diff options
author | Miquel Raynal <miquel.raynal@bootlin.com> | 2018-08-05 16:52:56 +0200 |
---|---|---|
committer | Miquel Raynal <miquel.raynal@bootlin.com> | 2018-09-04 23:37:38 +0200 |
commit | 33c1c5fee2e88de2ae1efc4554aa7f36d10c3874 (patch) | |
tree | 8ca58a3bc12fe145ff2672a45c07431853b9792e /drivers | |
parent | mtd: rawnand: toshiba: Add support for Toshiba Memory BENAND (Built-in ECC NAND) (diff) | |
download | linux-33c1c5fee2e88de2ae1efc4554aa7f36d10c3874.tar.xz linux-33c1c5fee2e88de2ae1efc4554aa7f36d10c3874.zip |
mtd: rawnand: marvell: document a bit more the driver
A stale document about the old pxa3cc_nand.c driver is available in
Documentation/mtd/nand/. Rewrite the parts that explain the IP itself
and some non-trivial choices made in the driver directly in
marvell_nand.c to then be able to remove this file.
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Reviewed-by: Boris Brezillon <boris.brezillon@bootlin.com>
Diffstat (limited to 'drivers')
-rw-r--r-- | drivers/mtd/nand/raw/marvell_nand.c | 67 |
1 files changed, 67 insertions, 0 deletions
diff --git a/drivers/mtd/nand/raw/marvell_nand.c b/drivers/mtd/nand/raw/marvell_nand.c index f06b5c41d7a4..270f281067ab 100644 --- a/drivers/mtd/nand/raw/marvell_nand.c +++ b/drivers/mtd/nand/raw/marvell_nand.c @@ -5,6 +5,73 @@ * Copyright (C) 2017 Marvell * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com> * + * + * This NAND controller driver handles two versions of the hardware, + * one is called NFCv1 and is available on PXA SoCs and the other is + * called NFCv2 and is available on Armada SoCs. + * + * The main visible difference is that NFCv1 only has Hamming ECC + * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA + * is not used with NFCv2. + * + * The ECC layouts are depicted in details in Marvell AN-379, but here + * is a brief description. + * + * When using Hamming, the data is split in 512B chunks (either 1, 2 + * or 4) and each chunk will have its own ECC "digest" of 6B at the + * beginning of the OOB area and eventually the remaining free OOB + * bytes (also called "spare" bytes in the driver). This engine + * corrects up to 1 bit per chunk and detects reliably an error if + * there are at most 2 bitflips. Here is the page layout used by the + * controller when Hamming is chosen: + * + * +-------------------------------------------------------------+ + * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes | + * +-------------------------------------------------------------+ + * + * When using the BCH engine, there are N identical (data + free OOB + + * ECC) sections and potentially an extra one to deal with + * configurations where the chosen (data + free OOB + ECC) sizes do + * not align with the page (data + OOB) size. ECC bytes are always + * 30B per ECC chunk. Here is the page layout used by the controller + * when BCH is chosen: + * + * +----------------------------------------- + * | Data 1 | Free OOB bytes 1 | ECC 1 | ... + * +----------------------------------------- + * + * ------------------------------------------- + * ... | Data N | Free OOB bytes N | ECC N | + * ------------------------------------------- + * + * --------------------------------------------+ + * Last Data | Last Free OOB bytes | Last ECC | + * --------------------------------------------+ + * + * In both cases, the layout seen by the user is always: all data + * first, then all free OOB bytes and finally all ECC bytes. With BCH, + * ECC bytes are 30B long and are padded with 0xFF to align on 32 + * bytes. + * + * The controller has certain limitations that are handled by the + * driver: + * - It can only read 2k at a time. To overcome this limitation, the + * driver issues data cycles on the bus, without issuing new + * CMD + ADDR cycles. The Marvell term is "naked" operations. + * - The ECC strength in BCH mode cannot be tuned. It is fixed 16 + * bits. What can be tuned is the ECC block size as long as it + * stays between 512B and 2kiB. It's usually chosen based on the + * chip ECC requirements. For instance, using 2kiB ECC chunks + * provides 4b/512B correctability. + * - The controller will always treat data bytes, free OOB bytes + * and ECC bytes in that order, no matter what the real layout is + * (which is usually all data then all OOB bytes). The + * marvell_nfc_layouts array below contains the currently + * supported layouts. + * - Because of these weird layouts, the Bad Block Markers can be + * located in data section. In this case, the NAND_BBT_NO_OOB_BBM + * option must be set to prevent scanning/writing bad block + * markers. */ #include <linux/module.h> |