summaryrefslogtreecommitdiffstats
path: root/drivers
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2018-06-08 20:10:58 +0200
committerLinus Torvalds <torvalds@linux-foundation.org>2018-06-08 20:10:58 +0200
commit410feb75de245664d66bc05ab2e2412751d10acf (patch)
tree73deae83ab33a7c0668eb00eb2e1d347b20782c9 /drivers
parentMerge tag 'dmaengine-4.18-rc1' of git://git.infradead.org/users/vkoul/slave-dma (diff)
parentarm64: Fix syscall restarting around signal suppressed by tracer (diff)
downloadlinux-410feb75de245664d66bc05ab2e2412751d10acf.tar.xz
linux-410feb75de245664d66bc05ab2e2412751d10acf.zip
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas: "Apart from the core arm64 and perf changes, the Spectre v4 mitigation touches the arm KVM code and the ACPI PPTT support touches drivers/ (acpi and cacheinfo). I should have the maintainers' acks in place. Summary: - Spectre v4 mitigation (Speculative Store Bypass Disable) support for arm64 using SMC firmware call to set a hardware chicken bit - ACPI PPTT (Processor Properties Topology Table) parsing support and enable the feature for arm64 - Report signal frame size to user via auxv (AT_MINSIGSTKSZ). The primary motivation is Scalable Vector Extensions which requires more space on the signal frame than the currently defined MINSIGSTKSZ - ARM perf patches: allow building arm-cci as module, demote dev_warn() to dev_dbg() in arm-ccn event_init(), miscellaneous cleanups - cmpwait() WFE optimisation to avoid some spurious wakeups - L1_CACHE_BYTES reverted back to 64 (for performance reasons that have to do with some network allocations) while keeping ARCH_DMA_MINALIGN to 128. cache_line_size() returns the actual hardware Cache Writeback Granule - Turn LSE atomics on by default in Kconfig - Kernel fault reporting tidying - Some #include and miscellaneous cleanups" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (53 commits) arm64: Fix syscall restarting around signal suppressed by tracer arm64: topology: Avoid checking numa mask for scheduler MC selection ACPI / PPTT: fix build when CONFIG_ACPI_PPTT is not enabled arm64: cpu_errata: include required headers arm64: KVM: Move VCPU_WORKAROUND_2_FLAG macros to the top of the file arm64: signal: Report signal frame size to userspace via auxv arm64/sve: Thin out initialisation sanity-checks for sve_max_vl arm64: KVM: Add ARCH_WORKAROUND_2 discovery through ARCH_FEATURES_FUNC_ID arm64: KVM: Handle guest's ARCH_WORKAROUND_2 requests arm64: KVM: Add ARCH_WORKAROUND_2 support for guests arm64: KVM: Add HYP per-cpu accessors arm64: ssbd: Add prctl interface for per-thread mitigation arm64: ssbd: Introduce thread flag to control userspace mitigation arm64: ssbd: Restore mitigation status on CPU resume arm64: ssbd: Skip apply_ssbd if not using dynamic mitigation arm64: ssbd: Add global mitigation state accessor arm64: Add 'ssbd' command-line option arm64: Add ARCH_WORKAROUND_2 probing arm64: Add per-cpu infrastructure to call ARCH_WORKAROUND_2 arm64: Call ARCH_WORKAROUND_2 on transitions between EL0 and EL1 ...
Diffstat (limited to 'drivers')
-rw-r--r--drivers/acpi/Kconfig3
-rw-r--r--drivers/acpi/Makefile1
-rw-r--r--drivers/acpi/pptt.c655
-rw-r--r--drivers/acpi/tables.c2
-rw-r--r--drivers/base/cacheinfo.c157
-rw-r--r--drivers/perf/Kconfig36
-rw-r--r--drivers/perf/arm-cci.c47
-rw-r--r--drivers/perf/arm-ccn.c22
-rw-r--r--drivers/perf/arm_pmu.c2
-rw-r--r--drivers/perf/arm_spe_pmu.c6
10 files changed, 795 insertions, 136 deletions
diff --git a/drivers/acpi/Kconfig b/drivers/acpi/Kconfig
index 516d7b36d6fb..b533eeb6139d 100644
--- a/drivers/acpi/Kconfig
+++ b/drivers/acpi/Kconfig
@@ -547,6 +547,9 @@ config ACPI_CONFIGFS
if ARM64
source "drivers/acpi/arm64/Kconfig"
+
+config ACPI_PPTT
+ bool
endif
config TPS68470_PMIC_OPREGION
diff --git a/drivers/acpi/Makefile b/drivers/acpi/Makefile
index 48e202752754..6d59aa109a91 100644
--- a/drivers/acpi/Makefile
+++ b/drivers/acpi/Makefile
@@ -88,6 +88,7 @@ obj-$(CONFIG_ACPI_BGRT) += bgrt.o
obj-$(CONFIG_ACPI_CPPC_LIB) += cppc_acpi.o
obj-$(CONFIG_ACPI_SPCR_TABLE) += spcr.o
obj-$(CONFIG_ACPI_DEBUGGER_USER) += acpi_dbg.o
+obj-$(CONFIG_ACPI_PPTT) += pptt.o
# processor has its own "processor." module_param namespace
processor-y := processor_driver.o
diff --git a/drivers/acpi/pptt.c b/drivers/acpi/pptt.c
new file mode 100644
index 000000000000..e5ea1974d1e3
--- /dev/null
+++ b/drivers/acpi/pptt.c
@@ -0,0 +1,655 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * pptt.c - parsing of Processor Properties Topology Table (PPTT)
+ *
+ * Copyright (C) 2018, ARM
+ *
+ * This file implements parsing of the Processor Properties Topology Table
+ * which is optionally used to describe the processor and cache topology.
+ * Due to the relative pointers used throughout the table, this doesn't
+ * leverage the existing subtable parsing in the kernel.
+ *
+ * The PPTT structure is an inverted tree, with each node potentially
+ * holding one or two inverted tree data structures describing
+ * the caches available at that level. Each cache structure optionally
+ * contains properties describing the cache at a given level which can be
+ * used to override hardware probed values.
