresses to 64-bit hardware. There are some * 32-bit adapters that Tx hang when given 64-bit DMA addresses */ pci_using_dac = 0; if ((hw->bus_type == e1000_bus_type_pcix) && !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) { - /* - * according to DMA-API-HOWTO, coherent calls will always + /* according to DMA-API-HOWTO, coherent calls will always * succeed if the set call did */ dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); @@ -1099,7 +1094,8 @@ static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent) } /* before reading the EEPROM, reset the controller to - * put the device in a known good starting state */ + * put the device in a known good starting state + */ e1000_reset_hw(hw); @@ -1107,8 +1103,7 @@ static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent) if (e1000_validate_eeprom_checksum(hw) < 0) { e_err(probe, "The EEPROM Checksum Is Not Valid\n"); e1000_dump_eeprom(adapter); - /* - * set MAC address to all zeroes to invalidate and temporary + /* set MAC address to all zeroes to invalidate and temporary * disable this device for the user. This blocks regular * traffic while still permitting ethtool ioctls from reaching * the hardware as well as allowing the user to run the @@ -1169,7 +1164,8 @@ static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent) /* now that we have the eeprom settings, apply the special cases * where the eeprom may be wrong or the board simply won't support - * wake on lan on a particular port */ + * wake on lan on a particular port + */ switch (pdev->device) { case E1000_DEV_ID_82546GB_PCIE: adapter->eeprom_wol = 0; @@ -1177,7 +1173,8 @@ static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent) case E1000_DEV_ID_82546EB_FIBER: case E1000_DEV_ID_82546GB_FIBER: /* Wake events only supported on port A for dual fiber - * regardless of eeprom setting */ + * regardless of eeprom setting + */ if (er32(STATUS) & E1000_STATUS_FUNC_1) adapter->eeprom_wol = 0; break; @@ -1270,7 +1267,6 @@ err_pci_reg: * Hot-Plug event, or because the driver is going to be removed from * memory. **/ - static void e1000_remove(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); @@ -1306,7 +1302,6 @@ static void e1000_remove(struct pci_dev *pdev) * e1000_sw_init initializes the Adapter private data structure. * e1000_init_hw_struct MUST be called before this function **/ - static int e1000_sw_init(struct e1000_adapter *adapter) { adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; @@ -1337,7 +1332,6 @@ static int e1000_sw_init(struct e1000_adapter *adapter) * We allocate one ring per queue at run-time since we don't know the * number of queues at compile-time. **/ - static int e1000_alloc_queues(struct e1000_adapter *adapter) { adapter->tx_ring = kcalloc(adapter->num_tx_queues, @@ -1367,7 +1361,6 @@ static int e1000_alloc_queues(struct e1000_adapter *adapter) * handler is registered with the OS, the watchdog task is started, * and the stack is notified that the interface is ready. **/ - static int e1000_open(struct net_device *netdev) { struct e1000_adapter *adapter = netdev_priv(netdev); @@ -1401,7 +1394,8 @@ static int e1000_open(struct net_device *netdev) /* before we allocate an interrupt, we must be ready to handle it. * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt * as soon as we call pci_request_irq, so we have to setup our - * clean_rx handler before we do so. */ + * clean_rx handler before we do so. + */ e1000_configure(adapter); err = e1000_request_irq(adapter); @@ -1444,7 +1438,6 @@ err_setup_tx: * needs to be disabled. A global MAC reset is issued to stop the * hardware, and all transmit and receive resources are freed. **/ - static int e1000_close(struct net_device *netdev) { struct e1000_adapter *adapter = netdev_priv(netdev); @@ -1459,10 +1452,11 @@ static int e1000_close(struct net_device *netdev) e1000_free_all_rx_resources(adapter); /* kill manageability vlan ID if supported, but not if a vlan with - * the same ID is registered on the host OS (let 8021q kill it) */ + * the same ID is registered on the host OS (let 8021q kill it) + */ if ((hw->mng_cookie.status & - E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && - !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) { + E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && + !