diff options
author | Michael Halcrow <mhalcrow@google.com> | 2015-04-12 06:43:56 +0200 |
---|---|---|
committer | Theodore Ts'o <tytso@mit.edu> | 2015-04-12 06:43:56 +0200 |
commit | b30ab0e03407d2aa2d9316cba199c757e4bfc8ad (patch) | |
tree | 900754eb3fe069f90bb5ea2c1df1ed88cf701eb5 /fs/ext4 | |
parent | ext4 crypto: add encryption policy and password salt support (diff) | |
download | linux-b30ab0e03407d2aa2d9316cba199c757e4bfc8ad.tar.xz linux-b30ab0e03407d2aa2d9316cba199c757e4bfc8ad.zip |
ext4 crypto: add ext4 encryption facilities
On encrypt, we will re-assign the buffer_heads to point to a bounce
page rather than the control_page (which is the original page to write
that contains the plaintext). The block I/O occurs against the bounce
page. On write completion, we re-assign the buffer_heads to the
original plaintext page.
On decrypt, we will attach a read completion callback to the bio
struct. This read completion will decrypt the read contents in-place
prior to setting the page up-to-date.
The current encryption mode, AES-256-XTS, lacks cryptographic
integrity. AES-256-GCM is in-plan, but we will need to devise a
mechanism for handling the integrity data.
Signed-off-by: Michael Halcrow <mhalcrow@google.com>
Signed-off-by: Ildar Muslukhov <ildarm@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Diffstat (limited to 'fs/ext4')
-rw-r--r-- | fs/ext4/Makefile | 2 | ||||
-rw-r--r-- | fs/ext4/crypto.c | 558 | ||||
-rw-r--r-- | fs/ext4/crypto_policy.c | 8 | ||||
-rw-r--r-- | fs/ext4/ext4.h | 52 | ||||
-rw-r--r-- | fs/ext4/ext4_crypto.h | 55 | ||||
-rw-r--r-- | fs/ext4/super.c | 8 |
6 files changed, 682 insertions, 1 deletions
diff --git a/fs/ext4/Makefile b/fs/ext4/Makefile index 3886ee45f556..1b1c5619523d 100644 --- a/fs/ext4/Makefile +++ b/fs/ext4/Makefile @@ -12,4 +12,4 @@ ext4-y := balloc.o bitmap.o dir.o file.o fsync.o ialloc.o inode.o page-io.o \ ext4-$(CONFIG_EXT4_FS_POSIX_ACL) += acl.o ext4-$(CONFIG_EXT4_FS_SECURITY) += xattr_security.o -ext4-$(CONFIG_EXT4_FS_ENCRYPTION) += crypto_policy.o +ext4-$(CONFIG_EXT4_FS_ENCRYPTION) += crypto_policy.o crypto.o diff --git a/fs/ext4/crypto.c b/fs/ext4/crypto.c new file mode 100644 index 000000000000..8ff15273ab0c --- /dev/null +++ b/fs/ext4/crypto.c @@ -0,0 +1,558 @@ +/* + * linux/fs/ext4/crypto.c + * + * Copyright (C) 2015, Google, Inc. + * + * This contains encryption functions for ext4 + * + * Written by Michael Halcrow, 2014. + * + * Filename encryption additions + * Uday Savagaonkar, 2014 + * Encryption policy handling additions + * Ildar Muslukhov, 2014 + * + * This has not yet undergone a rigorous security audit. + * + * The usage of AES-XTS should conform to recommendations in NIST + * Special Publication 800-38E and IEEE P1619/D16. + */ + +#include <crypto/hash.h> +#include <crypto/sha.h> +#include <keys/user-type.h> +#include <keys/encrypted-type.h> +#include <linux/crypto.h> +#include <linux/ecryptfs.h> +#include <linux/gfp.h> +#include <linux/kernel.h> +#include <linux/key.h> +#include <linux/list.h> +#include <linux/mempool.h> +#include <linux/module.h> +#include <linux/mutex.h> +#include <linux/random.h> +#include <linux/scatterlist.h> +#include <linux/spinlock_types.h> + +#include "ext4_extents.h" +#include "xattr.h" + +/* Encryption added and removed here! (L: */ + +static unsigned int num_prealloc_crypto_pages = 32; +static unsigned int num_prealloc_crypto_ctxs = 128; + +module_param(num_prealloc_crypto_pages, uint, 