+ */
+#define pr_fmt(fmt) "ACPI PPTT: " fmt
+
+#include <linux/acpi.h>
+#include <linux/cacheinfo.h>
+#include <acpi/processor.h>
+
+static struct acpi_subtable_header *fetch_pptt_subtable(struct acpi_table_header *table_hdr,
+ u32 pptt_ref)
+{
+ struct acpi_subtable_header *entry;
+
+ /* there isn't a subtable at reference 0 */
+ if (pptt_ref < sizeof(struct acpi_subtable_header))
+ return NULL;
+
+ if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length)
+ return NULL;
+
+ entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, pptt_ref);
+
+ if (entry->length == 0)
+ return NULL;
+
+ if (pptt_ref + entry->length > table_hdr->length)
+ return NULL;
+
+ return entry;
+}
+
+static struct acpi_pptt_processor *fetch_pptt_node(struct acpi_table_header *table_hdr,
+ u32 pptt_ref)
+{
+ return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref);
+}
+
+static struct acpi_pptt_cache *fetch_pptt_cache(struct acpi_table_header *table_hdr,
+ u32 pptt_ref)
+{
+ return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref);
+}
+
+static struct acpi_subtable_header *acpi_get_pptt_resource(struct acpi_table_header *table_hdr,
+ struct acpi_pptt_processor *node,
+ int resource)
+{
+ u32 *ref;
+
+ if (resource >= node->number_of_priv_resources)
+ return NULL;
+
+ ref = ACPI_ADD_PTR(u32, node, sizeof(struct acpi_pptt_processor));
+ ref += resource;
+
+ return fetch_pptt_subtable(table_hdr, *ref);
+}
+
+static inline bool acpi_pptt_match_type(int table_type, int type)
+{
+ return ((table_type & ACPI_PPTT_MASK_CACHE_TYPE) == type ||
+ table_type & ACPI_PPTT_CACHE_TYPE_UNIFIED & type);
+}
+
+/**
+ * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache
+ * @table_hdr: Pointer to the head of the PPTT table
+ * @local_level: passed res reflects this cache level
+ * @res: cache resource in the PPTT we want to walk
+ * @found: returns a pointer to the requested level if found
+ * @level: the requested cache level
+ * @type: the requested cache type
+ *
+ * Attempt to find a given cache level, while counting the max number
+ * of cache levels for the cache node.
+ *
+ * Given a pptt resource, verify that it is a cache node, then walk
+ * down each level of caches, counting how many levels are found
+ * as well as checking the cache type (icache, dcache, unified). If a
+ * level & type match, then we set found, and continue the search.
+ * Once the entire cache branch has been walked return its max
+ * depth.
+ *
+ * Return: The cache structure and the level we terminated with.
+ */
+static int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr,
+ int local_level,
+ struct acpi_subtable_header *res,
+ struct acpi_pptt_cache **found,
+ int level, int type)
+{
+ struct acpi_pptt_cache *cache;
+
+ if (res->type != ACPI_PPTT_TYPE_CACHE)
+ return 0;
+
+ cache = (struct acpi_pptt_cache *) res;
+ while (cache) {
+ local_level++;
+
+ if (local_level == level &&
+ cache->flags & ACPI_PPTT_CACHE_TYPE_VALID &&
+ acpi_pptt_match_type(cache->attributes, type)) {
+ if (*found != NULL && cache != *found)
+ pr_warn("Found duplicate cache level/type unable to determine uniqueness\n");
+
+ pr_debug("Found cache @ level %d\n", level);
+ *found = cache;
+ /*
+ * continue looking at this node's resource list
+ * to verify that we don't find a duplicate
+ * cache node.
+ */
+ }
+ cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
+ }
+ return local_level;
+}
+
+static struct acpi_pptt_cache *acpi_find_cache_level(struct acpi_table_header *table_hdr,
+ struct acpi_pptt_processor *cpu_node,
+ int *starting_level, int level,
+ int type)
+{
+ struct acpi_subtable_header *res;
+ int number_of_levels = *starting_level;
+ int resource = 0;
+ struct acpi_pptt_cache *ret = NULL;
+ int local_level;
+
+ /* walk down from processor node */
+ while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) {
+ resource++;
+
+ local_level = acpi_pptt_walk_cache(table_hdr, *starting_level,
+ res, &ret, level, type);
+ /*
+ * we are looking for the max depth. Since its potentially
+ * possible for a given node to have resources with differing
+ * depths verify that the depth we have found is the largest.
+ */
+ if (number_of_levels < local_level)
+ number_of_levels = local_level;
+ }
+ if (number_of_levels > *starting_level)
+ *starting_level = number_of_levels;
+
+ return ret;
+}
+
+/**
+ * acpi_count_levels() - Given a PPTT table, and a cpu node, count the caches
+ * @table_hdr: Pointer to the head of the PPTT table
+ * @cpu_node: processor node we wish to count caches for
+ *
+ * Given a processor node containing a processing unit, walk into it and count
+ * how many levels exist solely for it, and then walk up each level until we hit
+ * the root node (ignore the package level because it may be possible to have
+ * caches that exist across packages). Count the number of cache levels that
+ * exist at each level on the way up.
+ *
+ * Return: Total number of levels found.
+ */
+static int acpi_count_levels(struct acpi_table_header *table_hdr,
+ struct acpi_pptt_processor *cpu_node)
+{
+ int total_levels = 0;
+
+ do {
+ acpi_find_cache_level(table_hdr, cpu_node, &total_levels, 0, 0);
+ cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
+ } while (cpu_node);
+
+ return total_levels;
+}
+
+/**
+ * acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf
+ * @table_hdr: Pointer to the head of the PPTT table
+ * @node: passed node is checked to see if its a leaf
+ *
+ * Determine if the *node parameter is a leaf node by iterating the
+ * PPTT table, looking for nodes which reference it.
+ *
+ * Return: 0 if we find a node referencing the passed node (or table error),
+ * or 1 if we don't.
