diff options
author | Dave Chinner <dchinner@redhat.com> | 2023-02-10 18:07:06 +0100 |
---|---|---|
committer | Dave Chinner <dchinner@redhat.com> | 2023-02-10 18:07:06 +0100 |
commit | 1dd0510f6d4b85616a36aabb9be38389467122d9 (patch) | |
tree | cadca8d286d85b2f24349dfe91b60dc18d87c7a3 /fs/xfs/libxfs/xfs_bmap.c | |
parent | xfs: revert commit 8954c44ff477 (diff) | |
download | linux-1dd0510f6d4b85616a36aabb9be38389467122d9.tar.xz linux-1dd0510f6d4b85616a36aabb9be38389467122d9.zip |
xfs: fix low space alloc deadlock
I've recently encountered an ABBA deadlock with g/476. The upcoming
changes seem to make this much easier to hit, but the underlying
problem is a pre-existing one.
Essentially, if we select an AG for allocation, then lock the AGF
and then fail to allocate for some reason (e.g. minimum length
requirements cannot be satisfied), then we drop out of the
allocation with the AGF still locked.
The caller then modifies the allocation constraints - usually
loosening them up - and tries again. This can result in trying to
access AGFs that are lower than the AGF we already have locked from
the failed attempt. e.g. the failed attempt skipped several AGs
before failing, so we have locks an AG higher than the start AG.
Retrying the allocation from the start AG then causes us to violate
AGF lock ordering and this can lead to deadlocks.
The deadlock exists even if allocation succeeds - we can do a
followup allocations in the same transaction for BMBT blocks that
aren't guaranteed to be in the same AG as the original, and can move
into higher AGs. Hence we really need to move the tp->t_firstblock
tracking down into xfs_alloc_vextent() where it can be set when we
exit with a locked AG.
xfs_alloc_vextent() can also check there if the requested
allocation falls within the allow range of AGs set by
tp->t_firstblock. If we can't allocate within the range set, we have
to fail the allocation. If we are allowed to to non-blocking AGF
locking, we can ignore the AG locking order limitations as we can
use try-locks for the first iteration over requested AG range.
This invalidates a set of post allocation asserts that check that
the allocation is always above tp->t_firstblock if it is set.
Because we can use try-locks to avoid the deadlock in some
circumstances, having a pre-existing locked AGF doesn't always
prevent allocation from lower order AGFs. Hence those ASSERTs need
to be removed.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Diffstat (limited to 'fs/xfs/libxfs/xfs_bmap.c')
-rw-r--r-- | fs/xfs/libxfs/xfs_bmap.c | 14 |
1 files changed, 0 insertions, 14 deletions
diff --git a/fs/xfs/libxfs/xfs_bmap.c b/fs/xfs/libxfs/xfs_bmap.c index c8c65387136c..de6d585c00f1 100644 --- a/fs/xfs/libxfs/xfs_bmap.c +++ b/fs/xfs/libxfs/xfs_bmap.c @@ -3413,21 +3413,7 @@ xfs_bmap_process_allocated_extent( xfs_fileoff_t orig_offset, xfs_extlen_t orig_length) { - int nullfb; - - nullfb = ap->tp->t_firstblock == NULLFSBLOCK; - - /* - * check the allocation happened at the same or higher AG than - * the first block that was allocated. - */ - ASSERT(nullfb || - XFS_FSB_TO_AGNO(args->mp, ap->tp->t_firstblock) <= - XFS_FSB_TO_AGNO(args->mp, args->fsbno)); - ap->blkno = args->fsbno; - if (nullfb) - ap->tp->t_firstblock = args->fsbno; ap->length = args->len; /* * If the extent size hint is active, we tried to round the |