0444); +MODULE_PARM_DESC(num_prealloc_crypto_pages, + "Number of crypto pages to preallocate"); +module_param(num_prealloc_crypto_ctxs, uint, 0444); +MODULE_PARM_DESC(num_prealloc_crypto_ctxs, + "Number of crypto contexts to preallocate"); + +static mempool_t *ext4_bounce_page_pool; + +static LIST_HEAD(ext4_free_crypto_ctxs); +static DEFINE_SPINLOCK(ext4_crypto_ctx_lock); + +/** + * ext4_release_crypto_ctx() - Releases an encryption context + * @ctx: The encryption context to release. + * + * If the encryption context was allocated from the pre-allocated pool, returns + * it to that pool. Else, frees it. + * + * If there's a bounce page in the context, this frees that. + */ +void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx) +{ + unsigned long flags; + + if (ctx->bounce_page) { + if (ctx->flags & EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL) + __free_page(ctx->bounce_page); + else + mempool_free(ctx->bounce_page, ext4_bounce_page_pool); + ctx->bounce_page = NULL; + } + ctx->control_page = NULL; + if (ctx->flags & EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL) { + if (ctx->tfm) + crypto_free_tfm(ctx->tfm); + kfree(ctx); + } else { + spin_lock_irqsave(&ext4_crypto_ctx_lock, flags); + list_add(&ctx->free_list, &ext4_free_crypto_ctxs); + spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags); + } +} + +/** + * ext4_alloc_and_init_crypto_ctx() - Allocates and inits an encryption context + * @mask: The allocation mask. + * + * Return: An allocated and initialized encryption context on success. An error + * value or NULL otherwise. + */ +static struct ext4_crypto_ctx *ext4_alloc_and_init_crypto_ctx(gfp_t mask) +{ + struct ext4_crypto_ctx *ctx = kzalloc(sizeof(struct ext4_crypto_ctx), + mask); + + if (!ctx) + return ERR_PTR(-ENOMEM); + return ctx; +} + +/** + * ext4_get_crypto_ctx() - Gets an encryption context + * @inode: The inode for which we are doing the crypto + * + * Allocates and initializes an encryption context. + * + * Return: An allocated and initialized encryption context on success; error + * value or NULL otherwise. + */ +struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode) +{ + struct ext4_crypto_ctx *ctx = NULL; + int res = 0; + unsigned long flags; + struct ext4_encryption_key *key = &EXT4_I(inode)->i_encryption_key; + + if (!ext4_read_workqueue) + ext4_init_crypto(); + + /* + * We first try getting the ctx from a free list because in + * the common case the ctx will have an allocated and + * initialized crypto tfm, so it's probably a worthwhile + * optimization. For the bounce page, we first try getting it + * from the kernel allocator because that's just about as fast + * as getting it from a list and because a cache of free pages + * should generally be a "last resort" option for a filesystem + * to be able to do its job. + */ + spin_lock_irqsave(&ext4_crypto_ctx_lock, flags); + ctx = list_first_entry_or_null(&ext4_free_crypto_ctxs, + struct ext4_crypto_ctx, free_list); + if (ctx) + list_del(&ctx->free_list); + spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags); + if (!ctx) { + ctx = ext4_alloc_and_init_crypto_ctx(GFP_NOFS); + if (IS_ERR(ctx)) { + res = PTR_ERR(ctx); + goto out; + } + ctx->flags |= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL; + } else { + ctx->flags &= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL; + } + + /* Allocate a new Crypto API context if we don't already have + * one or if it isn't the right mode. */ + BUG_ON(key->mode == EXT4_ENCRYPTION_MODE_INVALID); + if (ctx->tfm && (ctx->mode != key->mode)) { + crypto_free_tfm(ctx->tfm); + ctx->tfm = NULL; + ctx->mode = EXT4_ENCRYPTION_MODE_INVALID; + } + if (!ctx->tfm) { + switch (key->mode) { + case EXT4_ENCRYPTION_MODE_AES_256_XTS: + ctx->tfm = crypto_ablkcipher_tfm( + crypto_alloc_ablkcipher("xts(aes)", 0, 0)); + break; + case EXT4_ENCRYPTION_MODE_AES_256_GCM: + /* TODO(mhalcrow): AEAD w/ gcm(aes); + * crypto_aead_setauthsize() */ + ctx->tfm = ERR_PTR(-ENOTSUPP); + break; + default: + BUG(); + } + if (IS_ERR_OR_NULL(ctx->tfm)) { + res = PTR_ERR(ctx->tfm); + ctx->tfm = NULL; + goto out; + } + ctx->mode = key->mode; + } + BUG_ON(key->size != ext4_encryption_key_size(key->mode)); + + /* There shouldn't be a bounce page attached to the crypto + * context at this point. */ + BUG_ON(ctx->bounce_page); + +out: + if (res) { + if (!IS_ERR_OR_NULL(ctx)) + ext4_release_crypto_ctx(ctx); + ctx = ERR_PTR(res); + } + return ctx; +} + +struct workqueue_struct *ext4_read_workqueue; +static DEFINE_MUTEX(crypto_init); + +/** + * ext4_exit_crypto() - Shutdown the ext4 encryption system + */ +void ext4_exit_crypto(void) +{ + struct ext4_crypto_ctx *pos, *n; + + list_for_each_entry_safe(pos, n, &ext4_free_crypto_ctxs, free_list) { + if (pos->bounce_page) { + if (pos->flags & + EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL) { + __free_page(pos->bounce_page); + } else { + mempool_free(pos->bounce_page, + ext4_bounce_page_pool); + } + } + if (pos->tfm) + crypto_free_tfm(pos->tfm); + kfree(pos); + } + INIT_LIST_HEAD(&ext4_free_crypto_ctxs); + if (ext4_bounce_page_pool) + mempool_destroy(ext4_bounce_page_pool); + ext4_bounce_page_pool = NULL; + if (ext4_read_workqueue) + destroy_workqueue(ext4_read_workqueue); + ext4_read_workqueue = NULL; +} + +/** + * ext4_init_crypto() - Set up for ext4 encryption. + * + * We only call this when we start accessing encrypted files, since it + * results in memory getting allocated that wouldn't otherwise be used. + * + * Return: Zero on success, non-zero otherwise. + */ +int ext4_init_crypto(void) +{ + int i, res; + + mutex_lock(&crypto_init); + if (ext4_read_workqueue) + goto already_initialized; + ext4_read_workqueue = alloc_workqueue("ext4_crypto", WQ_HIGHPRI, 0); + if (!ext4_read_workqueue) { + res = -ENOMEM; + goto fail; + } + + for (i = 0; i < num_prealloc_crypto_ctxs; i++) { + struct ext4_crypto_ctx *ctx; + + ctx = ext4_alloc_and_init_crypto_ctx(GFP_KERNEL); + if (IS_ERR(ctx)) { + res = PTR_ERR(ctx); + goto fail; + } + list_add(&ctx->free_list, &ext4_free_crypto_ctxs); + } + + ext4_bounce_page_pool = + mempool_create_page_pool(num_prealloc_crypto_pages, 0); + if (!ext4_bounce_page_pool) { + res = -ENOMEM; + goto fail; + } +already_initialized: + mutex_unlock(&crypto_init); + return 0; +fail: + ext4_exit_crypto(); + mutex_unlock(&crypto_init); + return res; +} + +void ext4_restore_control_page(struct page *data_page) +{ + struct ext4_crypto_ctx *ctx = + (struct ext4_crypto_ctx *)page_private(data_page); + + set_page_private(data_page, (unsigned long)NULL); + ClearPagePrivate(data_page); + unlock_page(data_page); + ext4_release_crypto_ctx(ctx); +} + +/** + * ext4_crypt_complete() - The completion callback for page encryption + * @req: The asynchronous encryption request context + * @res: The result of the encryption operation + */ +static void ext4_crypt_complete(struct