+ */
+static int acpi_pptt_leaf_node(struct acpi_table_header *table_hdr,
+ struct acpi_pptt_processor *node)
+{
+ struct acpi_subtable_header *entry;
+ unsigned long table_end;
+ u32 node_entry;
+ struct acpi_pptt_processor *cpu_node;
+ u32 proc_sz;
+
+ table_end = (unsigned long)table_hdr + table_hdr->length;
+ node_entry = ACPI_PTR_DIFF(node, table_hdr);
+ entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
+ sizeof(struct acpi_table_pptt));
+ proc_sz = sizeof(struct acpi_pptt_processor *);
+
+ while ((unsigned long)entry + proc_sz < table_end) {
+ cpu_node = (struct acpi_pptt_processor *)entry;
+ if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
+ cpu_node->parent == node_entry)
+ return 0;
+ if (entry->length == 0)
+ return 0;
+ entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
+ entry->length);
+
+ }
+ return 1;
+}
+
+/**
+ * acpi_find_processor_node() - Given a PPTT table find the requested processor
+ * @table_hdr: Pointer to the head of the PPTT table
+ * @acpi_cpu_id: cpu we are searching for
+ *
+ * Find the subtable entry describing the provided processor.
+ * This is done by iterating the PPTT table looking for processor nodes
+ * which have an acpi_processor_id that matches the acpi_cpu_id parameter
+ * passed into the function. If we find a node that matches this criteria
+ * we verify that its a leaf node in the topology rather than depending
+ * on the valid flag, which doesn't need to be set for leaf nodes.
+ *
+ * Return: NULL, or the processors acpi_pptt_processor*
+ */
+static struct acpi_pptt_processor *acpi_find_processor_node(struct acpi_table_header *table_hdr,
+ u32 acpi_cpu_id)
+{
+ struct acpi_subtable_header *entry;
+ unsigned long table_end;
+ struct acpi_pptt_processor *cpu_node;
+ u32 proc_sz;
+
+ table_end = (unsigned long)table_hdr + table_hdr->length;
+ entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
+ sizeof(struct acpi_table_pptt));
+ proc_sz = sizeof(struct acpi_pptt_processor *);
+
+ /* find the processor structure associated with this cpuid */
+ while ((unsigned long)entry + proc_sz < table_end) {
+ cpu_node = (struct acpi_pptt_processor *)entry;
+
+ if (entry->length == 0) {
+ pr_warn("Invalid zero length subtable\n");
+ break;
+ }
+ if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
+ acpi_cpu_id == cpu_node->acpi_processor_id &&
+ acpi_pptt_leaf_node(table_hdr, cpu_node)) {
+ return (struct acpi_pptt_processor *)entry;
+ }
+
+ entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
+ entry->length);
+ }
+
+ return NULL;
+}
+
+static int acpi_find_cache_levels(struct acpi_table_header *table_hdr,
+ u32 acpi_cpu_id)
+{
+ int number_of_levels = 0;
+ struct acpi_pptt_processor *cpu;
+
+ cpu = acpi_find_processor_node(table_hdr, acpi_cpu_id);
+ if (cpu)
+ number_of_levels = acpi_count_levels(table_hdr, cpu);
+
+ return number_of_levels;
+}
+
+static u8 acpi_cache_type(enum cache_type type)
+{
+ switch (type) {
+ case CACHE_TYPE_DATA:
+ pr_debug("Looking for data cache\n");
+ return ACPI_PPTT_CACHE_TYPE_DATA;
+ case CACHE_TYPE_INST:
+ pr_debug("Looking for instruction cache\n");
+ return ACPI_PPTT_CACHE_TYPE_INSTR;
+ default:
+ case CACHE_TYPE_UNIFIED:
+ pr_debug("Looking for unified cache\n");
+ /*
+ * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED
+ * contains the bit pattern that will match both
+ * ACPI unified bit patterns because we use it later
+ * to match both cases.
+ */
+ return ACPI_PPTT_CACHE_TYPE_UNIFIED;
+ }
+}
+
+static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *table_hdr,
+ u32 acpi_cpu_id,
+ enum cache_type type,
+ unsigned int level,
+ struct acpi_pptt_processor **node)
+{
+ int total_levels = 0;
+ struct acpi_pptt_cache *found = NULL;
+ struct acpi_pptt_processor *cpu_node;
+ u8 acpi_type = acpi_cache_type(type);
+
+ pr_debug("Looking for CPU %d's level %d cache type %d\n",
+ acpi_cpu_id, level, acpi_type);
+
+ cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id);
+
+ while (cpu_node && !found) {
+ found = acpi_find_cache_level(table_hdr, cpu_node,
+ &total_levels, level, acpi_type);
+ *node = cpu_node;
+ cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
+ }
+
+ return found;
+}
+
+/* total number of attributes checked by the properties code */
+#define PPTT_CHECKED_ATTRIBUTES 4
+
+/**
+ * update_cache_properties() - Update cacheinfo for the given processor
+ * @this_leaf: Kernel cache info structure being updated
+ * @found_cache: The PPTT node describing this cache instance
+ * @cpu_node: A unique reference to describe this cache instance
+ *
+ * The ACPI spec implies that the fields in the cache structures are used to
+ * extend and correct the information probed from the hardware. Lets only
+ * set fields that we determine are VALID.
+ *
+ * Return: nothing. Side effect of updating the global cacheinfo
+ */
+static void update_cache_properties(struct cacheinfo *this_leaf,
+ struct acpi_pptt_cache *found_cache,
+ struct acpi_pptt_processor *cpu_node)
+{
+ int valid_flags = 0;
+
+ this_leaf->fw_token = cpu_node;
+ if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID) {
+ this_leaf->size = found_cache->size;
+ valid_flags++;
+ }
+ if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID) {
+ this_leaf->coherency_line_size = found_cache->line_size;
+ valid_flags++;
+ }
+ if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID) {
+ this_leaf->number_of_sets = found_cache->number_of_sets;
+ valid_flags++;
+ }
+ if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID) {
+ this_leaf->ways_of_associativity = found_cache->associativity;
+ valid_flags++;
+ }
+ if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) {
+ switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) {
+ case ACPI_PPTT_CACHE_POLICY_WT:
+ this_leaf->attributes = CACHE_WRITE_THROUGH;
+ break;
+ case ACPI_PPTT_CACHE_POLICY_WB:
+ this_leaf->attributes = CACHE_WRITE_BACK;
+ break;
+ }
+ }
+ if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) {
+ switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) {
+ case ACPI_PPTT_CACHE_READ_ALLOCATE:
+ this_leaf->attributes |= CACHE_READ_ALLOCATE;
+ break;
+ case ACPI_PPTT_CACHE_WRITE_ALLOCATE:
+ this_leaf->attributes |= CACHE_WRITE_ALLOCATE;
+ break;
+ case ACPI_PPTT_CACHE_RW_ALLOCATE:
+ case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT:
+ this_leaf->attributes |=
+ CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE;
+ break;
+ }
+ }
+ /*
+ * If the above flags are valid, and the cache type is NOCACHE
+ * update the cache type as well.