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) { e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); } @@ -1483,7 +1477,8 @@ static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start, unsigned long end = begin + len; /* First rev 82545 and 82546 need to not allow any memory - * write location to cross 64k boundary due to errata 23 */ + * write location to cross 64k boundary due to errata 23 + */ if (hw->mac_type == e1000_82545 || hw->mac_type == e1000_ce4100 || hw->mac_type == e1000_82546) { @@ -1500,7 +1495,6 @@ static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start, * * Return 0 on success, negative on failure **/ - static int e1000_setup_tx_resources(struct e1000_adapter *adapter, struct e1000_tx_ring *txdr) { @@ -1574,7 +1568,6 @@ setup_tx_desc_die: * * Return 0 on success, negative on failure **/ - int e1000_setup_all_tx_resources(struct e1000_adapter *adapter) { int i, err = 0; @@ -1599,7 +1592,6 @@ int e1000_setup_all_tx_resources(struct e1000_adapter *adapter) * * Configure the Tx unit of the MAC after a reset. **/ - static void e1000_configure_tx(struct e1000_adapter *adapter) { u64 tdba; @@ -1620,8 +1612,10 @@ static void e1000_configure_tx(struct e1000_adapter *adapter) ew32(TDBAL, (tdba & 0x00000000ffffffffULL)); ew32(TDT, 0); ew32(TDH, 0); - adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH); - adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT); + adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? + E1000_TDH : E1000_82542_TDH); + adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? + E1000_TDT : E1000_82542_TDT); break; } @@ -1676,7 +1670,8 @@ static void e1000_configure_tx(struct e1000_adapter *adapter) adapter->txd_cmd |= E1000_TXD_CMD_RS; /* Cache if we're 82544 running in PCI-X because we'll - * need this to apply a workaround later in the send path. */ + * need this to apply a workaround later in the send path. + */ if (hw->mac_type == e1000_82544 && hw->bus_type == e1000_bus_type_pcix) adapter->pcix_82544 = true; @@ -1692,7 +1687,6 @@ static void e1000_configure_tx(struct e1000_adapter *adapter) * * Returns 0 on success, negative on failure **/ - static int e1000_setup_rx_resources(struct e1000_adapter *adapter, struct e1000_rx_ring *rxdr) { @@ -1771,7 +1765,6 @@ setup_rx_desc_die: * * Return 0 on success, negative on failure **/ - int e1000_setup_all_rx_resources(struct e1000_adapter *adapter) { int i, err = 0; @@ -1840,7 +1833,8 @@ static void e1000_setup_rctl(struct e1000_adapter *adapter) /* This is useful for sniffing bad packets. */ if (adapter->netdev->features & NETIF_F_RXALL) { /* UPE and MPE will be handled by normal PROMISC logic - * in e1000e_set_rx_mode */ + * in e1000e_set_rx_mode + */ rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ E1000_RCTL_BAM | /* RX All Bcast Pkts */ E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ @@ -1862,7 +1856,6 @@ static void e1000_setup_rctl(struct e1000_adapter *adapter) * * Configure the Rx unit of the MAC after a reset. **/ - static void e1000_configure_rx(struct e1000_adapter *adapter) { u64 rdba; @@ -1895,7 +1888,8 @@ static void e1000_configure_rx(struct e1000_adapter *adapter) } /* Setup the HW Rx Head and Tail Descriptor Pointers and - * the Base and Length of the Rx Descriptor Ring */ + * the Base and Length of the Rx Descriptor Ring + */ switch (adapter->num_rx_queues) { case 1: default: @@ -1905,8 +1899,10 @@ static void e1000_configure_rx(struct e1000_adapter *adapter) ew32(RDBAL, (rdba & 0x00000000ffffffffULL)); ew32(RDT, 0); ew32(RDH, 0); - adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH); - adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT); + adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? + E1000_RDH : E1000_82542_RDH); + adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? + E1000_RDT : E1000_82542_RDT); break; } @@ -1932,7 +1928,6 @@ static void e1000_configure_rx(struct e1000_adapter *adapter) * * Free all transmit software resources **/ - static void e1000_free_tx_resources(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring) { @@ -1955,7 +1950,6 @@ static void e1000_free_tx_resources(struct e1000_adapter *adapter, * * Free all transmit software resources **/ - void e1000_free_all_tx_resources(struct e1000_adapter *adapter) { int i; @@ -1990,7 +1984,6 @@ static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, * @adapter: board private structure * @tx_ring: ring to be cleaned **/ - static void e1000_clean_tx_ring(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring) { @@ -2026,7 +2019,6 @@ static void e1000_clean_tx_ring(struct e1000_adapter *adapter, * e1000_clean_all_tx_rings - Free Tx Buffers for all queues * @adapter: board private structure **/ - static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter) { int i; @@ -2042,7 +2034,6 @@ static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter) * * Free all receive software resources **/ - static void e1000_free_rx_resources(struct e1000_adapter *adapter, struct e1000_rx_ring *rx_ring) { @@ -2065,7 +2056,6 @@ static void e1000_free_rx_resources(struct e1000_adapter *adapter, * * Free all receive software resources **/ - void e1000_free_all_rx_resources(struct e1000_adapter *adapter) { int i; @@ -2079,7 +2069,6 @@ void e1000_free_all_rx_resources(struct e1000_adapter *adapter) * @adapter: board private structure * @rx_ring: ring to free buffers from **/ - static void e1000_clean_rx_ring(struct e1000_adapter *adapter, struct e1000_rx_ring *rx_ring) { @@ -2138,7 +2127,6 @@ static void e1000_clean_rx_ring(struct e1000_adapter *adapter, * e1000_clean_all_rx_rings - Free Rx Buffers for all queues * @adapter: board private structure **/ - static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter) { int i; @@ -2198,7 +2186,6 @@ static void e1000_leave_82542_rst(struct e1000_adapter *adapter) * * Returns 0 on success, negative on failure **/ - static int e1000_set_mac(struct net_device *netdev, void *p) { struct e1000_adapter *adapter = netdev_priv(netdev); @@ -2233,7 +2220,6 @@ static int e1000_set_mac(struct net_device *netdev, void *p) * responsible for configuring the hardware for proper unicast, multicast, * promiscuous mode, and all-multi behavior. **/ - static void e1000_set_rx_mode(struct net_device *netdev) { struct e1000_adapter *adapter = netdev_priv(netdev); @@ -2317,10 +2303,10 @@ static void e1000_set_rx_mode(struct net_device *netdev) } /* write the hash table completely, write from bottom to avoid - * both stupid write combining chipsets, and flushing each write */ + * both stupid write combining chipsets, and flushing each write + */ for (i = mta_reg_count - 1; i >= 0 ; i--) { - /* - * If we are on an 82544 has an errata where writing odd + /* If we are on an 82544 has an errata where writing odd * offsets overwrites the previous even offset, but writing * backwards over the range solves the issue by always * writing the odd offset first @@ -2458,8 +2444,8 @@ static void e1000_watchdog(struct work_struct *work) bool txb2b = true; /* update snapshot of PHY registers on LSC */ e1000_get_speed_and_duplex(hw, - &adapter->link_speed, - &adapter->link_duplex); + &adapter->link_speed, + &adapter->link_duplex); ctrl = er32(CTRL); pr_info("%s NIC Link is Up %d Mbps %s, " @@ -2533,7 +2519,8 @@ link_up: /* We've lost link, so the controller stops DMA, * but we've got queued Tx work that's never going * to get done, so reset controller to flush Tx. - * (Do the reset outside of interrupt context). */ + * (Do the reset outside of interrupt context). + */ adapter->tx_timeout_count++; schedule_work(&adapter->reset_task); /* exit immediately since reset is imminent */ @@ -2543,8 +2530,7 @@ link_up: /* Simple mode for Interrupt Throttle Rate (ITR) */ if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) { - /* - * Symmetric Tx/Rx gets a reduced ITR=2000; + /* Symmetric Tx/Rx gets a reduced ITR=2000; * Total asymmetrical Tx or Rx gets ITR=8000; * everyone else is between 2000-8000. */ @@ -2659,18 +2645,16 @@ static void e1000_set_itr(struct e1000_adapter *adapter) goto set_itr_now; } - adapter->tx_itr = e1000_update_itr(adapter, - adapter->tx_itr, - adapter->total_tx_packets, - adapter->total_tx_bytes); + adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr, + adapter->total_tx_packets, + adapter->total_tx_bytes); /* conservative mode (itr 3) eliminates the lowest_latency setting */ if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) adapter->tx_itr = low_latency; - adapter->rx_itr = e1000_update_itr(adapter, - adapter->rx_itr, - adapter->total_rx_packets, - adapter->total_rx_bytes); + adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr, + adapter->total_rx_packets, + adapter->total_rx_bytes); /* conservative mode (itr 3) eliminates the lowest_latency setting */ if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) adapter->rx_itr = low_latency; @@ -2696,10 +2680,11 @@ set_itr_now: if (new_itr != adapter->itr) { /* this attempts to bias the interrupt rate towards Bulk * by adding intermediate steps when interrupt rate is - * increasing */ + * increasing + */ new_itr = new_itr > adapter->itr ? - min(adapter->itr + (new_itr >> 2), new_itr) : - new_itr; + min(adapter->itr + (new_itr >> 2), new_itr) : + new_itr; adapter->itr = new_itr; ew32(ITR, 1000000000 / (new_itr * 256)); } @@ -2861,7 +2846,8 @@ static int e1000_tx_map(struct e1000_adapter *adapter, /* Workaround for Controller erratum -- * descriptor for non-tso packet in a linear SKB that follows a * tso gets written back prematurely before the data is fully - * DMA'd to the controller */ + * DMA'd to the controller + */ if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) { tx_ring->last_tx_tso = false; @@ -2869,7 +2855,8 @@ static int e1000_tx_map(struct e1000_adapter *adapter, } /* Workaround for premature desc write-backs - * in TSO mode. Append 4-byte sentinel desc */ + * in TSO mode. Append 4-byte sentinel desc + */ if (unlikely(mss && !nr_frags && size == len && size > 8)) size -= 4; /* work-around for errata 10 and it applies @@ -2882,7 +2869,8 @@ static int e1000_tx_map(struct e1000_adapter *adapter, size = 2015; /* Workaround for potential 82544 hang in PCI-X. Avoid - * terminating buffers within evenly-aligned dwords. */ + * terminating buffers within evenly-aligned dwords. + */ if (unlikely(adapter->pcix_82544 && !((unsigned long)(skb->data + offset + size - 1) & 4) && size > 4)) @@ -2894,7 +2882,7 @@ static int e1000_tx_map(struct e1000_adapter *adapter, buffer_info->mapped_as_page = false; buffer_info->dma = dma_map_single(&pdev->dev, skb->data + offset, - size, DMA_TO_DEVICE); + size, DMA_TO_DEVICE); if (dma_mapping_error(&pdev->dev, buffer_info->dma)) goto dma_error; buffer_info->next_to_watch = i; @@ -2925,12 +2913,15 @@ static int e1000_tx_map(struct e1000_adapter *adapter, buffer_info = &tx_ring->buffer_info[i]; size = min(len, max_per_txd); /* Workaround for premature desc write-backs - * in TSO mode. Append 4-byte sentinel desc */ - if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8)) + * in TSO mode. Append 4-byte sentinel desc + */ + if (unlikely(mss && f == (nr_frags-1) && + size == len && size > 8)) size -= 4; /* Workaround for potential 82544 hang in PCI-X. * Avoid terminating buffers within evenly-aligned - * dwords. */ + * dwords. + */ bufend = (unsigned long) page_to_phys(skb_frag_page(frag)); bufend += offset + size - 1; @@ -2994,7 +2985,7 @@ static void e1000_tx_queue(struct e1000_adapter *adapter, if (likely(tx_flags & E1000_TX_FLAGS_TSO)) { txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | - E1000_TXD_CMD_TSE; + E1000_TXD_CMD_TSE; txd_upper |= E1000_TXD_POPTS_TXSM << 8; if (likely(tx_flags & E1000_TX_FLAGS_IPV4)) @@ -3035,13 +3026,15 @@ static void e1000_tx_queue(struct e1000_adapter *adapter, /* Force memory writes to complete before letting h/w * know there are new descriptors to fetch. (Only * applicable for weak-ordered memory model archs, - * such as IA-64). */ + * such as IA-64). + */ wmb(); tx_ring->next_to_use = i; writel(i, hw->hw_addr + tx_ring->tdt); /* we need this if more than one processor can write to our tail - * at a time, it syncronizes IO on IA64/Altix systems */ + * at a time, it synchronizes IO on IA64/Altix systems + */ mmiowb(); } @@ -3090,11 +3083,13 @@ static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) netif_stop_queue(netdev); /* Herbert's original patch had: * smp_mb__after_netif_stop_queue(); - * but since that doesn't exist yet, just open code it. */ + * but since that doesn't exist yet, just open code it. + */ smp_mb(); /* We need to check again in a case another CPU has just - * made room available. */ + * made room available. + */ if (likely(E1000_DESC_UNUSED(tx_ring) < size)) return -EBUSY; @@ -3105,7 +3100,7 @@ static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) } static int e1000_maybe_stop_tx(struct net_device *netdev, - struct e1000_tx_ring *tx_ring, int size) + struct e1000_tx_ring *tx_ring, int size) { if (likely(E1000_DESC_UNUSED(tx_ring) >= size)) return 0; @@ -3129,10 +3124,11 @@ static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, int tso; unsigned int f; - /* This goes back to the question of