crypto_async_request *req, int res) +{ + struct ext4_completion_result *ecr = req->data; + + if (res == -EINPROGRESS) + return; + ecr->res = res; + complete(&ecr->completion); +} + +typedef enum { + EXT4_DECRYPT = 0, + EXT4_ENCRYPT, +} ext4_direction_t; + +static int ext4_page_crypto(struct ext4_crypto_ctx *ctx, + struct inode *inode, + ext4_direction_t rw, + pgoff_t index, + struct page *src_page, + struct page *dest_page) + +{ + u8 xts_tweak[EXT4_XTS_TWEAK_SIZE]; + struct ablkcipher_request *req = NULL; + DECLARE_EXT4_COMPLETION_RESULT(ecr); + struct scatterlist dst, src; + struct ext4_inode_info *ei = EXT4_I(inode); + struct crypto_ablkcipher *atfm = __crypto_ablkcipher_cast(ctx->tfm); + int res = 0; + + BUG_ON(!ctx->tfm); + BUG_ON(ctx->mode != ei->i_encryption_key.mode); + + if (ctx->mode != EXT4_ENCRYPTION_MODE_AES_256_XTS) { + printk_ratelimited(KERN_ERR + "%s: unsupported crypto algorithm: %d\n", + __func__, ctx->mode); + return -ENOTSUPP; + } + + crypto_ablkcipher_clear_flags(atfm, ~0); + crypto_tfm_set_flags(ctx->tfm, CRYPTO_TFM_REQ_WEAK_KEY); + + res = crypto_ablkcipher_setkey(atfm, ei->i_encryption_key.raw, + ei->i_encryption_key.size); + if (res) { + printk_ratelimited(KERN_ERR + "%s: crypto_ablkcipher_setkey() failed\n", + __func__); + return res; + } + req = ablkcipher_request_alloc(atfm, GFP_NOFS); + if (!req) { + printk_ratelimited(KERN_ERR + "%s: crypto_request_alloc() failed\n", + __func__); + return -ENOMEM; + } + ablkcipher_request_set_callback( + req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, + ext4_crypt_complete, &ecr); + + BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE < sizeof(index)); + memcpy(xts_tweak, &index, sizeof(index)); + memset(&xts_tweak[sizeof(index)], 0, + EXT4_XTS_TWEAK_SIZE - sizeof(index)); + + sg_init_table(&dst, 1); + sg_set_page(&dst, dest_page, PAGE_CACHE_SIZE, 0); + sg_init_table(&src, 1); + sg_set_page(&src, src_page, PAGE_CACHE_SIZE, 0); + ablkcipher_request_set_crypt(req, &src, &dst, PAGE_CACHE_SIZE, + xts_tweak); + if (rw == EXT4_DECRYPT) + res = crypto_ablkcipher_decrypt(req); + else + res = crypto_ablkcipher_encrypt(req); + if (res == -EINPROGRESS || res == -EBUSY) { + BUG_ON(req->base.data != &ecr); + wait_for_completion(&ecr.completion); + res = ecr.res; + } + ablkcipher_request_free(req); + if (res) { + printk_ratelimited( + KERN_ERR + "%s: crypto_ablkcipher_encrypt() returned %d\n", + __func__, res); + return res; + } + return 0; +} + +/** + * ext4_encrypt() - Encrypts a page + * @inode: The inode for which the encryption should take place + * @plaintext_page: The page to encrypt. Must be locked. + * + * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx + * encryption context. + * + * Called on the page write path. The caller must call + * ext4_restore_control_page() on the returned ciphertext page to + * release the bounce buffer and the encryption context. + * + * Return: An allocated page with the encrypted content on success. Else, an + * error value or NULL. + */ +struct page *ext4_encrypt(struct inode *inode, + struct page *plaintext_page) +{ + struct ext4_crypto_ctx *ctx; + struct page *ciphertext_page = NULL; + int err; + + BUG_ON(!PageLocked(plaintext_page)); + + ctx = ext4_get_crypto_ctx(inode); + if (IS_ERR(ctx)) + return (struct page *) ctx; + + /* The encryption operation will require a bounce page. */ + ciphertext_page = alloc_page(GFP_NOFS); + if (!ciphertext_page) { + /* This is