+ */
+ if (this_leaf->type == CACHE_TYPE_NOCACHE &&
+ valid_flags == PPTT_CHECKED_ATTRIBUTES)
+ this_leaf->type = CACHE_TYPE_UNIFIED;
+}
+
+static void cache_setup_acpi_cpu(struct acpi_table_header *table,
+ unsigned int cpu)
+{
+ struct acpi_pptt_cache *found_cache;
+ struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
+ u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
+ struct cacheinfo *this_leaf;
+ unsigned int index = 0;
+ struct acpi_pptt_processor *cpu_node = NULL;
+
+ while (index < get_cpu_cacheinfo(cpu)->num_leaves) {
+ this_leaf = this_cpu_ci->info_list + index;
+ found_cache = acpi_find_cache_node(table, acpi_cpu_id,
+ this_leaf->type,
+ this_leaf->level,
+ &cpu_node);
+ pr_debug("found = %p %p\n", found_cache, cpu_node);
+ if (found_cache)
+ update_cache_properties(this_leaf,
+ found_cache,
+ cpu_node);
+
+ index++;
+ }
+}
+
+/* Passing level values greater than this will result in search termination */
+#define PPTT_ABORT_PACKAGE 0xFF
+
+static struct acpi_pptt_processor *acpi_find_processor_package_id(struct acpi_table_header *table_hdr,
+ struct acpi_pptt_processor *cpu,
+ int level, int flag)
+{
+ struct acpi_pptt_processor *prev_node;
+
+ while (cpu && level) {
+ if (cpu->flags & flag)
+ break;
+ pr_debug("level %d\n", level);
+ prev_node = fetch_pptt_node(table_hdr, cpu->parent);
+ if (prev_node == NULL)
+ break;
+ cpu = prev_node;
+ level--;
+ }
+ return cpu;
+}
+
+/**
+ * topology_get_acpi_cpu_tag() - Find a unique topology value for a feature
+ * @table: Pointer to the head of the PPTT table
+ * @cpu: Kernel logical cpu number
+ * @level: A level that terminates the search
+ * @flag: A flag which terminates the search
+ *
+ * Get a unique value given a cpu, and a topology level, that can be
+ * matched to determine which cpus share common topological features
+ * at that level.
+ *
+ * Return: Unique value, or -ENOENT if unable to locate cpu
+ */
+static int topology_get_acpi_cpu_tag(struct acpi_table_header *table,
+ unsigned int cpu, int level, int flag)
+{
+ struct acpi_pptt_processor *cpu_node;
+ u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
+
+ cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
+ if (cpu_node) {
+ cpu_node = acpi_find_processor_package_id(table, cpu_node,
+ level, flag);
+ /* Only the first level has a guaranteed id */
+ if (level == 0)
+ return cpu_node->acpi_processor_id;
+ return ACPI_PTR_DIFF(cpu_node, table);
+ }
+ pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n",
+ cpu, acpi_cpu_id);
+ return -ENOENT;
+}
+
+static int find_acpi_cpu_topology_tag(unsigned int cpu, int level, int flag)
+{
+ struct acpi_table_header *table;
+ acpi_status status;
+ int retval;
+
+ status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
+ if (ACPI_FAILURE(status)) {
+ pr_warn_once("No PPTT table found, cpu topology may be inaccurate\n");
+ return -ENOENT;
+ }
+ retval = topology_get_acpi_cpu_tag(table, cpu, level, flag);
+ pr_debug("Topology Setup ACPI cpu %d, level %d ret = %d\n",
+ cpu, level, retval);
+ acpi_put_table(table);
+
+ return retval;
+}
+
+/**
+ * acpi_find_last_cache_level() - Determines the number of cache levels for a PE
+ * @cpu: Kernel logical cpu number
+ *
+ * Given a logical cpu number, returns the number of levels of cache represented
+ * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0
+ * indicating we didn't find any cache levels.
+ *
+ * Return: Cache levels visible to this core.
+ */
+int acpi_find_last_cache_level(unsigned int cpu)
+{
+ u32 acpi_cpu_id;
+ struct acpi_table_header *table;
+ int number_of_levels = 0;
+ acpi_status status;
+
+ pr_debug("Cache Setup find last level cpu=%d\n", cpu);
+
+ acpi_cpu_id = get_acpi_id_for_cpu(cpu);
+ status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
+ if (ACPI_FAILURE(status)) {
+ pr_warn_once("No PPTT table found, cache topology may be inaccurate\n");
+ } else {
+ number_of_levels = acpi_find_cache_levels(table, acpi_cpu_id);
+ acpi_put_table(table);
+ }
+ pr_debug("Cache Setup find last level level=%d\n", number_of_levels);
+
+ return number_of_levels;
+}
+
+/**
+ * cache_setup_acpi() - Override CPU cache topology with data from the PPTT
+ * @cpu: Kernel logical cpu number
+ *
+ * Updates the global cache info provided by cpu_get_cacheinfo()
+ * when there are valid properties in the acpi_pptt_cache nodes. A
+ * successful parse may not result in any updates if none of the
+ * cache levels have any valid flags set. Futher, a unique value is
+ * associated with each known CPU cache entry. This unique value
+ * can be used to determine whether caches are shared between cpus.
+ *
+ * Return: -ENOENT on failure to find table, or 0 on success
+ */
+int cache_setup_acpi(unsigned int cpu)
+{
+ struct acpi_table_header *table;
+ acpi_status status;
+
+ pr_debug("Cache Setup ACPI cpu %d\n", cpu);
+
+ status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
+ if (ACPI_FAILURE(status)) {
+ pr_warn_once("No PPTT table found, cache topology may be inaccurate\n");
+ return -ENOENT;
+ }
+
+ cache_setup_acpi_cpu(table, cpu);
+ acpi_put_table(table);
+
+ return status;
+}
+
+/**
+ * find_acpi_cpu_topology() - Determine a unique topology value for a given cpu
+ * @cpu: Kernel logical cpu number
+ * @level: The topological level for which we would like a unique ID
+ *
+ * Determine a topology unique ID for each thread/core/cluster/mc_grouping
+ * /socket/etc. This ID can then be used to group peers, which will have
+ * matching ids.