how to logically map a tx queue + /* This goes back to the question of how to logically map a Tx queue * to a flow. Right now, performance is impacted slightly negatively - * if using multiple tx queues. If the stack breaks away from a - * single qdisc implementation, we can look at this again. */ + * if using multiple Tx queues. If the stack breaks away from a + * single qdisc implementation, we can look at this again. + */ tx_ring = adapter->tx_ring; if (unlikely(skb->len <= 0)) { @@ -3157,7 +3153,8 @@ static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, * initiating the DMA for each buffer. The calc is: * 4 = ceil(buffer len/mss). To make sure we don't * overrun the FIFO, adjust the max buffer len if mss - * drops. */ + * drops. + */ if (mss) { u8 hdr_len; max_per_txd = min(mss << 2, max_per_txd); @@ -3173,8 +3170,10 @@ static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, * this hardware's requirements * NOTE: this is a TSO only workaround * if end byte alignment not correct move us - * into the next dword */ - if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4) + * into the next dword + */ + if ((unsigned long)(skb_tail_pointer(skb) - 1) + & 4) break; /* fall through */ pull_size = min((unsigned int)4, skb->data_len); @@ -3222,7 +3221,8 @@ static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, count += nr_frags; /* need: count + 2 desc gap to keep tail from touching - * head, otherwise try next time */ + * head, otherwise try next time + */ if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) return NETDEV_TX_BUSY; @@ -3261,7 +3261,7 @@ static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, tx_flags |= E1000_TX_FLAGS_NO_FCS; count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd, - nr_frags, mss); + nr_frags, mss); if (count) { netdev_sent_queue(netdev, skb->len); @@ -3363,9 +3363,7 @@ static void e1000_dump(struct e1000_adapter *adapter) /* Print Registers */ e1000_regdump(adapter); - /* - * transmit dump - */ + /* transmit dump */ pr_info("TX Desc ring0 dump\n"); /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) @@ -3426,9 +3424,7 @@ static void e1000_dump(struct e1000_adapter *adapter) } rx_ring_summary: - /* - * receive dump - */ + /* receive dump */ pr_info("\nRX Desc ring dump\n"); /* Legacy Receive Descriptor Format @@ -3493,7 +3489,6 @@ exit: * e1000_tx_timeout - Respond to a Tx Hang * @netdev: network interface device structure **/ - static void e1000_tx_timeout(struct net_device *netdev) { struct e1000_adapter *adapter = netdev_priv(netdev); @@ -3521,7 +3516,6 @@ static void e1000_reset_task(struct work_struct *work) * Returns the address of the device statistics structure. * The statistics are actually updated from the watchdog. **/ - static struct net_device_stats *e1000_get_stats(struct net_device *netdev) { /* only return the current stats */ @@ -3535,7 +3529,6 @@ static struct net_device_stats *e1000_get_stats(struct net_device *netdev) * * Returns 0 on success, negative on failure **/ - static int e1000_change_mtu(struct net_device *netdev, int new_mtu) { struct e1000_adapter *adapter = netdev_priv(netdev); @@ -3572,8 +3565,9 @@ static int e1000_change_mtu(struct net_device *netdev, int new_mtu) * means we reserve 2 more, this pushes us to allocate from the next * larger slab size. * i.e. RXBUFFER_2048 --> size-4096 slab - * however with the new *_jumbo_rx* routines, jumbo receives will use - * fragmented skbs */ + * however with the new *_jumbo_rx* routines, jumbo receives will use + * fragmented skbs + */ if (max_frame <= E1000_RXBUFFER_2048) adapter->rx_buffer_len = E1000_RXBUFFER_2048; @@ -3608,7 +3602,6 @@ static int e1000_change_mtu(struct net_device *netdev, int new_mtu) * e1000_update_stats - Update the board statistics counters * @adapter: board private structure **/ - void e1000_update_stats(struct e1000_adapter *adapter) { struct net_device *netdev = adapter->netdev; @@ -3619,8 +3612,7 @@ void e1000_update_stats(struct e1000_adapter *adapter) #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF - /* - * Prevent stats update while adapter is being reset, or if the pci + /* Prevent stats update while adapter is being reset, or if the pci * connection is down. */ if (adapter->link_speed == 0) @@ -3710,7 +3702,8 @@ void e1000_update_stats(struct e1000_adapter *adapter) /* Rx Errors */ /* RLEC on some newer hardware