a potential bottleneck, but at least we'll have + * forward progress. */ + ciphertext_page = mempool_alloc(ext4_bounce_page_pool, + GFP_NOFS); + if (WARN_ON_ONCE(!ciphertext_page)) { + ciphertext_page = mempool_alloc(ext4_bounce_page_pool, + GFP_NOFS | __GFP_WAIT); + } + ctx->flags &= ~EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL; + } else { + ctx->flags |= EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL; + } + ctx->bounce_page = ciphertext_page; + ctx->control_page = plaintext_page; + err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, plaintext_page->index, + plaintext_page, ciphertext_page); + if (err) { + ext4_release_crypto_ctx(ctx); + return ERR_PTR(err); + } + SetPagePrivate(ciphertext_page); + set_page_private(ciphertext_page, (unsigned long)ctx); + lock_page(ciphertext_page); + return ciphertext_page; +} + +/** + * ext4_decrypt() - Decrypts a page in-place + * @ctx: The encryption context. + * @page: The page to decrypt. Must be locked. + * + * Decrypts page in-place using the ctx encryption context. + * + * Called from the read completion callback. + * + * Return: Zero on success, non-zero otherwise. + */ +int ext4_decrypt(struct ext4_crypto_ctx *ctx, struct page *page) +{ + BUG_ON(!PageLocked(page)); + + return ext4_page_crypto(ctx, page->mapping->host, + EXT4_DECRYPT, page->index, page, page); +} + +/* + * Convenience function which takes care of allocating and + * deallocating the encryption context + */ +int ext4_decrypt_one(struct inode *inode, struct page *page) +{ + int ret; + + struct ext4_crypto_ctx *ctx = ext4_get_crypto_ctx(inode); + + if (!ctx) + return -ENOMEM; + ret = ext4_decrypt(ctx, page); + ext4_release_crypto_ctx(ctx); + return ret; +} + +int ext4_encrypted_zeroout(struct inode *inode, struct ext4_extent *ex) +{ + struct ext4_crypto_ctx *ctx; + struct page *ciphertext_page = NULL; + struct bio *bio; + ext4_lblk_t lblk = ex->ee_block; + ext4_fsblk_t pblk = ext4_ext_pblock(ex); + unsigned int len = ext4_ext_get_actual_len(ex); + int err = 0; + + BUG_ON(inode->i_sb->s_blocksize != PAGE_CACHE_SIZE); + + ctx = ext4_get_crypto_ctx(inode); + if (IS_ERR(ctx)) + return PTR_ERR(ctx); + + ciphertext_page = alloc_page(GFP_NOFS); + if (!ciphertext_page) { + /* This is a potential bottleneck, but at least we'll have + * forward progress. */ + ciphertext_page = mempool_alloc(ext4_bounce_page_pool, + GFP_NOFS); + if (WARN_ON_ONCE(!ciphertext_page)) { + ciphertext_page = mempool_alloc(ext4_bounce_page_pool, + GFP_NOFS | __GFP_WAIT); + } + ctx->flags &= ~EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL; + } else { + ctx->flags |= EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL; + } + ctx->bounce_page = ciphertext_page; + + while (len--) { + err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, lblk, + ZERO_PAGE(0), ciphertext_page); + if (err) + goto errout; + + bio = bio_alloc(GFP_KERNEL, 1); + if (!bio) { + err = -ENOMEM; + goto errout; + } + bio->bi_bdev = inode->i_sb->s_bdev; + bio->bi_iter.bi_sector = pblk; + err = bio_add_page(bio, ciphertext_page, + inode->i_sb->s_blocksize, 0); + if (err) { + bio_put(bio); + goto errout; + } + err = submit_bio_wait(WRITE, bio); + if (err) + goto errout; + } + err = 0; +errout: + ext4_release_crypto_ctx(ctx); + return err; +} + +bool ext4_valid_contents_enc_mode(uint32_t mode) +{ + return (mode == EXT4_ENCRYPTION_MODE_AES_256_XTS); +} + +/** + * ext4_validate_encryption_key_size() - Validate