+ *
+ * The search terminates when either the requested level is found or
+ * we reach a root node. Levels beyond the termination point will return the
+ * same unique ID. The unique id for level 0 is the acpi processor id. All
+ * other levels beyond this use a generated value to uniquely identify
+ * a topological feature.
+ *
+ * Return: -ENOENT if the PPTT doesn't exist, or the cpu cannot be found.
+ * Otherwise returns a value which represents a unique topological feature.
+ */
+int find_acpi_cpu_topology(unsigned int cpu, int level)
+{
+ return find_acpi_cpu_topology_tag(cpu, level, 0);
+}
+
+/**
+ * find_acpi_cpu_cache_topology() - Determine a unique cache topology value
+ * @cpu: Kernel logical cpu number
+ * @level: The cache level for which we would like a unique ID
+ *
+ * Determine a unique ID for each unified cache in the system
+ *
+ * Return: -ENOENT if the PPTT doesn't exist, or the cpu cannot be found.
+ * Otherwise returns a value which represents a unique topological feature.
+ */
+int find_acpi_cpu_cache_topology(unsigned int cpu, int level)
+{
+ struct acpi_table_header *table;
+ struct acpi_pptt_cache *found_cache;
+ acpi_status status;
+ u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
+ struct acpi_pptt_processor *cpu_node = NULL;
+ int ret = -1;
+
+ status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
+ if (ACPI_FAILURE(status)) {
+ pr_warn_once("No PPTT table found, topology may be inaccurate\n");
+ return -ENOENT;
+ }
+
+ found_cache = acpi_find_cache_node(table, acpi_cpu_id,
+ CACHE_TYPE_UNIFIED,
+ level,
+ &cpu_node);
+ if (found_cache)
+ ret = ACPI_PTR_DIFF(cpu_node, table);
+
+ acpi_put_table(table);
+
+ return ret;
+}
+
+
+/**
+ * find_acpi_cpu_topology_package() - Determine a unique cpu package value
+ * @cpu: Kernel logical cpu number
+ *
+ * Determine a topology unique package ID for the given cpu.
+ * This ID can then be used to group peers, which will have matching ids.
+ *
+ * The search terminates when either a level is found with the PHYSICAL_PACKAGE
+ * flag set or we reach a root node.
+ *
+ * Return: -ENOENT if the PPTT doesn't exist, or the cpu cannot be found.
+ * Otherwise returns a value which represents the package for this cpu.
+ */
+int find_acpi_cpu_topology_package(unsigned int cpu)
+{
+ return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
+ ACPI_PPTT_PHYSICAL_PACKAGE);
+}
diff --git a/drivers/acpi/tables.c b/drivers/acpi/tables.c
index 4a3410aa6540..a3d012b08fc5 100644
--- a/drivers/acpi/tables.c
+++ b/drivers/acpi/tables.c
@@ -462,7 +462,7 @@ static const char * const table_sigs[] = {
ACPI_SIG_UEFI, ACPI_SIG_WAET, ACPI_SIG_WDAT, ACPI_SIG_WDDT,
ACPI_SIG_WDRT, ACPI_SIG_DSDT, ACPI_SIG_FADT, ACPI_SIG_PSDT,
ACPI_SIG_RSDT, ACPI_SIG_XSDT, ACPI_SIG_SSDT, ACPI_SIG_IORT,
- ACPI_SIG_NFIT, ACPI_SIG_HMAT, NULL };
+ ACPI_SIG_NFIT, ACPI_SIG_HMAT, ACPI_SIG_PPTT, NULL };
#define ACPI_HEADER_SIZE sizeof(struct acpi_table_header)
diff --git a/drivers/base/cacheinfo.c b/drivers/base/cacheinfo.c
index edf726267282..2880e2ab01f5 100644
--- a/drivers/base/cacheinfo.c
+++ b/drivers/base/cacheinfo.c
@@ -32,50 +32,10 @@ struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
}
#ifdef CONFIG_OF
-static int cache_setup_of_node(unsigned int cpu)
-{
- struct device_node *np;
- struct cacheinfo *this_leaf;
- struct device *cpu_dev = get_cpu_device(cpu);
- struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
- unsigned int index = 0;
-
- /* skip if of_node is already populated */
- if (this_cpu_ci->info_list->of_node)
- return 0;
-
- if (!cpu_dev) {
- pr_err("No cpu device for CPU %d\n", cpu);
- return -ENODEV;
- }
- np = cpu_dev->of_node;
- if (!np) {
- pr_err("Failed to find cpu%d device node\n", cpu);
- return -ENOENT;
- }
-
- while (index < cache_leaves(cpu)) {
- this_leaf = this_cpu_ci->info_list + index;
- if (this_leaf->level != 1)
- np = of_find_next_cache_node(np);
- else
- np = of_node_get(np);/* cpu node itself */
- if (!np)
- break;
- this_leaf->of_node = np;
- index++;
- }
-
- if (index != cache_leaves(cpu)) /* not all OF nodes populated */
- return -ENOENT;
-
- return 0;
-}
-
static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
struct cacheinfo *sib_leaf)
{
- return sib_leaf->of_node == this_leaf->of_node;
+ return sib_leaf->fw_token == this_leaf->fw_token;
}
/* OF properties to query for a given cache type */
@@ -111,7 +71,7 @@ static inline int get_cacheinfo_idx(enum cache_type type)
return type;
}
-static void cache_size(struct cacheinfo *this_leaf)
+static void cache_size(struct cacheinfo *this_leaf, struct device_node *np)
{
const char *propname;
const __be32 *cache_size;
@@ -120,13 +80,14 @@ static void cache_size(struct cacheinfo *this_leaf)
ct_idx = get_cacheinfo_idx(this_leaf->type);
propname = cache_type_info[ct_idx].size_prop;
- cache_size = of_get_property(this_leaf->of_node, propname, NULL);
+ cache_size = of_get_property(np, propname, NULL);
if (cache_size)
this_leaf->size = of_read_number(cache_size, 1);
}
/* not cache_line_size() because that's a macro in include/linux/cache.h */
-static void cache_get_line_size(struct cacheinfo *this_leaf)
+static void cache_get_line_size(struct cacheinfo *this_leaf,
