summaryrefslogtreecommitdiffstats
path: root/fs/fscache/io.c
diff options
context:
space:
mode:
authorDavid Howells <dhowells@redhat.com>2021-10-21 00:50:01 +0200
committerDavid Howells <dhowells@redhat.com>2022-01-07 10:22:19 +0100
commit08276bdae68b022a7726edf7416b6748e3df5395 (patch)
tree638f9348fcc0824203657538374376b0aa588c20 /fs/fscache/io.c
parentfscache: Implement higher-level write I/O interface (diff)
downloadlinux-08276bdae68b022a7726edf7416b6748e3df5395.tar.xz
linux-08276bdae68b022a7726edf7416b6748e3df5395.zip
vfs, fscache: Implement pinning of cache usage for writeback
Cachefiles has a problem in that it needs to keep the backing file for a cookie open whilst there are local modifications pending that need to be written to it. However, we don't want to keep the file open indefinitely, as that causes EMFILE/ENFILE/ENOMEM problems. Reopening the cache file, however, is a problem if this is being done due to writeback triggered by exit(). Some filesystems will oops if we try to open a file in that context because they want to access current->fs or other resources that have already been dismantled. To get around this, I added the following: (1) An inode flag, I_PINNING_FSCACHE_WB, to be set on a network filesystem inode to indicate that we have a usage count on the cookie caching that inode. (2) A flag in struct writeback_control, unpinned_fscache_wb, that is set when __writeback_single_inode() clears the last dirty page from i_pages - at which point it clears I_PINNING_FSCACHE_WB and sets this flag. This has to be done here so that clearing I_PINNING_FSCACHE_WB can be done atomically with the check of PAGECACHE_TAG_DIRTY that clears I_DIRTY_PAGES. (3) A function, fscache_set_page_dirty(), which if it is not set, sets I_PINNING_FSCACHE_WB and calls fscache_use_cookie() to pin the cache resources. (4) A function, fscache_unpin_writeback(), to be called by ->write_inode() to unuse the cookie. (5) A function, fscache_clear_inode_writeback(), to be called when the inode is evicted, before clear_inode() is called. This cleans up any lingering I_PINNING_FSCACHE_WB. The network filesystem can then use these tools to make sure that fscache_write_to_cache() can write locally modified data to the cache as well as to the server. For the future, I'm working on write helpers for netfs lib that should allow this facility to be removed by keeping track of the dirty regions separately - but that's incomplete at the moment and is also going to be affected by folios, one way or another, since it deals with pages Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Jeff Layton <jlayton@kernel.org> cc: linux-cachefs@redhat.com Link: https://lore.kernel.org/r/163819615157.215744.17623791756928043114.stgit@warthog.procyon.org.uk/ # v1 Link: https://lore.kernel.org/r/163906917856.143852.8224898306177154573.stgit@warthog.procyon.org.uk/ # v2 Link: https://lore.kernel.org/r/163967124567.1823006.14188359004568060298.stgit@warthog.procyon.org.uk/ # v3 Link: https://lore.kernel.org/r/164021524705.640689.17824932021727663017.stgit@warthog.procyon.org.uk/ # v4
Diffstat (limited to 'fs/fscache/io.c')
-rw-r--r--fs/fscache/io.c38
1 files changed, 38 insertions, 0 deletions
diff --git a/fs/fscache/io.c b/fs/fscache/io.c
index 74cde7acf434..e9e5d6758ea8 100644
--- a/fs/fscache/io.c
+++ b/fs/fscache/io.c
@@ -150,6 +150,44 @@ int __fscache_begin_read_operation(struct netfs_cache_resources *cres,
}
EXPORT_SYMBOL(__fscache_begin_read_operation);
+/**
+ * fscache_set_page_dirty - Mark page dirty and pin a cache object for writeback
+ * @page: The page being dirtied
+ * @cookie: The cookie referring to the cache object
+ *
+ * Set the dirty flag on a page and pin an in-use cache object in memory when
+ * dirtying a page so that writeback can later write to it. This is intended
+ * to be called from the filesystem's ->set_page_dirty() method.
+ *
+ * Returns 1 if PG_dirty was set on the page, 0 otherwise.
+ */
+int fscache_set_page_dirty(struct page *page, struct fscache_cookie *cookie)
+{
+ struct inode *inode = page->mapping->host;
+ bool need_use = false;
+
+ _enter("");
+
+ if (!__set_page_dirty_nobuffers(page))
+ return 0;
+ if (!fscache_cookie_valid(cookie))
+ return 1;
+
+ if (!(inode->i_state & I_PINNING_FSCACHE_WB)) {
+ spin_lock(&inode->i_lock);
+ if (!(inode->i_state & I_PINNING_FSCACHE_WB)) {
+ inode->i_state |= I_PINNING_FSCACHE_WB;
+ need_use = true;
+ }
+ spin_unlock(&inode->i_lock);
+
+ if (need_use)
+ fscache_use_cookie(cookie, true);
+ }
+ return 1;
+}
+EXPORT_SYMBOL(fscache_set_page_dirty);
+
struct fscache_write_request {
struct netfs_cache_resources cache_resources;
struct address_space *mapping;