the encryption key size + * @mode: The key mode. + * @size: The key size to validate. + * + * Return: The validated key size for @mode. Zero if invalid. + */ +uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size) +{ + if (size == ext4_encryption_key_size(mode)) + return size; + return 0; +} diff --git a/fs/ext4/crypto_policy.c b/fs/ext4/crypto_policy.c index 532b69c0afab..a4bf762b3ba9 100644 --- a/fs/ext4/crypto_policy.c +++ b/fs/ext4/crypto_policy.c @@ -52,6 +52,13 @@ static int ext4_create_encryption_context_from_policy( ctx.format = EXT4_ENCRYPTION_CONTEXT_FORMAT_V1; memcpy(ctx.master_key_descriptor, policy->master_key_descriptor, EXT4_KEY_DESCRIPTOR_SIZE); + if (!ext4_valid_contents_enc_mode(policy->contents_encryption_mode)) { + printk(KERN_WARNING + "%s: Invalid contents encryption mode %d\n", __func__, + policy->contents_encryption_mode); + res = -EINVAL; + goto out; + } ctx.contents_encryption_mode = policy->contents_encryption_mode; ctx.filenames_encryption_mode = policy->filenames_encryption_mode; BUILD_BUG_ON(sizeof(ctx.nonce) != EXT4_KEY_DERIVATION_NONCE_SIZE); @@ -60,6 +67,7 @@ static int ext4_create_encryption_context_from_policy( res = ext4_xattr_set(inode, EXT4_XATTR_INDEX_ENCRYPTION, EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, &ctx, sizeof(ctx), 0); +out: if (!res) ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); return res; diff --git a/fs/ext4/ext4.h b/fs/ext4/ext4.h index ab873aa9955e..71619ef72225 100644 --- a/fs/ext4/ext4.h +++ b/fs/ext4/ext4.h @@ -951,6 +951,11 @@ struct ext4_inode_info { /* Precomputed uuid+inum+igen checksum for seeding inode checksums */ __u32 i_csum_seed; + +#ifdef CONFIG_EXT4_FS_ENCRYPTION + /* Encryption params */ + struct ext4_encryption_key i_encryption_key; +#endif }; /* @@ -1366,6 +1371,12 @@ struct ext4_sb_info { struct ratelimit_state s_err_ratelimit_state; struct ratelimit_state s_warning_ratelimit_state; struct ratelimit_state s_msg_ratelimit_state; + +#ifdef CONFIG_EXT4_FS_ENCRYPTION + /* Encryption */ + uint32_t s_file_encryption_mode; + uint32_t s_dir_encryption_mode; +#endif }; static inline struct ext4_sb_info *EXT4_SB(struct super_block *sb) @@ -1481,6 +1492,18 @@ static inline void ext4_clear_state_flags(struct ext4_inode_info *ei) #define EXT4_SB(sb) (sb) #endif +/* + * Returns true if the inode is inode is encrypted + */ +static inline int ext4_encrypted_inode(struct inode *inode) +{ +#ifdef CONFIG_EXT4_FS_ENCRYPTION + return ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT); +#else + return 0; +#endif +} + #define NEXT_ORPHAN(inode) EXT4_I(inode)->i_dtime /* @@ -2026,6 +2049,35 @@ int ext4_process_policy(const struct ext4_encryption_policy *policy, int ext4_get_policy(struct inode *inode, struct ext4_encryption_policy *policy); +/* crypto.c */ +bool ext4_valid_contents_enc_mode(uint32_t mode); +uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size); +extern struct workqueue_struct *ext4_read_workqueue; +struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode); +void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx); +void ext4_restore_control_page(struct page *data_page); +struct page *ext4_encrypt(struct inode *inode, + struct page *plaintext_page); +int ext4_decrypt(struct ext4_crypto_ctx *ctx, struct page *page); +int ext4_decrypt_one(struct inode *inode, struct page *page); +int ext4_encrypted_zeroout(struct inode *inode, struct ext4_extent *ex); + +#ifdef