+ struct device_node *np)
{
const __be32 *line_size;
int i, lim, ct_idx;
@@ -138,7 +99,7 @@ static void cache_get_line_size(struct cacheinfo *this_leaf)
const char *propname;
propname = cache_type_info[ct_idx].line_size_props[i];
- line_size = of_get_property(this_leaf->of_node, propname, NULL);
+ line_size = of_get_property(np, propname, NULL);
if (line_size)
break;
}
@@ -147,7 +108,7 @@ static void cache_get_line_size(struct cacheinfo *this_leaf)
this_leaf->coherency_line_size = of_read_number(line_size, 1);
}
-static void cache_nr_sets(struct cacheinfo *this_leaf)
+static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np)
{
const char *propname;
const __be32 *nr_sets;
@@ -156,7 +117,7 @@ static void cache_nr_sets(struct cacheinfo *this_leaf)
ct_idx = get_cacheinfo_idx(this_leaf->type);
propname = cache_type_info[ct_idx].nr_sets_prop;
- nr_sets = of_get_property(this_leaf->of_node, propname, NULL);
+ nr_sets = of_get_property(np, propname, NULL);
if (nr_sets)
this_leaf->number_of_sets = of_read_number(nr_sets, 1);
}
@@ -175,41 +136,77 @@ static void cache_associativity(struct cacheinfo *this_leaf)
this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
}
-static bool cache_node_is_unified(struct cacheinfo *this_leaf)
+static bool cache_node_is_unified(struct cacheinfo *this_leaf,
+ struct device_node *np)
{
- return of_property_read_bool(this_leaf->of_node, "cache-unified");
+ return of_property_read_bool(np, "cache-unified");
}
-static void cache_of_override_properties(unsigned int cpu)
+static void cache_of_set_props(struct cacheinfo *this_leaf,
+ struct device_node *np)
{
- int index;
+ /*
+ * init_cache_level must setup the cache level correctly
+ * overriding the architecturally specified levels, so
+ * if type is NONE at this stage, it should be unified
+ */
+ if (this_leaf->type == CACHE_TYPE_NOCACHE &&
+ cache_node_is_unified(this_leaf, np))
+ this_leaf->type = CACHE_TYPE_UNIFIED;
+ cache_size(this_leaf, np);
+ cache_get_line_size(this_leaf, np);
+ cache_nr_sets(this_leaf, np);
+ cache_associativity(this_leaf);
+}
+
+static int cache_setup_of_node(unsigned int cpu)
+{
+ struct device_node *np;
struct cacheinfo *this_leaf;
+ struct device *cpu_dev = get_cpu_device(cpu);
struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
+ unsigned int index = 0;
- for (index = 0; index < cache_leaves(cpu); index++) {
+ /* skip if fw_token is already populated */
+ if (this_cpu_ci->info_list->fw_token) {
+ return 0;
+ }
+
+ if (!cpu_dev) {
+ pr_err("No cpu device for CPU %d\n", cpu);
+ return -ENODEV;
+ }
+ np = cpu_dev->of_node;
+ if (!np) {
+ pr_err("Failed to find cpu%d device node\n", cpu);
+ return -ENOENT;
+ }
+
+ while (index < cache_leaves(cpu)) {
this_leaf = this_cpu_ci->info_list + index;
- /*
- * init_cache_level must setup the cache level correctly
- * overriding the architecturally specified levels, so
- * if type is NONE at this stage, it should be unified
- */
- if (this_leaf->type == CACHE_TYPE_NOCACHE &&
- cache_node_is_unified(this_leaf))
- this_leaf->type = CACHE_TYPE_UNIFIED;
- cache_size(this_leaf);
- cache_get_line_size(this_leaf);
- cache_nr_sets(this_leaf);
- cache_associativity(this_leaf);
+ if (this_leaf->level != 1)
+ np = of_find_next_cache_node(np);
+ else
+ np = of_node_get(np);/* cpu node itself */
+ if (!np)
+ break;
+ cache_of_set_props(this_leaf, np);
+ this_leaf->fw_token = np;
+ index++;
}
+
+ if (index != cache_leaves(cpu)) /* not all OF nodes populated */
+ return -ENOENT;
+
+ return 0;
}
#else
-static void cache_of_override_properties(unsigned int cpu) { }
static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
struct cacheinfo *sib_leaf)
{
/*
- * For non-DT systems, assume unique level 1 cache, system-wide
+ * For non-DT/ACPI systems, assume unique level 1 caches, system-wide
* shared caches for all other levels. This will be used only if
* arch specific code has not populated shared_cpu_map
*/
@@ -217,6 +214,11 @@ static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
}
#endif
+int __weak cache_setup_acpi(unsigned int cpu)
+{
+ return -ENOTSUPP;
+}
+
static int cache_shared_cpu_map_setup(unsigned int cpu)
{
struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
@@ -230,8 +232,8 @@ static int cache_shared_cpu_map_setup(unsigned int cpu)
if (of_have_populated_dt())
ret = cache_setup_of_node(cpu);
else if (!acpi_disabled)
- /* No cache property/hierarchy support yet in ACPI */
- ret = -ENOTSUPP;
+ ret = cache_setup_acpi(cpu);
+
if (ret)
return ret;
@@ -282,16 +284,11 @@ static void cache_shared_cpu_map_remove(unsigned int cpu)
cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
}
- of_node_put(this_leaf->of_node);
+ if (of_have_populated_dt())
+ of_node_put(this_leaf->fw_token);
}
}
-static void cache_override_properties(unsigned int cpu)
-{
- if (of_have_populated_dt())
- return cache_of_override_properties(cpu);
-}
-
static void free_cache_attributes(unsigned int cpu)
{
if (!per_cpu_cacheinfo(cpu))
@@ -325,12 +322,17 @@ static int detect_cache_attributes(unsigned int cpu)
if (per_cpu_cacheinfo(cpu) == NULL)
return -ENOMEM;
+ /*
+ * populate_cache_leaves() may completely setup the cache leaves and
+ * shared_cpu_map or it may leave it partially setup.