can be incorrect so build - * our own version based on RUC and ROC */ + * our own version based on RUC and ROC + */ netdev->stats.rx_errors = adapter->stats.rxerrc + adapter->stats.crcerrs + adapter->stats.algnerrc + adapter->stats.ruc + adapter->stats.roc + @@ -3764,7 +3757,6 @@ void e1000_update_stats(struct e1000_adapter *adapter) * @irq: interrupt number * @data: pointer to a network interface device structure **/ - static irqreturn_t e1000_intr(int irq, void *data) { struct net_device *netdev = data; @@ -3775,8 +3767,7 @@ static irqreturn_t e1000_intr(int irq, void *data) if (unlikely((!icr))) return IRQ_NONE; /* Not our interrupt */ - /* - * we might have caused the interrupt, but the above + /* we might have caused the interrupt, but the above * read cleared it, and just in case the driver is * down there is nothing to do so return handled */ @@ -3802,7 +3793,8 @@ static irqreturn_t e1000_intr(int irq, void *data) __napi_schedule(&adapter->napi); } else { /* this really should not happen! if it does it is basically a - * bug, but not a hard error, so enable ints and continue */ + * bug, but not a hard error, so enable ints and continue + */ if (!test_bit(__E1000_DOWN, &adapter->flags)) e1000_irq_enable(adapter); } @@ -3816,7 +3808,8 @@ static irqreturn_t e1000_intr(int irq, void *data) **/ static int e1000_clean(struct napi_struct *napi, int budget) { - struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi); + struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, + napi); int tx_clean_complete = 0, work_done = 0; tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]); @@ -3907,11 +3900,12 @@ static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, if (adapter->detect_tx_hung) { /* Detect a transmit hang in hardware, this serializes the - * check with the clearing of time_stamp and movement of i */ + * check with the clearing of time_stamp and movement of i + */ adapter->detect_tx_hung = false; if (tx_ring->buffer_info[eop].time_stamp && time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + - (adapter->tx_timeout_factor * HZ)) && + (adapter->tx_timeout_factor * HZ)) && !(er32(STATUS) & E1000_STATUS_TXOFF)) { /* detected Tx unit hang */ @@ -3954,7 +3948,6 @@ static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, * @csum: receive descriptor csum field * @sk_buff: socket buffer with received data **/ - static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, u32 csum, struct sk_buff *skb) { @@ -3990,7 +3983,7 @@ static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, * e1000_consume_page - helper function **/ static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, - u16 length) + u16 length) { bi->page = NULL; skb->len += length; @@ -4086,11 +4079,11 @@ static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, if (TBI_ACCEPT(hw, status, rx_desc->errors, length, last_byte)) { spin_lock_irqsave(&adapter->stats_lock, - irq_flags); + irq_flags); e1000_tbi_adjust_stats(hw, &adapter->stats, length, mapped); spin_unlock_irqrestore(&adapter->stats_lock, - irq_flags); + irq_flags); length--; } else { if (netdev->features & NETIF_F_RXALL) @@ -4098,7 +4091,8 @@ static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, /* recycle both page and skb */ buffer_info->skb = skb; /* an error means any chain goes out the window - * too */ + * too + */ if (rx_ring->rx_skb_top) dev_kfree_skb(rx_ring->rx_skb_top); rx_ring->rx_skb_top = NULL; @@ -4114,7 +4108,7 @@ process_skb: /* this is the beginning of a chain */ rxtop = skb; skb_fill_page_desc(rxtop, 0, buffer_info->page, - 0, length); + 0, length); } else { /* this is the middle of a chain */ skb_fill_page_desc(rxtop, @@ -4132,38 +4126,42 @@ process_skb: skb_shinfo(rxtop)->nr_frags, buffer_info->page, 0, length); /* re-use the current skb, we only consumed the - * page */ + * page + */ buffer_info->skb = skb; skb = rxtop; rxtop = NULL; e1000_consume_page(buffer_info, skb, length); } else { /* no chain, got EOP, this buf is the packet - * copybreak to save the put_page/alloc_page */ + * copybreak to save the put_page/alloc_page + */ if (length <= copybreak && skb_tailroom(skb) >= length) { u8 *vaddr; vaddr = kmap_atomic(buffer_info->page); - memcpy(skb_tail_pointer(skb), vaddr, length); + memcpy(skb_tail_pointer(skb), vaddr, + length); kunmap_atomic(vaddr); /* re-use the page, so don't erase - * buffer_info->page */ + * buffer_info->page + */ skb_put(skb, length); } else { skb_fill_page_desc(skb, 0, - buffer_info->page, 0, - length); + buffer_info->page, 0, + length); e1000_consume_page(buffer_info, skb, - length); + length); } } } /* Receive Checksum Offload XXX recompute due to CRC strip? */ e1000_rx_checksum(adapter, - (u32)(status) | - ((u32)(rx_desc->errors) << 24), - le16_to_cpu(rx_desc->csum), skb); + (u32)(status) | + ((u32)(rx_desc->errors) << 24), + le16_to_cpu(rx_desc->csum), skb); total_rx_bytes += (skb->len - 4); /* don't count FCS */ if (likely(!