CONFIG_EXT4_FS_ENCRYPTION +int ext4_init_crypto(void); +void ext4_exit_crypto(void); +static inline int ext4_sb_has_crypto(struct super_block *sb) +{ + return EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT); +} +#else +static inline int ext4_init_crypto(void) { return 0; } +static inline void ext4_exit_crypto(void) { } +static inline int ext4_sb_has_crypto(struct super_block *sb) +{ + return 0; +} +#endif + /* dir.c */ extern int __ext4_check_dir_entry(const char *, unsigned int, struct inode *, struct file *, diff --git a/fs/ext4/ext4_crypto.h b/fs/ext4/ext4_crypto.h index a69d2ba54bee..9d5d2e56cc46 100644 --- a/fs/ext4/ext4_crypto.h +++ b/fs/ext4/ext4_crypto.h @@ -46,4 +46,59 @@ struct ext4_encryption_context { char nonce[EXT4_KEY_DERIVATION_NONCE_SIZE]; } __attribute__((__packed__)); +/* Encryption parameters */ +#define EXT4_XTS_TWEAK_SIZE 16 +#define EXT4_AES_128_ECB_KEY_SIZE 16 +#define EXT4_AES_256_GCM_KEY_SIZE 32 +#define EXT4_AES_256_CBC_KEY_SIZE 32 +#define EXT4_AES_256_CTS_KEY_SIZE 32 +#define EXT4_AES_256_XTS_KEY_SIZE 64 +#define EXT4_MAX_KEY_SIZE 64 + +struct ext4_encryption_key { + uint32_t mode; + char raw[EXT4_MAX_KEY_SIZE]; + uint32_t size; +}; + +#define EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL 0x00000001 +#define EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL 0x00000002 + +struct ext4_crypto_ctx { + struct crypto_tfm *tfm; /* Crypto API context */ + struct page *bounce_page; /* Ciphertext page on write path */ + struct page *control_page; /* Original page on write path */ + struct bio *bio; /* The bio for this context */ + struct work_struct work; /* Work queue for read complete path */ + struct list_head free_list; /* Free list */ + int flags; /* Flags */ + int mode; /* Encryption mode for tfm */ +}; + +struct ext4_completion_result { + struct completion completion; + int res; +}; + +#define DECLARE_EXT4_COMPLETION_RESULT(ecr) \ + struct ext4_completion_result ecr = { \ + COMPLETION_INITIALIZER((ecr).completion), 0 } + +static inline int ext4_encryption_key_size(int mode) +{ + switch (mode) { + case EXT4_ENCRYPTION_MODE_AES_256_XTS: + return EXT4_AES_256_XTS_KEY_SIZE; + case EXT4_ENCRYPTION_MODE_AES_256_GCM: + return EXT4_AES_256_GCM_KEY_SIZE; + case EXT4_ENCRYPTION_MODE_AES_256_CBC: + return EXT4_AES_256_CBC_KEY_SIZE; + case EXT4_ENCRYPTION_MODE_AES_256_CTS: + return EXT4_AES_256_CTS_KEY_SIZE; + default: + BUG(); + } + return 0; +} + #endif /* _EXT4_CRYPTO_H */ diff --git a/fs/ext4/super.c b/fs/ext4/super.c index e47a552fea05..1008ca258de4 100644 --- a/fs/ext4/super.c +++ b/fs/ext4/super.c @@ -876,6 +876,9 @@ static struct inode *ext4_alloc_inode(struct super_block *sb) atomic_set(&ei->i_ioend_count, 0); atomic_set(&ei->i_unwritten, 0); INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); +#ifdef CONFIG_EXT4_FS_ENCRYPTION + ei->i_encryption_key.mode = EXT4_ENCRYPTION_MODE_INVALID; +#endif return &ei->vfs_inode; } @@ -3431,6 +3434,11 @@ static int ext4_fill_super(struct super_block *sb, void *data, int silent) if (sb->s_bdev->bd_part) sbi->s_sectors_written_start = part_stat_read(sb->s_bdev->bd_part, sectors[1]); +#ifdef CONFIG_EXT4_FS_ENCRYPTION + /* Modes of operations for file and directory encryption. */ + sbi->s_file_encryption_mode = EXT4_ENCRYPTION_MODE_AES_256_XTS; + sbi->s_dir_encryption_mode = EXT4_ENCRYPTION_MODE_INVALID; +#endif /* Cleanup superblock name */ for (cp = sb->s_id; (cp = strchr(cp, '/'));) |