+ */
ret = populate_cache_leaves(cpu);
if (ret)
goto free_ci;
/*
- * For systems using DT for cache hierarchy, of_node and shared_cpu_map
- * will be set up here only if they are not populated already
+ * For systems using DT for cache hierarchy, fw_token
+ * and shared_cpu_map will be set up here only if they are
+ * not populated already
*/
ret = cache_shared_cpu_map_setup(cpu);
if (ret) {
@@ -338,7 +340,6 @@ static int detect_cache_attributes(unsigned int cpu)
goto free_ci;
}
- cache_override_properties(cpu);
return 0;
free_ci:
diff --git a/drivers/perf/Kconfig b/drivers/perf/Kconfig
index 28bb5a029558..08ebaf7cca8b 100644
--- a/drivers/perf/Kconfig
+++ b/drivers/perf/Kconfig
@@ -6,30 +6,32 @@ menu "Performance monitor support"
depends on PERF_EVENTS
config ARM_CCI_PMU
- bool
+ tristate "ARM CCI PMU driver"
+ depends on (ARM && CPU_V7) || ARM64
select ARM_CCI
+ help
+ Support for PMU events monitoring on the ARM CCI (Cache Coherent
+ Interconnect) family of products.
+
+ If compiled as a module, it will be called arm-cci.
config ARM_CCI400_PMU
- bool "ARM CCI400 PMU support"
- depends on (ARM && CPU_V7) || ARM64
+ bool "support CCI-400"
+ default y
+ depends on ARM_CCI_PMU
select ARM_CCI400_COMMON
- select ARM_CCI_PMU
help
- Support for PMU events monitoring on the ARM CCI-400 (cache coherent
- interconnect). CCI-400 supports counting events related to the
- connected slave/master interfaces.
+ CCI-400 provides 4 independent event counters counting events related
+ to the connected slave/master interfaces, plus a cycle counter.
config ARM_CCI5xx_PMU
- bool "ARM CCI-500/CCI-550 PMU support"
- depends on (ARM && CPU_V7) || ARM64
- select ARM_CCI_PMU
+ bool "support CCI-500/CCI-550"
+ default y
+ depends on ARM_CCI_PMU
help
- Support for PMU events monitoring on the ARM CCI-500/CCI-550 cache
- coherent interconnects. Both of them provide 8 independent event counters,
- which can count events pertaining to the slave/master interfaces as well
- as the internal events to the CCI.
-
- If unsure, say Y
+ CCI-500/CCI-550 both provide 8 independent event counters, which can
+ count events pertaining to the slave/master interfaces as well as the
+ internal events to the CCI.
config ARM_CCN
tristate "ARM CCN driver support"
@@ -94,7 +96,7 @@ config XGENE_PMU
config ARM_SPE_PMU
tristate "Enable support for the ARMv8.2 Statistical Profiling Extension"
- depends on PERF_EVENTS && ARM64
+ depends on ARM64
help
Enable perf support for the ARMv8.2 Statistical Profiling
Extension, which provides periodic sampling of operations in
diff --git a/drivers/perf/arm-cci.c b/drivers/perf/arm-cci.c
index 383b2d3dcbc6..0d09d8e669cd 100644
--- a/drivers/perf/arm-cci.c
+++ b/drivers/perf/arm-cci.c
@@ -120,9 +120,9 @@ enum cci_models {
static void pmu_write_counters(struct cci_pmu *cci_pmu,
unsigned long *mask);
-static ssize_t cci_pmu_format_show(struct device *dev,
+static ssize_t __maybe_unused cci_pmu_format_show(struct device *dev,
struct device_attribute *attr, char *buf);
-static ssize_t cci_pmu_event_show(struct device *dev,
+static ssize_t __maybe_unused cci_pmu_event_show(struct device *dev,
struct device_attribute *attr, char *buf);
#define CCI_EXT_ATTR_ENTRY(_name, _func, _config) \
@@ -1184,16 +1184,11 @@ static int cci_pmu_add(struct perf_event *event, int flags)
struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
struct hw_perf_event *hwc = &event->hw;
int idx;
- int err = 0;
-
- perf_pmu_disable(event->pmu);
/* If we don't have a space for the counter then finish early. */
idx = pmu_get_event_idx(hw_events, event);
- if (idx < 0) {
- err = idx;
- goto out;
- }
+ if (idx < 0)
+ return idx;
event->hw.idx = idx;
hw_events->events[idx] = event;
@@ -1205,9 +1200,7 @@ static int cci_pmu_add(struct perf_event *event, int flags)
/* Propagate our changes to the userspace mapping. */
perf_event_update_userpage(event);
-out:
- perf_pmu_enable(event->pmu);
- return err;
+ return 0;
}
static void cci_pmu_del(struct perf_event *event, int flags)
@@ -1304,15 +1297,6 @@ static int __hw_perf_event_init(struct perf_event *event)
*/
hwc->config_base |= (unsigned long)mapping;
- /*
- * Limit the sample_period to half of the counter width. That way, the
- * new counter value is far less likely to overtake the previous one
- * unless you have some serious IRQ latency issues.