(netdev->features & NETIF_F_RXFCS))) @@ -4205,8 +4203,7 @@ next_desc: return cleaned; } -/* - * this should improve performance for small packets with large amounts +/* this should improve performance for small packets with large amounts * of reassembly being done in the stack */ static void e1000_check_copybreak(struct net_device *netdev, @@ -4310,9 +4307,9 @@ static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, last_byte)) { spin_lock_irqsave(&adapter->stats_lock, flags); e1000_tbi_adjust_stats(hw, &adapter->stats, - length, skb->data); + length, skb->data); spin_unlock_irqrestore(&adapter->stats_lock, - flags); + flags); length--; } else { if (netdev->features & NETIF_F_RXALL) @@ -4377,10 +4374,9 @@ next_desc: * @rx_ring: pointer to receive ring structure * @cleaned_count: number of buffers to allocate this pass **/ - static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, - struct e1000_rx_ring *rx_ring, int cleaned_count) + struct e1000_rx_ring *rx_ring, int cleaned_count) { struct net_device *netdev = adapter->netdev; struct pci_dev *pdev = adapter->pdev; @@ -4421,7 +4417,7 @@ check_page: if (!buffer_info->dma) { buffer_info->dma = dma_map_page(&pdev->dev, - buffer_info->page, 0, + buffer_info->page, 0, buffer_info->length, DMA_FROM_DEVICE); if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { @@ -4451,7 +4447,8 @@ check_page: /* Force memory writes to complete before letting h/w * know there are new descriptors to fetch. (Only * applicable for weak-ordered memory model archs, - * such as IA-64). */ + * such as IA-64). + */ wmb(); writel(i, adapter->hw.hw_addr + rx_ring->rdt); } @@ -4461,7 +4458,6 @@ check_page: * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended * @adapter: address of board private structure **/ - static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, struct e1000_rx_ring *rx_ring, int cleaned_count) @@ -4532,8 +4528,7 @@ map_skb: break; /* while !buffer_info->skb */ } - /* - * XXX if it was allocated cleanly it will never map to a + /* XXX if it was allocated cleanly it will never map to a * boundary crossing */ @@ -4571,7 +4566,8 @@ map_skb: /* Force memory writes to complete before letting h/w * know there are new descriptors to fetch. (Only * applicable for weak-ordered memory model archs, - * such as IA-64). */ + * such as IA-64). + */ wmb(); writel(i, hw->hw_addr + rx_ring->rdt); } @@ -4581,7 +4577,6 @@ map_skb: * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. * @adapter: **/ - static void e1000_smartspeed(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; @@ -4594,7 +4589,8 @@ static void e1000_smartspeed(struct e1000_adapter *adapter) if (adapter->smartspeed == 0) { /* If Master/Slave config fault is asserted twice, - * we assume back-to-back */ + * we assume back-to-back + */ e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); @@ -4607,7 +4603,7 @@ static void e1000_smartspeed(struct e1000_adapter *adapter) adapter->smartspeed++; if (!e1000_phy_setup_autoneg(hw) && !e1000_read_phy_reg(hw, PHY_CTRL, - &phy_ctrl)) { + &phy_ctrl)) { phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); e1000_write_phy_reg(hw, PHY_CTRL, @@ -4638,7 +4634,6 @@ static void e1000_smartspeed(struct e1000_adapter *adapter) * @ifreq: * @cmd: **/ - static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { switch (cmd) { @@ -4657,7 +4652,6 @@ static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) * @ifreq: * @cmd: **/ - static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { @@ -4919,7 +4913,8 @@ int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) hw->autoneg = 0; /* Make sure dplx is at most 1 bit and lsb of speed is not set - * for the switch() below to work */ + * for the switch() below to work + */ if ((spd & 1) || (dplx & ~1)) goto err_inval; @@ -5122,8 +5117,7 @@ static void e1000_shutdown(struct pci_dev *pdev) } #ifdef CONFIG_NET_POLL_CONTROLLER -/* - * Polling 'interrupt' - used by things like netconsole to send skbs +/* Polling 'interrupt' - used by things like netconsole to send skbs * without having to re-enable interrupts. It's not called while * the interrupt routine is executing. */ diff --git a/drivers/net/ethernet/intel/e1000/e1000_param.c b/drivers/net/ethernet/intel/e1000/e1000_param.c index 750fc0194f37..c9cde352b1c8 100644 --- a/drivers/net/ethernet/intel/e1000/e1000_param.c +++ b/drivers/net/ethernet/intel/e1000/e1000_param.c @@ -267,7 +267,6 @@ static void e1000_check_copper_options(struct e1000_adapter *adapter); * value exists, a default value is used. The final value is stored * in a variable in the adapter structure. **/ - void e1000_check_options(struct e1000_adapter *adapter) { struct e1000_option opt; @@ -319,7 +318,8 @@ void e1000_check_options(struct e1000_adapter *adapter) .def = E1000_DEFAULT_RXD, .arg = { .r = { .min = E1000_MIN_RXD, - .max = mac_type < e1000_82544 ? E1000_MAX_RXD : E1000_MAX_82544_RXD + .max = mac_type < e1000_82544 ? E1000_MAX_RXD : + E1000_MAX_82544_RXD }} }; @@ -408,7 +408,7 @@ void e1000_check_options(struct e1000_adapter *adapter) if (num_TxAbsIntDelay > bd) { adapter->tx_abs_int_delay = TxAbsIntDelay[bd]; e1000_validate_option(&adapter->tx_abs_int_delay, &opt, - adapter); + adapter); } else { adapter->tx_abs_int_delay = opt.def; } @@ -426,7 +426,7 @@ void e1000_check_options(struct e1000_adapter *adapter) if (num_RxIntDelay > bd) { adapter->rx_int_delay = RxIntDelay[bd]; e1000_validate_option(&adapter->rx_int_delay, &opt, - adapter); + adapter); } else { adapter->rx_int_delay = opt.def; } @@ -444,7 +444,7 @@ void e1000_check_options(struct e1000_adapter *adapter) if (num_RxAbsIntDelay > bd) { adapter->rx_abs_int_delay = RxAbsIntDelay[bd]; e1000_validate_option(&adapter->rx_abs_int_delay, &opt, - adapter); + adapter); } else { adapter->rx_abs_int_delay = opt.def; } @@ -479,16 +479,17 @@ void e1000_check_options(struct e1000_adapter *adapter) break; case 4: e_dev_info("%s set to simplified " - "(2000-8000) ints mode\n", opt.name); + "(2000-8000) ints mode\n", opt.name); adapter->itr_setting = adapter->itr; break; default: e1000_validate_option(&adapter->itr, &opt, - adapter); + adapter); /* save the setting, because the dynamic bits * change itr. * clear the lower two bits because they are - * used as control */ + * used as control + */ adapter->itr_setting = adapter->itr & ~3; break; } @@ -533,7 +534,6 @@ void e1000_check_options(struct e1000_adapter *adapter) * * Handles speed and duplex options on fiber adapters **/ - static void e1000_check_fiber_options(struct e1000_adapter *adapter) { int bd = adapter->bd_number; @@ -559,7 +559,6 @@ static void e1000_check_fiber_options(struct e1000_adapter *adapter) * * Handles speed and duplex options on copper adapters **/ - static void e1000_check_copper_options(struct e1000_adapter *adapter) { struct e1000_option opt; @@ -681,22 +680,22 @@ static void e1000_check_copper_options(struct e1000_adapter *adapter) e_dev_info("Using Autonegotiation at Half Duplex only\n"); adapter->hw.autoneg = adapter->fc_autoneg = 1; adapter->hw.autoneg_advertised = ADVERTISE_10_HALF | - ADVERTISE_100_HALF; + ADVERTISE_100_HALF; break; case FULL_DUPLEX: e_dev_info("Full Duplex specified without Speed\n"); e_dev_info("Using Autonegotiation at Full Duplex only\n"); adapter->hw.autoneg = adapter->fc_autoneg = 1; adapter->hw.autoneg_advertised = ADVERTISE_10_FULL | - ADVERTISE_100_FULL | - ADVERTISE_1000_FULL; + ADVERTISE_100_FULL | + ADVERTISE_1000_FULL; break; case SPEED_10: e_dev_info("10 Mbps Speed specified without Duplex\n"); e_dev_info("Using Autonegotiation at 10 Mbps only\n"); adapter->hw.autoneg = adapter->fc_autoneg = 1; adapter->hw.autoneg_advertised = ADVERTISE_10_HALF | - ADVERTISE_10_FULL; + ADVERTISE_10_FULL; break; case SPEED_10 + HALF_DUPLEX: e_dev_info("Forcing to 10 Mbps Half Duplex\n"); @@ -715,7 +714,7 @@ static void e1000_check_copper_options(struct e1000_adapter *adapter) e_dev_info("Using Autonegotiation at 100 Mbps only\n"); adapter->hw.autoneg = adapter->fc_autoneg = 1; adapter->hw.autoneg_advertised = ADVERTISE_100_HALF | - ADVERTISE_100_FULL; + ADVERTISE_100_FULL; break; case SPEED_100 + HALF_DUPLEX: e_dev_info("Forcing to 100 Mbps Half Duplex\n"); |