- */
- hwc->sample_period = CCI_PMU_CNTR_MASK >> 1;
- hwc->last_period = hwc->sample_period;
- local64_set(&hwc->period_left, hwc->sample_period);
-
if (event->group_leader != event) {
if (validate_group(event) != 0)
return -EINVAL;
@@ -1423,6 +1407,7 @@ static int cci_pmu_init(struct cci_pmu *cci_pmu, struct platform_device *pdev)
pmu_format_attr_group.attrs = model->format_attrs;
cci_pmu->pmu = (struct pmu) {
+ .module = THIS_MODULE,
.name = cci_pmu->model->name,
.task_ctx_nr = perf_invalid_context,
.pmu_enable = cci_pmu_enable,
@@ -1466,7 +1451,7 @@ static int cci_pmu_offline_cpu(unsigned int cpu)
return 0;
}
-static struct cci_pmu_model cci_pmu_models[] = {
+static __maybe_unused struct cci_pmu_model cci_pmu_models[] = {
#ifdef CONFIG_ARM_CCI400_PMU
[CCI400_R0] = {
.name = "CCI_400",
@@ -1588,6 +1573,7 @@ static const struct of_device_id arm_cci_pmu_matches[] = {
#endif
{},
};
+MODULE_DEVICE_TABLE(of, arm_cci_pmu_matches);
static bool is_duplicate_irq(int irq, int *irqs, int nr_irqs)
{
@@ -1709,14 +1695,27 @@ static int cci_pmu_probe(struct platform_device *pdev)
return 0;
}
+static int cci_pmu_remove(struct platform_device *pdev)
+{
+ if (!g_cci_pmu)
+ return 0;
+
+ cpuhp_remove_state(CPUHP_AP_PERF_ARM_CCI_ONLINE);
+ perf_pmu_unregister(&g_cci_pmu->pmu);
+ g_cci_pmu = NULL;
+
+ return 0;
+}
+
static struct platform_driver cci_pmu_driver = {
.driver = {
.name = DRIVER_NAME,
.of_match_table = arm_cci_pmu_matches,
},
.probe = cci_pmu_probe,
+ .remove = cci_pmu_remove,
};
-builtin_platform_driver(cci_pmu_driver);
-MODULE_LICENSE("GPL");
+module_platform_driver(cci_pmu_driver);
+MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("ARM CCI PMU support");
diff --git a/drivers/perf/arm-ccn.c b/drivers/perf/arm-ccn.c
index 65b7e4042ece..b416ee18e6bb 100644
--- a/drivers/perf/arm-ccn.c
+++ b/drivers/perf/arm-ccn.c
@@ -736,7 +736,7 @@ static int arm_ccn_pmu_event_init(struct perf_event *event)
ccn = pmu_to_arm_ccn(event->pmu);
if (hw->sample_period) {
- dev_warn(ccn->dev, "Sampling not supported!\n");
+ dev_dbg(ccn->dev, "Sampling not supported!\n");
return -EOPNOTSUPP;
}
@@ -744,12 +744,12 @@ static int arm_ccn_pmu_event_init(struct perf_event *event)
event->attr.exclude_kernel || event->attr.exclude_hv ||
event->attr.exclude_idle || event->attr.exclude_host ||
event->attr.exclude_guest) {
- dev_warn(ccn->dev, "Can't exclude execution levels!\n");
+ dev_dbg(ccn->dev, "Can't exclude execution levels!\n");
return -EINVAL;
}
if (event->cpu < 0) {
- dev_warn(ccn->dev, "Can't provide per-task data!\n");
+ dev_dbg(ccn->dev, "Can't provide per-task data!\n");
return -EOPNOTSUPP;
}
/*
@@ -771,13 +771,13 @@ static int arm_ccn_pmu_event_init(struct perf_event *event)
switch (type) {
case CCN_TYPE_MN:
if (node_xp != ccn->mn_id) {
- dev_warn(ccn->dev, "Invalid MN ID %d!\n", node_xp);
+ dev_dbg(ccn->dev, "Invalid MN ID %d!\n", node_xp);
return -EINVAL;
}
break;
case CCN_TYPE_XP:
if (node_xp >= ccn->num_xps) {
- dev_warn(ccn->dev, "Invalid XP ID %d!\n", node_xp);
+ dev_dbg(ccn->dev, "Invalid XP ID %d!\n", node_xp);
return -EINVAL;
}
break;
@@ -785,11 +785,11 @@ static int arm_ccn_pmu_event_init(struct perf_event *event)
break;
default:
if (node_xp >= ccn->num_nodes) {
- dev_warn(ccn->dev, "Invalid node ID %d!\n", node_xp);
+ dev_dbg(ccn->dev, "Invalid node ID %d!\n", node_xp);
return -EINVAL;
}
if (!arm_ccn_pmu_type_eq(type, ccn->node[node_xp].type)) {
- dev_warn(ccn->dev, "Invalid type 0x%x for node %d!\n",
+ dev_dbg(ccn->dev, "Invalid type 0x%x for node %d!\n",
type, node_xp);
return -EINVAL;
}
@@ -808,19 +808,19 @@ static int arm_ccn_pmu_event_init(struct perf_event *event)
if (event_id != e->event)
continue;
if (e->num_ports && port >= e->num_ports) {
- dev_warn(ccn->dev, "Invalid port %d for node/XP %d!\n",
+ dev_dbg(ccn->dev, "Invalid port %d for node/XP %d!\n",
port, node_xp);
return -EINVAL;
}
if (e->num_vcs && vc >= e->num_vcs) {
- dev_warn(ccn->dev, "Invalid vc %d for node/XP %d!\n",
+ dev_dbg(ccn->dev, "Invalid vc %d for node/XP %d!\n",
vc, node_xp);
return -EINVAL;
}
valid = 1;
}
if (!valid) {
- dev_warn(ccn->dev, "Invalid event 0x%x for node/XP %d!\n",
+ dev_dbg(ccn->dev, "Invalid event 0x%x for node/XP %d!\n",
event_id, node_xp);
return -EINVAL;
}
@@ -1594,4 +1594,4 @@ module_init(arm_ccn_init);
module_exit(arm_ccn_exit);
MODULE_AUTHOR("Pawel Moll <pawel.moll@arm.com>");
-MODULE_LICENSE("GPL");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/perf/arm_pmu.c b/drivers/perf/arm_pmu.c
index 1a0d340b65cf..a6347d487635 100644
--- a/drivers/perf/arm_pmu.c
+++ b/drivers/perf/arm_pmu.c
@@ -339,7 +339,7 @@ static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
return IRQ_NONE;
start_clock = sched_clock();
- ret = armpmu->handle_irq(irq, armpmu);
+ ret = armpmu->handle_irq(armpmu);
finish_clock = sched_clock();
perf_sample_event_took(finish_clock - start_clock);
diff --git a/drivers/perf/arm_spe_pmu.c b/drivers/perf/arm_spe_pmu.c
index 28bb642af18b..54ec278d2fc4 100644
--- a/drivers/perf/arm_spe_pmu.c
+++ b/drivers/perf/arm_spe_pmu.c
@@ -131,8 +131,7 @@ static ssize_t arm_spe_pmu_cap_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
- struct platform_device *pdev = to_platform_device(dev);
- struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
+ struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
struct dev_ext_attribute *ea =
container_of(attr, struct dev_ext_attribute, attr);
int cap = (long)ea->var;
@@ -247,8 +246,7 @@ static ssize_t arm_spe_pmu_get_attr_cpumask(struct device *dev,
struct device_attribute *attr,
char *buf)
{
- struct platform_device *pdev = to_platform_device(dev);
- struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
+ struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
}